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Abstract: Current remote sensing-based aerosol optical depth (AOD) products have coarse spatial
resolutions, which are useful for studies at continental and global scales, but unsatisfactory for
local scale applications, such as urban air pollution monitoring. In this study, we investigated the
possibility of using Landsat imagery to develop high-resolution AOD estimations at 30 m based
on machine learning algorithms. We assessed the performance of six machine learning algorithms,
including Extreme Gradient Boosting, Random Forest, Cascade Random Forest, Gradient Boosted
Decision Trees, Extremely Randomized Trees, and Multiple Linear Regression. To obtain accurate
AOD estimations, we used prior knowledge from multiple sources as inputs to the machine learning
models, including the Global Land Surface Satellite (GLASS) albedo, the 1-km AOD product from
MODIS data using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm,
and meteorological and surface elevation data. A total of 13,624 AOD measurements from Aerosol
Robotic Network (AERONET) sites were used for model training and validation. We found that all
six algorithms exhibited good performance, with R2 values ranging from 0.73 to 0.78 and AOD root-
mean-square errors (RMSE) ranging from 0.089 to 0.098. The extremely randomized trees algorithm,
however, demonstrated marginally superior performance as compared to the other algorithms; hence,
it was used to produce AOD estimates at a 30 m resolution for one Landsat scene coving Beijing
in 2013–2019. Through a comparison with overlapping AERONET observations, a high level of
accuracy was achieved, with an R2 = 0.889 and an RMSE = 0.156. Our method can be potentially used
to generate a global high-resolution AOD dataset based on Landsat imagery.

Keywords: aerosol optical depth; machine learning; Landsat; high resolution

1. Introduction

Atmospheric aerosols directly affect the radiation energy budget of the earth by scat-
tering and absorbing solar radiation [1–3]. Moreover, aerosols indirectly affect the climate
through the processes of cloud generation and dissipation, precipitation [4], photosynthesis,
and ecosystem evapotranspiration [5–7], and also contribute to the terrestrial carbon cycle
through the diffuse radiation fertilization effect and hydrometeorological feedback [8].
Therefore, it is important to accurately estimate the spatial and temporal variations of
aerosols across the globe. Aerosols are quantified using the Aerosol Optical Depth (AOD)
parameter, which is the combined measurement of various aerosols distributed within
an air column. Ground-based sun photometers can continuously measure AOD with a high
level of accuracy and are installed at Aerosol Robotic Network (AERONET) field sites
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across the globe [9]. With wide spatial and repetitive coverage, satellite remote sensing
provides an effective method to upscale AOD estimation to large areas.

Several satellite-based AOD instruments have been developed, which can be classified
based on the type of satellite sensors used (Table 1). They include (1) multispectral sensors,
such as Moderate Resolution Imaging Spectroradiometer (MODIS) AOD instruments with
10 km, 3 km, and 1 km resolutions [10–12]; the Medium Resolution Imaging Spectrometer
(MERIS) AOD sensor with a 10 km resolution [13]; the Visible Infrared Imaging Radiometer
Suite (VIIRS) with a 6 km resolution [14]; and the Himawari-8 Geostationary AOD instru-
ment with a 0.05◦ resolution [15]; (2) multi-angle sensors, such as the Multi-angle Imaging
Spectro-Radiometer (MISR) AOD sensor with 17.6 km and 4.4 km resolutions [16,17];
(3) polarization sensors, such as the Polarization and Directionality of Earth Reflectance
(POLDER) sensor with an 18.5 km resolution [18]; and (4) Lidar sensors, such as Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) instruments with
a 5 km resolution [19]. All these AOD products have relatively coarse spatial resolutions,
i.e., coarser than 1 km, which limits their applications at the local scale, e.g., for detailed
air-quality monitoring at the city scale.

Table 1. Current remote sensing-based aerosol optical depth (AOD) instruments grouped by the type
of satellite sensors used.

Type of Sensor Sensor Product Name Algorithm Spatial
Resolution (km)

Temporal
Resolution Reference

Multispectral

MODIS

MOD04-3k DT 3 km Daily [10]

MOD04-10k DB/DT 10 km Daily [11]

MCD19 MAIAC 1 km Daily [12]

MERIS XBAER Unnamed
DT-like algorithm 10 km Daily [13]

VIIRS EDR
MODIS-

like atmospheric
correction algorithm

6 km Daily [14]

Himawari-8 AHI Common algorithm 5 km 10 min [15]

Multi-angle MISR

V22_17.5km Version 22
retrieval algorithm 17.5 km Daily [16]

V22_4.4km Version 23
retrieval algorithm 4.4 km Daily [17]

Polarization POLDER PARASOL Polarization
retrieval algorithm 18.5 km Daily [18]

Lidar CALIOP CALIPSO Active lidar
sensor algorithm 2◦× 5◦ Daily [19]

High-resolution AOD products are needed to identify subtle differences in local
contamination caused by human activities. This is particularly necessary as a result of the
rapid urbanization process and its associated air pollution. Previous studies investigated
the feasibility of several remote sensing data sources to estimate high-resolution AOD over
cities. For example, Sun and Tian estimated the AOD from Landsat-8 at a 500 m resolution
using the relationships between the AOD, surface reflectance, and the observed top-of-
atmosphere (TOA) reflectance based on radiative transfer simulations [20–22]. Muhammad
Bilal used AOD data at a 30 m resolution retrieved from Landsat 8 Operational Land Imager
(OLI) images using the Simplified Aerosol Retrieval Algorithm (SARA) with ancillary
aerosol information from MODIS [23]. Luo also applied SARA to retrieve the AOD with
Landsat surface reflectance values from both bright and dark objects [24]. Zhong combined
the modified dark object method [25,26] with prior spectral information to obtain high
spatial resolution AOD at a 30 m resolution [27]. The aforementioned studies were all
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focused on local areas. In contrast, the Land Surface Reflectance Code (LaSRC) [28] was
developed by NASA for the atmospheric correction of Landsat-8 imagery on a global
scale, based on a 6SV radiative transfer model [29]. The LaSRC algorithm uses two surface
reflectance ratios computed by a global ratio dataset, derived from MODIS and MISR data
at a 5 km resolution, to retrieve the AOD at 550 nm for each 30 m Landsat-8 pixel.

Many factors need to be considered for AOD retrieval from remote sensing obser-
vations, including aerosol type, land changes, and human activity, all of which can be
heterogeneous across space and time. Simplification of these factors, for example, by using
a Lambertian surface and fixed aerosol types in the model [28,30,31], would therefore
introduce large uncertainties in the AOD estimations [32–35]. One solution to reduce these
uncertainties is to use prior knowledge. With the increasing amount of prior knowledge
(model inputs) available, machine learning algorithms have become the first choice for
building models for AOD estimation, and have been used to estimate AOD, as well as
PM2.5 and PM10 concentrations [36–39]. Several studies [38,40–42] adopted neural net-
works to construct the relationships between satellite observations and ground-observed
AOD, while others used Random Forest (RF) modeling [37].

In this study, we aimed to estimate high-resolution AOD at a 30 m resolution using
Landsat imagery and machine learning algorithms. First, we evaluated the performance of
six machine learning algorithms to estimate the AOD under our study framework. Second,
we analyzed the accuracy improvements by incorporating different prior knowledge.
Finally, we produced AOD estimations based on the best machine learning model for one
Landsat scene covering Beijing and compared it with the output of the LaSRC algorithm.

2. Data Sources and Processing
2.1. Satellite Data

Landsat-7 and Landsat-8 were launched in April 1999 and February 2013, respectively.
The former carries the Enhanced Thematic Mapper (ETM+) and the latter the Operational
Land Imager (OLI) sensor. They provide high spatial resolutions, covering several multispec-
tral bands which have been widely used in aerosol monitoring. The Google Earth Engine
(GEE) is a cloud-based geospatial analysis platform that enables effective global satellite
data processing. In this study, Top of Atmosphere (TOA) data from Landsat-8 OLI bands 2–7
from 2013 to 2019 and Landsat-7 ETM+ bands 1–7 from 2001 to 2012 were extracted from
GEE on a global scale. A detailed comparison of those bands is provided in Table 2. Lansat-8
OLI data were mainly used for model construction and prediction, while Landsat-7 ETM+
data were used for independent validation. The OLI and ETM+ have corresponding bands,
but their sensor spectral response functions are different. Thus, the corresponding ETM+
bands were converted to the equivalent OLI bands by the spectral regression model [43].
We also used angular information, including the solar zenith and azimuth angles, to account
for variations in aerosol scattering or absorption at different angles.

Table 2. Detailed parameter comparison of the OLI and ETM+ bands.

Landsat–8 OLI Landsat–7 ETM+

Band Spectral Range (µm) Resolution (m) Band Spectral Range (µm) Resolution (m)

B1 Coastal 0.43–0.45 30 – – –
B2 Blue 0.45–0.51 30 B1 Blue 0.45–0.52 30

B3 Green 0.53–059 30 B2 Green 0.52–0.60 30
B4 Red 0.64–0.67 30 B3 Red 0.63–0.69 30
B5 NIR 0.85–0.88 30 B4 NIR 0.77–0.90 30

B6 SWIR 1 1.57–1.65 30 B5 SWIR 1 1.55–1.75 30
B7 SWIR 2 2.11–2.29 30 B7 SWIR 2 2.09–2.35 30
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2.2. AOD Ground Measurements

AERONET is a global ground-based aerosol observation network that provides long-
term aerosol monitoring. Specifically, it provides spectral AOD, water vapor, spectral solar
irradiance, and various aerosol retrieval products. In this study, we collected the latest
global V3 cloud-screened and quality-controlled level 2.0 AOD observations for better accu-
racy [44] from 453 monitoring stations (Figure 1) from 1 January 2001 to 31 December 2019.
In certain cases, the Angstrom exponent method [45] was used for band conversion in cases
where AERONET did not measure the AOD at 550 nm. A minimum of two AERONET
AOD measurements at each site within ±30 min around the Landsat-7 and Landsat-8
overpass time were averaged to obtain a temporally matched value that was used as the
ground truth. Meanwhile, the AERONET inversions of water vapor and single scattering
albedo (SSA) were extracted for subsequent analysis.

Figure 1. Locations of the global Aerosol Robotic Network (purple dots) monitoring stations that
were used for our model development. Land use cover types in 2016 (background colored shading)
are marked based on the MODIS land use cover product at a 500 m spatial resolution. Descriptions of
the land use classes in the legend are given in Table S1.

2.3. GLASS Albedo Product

Since the Landsat TOA data contain information on both surface reflectivity and
aerosol attenuation under clear sky conditions, prior knowledge of surface reflectivity
helped us to decouple the contribution of the atmosphere from the TOA signal. Different
bands are affected by aerosols differently. If surface knowledge can provide surface in-
formation at different wavelengths, the contribution of aerosols can be comprehensively
measured. Ideally, spectral surface reflectance products should be incorporated into the
overall dataset, but determining this reflectance may create greater uncertainty than the
simple use of the AOD estimation. Instead, the broadband visible albedo was used, as it
represents the contribution of the surface over the whole visible range. The 1 km black-sky-
visible albedo from 2001 to 2019 from the Global Land Surface Satellite (GLASS), which
was employed in [46–48] and has a higher weight than the blue-sky-albedo, was selected to
represent the surface reflective property. Because of their temporal and spatial continuity
characteristics, GLASS products have been widely used in various applications [49,50].
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2.4. MAIAC AOD Product

The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was
developed for MODIS. It retrieves aerosol properties at a resolution of 1 km overland [51].
The newly released Terra and Aqua 1 km MAIAC AOD products, which use the revised
MAIAC algorithm, work over both dark and bright surfaces with continuous improvements
in internal cloud masks, snow detection, and the determination of aerosol models [12]. The
high accuracy of MAIAC AOD makes it possible to characterize aerosol heterogeneity at
a 1 km resolution [52–54]. We extracted the global AOD product (MAC19A2) from 2001 to
2019 from GEE for use as the prior knowledge. Because of missing data, two methods of
spatial-temporal hybrid fusion considering aerosol variation mitigation (ST-AVM) [55] and
statistical linear regression [36] were used to fill the missing pixels.

2.5. Auxiliary Data

Auxiliary data include meteorological and surface topographic information. The latest
ERA5 atmospheric products were employed, which provided a 25 km spatial resolution
and 1 h temporal resolutions of total column ozone (O3) and water vapor (WVC). The
O3 and WVC data were interpolated to match the Landsat overpass times. The digital
elevation model (DEM) data were obtained from the NASADEM digital elevation 30 m
product, consisting of reprocessed Shuttle Radar Topography Mission data, the accuracy of
which were improved by incorporating auxiliary data from five other DEM datasets [56].
Table S2 summarizes the data sources used in this study.

2.6. Data Pre-Processing

All data with different spatial and temporal resolutions were resampled into the same
grid size (0.003◦ × 0.003◦ ≈ 30 × 30 m) and the same temporal interval to match the
Landsat pixels. The spatial matching of images at different resolutions was performed
using coordinate latitude and longitude: a coarse resolution image was matched to a fine
resolution scale by calculating the distance between the longitude and latitude of the
adjacent pixels. Specifically, Landsat-8 pixels contained within the great-circle distances
(Equation (1)) of adjacent pixels of coarse resolution data were calculated, and the coarse
resolution pixel values were assigned to all Landsat-8 pixels. The great-circle distances
between two points were calculated with the Haversine approach, using latitude and
longitude (Equation (1)):

DISi,j = 2r ∗ asin
(

sqrt
[
sin2

( Lati,j−Loni,j
2

)
+ cos

(
Lati,j

)
cos(Lat0)sin2

( Loni,j−Lon0
2

)]
)

(1)

where Lati,j, Loni,j, and Lat0, Lon0 denote the latitudes and longitudes of one point and the
corner or center of a rectangle in space, respectively, and r represents the Earth’s radius
(r = 6371 km). For the distance calculations, heavy, parallel computing was used to speed
up the spatial matching process. All independent variables were then matched with each
AERONET site’s AOD measurement. After removing invalid values, there were a total of
13,624 data pairs from 2013 to 2019 (OLI) and 5021 from 2001 to 2012 (ETM+).

3. Methodology

The basic premise was to determine an optimal machine learning model for the rela-
tionships between site AOD measurements and all input variables, and then to estimate
AOD at a 30 m spatial resolution from Landsat data and other ancillary information. Math-
ematically, AOD = f (AODMAIAC, AlbedoGLASS, Reflectance6-bands, Solar-angle2, Elevation,
O3, WVC). The methodology and experimental setup for this study are outlined in Figure 2.
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Figure 2. Flowchart of the methodology applied in this study.

3.1. Model Development

Many machine learning models have been successfully applied in the field of atmo-
spheric remote sensing. To develop a robust model for this study, it was necessary to evalu-
ate multiple machine learning models. We analyzed six models, including Random Forest
(RF), Cascade Random Forest (CasRF), and Extremely Randomized Trees (ERF), which
are part of the bagging algorithm, as well as Extreme Gradient Boosting (XGBoost) and
Gradient Boosted Decision Trees (GBDT), which are part of the boosting algorithm. Finally,
classical Multiple Linear Regression (MLR) was added to the analysis. See Appendix A for
a description of these different machine learning algorithms. Each machine learning model
needs an optimal parameter set to produce the best AOD estimation performance. We used
the 10-fold cross-validation (CV) method to find the optimal parameters, and then used the
coefficient of determination (R2) and the root-mean-square error (RMSE) to evaluate the
model accuracy, i.e., to cycle through different model parameters to find the set with the
largest R2 and the smallest RMSE. Table S3 lists the best parameter combinations used for
each machine learning algorithm.

3.2. Evaluation Approaches

The evaluation included two parts. The first part was model construction (fitting and
validation). The model validation was based on the out-of-sample method for all Landsat-8
samples. The 10-fold CV approaches were used to divide the data samples into ten random
subsets, where nine of the subsets were used for training and one for validation. For each
model parameter set, this step was repeated ten times and the error rates were averaged to
obtain the result. The second evaluation was based on the independent validation samples
that were converted from Landsat-7 ETM+ data from the years 2001–2012. Independent
tests were performed on the Landsat-7 samples using the model developed for Landsat-8,
which ensured that the data samples for model training and validation were completely
independent. Finally, the best performance model developed for Landsat-8 (2013–2018) was
used to estimate the AODs for 2019, which were then validated against the corresponding
ground measurements. The estimated AODs were calculated with a precision of one pixel
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(30 m) around an AERONET site. Values of R2, RMSE, the mean absolute error (MAE), and
MODIS expected error (EE, ± [0.05 + 0.15 × AODAERONET) were employed to evaluate the
accuracy of the estimated AOD.

4. Results and Discussion
4.1. Models Fitting and Validation

Table S4 shows the statistical accuracy of the fitting results for the six machine learning
models. We can see that the R2 ranged from 0.667 to 0.773. The bagging ensemble exhibited
good performance, with RMSE values between 0.086~0.093. In the boosting algorithm,
GBDT’s fitting ability was marginally poorer (RMSE = 0.097, R2 = 0.724) than XGBoost’s
fitting accuracy, with a coefficient of determination of 0.752. MLR was the worst, indicating
that there was no clear linear relationship between data variables, and that it was difficult
to fit with a linear model. In summary, the bagging and boosting ensemble performed well
at the training stage.

We compared the performance of the different machine learning models introduced
in Appendix A. Table 3 shows the 10-CV results for the different models. From the table,
we can see that the results from MLR had the lowest R2, with a value of 0.731, while the
coefficient of determination for ERF was the best (R2 = 0.780). For XGBoost, RF, and CasRF,
the R2 values were approximately 0.776, which were close to ERF value. However, the R2

of GBDT was slightly lower than that of the others, but nevertheless better than that of
MLR. Except for the MLR model, the RMSE of the machine learning algorithms was very
close, at approximately 0.09. In summary, the bagging and boosting ensemble produced
good fitting performance.

Table 3. Sample-based cross-validation results for the different machine learning models.

Methods Name R2 RMSE MAE Within EE

Bagging

Random Forest (RF) 0.776 0.090 0.048 85.21

Extremely randomized trees (ERF) 0.780 0.090 0.047 85.23

Cascade Random Forest (CasRF) 0.777 0.089 0.048 85.09

Boosting
Gradient Boosted Decision Trees (GBDT) 0.771 0.089 0.048 85.11

Extreme Gradient Boosting (XGBoost) 0.774 0.090 0.048 85.21

Linear Multiple Linear Regression (MLR) 0.731 0.098 0.053 81.79

Table 4 shows the independent accuracy test results of the above models using the
Landsat-7 independent validation samples. All of these models were able to estimate the
average AOD with good accuracy. The AOD derived from the ERF demonstrated the best
estimation performance, with an R2 value of 0.770, indicating good fitting performance.
The overall RMSE value was approximately 0.116. On the contrary, the retrievals of the
MLR model were in agreement with the AERONET AOD measurements, with 71.27% of
them falling within the EE envelope, and with R2 and RMSE values of 0.760 and 0.117,
respectively. In summary, the above results show that ERF had marginal advantages in
terms of model fitting and validation; thus, it was chosen for the experiments.

4.2. Estimating Landsat-8 AOD

This section further evaluates model robustness. The ERF model fitted with data from
2013 to 2018 was used to estimate the AOD in 2019. The AOD estimates for 2019 generated
by the ERF model were close to measurements, with an R2 value of 0.791, an RMSE of
0.067, and an MAE of 0.042, and approximately 87.82% of the estimates fell within the EE
envelope (Figure 3).
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Table 4. Independent validation results for the different machine learning models.

Methods Name R2 RMSE MAE Within EE

Bagging

Random Forest (RF) 0.764 0.117 0.066 74.72

Extremely randomized trees (ERF) 0.770 0.116 0.066 74.88

Cascade Random Forest (CasRF) 0.763 0.118 0.066 74.61

Boosting Gradient Boosted Decision Trees (GBDT) 0.769 0.116 0.065 74.74

Extreme Gradient Boosting (XGBoost) 0.762 0.117 0.066 75.56

Linear Multiple Linear Regression (MLR) 0.760 0.117 0.066 71.27

Figure 3. Density scatterplots of the estimated results for the different machine learning models
(N = 1133). Color scale indicates the density of observation. The red dashed line and the black and
green solid lines represent the MODIS expected error, the 1:1 line and the linear regression line,
respectively.

4.3. Importance of Using Prior Knowledge

To quantify the improvement to model accuracy using different prior knowledge data
sets, seven AOD estimation models were separately constructed using the ERF algorithm.
The first model was constructed using only the OLI TOA reflectance of six bands and the
solar zenith angle data; the remaining five models (f2–f6) were constructed by adding the
elevation, meteorological, albedo, and MAIAC AOD data in turn. The final model (f7)
contained only a priori information without the Landsat TOA and angular information, and
it was used to measure the importance of the satellite signal to the model. Seven models
were used to estimate the AOD at the AERONET sites separately for each of the 19 years of
data, and R2, RMSE, MAE, and EE were used to evaluate the estimation accuracy. Table 5
shows the estimation results for these models. When fitting the model using only TOA
and solar angles, model f1 exhibited poor accuracy, with a low coefficient of determination
(R2 = 0.313). The DEM demonstrated a slight increase in accuracy, with a coefficient of
determination of 0.338. The O3 and WVC concentrations are always changing depending
on time and location, and are the most important gases to consider, especially in the visible
channels [57]. The addition of O3 improved the correlation and the RMSE of the AOD
estimation (R2 = 0.368, RMSE = 0.116). WVC produced significant accuracy improvements,
with a correlation reaching 0.456. The surface albedo can help the model decouple the
contribution of the AOD from the apparent reflectance information; thus, the correlation
improved to 0.545 and the RMSE reduced to 0.091, with approximately 76.03% of the points
falling within the EE error line (model f5). The addition of MAIAC AOD significantly
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improved the accuracy of the model, with a 45% improvement in the correlation and a 26%
reduction in the RMSE, as compared to f5. Figure S1 shows the accuracy validation scatter
plot for MAIAC AOD and AERONET AOD at Landsat-8 overpassing time (RMSE = 0.08,
MAE = 0.05, within EE = 82.26%). This error to some extent reflects the AOD bias due to
differences in sensor transit times, since aerosols can change dramatically with time. As the
model-input Landsat-8 observations and the corresponding prior knowledge of the surface
and atmospheric conditions, the AOD bias could be reduced (model f6). As compared with
MAIAC AOD, its R2 was improved by up to ~0.07, and the RMSE was reduced by 0.01.
When the model was constructed using only prior information (model f7), the accuracy of
the AOD estimation decreased, i.e., the RMSE increased by ~9.0% and the R2 decreased
by ~5.4%. This, to some extent, shows that the addition of satellite observations can better
correct for AOD bias due to differences in the MODIS and Landsat transit times.

Table 5. Statistics concerning the estimation results of seven combinations of inputs.

ERF Model
Predictive Power

R2 RMSE MAE Within EE

f1 (TOA2~7, Angle) 0.313 0.120 0.073 67.52

f2 (TOA2~7, Angle, EL) 0.338 0.117 0.071 67.71

f3 (TOA2~7, Angle, EL, O3) 0.368 0.116 0.070 69.29

f4 (TOA2~7, Angle, EL, O3, WVC) 0.456 0.108 0.065 70.96

f5 (TOA2~7, Angle, EL, O3, WVC, GLASSAlbedo) 0.545 0.091 0.045 76.03

f6 (TOA2~7, Angle, EL, O3 WVC, GLASSAlbedo, MAIACAOD 0.791 0.067 0.042 87.82

f7 (EL, O3 WVC, GLASSAlbedo, MAIACAOD 0.748 0.073 0.045 83.94

The biases of the model-estimated AOD and MAIAC AOD under different surface
conditions, represented by Normalized Differential Vegetation Index (NDVI) values and
atmospheric aerosol conditions, were also explored to analyze where and how the prior
information could improve the model’s accuracy. The MAIAC/estimated–AERONET AOD
matchups were then filtered by each specific surface and atmospheric aerosol condition
and grouped into narrow bins, each containing different numbers of retrievals, in order to
analyze the distribution of errors.

The global surface was first divided into nine NDVI bins (Figure 4), then MAIAC and
the predicted AODs were evaluated against the AERONET AODs in each bin. Overall,
a high level of accuracy was observed for the MAIAC AOD (Figure 4b) when NDVI ≤ 0
(mostly water surfaces), with an AOD bias approximately equal to 0.02. However, when
0 ≤ NDVI ≤0.3, which indicated sparse vegetables, the accuracy was degraded, with
larger biases (−0.05~0.01) occurring. With an increase in NDVI (0.3 < NDVI < 1.0), the
performance continued to improve, as was characterized by decreasing negative biases.
In areas covered by dense vegetation (NDVI close to 1) in particular, the mean bias was
approximately −0.01. The ERF AOD accuracy was similar to that of MAIAC AOD over
water and densely vegetated surfaces; however, for sparse vegetation (0 ≤ NDVI ≤0.3),
ERF was able to effectively reduce the biases of MAIAC AOD (−0.02~0).

SSA measures the ratio of absorption and scattering of solar radiation by aerosols and
is an important parameter in the optical properties of aerosols. In addition, SSA is crucial
to the AOD retrieval, and errors in SSA determination produce many further errors in
AOD retrieval. WVC is also important. Huttunen showed that WVC and AOD typically
demonstrate a positive correlation [38]. The WVC is likely related to aerosol swelling as
a result of hygroscopic growth, which increases the scattering of the aerosol. Therefore,
this paper analyzes the AOD deviation based on SSA and WVC. In order to obtain the SSA
value at 550 nm, a linear interpolation of the SSAs at 440 nm and 675 nm was used.
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Figure 4. Box plots of AOD bias (in grey) for ERF-estimated AOD (a) and MODIS AODs (b), against
AERONET AODs, as a function of NDVI. In each box, the green triangle and the middle, lower, and
upper horizontal lines represent the AOD bias mean, median, and 25th and 75th percentiles, respectively.

The atmospheric aerosol conditions were divided into 11 SSA (550 nm) bins with
different bin sizes (Figure 5). For strong aerosol absorption conditions (SSA < 0.88), the
estimated AOD exhibited a higher correlation and smaller estimation uncertainties as
compared with the MAIAC AOD (Table 6), and approximately 87.93% of the data samples
fell within the EE envelope. The correlation of MAIAC AOD in terms of strong absorption
was poor (R2 = 0.53), but the estimation of AOD was able to improve in terms of accuracy
(R2 = 0.67), gradually improving the trend of negative deviation (Figure 5). When the
aerosols gradually became less absorptive (0.88 ≤ SSA < 0.94), the MODIS AOD exhibited
relatively small estimation uncertainties, with an R2 = 0.76. The estimation accuracy was
still marginally higher than that of the MODIS AOD (MAE = 0.04, RMSE = 0.07). For
weakly absorptive or spheroid aerosol conditions (SSA ≥ 0.94), the estimation correlation
was consistent with that of the MODIS AOD (R2 = 0.87). As a result of the time difference
between MODIS and Landsat-8, the AOD deviation may have been caused by the different
SSAs at different times, and the stronger the absorption, the larger the deviation, which
could be corrected by prior knowledge using the machine learning model developed in this
paper. This indicates that, although the machine learning models do not explicitly obtain
direct information about the possible systematic covariability of SSA, they seem to be able
to detect it indirectly through Landsat and other information (e.g., WVC) inputs, at least to
some extent. In general, the results estimated by machine learning herein can improve the
estimation accuracy in the case of strong aerosols or aerosols with less absorption.

Table 6. The accuracy of the observed (AERONET) AOD, MAIAC AOD and estimated AOD by the
ERF model for statistically different SSA bins.

SSA Bins AOD R2 RMSE MAE Within in EE%

<0.88
MODIS AOD 0.532 0.073 0.046 82.33

ERF AOD 0.666 0.061 0.035 87.93

0.88 ≤ SSA < 0.94
MODIS AOD 0.761 0.086 0.055 82.66

ERF AOD 0.848 0.071 0.045 87.15

SSA ≥ 0.94
MODIS AOD 0.633 0.059 0.042 85.60

ERF AOD 0.675 0.056 0.038 87.73
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Figure 5. The same as Figure 4 but as a function of AERONET single scattering albedo (SSA, 550 nm)
values. Box plots of AOD bias (in grey) for ERF-estimated AOD (a) and MODIS AODs (b).

In the real atmosphere, WVC has implications on aerosol composition and size.
An increase in WVC also increases the uptake of water into aerosol particles, thus af-
fecting the aerosol SSA. Furthermore, the uncertainty of MAIAC AOD retrievals and the
estimated AOD related to the true aerosol type was evaluated according to the AERONET
WVC retrieved values (Figure 6). Figure 6b shows that MAIAC AOD was gradually under-
estimated with the increase in WVC content. This Figure illustrates the continuous increase
in AOD deviation due to the time difference (MODIS and Landsat-8) as WVC increases.
The machine learning method can reduce the tendency of underestimation. When the water
vapor was less than 3, the mean value of aerosol deviation was almost zero. In this paper,
the prior WVC was used to create a machine learning model that was able to automatically
detect these changes and improve them. In summary, machine learning algorithms can,
to some extent, automatically establish the WVC relationship at different moments, thus
improving the accuracy of the AOD. By examining the error distributions as functions of
NDVI and aerosol types, it can be seen that the developed ERF model is robust and works
effectively under all these conditions.

Figure 6. Same as Figure 4, but as a function of AERONET water vapor values. Box plots of AOD
bias (in grey) for ERF-estimated AOD (a) and MODIS AODs (b).
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4.4. Mapping the AOD over Beijing

We used multiple machine learning models to explore the relationship between the
AOD values measured from AERONET sites and satellite observations, and compared their
ability to estimate AOD. The results show that the ERF model has superior performance.
Therefore, we used it to generate time-series AOD products over the Beijing region. This
is one of the largest and most dynamic regions in northern China, and it contains many
bright surfaces, urban areas comprising artificial buildings and sparse vegetation.

It is worth noting that the ERF model was reconstructed to ensure the authenticity of
the comparison. In the training sample, all the information from the Beijing-area stations
was removed, and the model was retrained using ERF to estimate the Landsat-8 AOD
in the Beijing area. The superior performance of the ERF model built on Landsat-8 for
the independent validation sample (Table 4) was also transferred to mapping the AOD
of Landsat-7. Figure S2 shows the accuracy scatter plot of the Landsat-7 AOD estimated
using the ERF model in the Beijing area; the lower root-mean-square error (0.143) shows
the transferability of the model.

This section presents the spatial coverages of the estimated Landsat-8 AOD and the
Landsat-7 AOD, and compares the aerosol loading among MODIS products (MCD19A2),
which were closest to the Landsat transiting time. For accuracy verification, the ERF-
estimated AOD values were compared with four AERONET sites over the Beijing area (Bei-
jing, Beijing-CAMS, Beijing- RADI and XiangHe sites), and the results were cross-validated
with the AODs retrieved by the LaSRC algorithm on the scale of the AERONET sites.

Figure 7 shows different AOD scenarios observed on days 345 in 2000, 247 in 2014,
61 in 2016, and 290 in 2018. The F-mask was utilized on the blue band of the Landsat7/8
and the estimated AODs [58] for the pixel removal of cloud, shadow, and water bodies for
comparison. The results show less cloud coverage and represent low pollution (Figure 7a,b),
moderate pollution (c), and heavy pollution (d), respectively, where the results in Figure 7a
were generated with Landsat-7 data and the rest were generated with Landsat-8 data. The
results show that high AOD values often occur in the southern and eastern parts of the
city, which are within the urban area of Beijing and are characterized by high traffic flows,
a dense population, and intense anthropogenic activity. In the northwestern part of the city,
which comprises vegetated mountainous regions, the AOD values are always lower than in
the urban areas. The resulting AOD spatial distributions were consistent with MCD19A2,
and the AOD filling algorithm could obtain a more complete MAIAC AOD and apply it to
the estimation of the Landsat satellite AOD.

In Figure 7a,b, which are characterized by low pollution, MODIS was deficient due
to the influences of clouds and water, which affected its spatial continuity. Moreover, the
resolution was too coarse and local details were not reflected. The shape of the parcel in the
red box in Figure 7 could be well captured by the ERF AOD estimation method. On the other
hand, MODIS displayed no local details, and only produced massive pixels. After filling
the MODIS pixels, the coverage was greatly improved. In the case of moderate pollution in
Figure 7c, the machine learning method exhibited better spatial continuity than in urban
areas with many details, and thus it was able to capture the local pollution situation. The
red box is the local amplification of the main city area of Beijing, and it contains rich local
details which MODIS cannot reflect. MODIS produced numerous missing pixels which
could be addressed using gap filling. However, as a result of the influence of cloud and
snow, the AOD estimated in this paper also masked these areas, resulting in missing pixels.
In the case of the heavy pollution in Figure 7d, local pollution events can be seen the lower
right corner of the image, accompanied by the influence of clouds, indicating that MODIS
produced a large number of missing pixels. This demonstrates the advantage of a high
resolution. As shown in the red box in the figure, a 30 m AOD can capture the details of
local pollution events while MODIS produces no numerical value for them. In summary,
the proposed method can retrieve AOD over diverse surfaces with less pixel loss and
a similar spatial distribution to MODIS. Moreover, it has a high spatial resolution, which
can show more details.
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Figure 7. Spatial distribution of the Landsat-7 (a) and Landsat-8 (b–d) blue band atmosphere datasets,
the new (30 m) AOD datasets from this study, the MAIAC datasets (1 km), and enlarged views of
Beijing of different times.

To verify the accuracy of the AOD estimation in Beijing, in this study, we not only
used AERONET AOD but also conducted a cross-comparison using 30 m LaSRC AOD data.
The LaSRC AOD data had an R2 of 0.807 and an RMSE of 0.162 (Figure 8). On the contrary,
the R2 of ERF AODs improved by 10%, reaching 0.889, and the RMSE was reduced to 0.156.
The LaSRC retrieval method demonstrated an overall tendency to underestimate the AOD,
while the ERF AOD estimates were marginally overestimated. We also compared the AOD
between LaSRC and ERF on a time series, with a total of 75 matching data points at the
AERONET-site scale (Figure 9). The LaSRC retrieval exhibited a high correlation (0.90)
with the AOD estimated by the ERF model. They both exhibited similar AOD trends, but
the LaSRC produced more underestimates than the ERF. In summary, the ERF exhibited
less uncertainty than LaSRC AOD products, which shows the applicability of the machine
learning model over Beijing city.
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Figure 8. Validation of the 30 m AOD from the ERF model (blue) and the LaSRC algorithm (red)
against the AERONET AOD measurements over Beijing. The blue and red solid lines represent the
linear regression lines; the blue and red shaded areas represent the confidence interval of regressions.
The orange dashed line and the black solid lines represent the MODIS expected error and the
1:1 line, respectively.

Figure 9. Comparison between the 30 m AOD derived from LaSRC (orange) with the ERF-estimated
AOD (blue) in 2013–2019 on the AERONET-site scale (Beijing, Beijing-CAMS, Beijing-RADI, and
XiangHe sites). The grey dots represent LaSRC minus ERF AODs. The x-axis represents the time of
the points and the y-axis represents the AOD.

5. Conclusions

In this paper, the machine learning method was used to estimate the AOD at a 30 m
resolution from Landsat-8 data. The machine learning model estimated the AOD by
learning the relationship between AODs measured by the AERONET sites and satellite
apparent reflectance information, the GLASS broadband albedo dataset, MAIAC AOD,
and other auxiliary data. We then compared the ability of six machine learning methods
(bagging, boosting, and linear regression) to fit the samples and estimate the AODs. The
model that exhibited the best performance was used to estimate the AODs for the year
2019. Thereafter, we compared the AOD estimates with collocated AOD measurements
from AERONET. In terms of model fitting and independent sample verification, the ERF
model demonstrated the best accuracy. The ERF model was able to correct the accuracy
error of MAIAC AOD measurements in sparse vegetation areas. The MODIS AOD was
gradually underestimated with increases to WVC, but the ERF model was able to alleviate
this trend. One of the main reasons for the superior performance of the ERF model was that
it does not need to explicitly make assumptions about the optical aerosol properties of the
atmosphere, because it seems to be able to indirectly account for the covariation of WVC
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and SSA. Finally, we mapped the AOD distributions for Beijing. The results show that the
model can produce high-quality AOD maps and the accuracy was better than LaSRC AOD
at a 30 m scale. The experimental results show that the proposed model was effective and
generalizable. The ERF model can improve the resolution of MAIAC AOD products more
than 30-fold while simultaneously improving their accuracy. In the future, we would like to
introduce more high-resolution variables into the model to further improve the product’s
quality and spatial distribution. This machine learning model has great potential for global
Landsat-8 atmospheric corrections because it can quickly retrieve the 30 m resolution AOD.
Furthermore, we can attempt to add physical model simulation data to the samples and
introduce various deep learning methods for comparison. Spatial smoothing can also be
considered in the future to reduce the uncertainty of the 30 m AOD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14051053/s1, Figure S1: Scatter density map of MCD19A2
AOD (1 km) and Landsat-8 overpass time AERONET AOD observations; Table S1: Land cover types
for the Legend in Figure 1; Figure S2: Density scatterplots of the estimated AOD of Landsat-7 for the
ERF models developed by Land-sat-8 over Beijing area between 2001 and 2012; Table S2: Summary of
the data sources used in this study; Table S3: Statistics of selected algorithms; Table S4: Statistics of
model fitting.
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Appendix A. Description of Machine Learning Models

Random Forest (RF) is a highly flexible, tree-based machine learning algorithm, which
uses multiple decision trees to make decisions. It is based on the bagging method, which
can handle thousands of input variables without variable deletion to reduce the overfitting
problem in decision trees and variance.

CasRF is based on the RF method. It connects multiple RF models in series and takes
the residuals of the previous model as the input parameter to the next model. Through
repeated training (cascade learning), the residuals can be corrected and the fitting and
predicting ability of the model can be improved.

The Extremely Randomized Trees (ERF) method is very similar to RF. It consists
of hundreds or thousands of decision trees that can be used to address regression and
classification issues. Unlike RF, ERT does not resample observations when building a tree.
It further strengthens the randomization of attribute selection and node splitting and can
effectively reduce model variance.

Gradient Boosting Machine (GBM) is another technique for performing supervised
machine learning tasks like RF. GBM is an ensemble learner, which means it will create
a final model based on a collection of individual models. The predictive power of these
individual models is weak, and they are prone to overfitting, but combining many such
weak models in an ensemble will lead to an overall improved performance. In GBM, the
most common type of weak model used is the decision tree—another parallel to RF. The
implementations of this technique have different names, but the most common are XGBoost
and GBDT. GBDT is a machine learning algorithm that iteratively constructs an ensemble

https://www.mdpi.com/article/10.3390/rs14051053/s1
https://www.mdpi.com/article/10.3390/rs14051053/s1
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of weak decision tree learners through boosting, in which is easy to specify different loss
functions, making models relatively easy to interpret. XGBoost is a further improvement
on GBDT, which uses more accurate approximations to find the best tree model. It employs
several methods (i.e., computing second-order gradients and advanced regularization,
which improves model generalization) that make it powerful and fast, particularly with
structured data. Multiple Linear Regression (MLR) algorithms are typical linear regression
algorithms, wherein a dependent variable is determined by multiple independent variables,
which are then added to the comparison.
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