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A B S T R A C T   

Accurate estimation of shortwave radiation in mountains will advance our knowledge of climate change effects, 
especially on mountain ecosystems. Recently, some approaches have been developed to estimate shortwave 
radiation parameters in mountains with satellite data, but few attempts were made to understand the impacts of 
digital elevation model (DEM) uncertainty on estimates. Our study investigates such impacts quantitatively in 
clear-sky conditions at multiple spatial and temporal scales (30–3000 m, instantaneous to daily). We employed a 
retrieval algorithm to estimate instantaneous and daily mean clear-sky downward shortwave radiation (DSR) and 
net shortwave radiation (NSR), as a proxy for our evaluation. The accuracy of our method based on accurate 
terrain data was verified against in-situ measurements with root-mean-square errors (RMSEs) of 65.9 W/m2 and 
65.1 W/m2 for instantaneous DSR and NSR, and 21.2 W/m2 and 22.5 W/m2 for daily mean values, respectively. 
When using satellite DEM products, the DSR estimation uncertainty could increase by 64.0% for instantaneous 
values and 46.2% for daily mean values. Using AW3D30 and SRTM DEMs for DSR estimation led to a maximum 
difference of 16.8% (103.6 W/m2) and 13.0% (25.8W/m2) on instantaneous and daily mean values, respectively. 
That estimation difference of shortwave radiation decreased with an increase in spatial scale, with RMS deviation 
lower than 2% for spatial resolution beyond 3000 m. In addition, the evaluation of introducing random errors 
into AW3D30 DEM showed that the shortwave radiation uncertainty caused by DEM may exceed the algorithm 
uncertainty itself with DEM mean absolute error (MAE) equaling about 5.0 m. Considering the current DEM 
accuracy, the impacts of DEM errors on shortwave radiation in mountains cannot be ignored. This study em
phasizes the potential impacts of DEM uncertainty on surface shortwave radiation estimation, which is crucial in 
using satellite-derived datasets for energy balance calculation and climate change applications in mountains.   

1. Introduction 

Shortwave radiation, including downward shortwave radiation 
(DSR) and net shortwave radiation (NSR), profoundly influences the 
land surface radiation budget and is the dominant energy for clean en
ergy production and ecosystem productivity (Liang et al., 2019), 
wherein NSR = DSR × (1-albedo) (albedo is defined as the ratio of up
ward shortwave radiation and DSR). Accurate estimation of shortwave 
radiation is essential for monitoring and evaluating global environment 
(Huang et al., 2016), solar energy utilization (Xu et al., 2021), ecosystem 
(Chen et al., 2021; Wu et al., 2021), and global energy balance (Wild 
et al., 2013; Zapadka et al., 2020). Mountains cover around a quarter of 
the land surface on Earth (Blyth et al., 2002). Under the background of 
global climate change, the mountain ecosystem is especially fragile, and 

now is undergoing considerable changes (Immerzeel et al., 2020), such 
as elevation-dependent warming (Pepin et al., 2015), glacier melt (Li 
et al., 2021), and plant communities transformation (Gottfried et al., 
2012). In mountains, spatial and temporal heterogeneity of shortwave 
radiation determines local variation and dynamics of energy budget, 
vegetation, and hydrology, such as snowmelt, evaporation, vegetation 
phenology, and surface warming (Garen and Marks, 2005; He et al., 
2018b; Nyman et al., 2018; Xiao et al., 2020; Xie and Li, 2020; Xu et al., 
2020; Zhao et al., 2021). Therefore, the high-accuracy estimation of DSR 
and NSR in mountains helps in understanding numerous land processes 
and climate change. 

To date, numerous methods have been proposed to derive DSR and 
NSR for open areas (Carmona et al., 2015; Chen et al., 2022; He et al., 
2015; Huang et al., 2019; Wang et al., 2021). In mountains, however, 
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ignoring topographic effects would have a considerable impact on 
shortwave radiation calculation (Chen et al., 2006; Lai et al., 2010). For 
example, Lee et al. (2013) reported Tibetan Plateau would receive more 
DSR by about 14W/m2 when considering 3D mountain structure using a 
1-km digital elevation model (DEM); and Wang et al. (2018) reported 
the error could exceed 600W/m2 when neglecting topographic effects 
for DSR at a Moderate Resolution Imaging Spectroradiometer (MODIS) 
pixel scale, and a similar error in magnitude for NSR using Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 
Global Digital Elevation Model (GDEM). Hao et al. (2021) reported the 
absolute differences in NSR simulation between sub-grid topographic 
and plane-parallel schemes could reach 20W/m2 in Tibetan Plateau 
using the 90 m Shuttle Radar Topography Mission (SRTM) DEM. 

Nowadays, some researchers have proposed clear-sky shortwave 
radiation estimation algorithms in mountains. Most of them separately 
estimated DSR and surface albedo to calculate NSR in mountains. 
Mountain radiative transfer process (Sandmeier and Itten, 1997) was 
always used for DSR characterization, composed of direct radiation, 
diffuse radiation, and reflected radiation from surrounding environ
ments. With this physical theory, some studies derived DSR in moun
tains (Aguilar et al., 2010; Zhang et al., 2015). With DSR estimations 
arising from the above theory, Hansen et al. (2002), Amatya et al. 
(2015), and Chen et al. (2013) calculated albedo using 
narrowband-to-broadband conversions (Liang, 2001) and finally ob
tained instantaneous NSR. Long et al. (2010) derived the 500 m daily 
average NSR by combing estimated DSR and MCD43A1 albedo products. 
However, they seldom considered topographic effects in surface albedo 
(Hao et al., 2019a; Ma et al., 2022; Wen et al., 2022; Wu et al., 2018), 
leading to errors in shortwave radiation estimation. Meanwhile, the 
instantaneous observations from satellite overpass time cannot repre
sent the average shortwave radiation in a day (Chen et al., 2022); Yan 
et al. (2018) declared that the current temporal extrapolation methods, 
such as the sinusoidal model (Bisht et al., 2005), would lead to 60W /m2 

errors for daily mean DSR estimation in mountains. 
Topographic parameters derived from DEM (e.g., slope and aspect) 

are key to describing surface radiation in mountains (Dozier and Frew, 
1990; Sandmeier and Itten, 1997). Thus, DEM is the basic and critical 
input data for mountainous shortwave radiation estimation models. Past 
studies used different DEMs, e.g., ASTER GDEM, SRTM DEM, and 
Advanced Land Observing Satellite "ALOS" World 3D 30m (AW3D30) 
DEM, at different spatial resolutions (e.g., 1 arc-second and 3 
arc-second). All of these DEMs are now available at 1 arc-second (30 m) 
spatial resolution, but the acquisition time, the generation techniques 
(Guth et al., 2021), and data accuracy (Carrera-Hernández, 2021) are 
different. The errors and differences in DEM data can be propagated into 
topographic parameters calculation and then cased the deviations of 
shortwave radiation in mountainous areas (Wang and Wang, 2015). 

There are some primary findings in the influences of DEM on 
shortwave radiation estimation over mountainous areas. Huang et al. 
(2017) reported that the 30 m DEM provided better performance than 
the 90 m DEM in terms of DSR estimation on sloping terrain, where the 
root mean squared errors (RMSEs) were 58.05W/m2 and 78.36W /m2 

against in-situ measurements, respectively. Olson et al. (2019) also 
found that the bias in the modeled shortwave radiation increased as the 
DEM resolution downsampled (from 8 m to 30 m). Hao et al. (2019b) 
explored how the geolocation uncertainty of DEM impacted the DSR 
estimations in mountains using simulation data and found 600W /m2 

deviations when the geolocation bias of DEM was lower than half a 
pixel. Wang and Wang (2015) compared solar radiation estimation re
sults using six different DEM datasets and declared that although the six 
DEM datasets were in good agreement with each other (i.e., linear 
correlation coefficients higher than 0.98), the solar radiation results 
considerably differed, where correlation coefficients could be lower 
than 0.5. In general, the accuracy of input DEM has serious implications 
on shortwave radiation results. However, (i) how large deviations could 

be introduced by using different DEM products, and (ii) whether it could 
strongly impact shortwave radiation mappings in mountains are still 
unknown. Meanwhile, quantitative evaluation of shortwave radiation 
uncertainty caused by DEM errors at different spatial and temporal 
scales remains a void, hindering a better understanding of possible is
sues in mountainous applications. 

The objective of this paper is to comprehensively quantify the im
pacts of DEM uncertainty on shortwave radiation estimation in moun
tains. We implemented the evaluation using an instantaneous and daily 
mean DSR and NSR estimation method as a proxy, where the main idea 
to consider topography was the same as other shortwave radiation 
estimation algorithms, demonstrating our study’s universal applicability 
to mountainous shortwave radiation estimation and modeling fields. We 
adopted the evaluation and quantification using in-situ measured 
topographic information, DEM datasets, and simulated data: (i) We 
evaluated the estimation accuracy based on in-situ measured topo
graphic information and topographic factors derived from DEM data
sets, respectively; (ii) We compared the estimated shortwave radiation 
using different DEMs at diverse spatial and temporal scales; (iii) We 
evaluated how large shortwave radiation uncertainty could be caused by 
introducing random errors into AW3D30 DEM. The materials and 
methods are presented in Sections 2 and 3, respectively. The results are 
shown in Section 4 and discussed in Section 5. Finally, the conclusions 
are provided in Section 6. 

2. Materials 

2.1. In-situ measurements 

There are some ground flux stations in mountainous areas over the 
globe; however, most of them are set in the horizontal direction, which 
cannot measure the radiation reaching or reflected from the sloping 
terrains exactly. We collected valuable slope-parallel measured short
wave flux (Wu et al., 2018) with various slopes and aspects from 
Chengde, China, as shown in Table 1. All in-situ measured shortwave 
radiation data are from four-component radiometer CNR4 and EKO 
MR-60 which measured upward and downward shortwave radiation 
from 300 nm to 2800 nm. The in-situ measured shortwave radiation data 
have been checked and used in previous studies (Ma et al., 2022; Wang 
et al., 2018). We excluded outliers (following https://www.soda-pro. 
com/help/general/quality-check, last accessed 10/Jul/2022) and 
cloud-contaminated data for validation and analysis. The slopes and 
aspects are measured by a level meter and electronic compass. 

2.2. Landsat data 

Landsat satellite series have provided global land observations for 
over 40 years, with data freely available from the United States 

Table 1 
Information of in-situ measurements for validation.  

Site name Latitude/ 
Longitude(◦) 

Slope/ 
Aspect(◦) 

Years References 

Chengde- 
1 

42.3974N/ 
117.3992E 

11.0/ 
79.8 

2018–2020 Yan et al. (2018), Yan 
et al. (2021), Chu 
et al. (2019) Chengde- 

2 
42.3968N/ 
117.3979E 

16.3/ 
266.5 

2018–2020 

Chengde- 
3 

42.3927N/ 
117.3973E 

27.5/ 
217.5 

2018–2020 

Chengde- 
4 

42.3933N/ 
117.3950E 

21.7/ 
285.0 

2018–2020 

Chengde- 
5 

42.3937N/ 
117.3915E 

0.8/ 28.5 2018–2020 

Chengde- 
6 

42.3957N/ 
117.3898E 

27.0/ 
169.8 

2018–2020 

Chengde- 
7 

42.3865N/ 
117.4005E 

32.3/ 
155.0 

2018–2020  
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Geological Survey (USGS) (Woodcock et al., 2008; Wulder et al., 2019). 
We obtained the Tier 1 (T1, with the highest radiometric calibration and 
geolocation accuracy) data of Landsat 8 Operational Land Imager (OLI) 
from USGS (https://earthexplorer.usgs.gov/, last accessed 
10/Jul/2022) (Lu et al., 2022; Storey et al., 2014) and derived the 
Top-of-Atmosphere (TOA) reflectance from the digital numbers using 
the conversion coefficients included in the Landsat metadata. We used 
all seven spectral bands of OLI for surface albedo estimation in this 
study. 

2.3. DEM data 

DEM describes land surface topographic features, and the free access 
to fine-resolution DEM data has stimulated many studies in mountains 
(Bian et al., 2020; Yan et al., 2020). In this study, we selected two widely 
used DEMs (AW3D30 and SRTM DEM) for DSR and NSR estimation, 
comparison, and analysis. They both have 1 arc-second resolution 
(about 30 m in the equator). 

AW3D30 DEM was produced by the Panchromatic Remote-sensing 
Instrument for Stereo Mapping on board the ALOS from January 2006 
to April 2011 and released by the Japan Aerospace Exploration Agency 
(JAXA) in 2015 (Tadono et al., 2014). We downloaded the AW3D30 
V3.1 (released in April 2020 and improved in January 2021) from 
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm (last accessed 
10/Jul/2022). 

SRTM DEM was derived using space-borne radar measurements in 
February 2000, and we used the iterative improvement and void data 
filling version, the SRTM DEM V003 (JPL 2013), from https://search. 
earthdata.nasa.gov/ (last accessed 10/Jul/2022). 

The nearest neighboring procedure was used to match DEMs and 
Landsat 8 images (Tan et al., 2015). The slope, aspect, sky view factor 
(SVF), solar incidence angle, and shadow areas were calculated based on 
two DEMs. The comparison of topographic information derived from 
AW3D30 and SRTM DEM for stations in Section 2.1 is shown in Table 2. 

2.4. MODIS product 

We used MODIS products as inputs for the horizontal direct and 
diffuse radiation retrieval algorithm. We selected MCD19A2 product 
(Lyapustin and Wang, 2018) from MODIS Terra and Aqua combined 
Multi-angle Implementation of Atmospheric Correction for its high 
resolution and accuracy (Martins et al., 2017; Martins et al., 2019; 
Superczynski et al., 2017). We used AOD at 0.55 µm and water vapor in 
MCD19A2 with 1 km resolution. Based on the assumption that atmo
spheric conditions are reasonably stable in 1 km, the AOD and water 
vapor products were merged, clipped, and resampled to match Landsat 

footprints for shortwave radiation estimation. 

2.5. Study areas 

We selected two Landsat footprints in mountainous areas with 
different territories for in-depth analysis. 

Region 1 is in the eastern Inner Mongolia Autonomous Region border 
with northeastern Hebei Province in China, where low hills and rela
tively flat areas dominate the territory. The Worldwide Reference Sys
tem 2 (WRS2) of region 1 is 122/031 (Path/Row). Region 2 is in the 
southern Liangshan Yi Autonomous Prefecture of China with Landsat 
footprint 130/041 (Path/Row). The terrain is complex and mainly 
covered with mountains and valleys. The low cloud-cover Landsat im
ages were chosen, and the information on the selected study areas and 
images is shown in Table 3. 

3. Methods 

3.1. Shortwave radiation estimation in mountains 

Fig. 1 shows the flowchart of our DSR and NSR estimation method. 
The retrieval scheme can be separated into three steps: (i) Estimate 
surface albedo on sloping terrain by direct estimation method (Ma et al., 
2022) based on Discrete Anisotropy Radiative Transfer (DART) model 
(Gastellu-Etchegorry et al., 2004; Wang et al., 2020) and random forest 
(RF) regression; (ii) Estimate direct and diffuse radiation on horizontal 
surfaces based on Second Simulation of a Satellite Signal in the Solar 
Spectrum vector code (6S) simulations (Vermote et al., 1997) and RF 
regression, and calculate instantaneous (Landsat 8 overpass time) DSR 
and NSR using mountain radiative transfer scheme; (iii) Estimate daily 
mean DSR and NSR by averaging the instantaneous estimation results 
with 30 min intervals. We validated the RF models’ performance using 
the simulation dataset and verified estimation results against in-situ 
measured shortwave flux data. 

3.1.1. Surface albedo estimation 
The traditional topographic correction method was reported to be 

questionable because of empirical parameters in it (Ma et al., 2021), 
which may introduce uncertainty into surface parameters retrieval in 
mountains. We used the direct estimation method for surface albedo 
(inclined/inclined sloped surface albedo) retrieval (Ma et al., 2022), 
which directly linked Landsat TOA reflectance data, topographic infor
mation, and surface albedo based on DART (Wang et al., 2020) simu
lation dataset. Here we added the simulations with 0◦ slope to expand 
the method for relatively flat areas in mountains. The RF regression has 
been widely used in remote sensing (Belgiu and Drăguţ, 2016) and was 
used to describe the nonlinear relationship between inputs and surface 
albedo. 

3.1.2. Instantaneous DSR and NSR estimation on sloping terrains 
To estimate DSR and NSR on sloping terrain, the direct and diffuse 

radiation on horizontal surfaces were estimated firstly by combining 
radiative transfer simulations and RF regression. We used RF to adopt 
regression based on the simulation dataset. 

Considering the key factors influencing surface DSR (Zhang et al., 
2014), we selected solar zenith angle (SZA), aerosol optical depth 
(AOD), water vapor, elevation, and surface albedo as the variated pa
rameters in 6S simulations. We selected the “US62” atmospheric profile 
and “Continental” aerosol profile according to previous studies (He 
et al., 2018a; He et al., 2014). The settings of simulation parameters are 
shown in Table 4. We trained the RF with 6S simulations using 75% of 
the simulation dataset and validated the regression using the remaining 
25%. We finally derived direct and diffuse shortwave surface radiation 
by inputting SZA, MODIS AOD, water vapor product (MCD19A2, with 
merge, clip, and resample processes to 30 m resolution), DEM, and 
surface albedo estimated in Section 3.1.1. 

Table 2 
The topographic information derived from AW3D30 and SRTM DEM for 
stations.  

Site name AW3D30 DEM SRTM DEM 
Elevation/ 
m 

Slope/ 
Aspect(◦) 

SVF Elevation/ 
m 

Slope/ 
Aspect(◦) 

SVF 

Chengde- 
1 

1870 21.6/ 
85.3 

0.97 1847 17.2/ 
58.4 

0.98 

Chengde- 
2 

1867 17.0/ 
291.7 

0.98 1839 22.8/ 
249.7 

0.97 

Chengde- 
3 

1890 21.4/ 
145.9 

0.94 1865 20.1/ 
212.7 

0.96 

Chengde- 
4 

1832 26.9/ 
235.0 

0.98 1822 19.6/ 
259.5 

0.98 

Chengde- 
5 

1710 1.6/ 
126.4 

0.96 1714 2.8/ 
180.0 

0.97 

Chengde- 
6 

1792 35.1/ 
165.5 

0.88 1770 21.3/ 
183.3 

0.95 

Chengde- 
7 

1844 28.3/ 
158.5 

0.92 1858 33.8/ 
150.6 

0.92  
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Once we obtained the horizontal direct and diffuse radiation, we 
used the mountain radiative transfer scheme to calculate the DSR on 
sloping terrain. The total DSR for a single pixel on sloping terrain 
included three parts Chu et al., 2021; Sandmeier and Itten, 1997): direct 
radiation, diffuse radiation, and reflected radiation from the surround
ing environment, and are expressed as Eqs. (1) to ((4): 

Sinst
↓,slope = rb,slope + rd,slope + rr,slope, (1)  

rb,slope = Θ ∗ rb ∗ (cosi / cosθs), (2)  

rd,slope = rd ∗ Vd, (3)  

rr,slope =
Ctα⋅

(
rb,slope + rd,slope

)

1 − Ctα
, (4)  

where Sinst
↓,slope refers to the instantaneous DSR on sloping terrain; rb,slope,

rd,slope and rr,slope are direct radiation, diffuse radiation, and reflected 
radiation from surrounding pixels on sloping terrain, respectively; rb and 
rd refer to the horizontal direct and diffuse radiation, respectively; Θ is 
the shadow factor, which equals 1 when the pixel was not shadowed and 
equals 0 when shadowed, and the shadow detection algorithm based on 
the relationship between solar ray and surrounding topography (Li et al., 
2002; Zhang et al., 2018); i refers to the solar incidence angle for sloping 
terrain; θs refers to the solar zenith angle; Vd refers to the SVF; α refers to 
the surface albedo. Ct is the terrain configuration factor and can be 
calculated as Ct = 1 − Vd. The average of values in Eq. (4) is calculated 
by a 2700 m × 2700 m sliding window (Chu et al., 2021). 

The cosine of solar incidence angle is defined as Eq. (5) (Horn, 1981): 

cosi = cosθscosS + sinθssinScos(φa − φ0), (5) 

Table 3 
Data acquisition information and terrain parameters for selected study areas and Landsat images. Note that the topographic information is from AW3D30 DEM.  

Region WRS2 PathRow Center Coordinate Elevation Range (m) Median Slope (◦) Time SZA (◦) 

1 122031 42◦N 118◦E 612 – 1741 9.4 20170601 25.4 
20170921 44.1 
20171108 60.1 

2 130041 27◦N 102◦E 1245 – 4354 24.3 20130614 20.5 
20140124 52.7  

Fig. 1. Flowchart of shortwave radiation estimation method. Three steps include (i) surface albedo estimation; (ii) instantaneous DSR and NSR estimation; (iii) daily 
mean DSR and NSR generation. 

Table 4 
The input parameters and range for 6S simulations.  

Parameters Unit Range 

SZA ◦ 0:1:89 
AOD n/a 0.01, 0.025, 0.05, 0.1, 0.2, 0.4, 0.6 
Water vapor cm 0:0.2:8 
Elevation km 0, 1, 2, 3, 4, 5, 6, 7 
Surface albedo n/a 0, 0.2, 0.4, 0.6, 0.8  
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where S is the slope angle, φa is the solar azimuth angle, and φ0 is the 
aspect angle of the terrain. The slope and aspect of the terrain were 
calculated with a 3 × 3 pixel window (Horn, 1981). 

We used the typical method (Dozier and Frew, 1990) to calculate 
SVF, which is based on Eq. (6): 

Vd =
1
N

∑N

i=1

[
cosSsin2Hφi + sinScos(φi − φ0)(Hφi − sinHφi cosHφi )

]
, (6)  

where N is the number of discretized search directions, φi is the azimuth 
angle of direction i, and Hφi is defined from the zenith downward to the 
local horizon over the unobstructed hemisphere in direction φi. 

We obtained instantaneous DSR on sloping terrain based on the 
above parameterization scheme. Then, the instantaneous NSR could be 
simply achieved through Eq. (7): 

Sinst
n,slope = Sinst

↓,slope ∗ (1 − α). (7)  

3.1.3. Daily mean DSR and NSR calculations 
Compared with instantaneous DSR and NSR, the daily mean radia

tion is more important for studying surface energy budget and mountain 
climate change (Bisht et al., 2005; Yan et al., 2018). The daily mean DSR 
and NSR could be computed as averaging the integral of instantaneous 
DSR and NSR from Section 3.1.2 over the daytime with the assumption 
that the atmospheric conditions are fairly invariant during the day 
(Wang et al., 2015): 

Sdaily
↓,slope =

∫
Sinst

↓,slope(t)dt
T

, (8)  

Sdaily
n,slope =

∫
Sinst

n,slope(t)dt
T

, (9)  

where T is the length of a day (24 h), Sinst
↓,slope(t) and Sinst

n,slope(t) are estimated 
by variation of SZA in a day, and the interval of t was set to 30 min. With 
this method, we could capture the diurnal variation of shortwave radi
ation in a day with topographic consideration (e.g., variation of shadow 

areas and solar incident angle). 

3.2. DEM uncertainty analysis 

Fig. 2 shows the flowchart for evaluating the impacts of DEM un
certainty on shortwave radiation in mountains. We first validated the 
estimated shortwave radiation based on in-situ measured topographic 
information, SRTM DEM, and AW3D30 DEM against in-situ measured 
shortwave flux (Section 4.2). Then, we compared the shortwave radia
tion mapping results using SRTM and AW3D3D DEMs (Section 4.3). 
Finally, based on the assessment of DEMs (Carrera-Hernández, 2021; 
Liu et al., 2019), we introduced random errors into AW3D30 (as the 
“reference” value here) to find how large shortwave radiation errors 
could be caused by DEM uncertainty (Section 4.4). Note that the eval
uation and comparison in Sections 4.3 and 4.4 were based on different 
spatial resolutions. 

The scaling-up of fluxes in mountains was suggested to consider the 
surface areas weight Wang et al., 2018; Yan et al., 2016) based on Eqs. 
(10) and ((11): 

Scoarse =
∑N

i=1
pi⋅Sfine

i , (10)  

pi = Ai

/
∑N

i=1
Ai, (11)  

where Scoarse and Sfine
i are the coarse and fine-scale shortwave radiation, 

respectively, Ai is the surface area for DEM pixel i based on Jenness 
(2004), and pi is the area-weighted ratio derived from dividing the 
surface area for the fine-resolution pixel i to the total surface area of the 
coarse pixel. 

Fig. 2. Flowchart of evaluating the impacts of DEM uncertainty on shortwave radiation in mountains.  
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4. Results 

4.1. Performance of random forest regressions 

We validated the RF regression’s performance in predicting direct 
radiation, diffuse radiation, and surface albedo using the simulation 
dataset, shown in Table 5. RF provided satisfactory regression perfor
mance in both training and validation datasets, where R2 were higher 
than 0.98 for all these validations, and RMSEs were lower than 1.3W /
m2 and 0.6W/m2 for direct and diffuse radiation, respectively, while that 
was lower than 0.004 for surface albedo. 

4.2. Comparison of validation results against in-situ measurements 

Fig. 3 shows the validation against in-situ measurements in terms of 
instantaneous (Landsat 8 overpass time) DSR and NSR, daily mean DSR 
and NSR and surface albedo using in-situ measured topographic pa
rameters. The comparison of the estimated and measured shortwave 
radiation illustrated the potential of our estimation method: R2 = 0.92, 
RMSE = 65.9 W/m2 and bias = 21.1 W/m2 for instantaneous DSR; R2 =

0.95, RMSE = 21.2W/m2 and bias = 10.2W/m2 for daily mean DSR; R2 

= 0.90, RMSE = 65.1W/m2 and bias = 16.5W/m2 for instantaneous 
NSR; R2 = 0.94, RMSE = 22.5W/m2 and bias = 11.1W /m2 for daily 
mean NSR; R2 = 0.53, RMSE = 0.027 and bias = 0.004 for surface 
albedo. 

We also used the topographic information derived from SRTM and 
AW3D30 DEMs to estimate shortwave radiation, and their validation 
against in-situ measured shortwave flux and surface albedo are shown in 
Table 6 where the validation of the algorithm without topographic 
consideration (assuming flat areas) is also offered. Compared to Fig. 3, 
sharp deterioration appeared in the validation of shortwave radiation 
using topographic data derived from both DEMs, especially for instan
taneous DSR and NSR where RMSEs increased from 65.9W /m2 to 
96.9W/m2 and 108.1W/m2 for DSR (errors increased 47.0% and 
64.0%), and 65.1W/m2 to 91.0W/m2 and 98.5W/m2 for NSR (39.8% 
and 51.3%) when using SRTM and AW3D30 DEMs, respectively. The 
RMSEs of daily mean DSR could increase from 21.2W /m2 to 30.1W /m2 

and 31.0W/m2 (42.0% and 46.2%), and it increased from 22.5W /m2 to 
29.3W/m2 and 30.5W/m2 for daily mean NSR (30.2% and 35.6%) when 
using SRTM and AW3D30 DEMs, respectively. However, there was no 
noteworthy change for albedo, where RMSEs equaled 0.027 and 0.029 
based on two DEMs. Meanwhile, we evaluated the algorithm neglecting 
topography (considered as flat areas), representing the worst condition 
of DEM uncertainty; the validation results were poor where RMSEs of 
instantaneous DSR, daily mean DSR, instantaneous NSR, daily mean 
NSR, and surface albedo equaled 198.7W/m2, 55.5W /m2, 189.3W /m2, 
52.6W/m2, and 0.037, respectively. 

To better understand the shortwave radiation in mountains and 
check out the possible issues to impact the estimation results, we gave an 
example of the in-situ measured and estimated shortwave radiation in a 
day (Fig. 4). In Fig. 4, the diurnal variation of shortwave radiation all 
showed considerable differences from that neglecting topography, and 
the peak value and the time of the peak substantially differed in these 
stations. With local topographic measurements, the estimated short
wave radiation could capture the daily variation and provide reliable 

accuracy. However, the estimations from AW3D30 and SRTM DEMs 
showed some deviations compared with in-situ measured data, such as 
stations 2 and 3. The shadow in mountains would cause a dramatic 
reduction in shortwave radiation under clear sky, and our method could 
also capture the shortwave radiation in the shadowed ground (in sta
tions 5 and 6). We have tried to avoid data with cloud contaminations, 
but considering the limited number of in-situ measured shortwave flux 
data, some data with slight cloud contaminations were still included (at 
stations 1, 6, and 7). 

4.3. Shortwave radiation deviations caused by diverse DEMs 

In Section 4.2, there were noteworthy shortwave radiation de
viations based on different sources of topographic information. There
fore, we adopted a comparison of SRTM and AW3D30 DEMs for 
shortwave radiation estimation in the selected Landsat 8 images (Sec
tion 2.5). The differences between SRTM and AW3D30 DEMs and the 
derived slope and aspect in the selected two footprints are shown in 
Fig. 5. The differences between DEM, slope, and aspect were almost 
unbiased. The DEM root-mean-square deviations (RMSDs) were 7.1 m 
and 14.9 m in two Landsat footprints, and the deviation of aspect 
(RMSD = 45.6◦ and 28.4◦) was larger than that of slope (RMSD = 4.5◦

and 6.2◦). We estimated DSR and NSR using topographic information 
derived from these two DEMs, respectively, and the comparison is 
shown in Fig. 6. We did not declare which result was better but focused 
on their difference. The difference between DSR and NSR was scene- 
dependent, where relative RMSD (rRMSD) could vary from 3.4% to 
16.8% (RMSD from 36.6W/m2 to 103.6W/m2) for instantaneous DSR, 
2.3% to 13.0% (9.1W/m2 to 25.8W/m2) for daily mean DSR, 3.5% to 
16.3% (31.7W/m2 to 83.8W/m2) for instantaneous NSR, and 2.6% to 
12.5% (8.9W/m2 to 20.6W/m2) for daily mean NSR. In general, the 
difference arose from summer to winter, and a more considerable dif
ference occurred in Landsat footprint “130/041” (with steeper terrain) 
than “122/031”. To better observe the difference using AW3D30 and 
SRTM DEM, we show the scatter plot of instantaneous and daily mean 
NSR using two DEMs in Fig. 7. In Fig. 7, the bias was small (7.9W/m2 

and 2.7W/m2); however, the points were very discrete; thus, RMSD was 
high (83.8W/m2 and 20.6W/m2). 

We upscaled the fine-spatial-resolution (30 m) to coarse-spatial- 
resolution shortwave radiation to figure out the relationship between 
the spatial resolution of resulting retrievals and deviations. We upscaled 
shortwave radiation from 30 m to 120 m, 240 m, 480 m, 960 m, and 
3000 m and compared the deviations derived from two DEMs, shown in 
Fig. 8 (we only show NSR here because of similar results of NSR and 
DSR). The deviations of shortwave radiation decreased considerably 
with a coarser scale: when up-scaled to 120 m, the maximum deviations 
decreased from 16.3% (83.8W/m2) to 7.1% (36.6W/m2) for instanta
neous NSR, and 12.5% (20.6W/m2) to 5.9% (9.8W/m2) for daily mean 
NSR; the deviations of instantaneous and daily mean NSR could be lower 
than 1.8% (9.3W/m2) and 1.8% (5.6W/m2) with the spatial resolution at 
3000 m. 

4.4. Quantifying shortwave radiation uncertainty from DEM errors 

We further quantitatively evaluated retrieval uncertainty caused by 
DEM errors. We took AW3D30 DEM as the “reference” data, introduced 
the Gaussian random errors into it, and compared estimation results 
using these DEM with errors and “reference” DEM. Based on Carrer
a-Hernández (2021), the MAE of random error was set as 1.0 m, 2.5 m, 5 
m, and 7.5 m. The comparison of NSR results using reference DEM and 
DEM with random errors in different resolutions is shown in Fig. 9. In 
Fig. 9, the NSR difference depended on the image and achieved a higher 
difference in wintertime. The deviations increased with random errors 
and decreased with spatial resolution. NSR difference on instantaneous 
and daily mean values at 30 m spatial resolution could reach 33.6% 

Table. 5 
Training and validation accuracy for RF regressions (the units of RMSE and bias 
for direct and diffuse radiation are W/m2).  

Parameters Training accuracy Validation accuracy 
R2 RMSE bias R2 RMSE bias 

Direct radiation 1.00 0.5 0.0 1.00 1.3 0.1 
Diffuse radiation 1.00 0.3 0.0 1.00 0.6 0.0 
Surface albedo 1.00 0.002 0.000 0.98 0.004 0.000  
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(143.8W/m2) and 28.8% (31.5W/m2) with MAE of random errors 
equaled 7.5 m; they could reach 19.8% (89.1W/m2) and 17.0% (19.6W 
/m2) when MAE = 5.0 m; they were lower than 8.0% (36.9W /m2) and 
7.2% (8.6W/m2) for MAE = 2.5 m; for MAE = 1.0 m, NSR differences 
were lower than 3.3% (15.5W/m2) and 2.6% (3.2W /m2) in the selected 
images. The deviations decreased by more than 50% when images were 
upscaled from 30 m to 120 m. The deviations on instantaneous and daily 
mean NSR could reach 8.9% (38.0W/m2) and 10.2% (11.2W /m2) when 
MAE = 7.5 m at 3000 m spatial resolution; and they decreased to 0.3% 
(1.4W/m2) and 0.5% (1.6W/m2) when MAE = 1.0 m. 

5. Discussion 

5.1. Shortwave radiation estimation in mountains 

In our study, we employed a clear-sky instantaneous and daily mean 
shortwave radiation (DSR and NSR) estimation method as the proxy to 
evaluate the impacts of DEM uncertainty on shortwave radiation in 
mountains. The validation against in-situ measurements verified our 
method’s feasibility (Fig. 3). Furthermore, our method depended on 
AOD and water vapor inputs, and some bias appeared, which may be 
caused by their uncertainty (Martins et al., 2017; Superczynski et al., 
2017). Owing to our assumption that the atmospheric condition is fairly 
stable, bias may be introduced (Fig. 3) under slight cloud contamina
tions (Fig. 4). However, these problems did not have a great impact on 
the evaluation results of DEM uncertainty on shortwave radiation in 
mountains. 

Our study showed great deviations when ignoring topographic ef
fects (Table 6), consistent with previous studies (Aguilar et al., 2010; 
Helbig and Löwe, 2012; Lee et al., 2013; Shi and Xiao, 2021). We also 
showed instantaneous and daily mean NSR mapping using our method 
(Fig. 10), and there was remarkable heterogeneity for both instanta
neous and daily mean results which grew from summer to winter. Fig. 4 
typically showed how topographic effects influenced shortwave radia
tion: (i) The peak of diurnal shortwave radiation did not appear at local 
noon but depended on the terrain, and the peak values greatly differed 
from that in flat areas; (ii) The shadow would cause dramatic reductions 
for shortwave radiation in clear sky; thus, the capture of shadow areas 
was essential. The phenomena above also illustrated different sunrise 
and sunset time for different locations in mountains (Zhang et al., 2018), 
indicating why the temporal extrapolation method for flat areas was not 
suitable for mountainous areas (Yan et al., 2018). 

Fig. 3. Validation of estimated DSR, NSR, and surface albedo against in-situ measurements using the measured slope and aspect. (a) Instantaneous DSR, (b) daily 
mean DSR, (c) instantaneous NSR, (d) daily mean NSR, and (e) surface albedo. 

Table 6 
Validation results using SRTM and AW3D30 DEM and without DEM, 
respectively.  

DEM used Parameters R2 RMSE 
(W/m2) 

Bias (W/m2) 

SRTM DEM Instantaneous DSR 0.79 96.9 19.3 
Daily mean DSR 0.87 30.1 9.4 
Instantaneous NSR 0.79 91.0 14.1 
Daily mean NSR 0.85 29.3 10.1 
Albedo 0.51 0.027 0.005 

AW3D30 DEM Instantaneous DSR 0.84 108.1 61.1 
Daily mean DSR 0.87 31.0 11.2 
Instantaneous NSR 0.84 98.5 54.5 
Daily mean NSR 0.86 30.5 13.6 
Albedo 0.43 0.029 − 0.003 

Without DEM (flat) Instantaneous DSR 0.23 198.7 − 49.7 
Daily mean DSR 0.60 55.5 − 17.0 
Instantaneous NSR 0.22 189.3 − 45.4 
Daily mean NSR 0.54 52.6 − 12.1 
Albedo 0.12 0.037 0.005  
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5.2. Impacts of DEM uncertainty on shortwave radiation in mountains 

Some studies have highlighted the impacts of DEM resolution 
(Huang et al., 2017) and geolocation bias (Hao et al., 2019b; Wu et al., 
2022) on shortwave radiation parameters, and our study quantitatively 
evaluated how large uncertainty could be introduced into shortwave 
radiation at diverse spatial and temporal resolutions from DEM de
viations. Our study showed that the RMSEs were larger when using 
SRTM and AW3D30 DEMs than in-situ measured topographic informa
tion (Fig. 3 and Table 6), especially for instantaneous results (the RMSE 
could increase by 64.0%). The main reason was that the bias in slope and 
aspect would lead to the shift of shortwave radiation in a day (Fig. 4). 
For example, there was an offset of estimated diurnal DSR and NSR in 

stations 2 and 3 of Fig. 4 using AW3D30 and SRTM DEM compared with 
in-situ measured data, thus resulting in considerable deviations for 
instantaneous estimations. The deviations could be mitigated when 
aggregated to daily mean values because the topographic effects could 
be lessened with diurnal variations of the sun (Fig. 10); while the errors 
for daily mean DSR estimation could also increase by 46.2% (Table 6). 
The algorithm neglecting topographic effects (Table 6) can represent the 
largest impacts of DEM uncertainty on shortwave radiation estimation in 
mountains. The results of albedo estimation demonstrated the need for 
the consideration of topography in the retrieval process as shown in 
Table 6, which has been documented in our earlier study (Ma et al., 
2022). In comparison, the choice of DEM (SRTM or AW3D30) led to a 
slight difference of 0.002 in the RMSE of albedo estimation. Our study 

Fig. 4. In-situ measured and estimated shortwave radiation variation on October 22, 2020. (a) DSR, (b) NSR. The red dotted line refers to the local noon.  
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also corresponded with Mira et al. (2016) that the uncertainty of NSR 
mainly comes from DSR estimation. 

The shortwave radiation differences based on SRTM and AW3D30 
DEMs could reach 13.0% (71.9W/m2) and 13.2% (19.6W /m2) for 
instantaneous and daily mean DSR in winter (Fig. 6) with smooth terrain 
(average slope equals 9.4◦ for Landsat 8 path/row 122/031), while these 
values could reach 16.8% (103.6W/m2) and 13.0% (25.8W /m2) for 
steeper terrains (Landsat 8 path/row 130/041). Generally, shortwave 
radiation differences using AW3D30 and SRTM DEMs increased from 
summer to winter, which could be explained by shortwave radiation 
being more sensitive to topographic information with larger SZA. With 
Eqs. (2) and (5), the direct radiation in mountains was linearly 

correlated with cosS + sinθssinScos(φa − φ0) /cosθs for non-shadow areas, 
and when SZA became larger, the influence of topography was larger. 
Meanwhile, when SZA became larger, the shadow areas became larger, 
and the misclassifying shadow and non-shadow areas would yield 
remarkable differences in shortwave radiation. For example, the 
misclassification of shadow and non-shadow areas led to terribly 
discrete points in instantaneous results in Fig. 7 (a), while these errors 
decreased for daily mean values (Fig. 7 (b)). 

It is hard for researchers to determine which DEM to use and realize 
how large errors would be caused by DEM uncertainty because the 
performance of DEM depends on many factors, such as land cover, 
elevation, slope, and aspect (Carrera-Hernández, 2021). We compared 

Fig. 5. Differences of SRTM and AW3D30 DEMs and the derived slope and aspect for two Landsat footprints. (a), (b) and (c) are the DEM, slope, and aspect difference 
in Landsat footprint 122/031 (Path/Row), respectively; (d), (e), and (f) are the DEM, slope, and aspect difference in Landsat footprint 130/041. The difference is 
calculated as AW3D30 DEM, slope, and aspect minus SRTM DEM, slope, and aspect, respectively. MAD = mean absolute deviation. 

Fig. 6. The comparison of DSR and NSR results using different DEMs. (a) Instantaneous DSR, (b) instantaneous NSR, (c) daily mean DSR, and (d) daily mean NSR. 
The a to e in x axis refer to different Landsat images (PathRow_time): 122031_20170601, 122031_20170921, 122031_20171108, 130041_20130614, 
130041_20140124. 
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the DEM with random errors to understand the uncertainty of shortwave 
radiation caused by DEM errors. When MAE of random error equaled 2.5 
m, the instantaneous and daily mean NSR difference could reach 8.0% 
(36.9W/m2) and 7.2% (8.6W/m2) in winter, 19.8% (89.1W /m2) and 
17.0% (19.6W/m2) when MAE = 5.0 m, and 33.6% (143.8W /m2) and 
28.8% (31.5W/m2) when MAE = 7.5 m. Considering the validation re
sults with in-situ measured topographic information as the algorithm’s 
accuracy (Fig. 3), with DEM MAE equaling about 5.0m, the errors 
caused by DEM could exceed the algorithm uncertainty itself in winter. 
Moreover, the MAD between SRTM and AW3D30 DEMs equaled 5.0 m 

and 9.4 m in the selected two Landsat footprints (Fig. 5). Therefore, this 
indicated that the shortwave radiation deviations caused by diverse 
DEMs could dominate the overall uncertainty at 30 m spatial scale. 
Although AW3D30 DEM was reported to have the highest accuracy, 
whose MAE equaled about 2.5 m (Carrera-Hernández, 2021), studies 
have declared lower DEM accuracy with slope increasing (Jing et al., 
2014; Zhan et al., 2021). For example, Carrera-Hernández (2021) re
ported that the MAE of AW3D30 could reach 4.1 m, 4.8 m, and 5.9 m for 
slopes from 30◦ to 35◦, 35◦ to 40◦, and 40◦ to 45◦, respectively. Liu et al. 
(2019) reported that the MAE of AW3D30 could exceed 4.5 m and 8.0 m 

Fig. 7. Comparison of NSR estimations using two DEMs in Landsat 8 footprint 130/041 (path/row) on 24/Jan/2014.  

Fig. 8. Boxplot of NSR deviations from SRTM and AW3D30 DEMs with diverse spatial resolutions. (a) instantaneous NSR RMSD based on two DEMs, (b) instan
taneous NSR rRMSD, (c) daily mean NSR RMSD, and (d) daily mean NSR rRMSD. 
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for slopes larger than 30◦ and 40◦, respectively. Meanwhile, the accu
racy of void areas of DEMs was low (MAE = 11.89 m for void areas of 
AW3D30) (Liu et al., 2019). For the reasons above, the current 
free-available DEM may not provide sufficient accuracy for 
fine-spatial-resolution shortwave radiation applications in steep terrain. 
Meanwhile, although the DEM was in 30 m resolution, the effective 
resolution of slope and aspect is 90 m, as they calculated with a 3 × 3 
window size (Horn, 1981; Jones, 1998), which makes it hard to capture 
drastic topographic variations, such as valleys and peaks. Vaze et al. 
(2010) also suggested using high-resolution DEM instead of conven
tional low-resolution DEM. Therefore, fine-spatial-resolution and 
high-accuracy shortwave radiation mapping in mountains largely relied 
on the resolution and accuracy of DEM. 

We found large deviations in shortwave radiation caused by DEM 
errors in fine-spatial-resolution data (30 m), but deviations could 
decrease with an increase in spatial scale (Figs. 8 and 9). The shortwave 
radiation deviations could decrease by more than 50% when upscaled 
from 30 m to 120 m. With the spatial resolution equaling 3000 m, the 
relative shortwave radiation deviations were lower than 2%. The reason 
was that the errors of fine-scale topographic information would 
neutralize in coarse-spatial-resolution pixels. Therefore, fine-spatial- 
resolution shortwave radiation mapping could be a crucial bridge for 
validating coarse-scale products in mountains. 

Although our evaluation only included the algorithms we developed 
in this study, the results were universal because the key ideas to describe 
topographic effects were almost the same Amatya et al., 2015; Chu et al., 
2021; Wang et al., 2018), which were based on the traditional mountain 
radiative transfer process (Eqs. (1) to ((4)) (Sandmeier and Itten, 1997). 
Generally, DEM errors would be propagated to topographic information, 
especially slope and aspect (Fig. 5), because slope and aspect depend on 
the deviation of surrounding pixels (Horn, 1981), and relatively small 
errors in DEM would result in large deviations for slope and aspect 
(Wang and Wang, 2015), and thus incident angle (Eq. (5)). Shadow 
detection results were also sensitive to DEM (Zhang et al., 2018) and 
seriously impacted direct radiation (Eq. (2)). The direct radiation 
dominates in clear sky, thus the uncertainty in incident angle and 

shadow detection largely influenced shortwave radiation estimation in 
mountains (Eq. (2)). 

5.3. Limitations and future study 

The limited slope-parallel in-situ measured data hinders the valida
tion of algorithms and understanding of shortwave radiation in moun
tains. In addition to errors in topographic information outlined in our 
paper, the sensor tilt could lead to non-negligible errors in the measured 
data (Bogren et al., 2016). Thus, high-quality slope-parallel measure
ments in mountains are hard to obtain but urgently needed. 

Our study focused on clear sky conditions because the current 
cloudy-sky shortwave radiation estimation in mountains is considerably 
challenging (Chen et al., 2012; Helbig et al., 2010; Letu et al., 2020). 
Meanwhile, the topographic effect in clear sky was more remarkable 
than cloudy sky (Zhang et al., 2019), and larger uncertainty was caused 
by DEM errors for clear-sky shortwave radiation. Therefore, our study 
could basically point out the worst circumstance of how DEM errors 
influence shortwave radiation uncertainty in mountains. Due to the high 
cloud cover in mountains, clear-sky data included in this study was 
limited. While the major findings would not change, more data over 
other areas, if available, could generate more accurate error analysis 
results. 

Some studies have reported large errors of shortwave radiation 
products in rugged terrain (Shi and Liang, 2013; Yang et al., 2008), and 
point measurements in complex terrain could not depict the coarse-scale 
flux. We found relatively small uncertainty caused by DEM errors for 
coarse spatial resolution shortwave radiation estimation; thus, it was 
feasible to further validate coarse-scale satellite products using 
fine-scale mapping in mountains. 

6. Conclusion 

To better understand energy budget in mountainous areas, this paper 
explored the impacts of DEM uncertainty on shortwave radiation in 
mountains at diverse spatial and temporal scales. We derived instanta

Fig. 9. Difference of estimated NSR using DEM with random errors and reference DEM at different spatial resolutions. The five layers represent the five selected 
Landsat images. (a) Instantaneous NSR RMSE, (b) instantaneous NSR relative RMSE (rRMSE), (c) daily mean NSR RMSE, and (d) daily mean NSR rRMSE. 
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neous DSR using MODIS atmospheric products with the mountain 
radiative transfer process, directly estimated surface albedo with topo
graphic consideration, and calculated NSR using the estimated DSR and 
albedo. The daily mean DSR and NSR were calculated by the integral of 
the instantaneous estimations in a day. The feasibility of the algorithm 
was verified against in-situ measured shortwave flux data: RMSEs of 
65.9 W/m2 and 65.1 W/m2 for instantaneous DSR and NSR, respec
tively; 21.2 W/m2 and 22.5 W/m2 for daily mean DSR and NSR values. 
We implemented our evaluation based on this method, while our 

evaluation results were universal to mountainous shortwave radiation 
modeling and estimation fields. 

When using SRTM and AW3D30 DEMs for estimation and validation, 
the RMSE of instantaneous and daily mean DSR (similar magnitude for 
NSR) could increase by 64.0% (from 65.9 W/m2 to 108.1 W/m2) and 
46.2% (from 21.2 W/m2 to 31.0 W/m2) compared with results using in- 
situ measured topographic parameters. The instantaneous and daily 
mean DSR deviations using SRTM and AW3D30 DEMs could reach 

Fig. 10. Instantaneous and daily mean NSR in mountains based on AW3D30. (a) and (b) are instantaneous and daily mean NSR in 130/041 (Landsat 8 path/row) on 
14/Jun/2013, respectively; (c) and (d) are instantaneous and daily mean NSR in 130/041 (Landsat 8 path/row) on 24/Jan/2014, respectively. 
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16.8% (103.6 W/m2) and 13.0% (25.8 W/m2) in wintertime. The dif
ferences increased from summer to winter and decreased with coarser 
spatial resolution, which could reach 16.3% (83.8 W /m2) and 12.5% 
(20.6 W/m2) in 30 m and 1.8% (9.3 W/m2) and 1.8% (5.6 W /m2) in 
3000 m for instantaneous and daily mean NSR, respectively. We quan
titatively studied this uncertainty by evaluating shortwave radiation 
using DEM with random errors: instantaneous and daily mean NSR 
uncertainty could reach 8.0% (36.9 W/m2) and 7.2% (8.6 W /m2) when 
MAE of random error equaled 2.5 m. The shortwave radiation uncer
tainty caused by DEM may exceed the algorithm uncertainty itself with 
DEM MAE equaling about 5.0 m. Considering the current DEM accuracy 
(about 2.5 m MAE overall, but larger in steep terrain), the impacts of 
DEM errors on shortwave radiation in mountains cannot be ignored. 
Therefore, we declared that the uncertainty of shortwave radiation es
timations in mountains largely depends on the accuracy of the DEM 
dataset at fine spatial resolutions. However, we also found these errors 
decreased markedly with an increase in spatial scale; thus, it is reliable 
to use fine-spatial-resolution maps as the bridge to validate coarse- 
resolution products. Our study emphasizes possible issues in short
wave radiation estimation, which is crucial for energy budget and 
climate change applications with satellite-derived datasets in 
mountains. 
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Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M.B., 
Williamson, S.N., Yang, D.Q., Mountain Research Initiative, E.D.W.W.G, 2015. 
Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 
5, 424–430. 

Sandmeier, S., Itten, K.I., 1997. A physically-based model to correct atmospheric and 
illumination effects in optical satellite data of rugged terrain. IEEE Trans. Geosci. 
Remote Sens. 35, 708–717. 

Shi, H., Xiao, Z., 2021. Exploring topographic effects on surface parameters over rugged 
terrains at various spatial scales. IEEE Trans. Geosci. Remote Sens. 60, 1–16. 

Shi, Q., Liang, S., 2013. Characterizing the surface radiation budget over the Tibetan 
Plateau with ground-measured, reanalysis, and remote sensing data sets: 1. 
Methodology. J. Geophys. Res. 118, 9642–9657. 

Storey, J., Choate, M., Lee, K., 2014. Landsat 8 operational land imager on-orbit 
geometric calibration and performance. Remote Sens. 6, 11127–11152. 

Superczynski, S.D., Kondragunta, S., Lyapustin, A.I., 2017. Evaluation of the multi-angle 
implementation of atmospheric correction (MAIAC) aerosol algorithm through 
intercomparison with VIIRS aerosol products and AERONET. J. Geophys. Res. 122, 
3005–3022. 

Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., Iwamoto, H., 2014. Precise 
global DEM generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. 
Spatial Inf. Sci. 71–76. II-4.  

Tan, M.L., Ficklin, D.L., Dixon, B., Ibrahim, A.L., Yusop, Z., Chaplot, V., 2015. Impacts of 
DEM resolution, source, and resampling technique on SWAT-simulated streamflow. 
Appl. Geogr. 63, 357–368. 

Vaze, J., Teng, J., Spencer, G., 2010. Impact of DEM accuracy and resolution on 
topographic indices. Environ. Model. Softw. 25, 1086–1098. 

Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., Morcette, J., 1997. Second simulation 
of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. 
Remote Sens. 35, 675–686. 

Wang, D., Liang, S., He, T., Shi, Q., 2015. Estimation of daily surface shortwave net 
radiation from the combined MODIS Data. IEEE Trans. Geosci. Remote Sens. 53, 
5519–5529. 

Wang, D., Liang, S., Li, R., Jia, A., 2021. A synergic study on estimating surface 
downward shortwave radiation from satellite data. Remote Sens. Environ. 264, 
112639. 

Wang, L., Wang, K., 2015. Impacts of DEM uncertainty on estimated surface solar 
radiation and extracted river network. Bull. Am. Meteorol. Soc. 96, 297–304. 

Wang, T., Yan, G., Mu, X., Jiao, Z., Chen, L., Chu, Q., 2018. Toward operational 
shortwave radiation modeling and retrieval over rugged terrain. Remote Sens. 
Environ. 205, 419–433. 

Wang, Y., Lauret, N., Gastellu-Etchegorry, J.-P., 2020. DART radiative transfer modelling 
for sloping landscapes. Remote Sens. Environ. 247, 111902. 

Wen, J., You, D., Han, Y., Lin, X., Wu, S., Tang, Y., Xiao, Q., Liu, Q., 2022. Estimating 
surface BRDF/Albedo over rugged terrain using an Extended Multisensor Combined 
BRDF Inversion (EMCBI) model. IEEE Geosci. Remote Sens. Lett. 19, 1–5. 

Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., König-Langlo, G., 2013. The global 
energy balance from a surface perspective. Clim. Dyn. 40, 3107–3134. 

Woodcock, C.E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., 
Gao, F., Goward, S.N., Helder, D., Helmer, E., Nemani, R., Oreopoulos, L., Schott, J., 
Thenkabail, P.S., Vermote, E.F., Vogelmann, J., Wulder, M.A., Wynne, R., 2008. Free 
access to landsat imagery. Science 320, 1011. 

Wu, J., Su, Y., Chen, X., Liu, L., Yang, X., Gong, F., Zhang, H., Xiong, X., Zhang, D., 2021. 
Leaf shedding of Pan-Asian tropical evergreen forests depends on the synchrony of 
seasonal variations of rainfall and incoming solar radiation. Agric. For. Meteorol. 
311, 108691. 

Wu, S., Wen, J., You, D., Hao, D., Lin, X., Xiao, Q., Liu, Q., Gastellu-Etchegorry, J.-P., 
2018. Characterization of remote sensing albedo over sloped surfaces based on 
DART simulations and in situ observations. J. Geophys. Res. 123, 8599–8622. 

Wu, X., Wen, J., Xiao, Q., Bao, Y., You, D., Wang, J., Ma, D., Lin, X., Gong, B., 2022. 
Quantification of the uncertainty caused by geometric registration errors in 
multiscale validation of satellite products. IEEE Geosci. Remote Sens. Lett. 19, 1–5. 

Wulder, M.A., Loveland, T.R., Roy, D.P., Crawford, C.J., Masek, J.G., Woodcock, C.E., 
Allen, R.G., Anderson, M.C., Belward, A.S., Cohen, W.B., Dwyer, J., Erb, A., Gao, F., 
Griffiths, P., Helder, D., Hermosilla, T., Hipple, J.D., Hostert, P., Hughes, M.J., 
Huntington, J., Johnson, D.M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L., 
McCorkel, J., Pahlevan, N., Scambos, T.A., Schaaf, C., Schott, J.R., Sheng, Y., 
Storey, J., Vermote, E., Vogelmann, J., White, J.C., Wynne, R.H., Zhu, Z., 2019. 
Current status of Landsat program, science, and applications. Remote Sens. Environ. 
225, 127–147. 

Xiao, X., Zhang, T., Zhong, X., Li, X., 2020. Spatiotemporal Variation of Snow Depth in 
the Northern Hemisphere from 1992 to 2016. Remote Sens. 12, 2728. 

Xie, X., Li, A., 2020. Development of a topographic-corrected temperature and greenness 
model (TG) for improving GPP estimation over mountainous areas. Agric. For. 
Meteorol. 295, 108193. 

Xu, L., Long, E., Wei, J., Cheng, Z., Zheng, H., 2021. A new approach to determine the 
optimum tilt angle and orientation of solar collectors in mountainous areas with high 
altitude. Energy 237, 121507. 

Xu, S., Yu, Z., Lettenmaier, D.P., McVicar, T.R., Ji, X., 2020. Elevation-dependent 
response of vegetation dynamics to climate change in a cold mountainous region. 
Environ. Res. Lett. 15, 094005. 

Yan, G., Chu, Q., Tong, Y., Mu, X., Qi, J., Zhou, Y., Liu, Y., Wang, T., Xie, D., Zhang, W., 
Yan, K., Chen, S., Zhou, H., 2021. An operational method for validating the 
downward shortwave radiation over rugged terrains. IEEE Trans. Geosci. Remote 
Sens. 59, 714–731. 

Yan, G., Jiao, Z.-H., Wang, T., Mu, X., 2020. Modeling surface longwave radiation over 
high-relief terrain. Remote Sens. Environ. 237, 111556. 

Yan, G., Tong, Y., Yan, K., Mu, X., Chu, Q., Zhou, Y., Liu, Y., Qi, J., Li, L., Zeng, Y., 
Zhou, H., Xie, D., Zhang, W., 2018. Temporal extrapolation of daily downward 
shortwave radiation over cloud-free rugged terrains. Part 1: analysis of topographic 
effects. IEEE Trans. Geosci. Remote Sens. 56, 6375–6394. 

Y. Ma et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0030
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0030
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0030
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0031
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0031
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0032
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0033
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0033
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0033
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0034
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0034
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0035
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0035
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0035
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0036
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0036
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0036
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0036
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0036
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0036
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0036
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0037
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0037
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0038
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0038
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0038
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0039
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0039
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0041
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0041
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0042
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0042
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0043
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0043
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0043
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0044
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0044
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0044
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0045
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0045
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0046
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0046
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0047
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0047
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0048
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0048
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0048
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0049
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0049
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0049
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0050
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0050
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0050
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0052
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0052
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0052
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0053
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0053
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0053
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0054
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0054
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0054
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0055
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0055
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0055
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0055
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0056
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0056
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0056
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0057
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0057
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0057
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0058
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0058
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0058
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0059
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0059
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0059
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0059
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0059
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0059
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0060
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0060
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0060
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0061
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0061
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0062
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0062
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0062
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0063
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0063
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0064
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0064
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0064
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0064
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0065
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0065
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0065
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0066
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0066
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0066
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0067
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0067
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0068
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0068
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0068
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0069
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0069
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0069
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0070
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0070
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0070
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0071
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0071
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0072
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0072
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0072
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0073
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0073
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0074
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0074
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0074
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0075
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0075
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0076
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0076
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0076
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0076
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0077
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0077
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0077
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0077
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0078
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0078
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0078
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0079
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0079
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0079
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0080
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0080
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0080
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0080
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0080
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0080
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0080
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0080
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0081
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0081
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0082
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0082
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0082
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0083
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0083
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0083
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0084
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0084
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0084
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0085
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0085
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0085
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0085
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0086
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0086
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0087
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0087
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0087
http://refhub.elsevier.com/S0168-1923(22)00409-9/sbref0087


Agricultural and Forest Meteorology 327 (2022) 109222

15

Yan, G., Wang, T., Jiao, Z., Mu, X., Zhao, J., Chen, L., 2016. Topographic radiation 
modeling and spatial scaling of clear-sky land surface longwave radiation over 
rugged terrain. Remote Sens. Environ. 172, 15–27. 

Yang, K., Pinker, R.T., Ma, Y., Koike, T., Wonsick, M.M., Cox, S.J., Zhang, Y., 
Stackhouse, P., 2008. Evaluation of satellite estimates of downward shortwave 
radiation over the Tibetan Plateau. J. Geophys. Res. 113. 

Zapadka, T., Ostrowska, M., Stoltmann, D., Krężel, A., 2020. A satellite system for 
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