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Abstract. The Köppen–Geiger classification scheme provides an effective and ecologically meaningful way to
characterize climatic conditions and has been widely applied in climate change studies. Significant changes in the
Köppen climates have been observed and projected in the last 2 centuries. Current accuracy, temporal coverage
and spatial and temporal resolution of historical and future climate classification maps cannot sufficiently fulfill
the current needs of climate change research. Comprehensive assessment of climate change impacts requires a
more accurate depiction of fine-grained climatic conditions and continuous long-term time coverage. Here, we
present a series of improved 1 km Köppen–Geiger climate classification maps for six historical periods in 1979–
2013 and four future periods in 2020–2099 under RCP2.6, 4.5, 6.0, and 8.5. The historical maps are derived from
multiple downscaled observational datasets, and the future maps are derived from an ensemble of bias-corrected
downscaled CMIP5 projections. In addition to climate classification maps, we calculate 12 bioclimatic variables
at 1 km resolution, providing detailed descriptions of annual averages, seasonality, and stressful conditions of
climates. The new maps offer higher classification accuracy than existing climate map products and demonstrate
the ability to capture recent and future projected changes in spatial distributions of climate zones. On regional and
continental scales, the new maps show accurate depictions of topographic features and correspond closely with
vegetation distributions. We also provide a heuristic application example to detect long-term global-scale area
changes of climate zones. This high-resolution dataset of the Köppen–Geiger climate classification and biocli-
matic variables can be used in conjunction with species distribution models to promote biodiversity conservation
and to analyze and identify recent and future interannual or interdecadal changes in climate zones on a global
or regional scale. The dataset referred to as KGClim is publicly available via http://glass.umd.edu/KGClim (Cui
et al., 2021d) and can also be downloaded at https://doi.org/10.5281/zenodo.5347837 (Cui et al., 2021c) for
historical climate and https://doi.org/10.5281/zenodo.4542076 (Cui et al., 2021b) for future climate.

1 Introduction

Climate has direct impacts on the processes and function-
ing of the ecosystem as well as on the distribution of species
(Chen et al., 2011; Ordonez and Williams, 2013; Pinsky et
al., 2013; Thuiller et al., 2005). The spatial patterns of cli-
mates have often been identified using the Köppen climate
classification system (Köppen, 1931).

The Köppen classification system was designed to map
the distribution of the world’s biomes based on the am-

plitude and seasonal phase of annual cycles of surface air
temperature and precipitation (Köppen, 1936). Compared
with other human-expertise-based climate mapping meth-
ods (Holdridge, 1947; Thornthwaite, 1931; Walter and El-
wood, 1975) and clustering approaches (Netzel and Stepin-
ski, 2016), which suffer from a lack of meteorological ba-
sis, the Köppen classification demonstrates stronger correla-
tion with distributions of biomes and soil types (Bockheim
et al., 2005; Rohli et al., 2015b). It provides an ecologically
relevant and effective method to classify climate conditions
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by combining seasonal cycles of surface air temperature and
precipitation (Cui et al., 2021a).

The Köppen classification has been widely applied in bi-
ological science, earth and planetary sciences, and environ-
mental science (Rubel and Kottek, 2011). It is a convenient
and integrated tool to identify spatial patterns of climate dis-
tributions and to examine relationships between climates and
biological systems. It has been found useful for a variety of
issues on climate change, such as hydrological cycle stud-
ies (Peel et al., 2001; Manabe and Holloway, 1975), Arc-
tic climate change (Feng et al., 2012; Wang and Overland,
2004), and assessment of climate change impacts on ecosys-
tem (Roderfeld et al., 2008), biome distribution (Rohli et al.,
2015b; Leemans et al., 1996), and biodiversity (Garcia et al.,
2014).

There has been a resurgence in the application of the Köp-
pen climate classification in climate change research over re-
cent decades (Cui et al., 2021a). The Köppen climate clas-
sification has been used to set up dynamic global vegetation
models (Poulter et al., 2011, 2015), to characterize species
composition (Brugger and Rubel, 2013), to model the species
range distribution (Tererai and Wood, 2014; Brugger and
Rubel, 2013; Webber et al., 2011), and to analyze the species
growth behavior (Tarkan and Vilizzi, 2015). The Köppen
classification has also been applied to detect the shifts in ge-
ographical distributions of climate zones (Belda et al., 2016;
Chan and Wu, 2015; Feng et al., 2014; Mahlstein et al.,
2013). It also has the potential to aggregate climate infor-
mation on warmth and precipitation seasonality into eco-
logically important climate classes, thereby simplifying spa-
tial variability. This climate classification system adds a new
direction to develop climate change metrics and can pro-
vide support for the growth of species distribution modeling
(SDM).

The recent Köppen climate classification maps have a res-
olution ranging between 0.5◦ and 1 km (Cui et al., 2021a).
Early published Köppen climate classification maps have a
relatively low resolution of 0.5◦ (Kottek et al., 2006; Grieser
et al., 2006a, b; Rubel and Kottek, 2010; Belda et al., 2014;
Kriticos et al., 2012). Several map products used interpola-
tion methods to obtain a higher resolution of ∼ 0.1◦ (Peel
et al., 2007; Kriticos et al., 2012; Rubel et al., 2017). Fine
resolutions of at least 1 km are required to detect microrefu-
gia and promote effective conservation. As the only 1 km
global climate classification map product, Beck et al. (2018)
provided global climate classification maps for two periods
1980–2016 and 2071–2100 under RCP8.5. The maps were
derived using climate data from WorldClim V1 and V2 (Fick
and Hijmans, 2017), CHELSA V1.2 (Karger et al., 2017),
and CHPclim V1 (Funk et al., 2015). To represent histori-
cal climates, they adjusted the inconsistent temporal spans
of climatology datasets to the period 1980–2016, by adding
interpolated temperature change offsets or multiplying pre-
cipitation factors, which may lead to biased coverage of the
historical period. Current classification accuracy, temporal

coverage, and spatial and temporal resolution of historical
and future climate classification maps cannot sufficiently ful-
fill the current needs of climate change research. Significant
changes in the Köppen climates have been observed and pro-
jected in the last 2 centuries (Rohli et al., 2015a; Belda et al.,
2014; Chen and Chen, 2013; Chan and Wu, 2015; Yoo and
Rohli, 2016). Previous studies found that large-scale shifts
in climate zones have been observed over more than 5 % of
the total land area since the 1980s, and approximately 20.0 %
of the total land area is projected to experience climate zone
changes under RCP8.5 by 2100 (Cui et al., 2021a). Detec-
tion of recent and future changes in climate zones with the
application of the Köppen climate maps needs more accurate
depiction of fine-grained climatic conditions and continuous
and longer temporal coverage.

This creates the urgent need for global maps of the Köp-
pen climate classification with increased accuracy and finer
spatial and temporal resolutions. Currently available global
observational datasets of temperature and precipitation col-
lected during recent centuries and the global climate sim-
ulations under alternative future climate scenarios have of-
fered the possibility to create a comprehensive dataset for
past and future climates. In this study, we presented an im-
proved long-term Köppen–Geiger climate classification map
series for (1) six historical 30-year periods of the observa-
tional record (1979–2008, 1980–2009, 1981–2010, 1982–
2011, 1983–2012, 1984–2013) and four future 30-year pe-
riods (2020–2049, 2040–2069, 2060–2089, 2070–2099) un-
der four RCPs (RCP2.6, 4.5, 6.0, and 8.5). To improve the
classification accuracy and achieve a resolution as fine as
1 km (30 arcsec), we combined multiple datasets, including
the WorldClim V2 (Fick and Hijmans, 2017), CHELSA V1.2
(Karger et al., 2017), CRU TS v4.03 (New et al., 2000),
UDEL (Willmott and Matsuura, 2001), and GPCC datasets
(Beck et al., 2005) and bias-corrected downscaled Coupled
Model Intercomparison Project Phase 5 (CMIP5) model sim-
ulations (Navarro-Racines et al., 2020) (Table 1). We used
the WorldClim Historical Climate Data V2 (Fick and Hi-
jmans, 2017) to downscale the 0.5◦ climatology datasets
including CRU, UDEL, and GPCC, and we derive high-
resolution climate data for the historical periods. To deter-
mine the final climate class, we used the climate class with
the highest agreement level from an ensemble of climate
maps derived from different combinations of surface air tem-
perature and precipitation products, as implemented in Beck
et al. (2018). In addition to the Köppen–Geiger climate maps,
we also calculated 12 bioclimatic variables at the same 1 km
resolution using these climate datasets for the same histor-
ical and future periods. This dataset can be used to in con-
junction with SDMs to promote biodiversity conservation, or
to map plant functional type distributions for Earth system
model simulations, or to analyze and identify recent and fu-
ture changes in climate zones on a global or regional scale.

To validate the Köppen–Geiger climate classification
maps, we used the station observations from Global Histor-
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Table 1. Climatology datasets to generate present global maps of the Köppen climate classification with varied spatial resolutions.

Dataset Usage Spatial Temporal Variable Source and description
res. span

Present Köppen classification map series with resolution of 30 arcsec (1 km)

CRU Map input 0.5◦ 1979–2017 T Climatic Research Unit (CRU) TS v4.03
UDEL Map input 0.5◦ 1979–2017 T , P U. of Delaware Precipitation and Air Temperature
WorldClim Downscaling 0.0083◦ 1970–2000 T , P WorldClim Historical Climate Data V2
CHELSA Map input 0.0083◦ 1979–2013 T , P Climatologies at high resolution for the earth’s land surface areas (CHELSA)
GPCC Map input 0.5◦ 1979–2016 P Global Precipitation Climatology Centre (GPCC)
PREC/L Data selection 0.5◦ 1979–2012 P NOAA’s PRECipitation REConstruction over Land (PREC/L)
GHCN_CAMS Data selection 0.5◦ 1979–2017 T GHCN_CAMS Gridded 2m Temperature (Land)

Future Köppen classification map series with resolution of 30 arcsec (1 km)

CMIP5 Map input 0.0083◦ 20200-2100 T , P CCAFS-Climate Statistically Downscaled Delta Method CMIP5 data
WorldClim Downscaling 0.0083◦ 1970–2000 T , P WorldClim Historical Climate Data V2

ical Climatology Network-Daily (GHCN-D) (Menne et al.,
2012) and the Global Summary of the Day (GSOD) (Na-
tional Climatic Data Center et al., 2015) database. At the
regional and continental scales, we compared our Köppen–
Geiger climate classification maps with previous map prod-
ucts, associated maps of forest cover, and elevation distri-
bution for (1) regions with large spatial gradients in cli-
mates, including central and eastern Africa, Europe, and
North America, and (2) regions with sharp elevation gra-
dients, including the Tibetan Plateau, central Rocky Moun-
tains, and central Andes. Further, we conducted sensitivity
analysis with respect to classification temporal scale, dataset
input, and data integration methods. We also provided a
heuristic example which used climate classification map se-
ries to detect the long-term area changes of climate zones,
showing how the Köppen–Geiger climate classification map
series can be applied in climate change studies.

2 Datasets

Table 1 lists the climatology datasets with global coverage
and on a monthly time step, used to generate historical and
future Köppen–Geiger climate map series. The present 1 km
Köppen–Geiger classification map series for 1979–2013 was
derived from the Climatologies at High-resolution for the
Earth’s Land Surface Areas (CHELSA) V1.2 (Karger et al.,
2017), WorldClim Historical Climate Data V2 (Fick and
Hijmans, 2017) and statistically downscaled Climatic Re-
search Unit (CRU) TS v4.03 (New et al., 2000), University of
Delaware Precipitation and Air Temperature (UDEL) (Will-
mott and Matsuura, 2001), and Global Precipitation Clima-
tology Centre (GPCC) (Beck et al., 2005) datasets. To de-
cide the datasets to use, we conducted a sensitivity analysis
on the input climatology datasets and utilized monthly air
temperature datasets from CRU, UDEL, and GHCN_CAMS
gridded 2 m temperature (Fan and Dool, 2008) and monthly
precipitation datasets from GPCC, UDEL, and NOAA’s
PRECipitation REConstruction over Land (PREC/L) (Chen

et al., 2002). Evaluation results indicated that incorporat-
ing only CRU, UDEL temperature datasets, and UDEL,
GPCC precipitation datasets and excluding GHCN_CAMS
and PREC/L datasets led to higher accuracy in the classifi-
cation results. Therefore, we chose CRU, UDEL, and GPCC
datasets as the classification system input to boost the final
accuracy.

To explicitly correct topographic effect, we used 1 km
CHELSA V1.2 and WorldClim V2 datasets in addition to the
0.5◦ resolution datasets. The CHELSEA dataset statistically
downscaled temperature data from the ERA-Interim climatic
reanalysis. For precipitation data, it incorporated multiple
orographic predictors and performed bias correction (Karger
et al., 2017). With major topo-climatic drivers considered,
the CHELSA dataset demonstrated good performance in eco-
logical science studies. CHELSA data exhibited comparable
accuracy for temperatures and better predicted precipitation
patterns based on the validation results (Karger et al., 2017).

We produced the future Köppen classification map series
using the CCAFS statistically bias-corrected and downscaled
CMIP5 climate projections (Navarro-Racines et al., 2020).
The CCAFS presented a global database of future climates
developed by a climate model bias correction method based
on the CMIP5 GCM simulations (Taylor et al., 2012) archive,
coordinated by the World Climate Research Programme in
support of the IPCC Fifth Assessment Report (AR5) (Hart-
mann et al., 2013). The total is 35 GCMs, and all RCPs,
RCP2.6, 4.5, 6.0, and 8.5 (Table S1 in the Supplement). Pro-
jections are available at varied coarse scales (70–400 km). To
achieve high-resolution (1 km) climate representations, the
downscaling method has been applied with the use of the
WorldClim data (Fick and Hijmans, 2017). Technical evalua-
tion showed that the bias-correction method that CCAFS data
applied reduced climate model bias by 50 %–70 %, which
could potentially address the bias issue in model simula-
tions for the threshold-based Köppen classification scheme
(Navarro-Racines et al., 2020).
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Figure 1. Illustration of the downscaling process. (a) Anomaly downscaling method with January total precipitation from GPCC dataset
and (b) delta downscaling method with January temperature from CRU dataset. Baseline (1970–2000) and present-day climate data (e.g.,
1979–2008) are from CRU, UDEL, or GPCC datasets, which have a coarse spatial resolution of 0.5◦. Precipitation anomaly is change factor
of monthly precipitation from baseline to present-day climates. Temperature delta is change in monthly air temperature from baseline to
present-day climates. WorldClim (1970–2000) climate data are adjusted by multiplying 30 arcsec interpolated anomaly (for precipitation)
or adding 30 arcsec interpolated delta (for temperature) to generate the downscaled climate surfaces with 30 arcsec resolution. Precipitation
values are in millimeters per month, and temperature values are in degrees Celsius.

3 Methodology

3.1 Köppen–Geiger climate classification

The Köppen climate classification scheme was first intro-
duced by Wladimir Köppen (Köppen, 1936). It is one of
the earliest quantitative classification systems of Earth’s cli-
mates. Its modification, the Köppen–Geiger classification
(KGC), was first published in 1936 (Köppen, 1936), devel-
oped by Wladimir Köppen and Rudolf Geiger. KGC iden-
tifies climates based on their effects on plant growth from
the aspects of warmth and aridity and classifies climate into

five main climate classes and 30 subtypes (Rubel and Kot-
tek, 2011). The five main climate zones distinguish between
plants of the tropical climate zone (A), the arid climate zone
(B), the temperate climate zone (C), the boreal climate zone
(D), and the polar climate zone (E) (Sanderson, 1999). All
main climate zones are thermal zones except the arid (B) cli-
mate zone, which is defined based on precipitation threshold.

This research followed the Köppen–Geiger climate classi-
fication as described in Kottek et al. (2006) and Rubel and
Kottek (2010). This latest version of the KGC scheme was
first presented by Geiger (1961) (Table 2). Several exist-
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Table 2. Criteria of the Köppen–Geiger climate classification with temperature in degrees Celsius and precipitation in millimeters.

First Second Third Description Criterion

A Tropical Not (B) & Tcold ≥ 18
f – Rainforest Pdry ≥ 60
m – Monsoon Not (Af) & Pdry ≥ 100−MAP/25
w – Savannah Not (Af) & Pdry < 100−MAP/25

B Arid MAP < 10×Pthreshold
W – Desert MAP < 5×Pthreshold
S – Steppe MAP≥ 5×Pthreshold

h – Hot MAT≥ 18
k – Cold MAT < 18

C Temperate Not (B) & Thot > 10 & −3 < Tcold < 18
w – Dry winter Pwdry < Pswet/10
s – Dry summer Not (w) & Psdry < 40 & Psdry < Pwwet/3
f – Without dry season Not (s) or (w)

a – Hot summer Thot ≥ 22
b – Warm summer Not (a) & Tmon10 ≥ 4
c – Cold summer Not (a or b) & 1≤ Tmon10 < 4

D Boreal Not (B) & Thot > 10 & Tcold ≤−3
w – Dry winter Pwdry < Pswet/10
s – Dry summer Not (w) & Psdry < 40 & Psdry < Pwwet/3
f – Without dry season Not (s) or (w)

a – Hot summer Thot ≥ 22
b – Warm summer Not (a) & Tmon10 ≥ 4
c – Cold summer Not (a), (b) or (d)
d – Very cold winter Not (a) or (b) & Tcold <−38

E Polar Not (B) & Thot ≤ 10
T – Tundra Thot > 0
F – Frost Thot ≤ 0

MAT: mean annual air temperature (◦C); Tcold: the air temperature of the coldest month (◦C); Thot: the air temperature of the
warmest month (◦C); Tmon10: the number of months with air temperature > 10 ◦C; MAP: mean annual precipitation
(mm yr−1); Pdry: precipitation in the driest month (mm per month); Psdry: precipitation in the driest month in summer (mm
per month); Pwdry: precipitation in the driest month in winter (mm per month); Pswet: precipitation in the wettest month in
summer (mm per month); Pwwet: precipitation in the wettest month in winter (mm per month); Pthreshold = 2×MAT if
> 70 % of precipitation falls in winter, Pthreshold = 2×MAT+ 28 if > 70 % of precipitation falls in summer, otherwise
Pthreshold = 2×MAT+ 14.

ing Köppen–Geiger climate map products, including Peel et
al. (2007), Kriticos et al. (2012), and Beck et al. (2018), ap-
plied the KGC scheme modified following Russell (1931).
Russell (1931) adjusted the definition of the boundary of
temperate (C) and boreal (D) climate zones using the cold-
est monthly temperature > 0 ◦C instead of >−3 ◦C. This
threshold was proposed because the 0 ◦C line fits the dis-
tribution of the topographical features and vegetation in the
western United States, where at that time meteorological sta-
tions were sparsely distributed (Jones, 1932). However, the
application of 0 ◦C boundary to the global climates has not
been validated. Therefore, this research did not utilize the
Russell (1931) modification and followed the latest version
KGC proposed by Geiger (1961).

3.2 Statistical downscaling

Due to limited number of available observational datasets
with high resolution and long-term continuous temporal cov-
erage, the research implemented the delta method by apply-
ing a delta change or change factor (Hay et al., 2000; Wilby
and Wigley, 1997) onto the WorldClim historical observa-
tions (Fick and Hijmans, 2017) to achieve 30-year average
climatology data with a 1 km resolution based on the CRU,
UDEL, and GPCC datasets. The delta method is a statisti-
cal downscaling method that assumes that the relationship
between climatic variables remains relatively constant at lo-
cal scale (Wilby and Wigley, 1997). We applied the delta
method to downscale the long-term (30-year) mean climates
using coarse-resolution monthly climatology datasets. The
delta changes or change factors are calculated as the differ-
ences between the 30-year long-term means of temperature
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Figure 2. Step-by-step process to generate Köppen–Geiger climate map series.

or precipitation of baseline (1970–2000) and present-day cli-
mates. The delta method comprises the following four steps:
(1) calculate 30-year averages for the baseline (1970–2000)
and present day of monthly temperature and precipitation,
(2) calculate anomaly for precipitation and delta for temper-
ature, (3) apply thin-plate spline (TPS) interpolation to create
1 km surface of precipitation anomaly and temperature delta,
and (4) multiply anomaly or add delta to historical climates
based on WorldClim dataset (Fig. 1).

First, using monthly time series from the CRU, UDEL,
and GPCC datasets, we calculated 30-year means as a base-
line (1970–2000) for each climatology dataset and each vari-
able. We used 1970–2000 as the baseline period, for con-
sistency with WorldClim Historical Climate Data V2. Next,
we calculated 30-year means for each month and each 30-
year present-day period in 1979–2013. We then calculated
anomalies as proportional differences between present day
and baseline in total precipitation and delta as the differ-
ence in temperature. To derive 30 arcsec (1 km) anomaly or
delta surfaces, we applied thin-plate spline (TPS) interpola-
tion (Franke, 1982; Schempp et al., 1977; Craven and Wahba,
1978) to precipitation anomaly and temperature delta. TPS
has been widely used in climate science (Hijmans et al.,
2005; Navarro-Racines et al., 2020) as it produced a smooth
and continuous surface, which is infinitely differentiable.
Last, we multiplied the change factor or added the delta to
the WorldClim (1970–2000) data to get downscaled present-
day monthly climate data.

Our future Köppen–Geiger map series are based on an en-
semble of maps derived from the CCAFS bias-corrected and
downscaled climate projections, which include 35 CMIP5

GCMs and 4 RCPs (Navarro-Racines et al., 2020). Large
misclassifications exist within the GCMs as detected in pre-
vious assessments of large areas ranging between 20 %–50 %
of the total land area (Cui et al., 2021a). Deficiencies in
model physics are also more likely to contribute to uncertain-
ties in the maps than grid size or reference dataset limitations
(Tapiador et al., 2019). Multi-model mean and delta-change
methods can mitigate the bias effects from the threshold-
based classification scheme and have been utilized to simu-
late better results of climate classification (Hanf et al., 2012).
Therefore, we chose the CCAFS bias-corrected and down-
scaled CMIP5 projections (Navarro-Racines et al., 2020) to
reduce the amplified errors due to uncertainty of climate pro-
jections. Navarro-Racines et al. (2020) interpolated anoma-
lies of original GCM outputs using thin plate spline spa-
tial interpolation to achieve a baseline climate with a 1 km
surface. Then they applied the delta method to the interpo-
lated baseline climates to correct the model biases (Hay et
al., 2000; Ho et al., 2012).

3.3 Data integration

The historical Köppen–Geiger climate classification map se-
ries was generated using the highest confidence class from
an ensemble of maps using all combinations of surface air
temperature and precipitation products (Fig. 2), as described
in Beck et al. (2018). The highest confidence was given to
the most common climate class for each grid cell. The fi-
nal historical climate map series were derived using the cli-
mate class with the highest level of confidence in an ensem-
ble of 3× 3= 9 classification maps based on combinations of
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Figure 3. Global maps of the Köppen–Geiger climate classification for the historical periods (1979–2008, 1980–2009, 1981–2010, 1982–
1011, 1983–2012, 1984–2013) and associated classification confidence levels. (a) Historical maps of the Köppen–Geiger climate classifica-
tion and (b) confidence levels associated with the Köppen–Geiger climate classification.
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Figure 4. Present Köppen–Geiger classification and confidence map for 1979–2008 with resolution of 1 km for the central Rocky Mountains
in North America. (a) Climate maps based on the nine combinations of the three precipitation datasets and three surface air temperature
datasets, (b) the final climate map derived from the most common climate class among the nine climate maps, (c) confidence level distribution
of the final climate map, and (d) elevation map for the central Rocky Mountains in North America.

the three precipitation datasets (CRU, UDEL, and CHELSA)
and three surface air temperature datasets (GPCC, UDEL,
and CHELSA). To further test the sensitivity of the method
using the climate with the highest level of agreement, we in-
corporated another data integration method using the mean
of multiple datasets. We quantified the degree of confidence
placed in the Köppen–Geiger climate map series using the
degree of confidence at the grid cell level calculated by di-
viding the occurrence frequency of the climate class with the
highest level of agreement by the ensemble size. The calcu-
lated confidence level can be viewed as the agreement degree
in classification derived from different climatology datasets.

The future Köppen–Geiger climate classification map se-
ries under four RCPs were derived based on the most com-
mon climate class from an ensemble of future climate maps.
We generated a future Köppen–Geiger climate classification
map for each climate model projection, using the CCAFS
bias-corrected and downscaled CMIP5 GCM dataset. For ex-
ample, the future Köppen–Geiger climate classification map

series under RCP8.5 was derived from an ensemble of 30
maps based on 30 CMIP5 models. The level of confidence
was estimated using the ratio between the frequency of the
climate class with the highest level of agreement in the fu-
ture map results and the ensemble size.

3.4 Validation

We validated the historical climate maps using the station
observations from Global Historical Climatology Network-
Daily (GHCN-D) (Menne et al., 2012) and Global Summary
of the Day (GSOD) database (National Climatic Data Center
et al., 2015) as reference data. The GHCN-D dataset provides
daily climate data over global land areas and contains records
from over 80 000 weather stations worldwide, about one-
third of which have both temperature and precipitation data
available (Menne et al., 2012). The GSOD dataset includes
global daily summary data over 9000 stations, of which the
historical data from 1973 are the most complete (National
Climatic Data Center et al., 2015). For each station, time
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Figure 5. Present Köppen–Geiger classification and confidence map for 1979–2008 with resolution of 1 km for the Tibetan Plateau. (a) Cli-
mate maps based on the nine combinations of the three precipitation datasets and three surface air temperature datasets, (b) the final climate
map derived from the most common climate class among the nine climate maps, (c) confidence level distribution of the final climate map,
and (d) elevation map for the Tibetan Plateau.

series of monthly temperature and precipitation were calcu-
lated from the daily observations with months with <15 daily
values discarded. Then if ≥ 6 months are present, monthly
climatologies were subsequently generated by averaging the
monthly means for the given 30-year period. We removed
duplicate stations in the two datasets and discarded stations
with gap years or missing data in the given 30 years. For each
station and each 30-year period, we applied the Köppen–
Geiger climate classification, and then we evaluated overall
classification performance for each climate map using to-
tal accuracy, which is defined as the percentage of correct
classes and average precision, which is the averaged fraction
of correct classification for all climate classes.

Using the same validation datasets and station selection
process, we also evaluated the previous climate maps from
Beck et al. (2018), Kriticos et al. (2012), Peel et al. (2007),
and Kottek et al. (2006). We applied the same Köppen–
Geiger climate classification criteria described in the previ-
ous studies to assess the overall accuracy of the map prod-
ucts. To further validate the climate classification results,
we performed sensitivity analysis on the data integration

method, the climate classification timescale, and climatol-
ogy dataset input, using the same validation datasets from
GHCN-D and GSOD. In addition, we compared the climate
classification results with forest cover and elevation maps
and with the two high-resolution comparable climate map
products, Beck et al. (2018) (1 km) and Kriticos et al. (2012)
(0.167◦), at regional and continental scales. The forest cover
map we used is the 2000 30 m Landsat-based forest cover
map (Hansen et al., 2013). The elevation data are from the
NASA SRTM Digital Elevation 30 m data (Farr et al., 2007).

4 Results and discussion

4.1 Historical Köppen–Geiger climate maps

Global map series of the Köppen–Geiger climate classifica-
tion for historical periods and associated corresponding con-
fidence levels are shown in Fig. 3. Based on the distribution
of confidence level, over 90 % of the land area exhibits a high
level of confidence as classification results based on different
climate data show excellent agreement. Relatively lower con-
fidence level and large discrepancy in classification results
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Figure 6. Validation of the historical Köppen–Geiger climate map series (1979–2008, 1980–2009, 1981–2010, 1982–2011, 1983–2012,
1984–2013). (a) Small-scale accuracy of historical Köppen–Geiger climate maps. (b) Small-scale precision of historical Köppen–Geiger
climate maps. Climate classification has been applied for each station. The small-scale accuracy and precision are calculated based on the
classification results of all the stations within the given region, with a minimum of three stations in the 5◦ search radius.
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Figure 7. Validation of downscaled data of bioclimatic variables and the generated Köppen–Geiger climate map.

are found in particular in mountainous regions such as the
Andes Mountains, Rocky Mountains, Tibetan Plateau, and
major climate transitional zones located in the midlatitude
and high latitudes of Northern Hemisphere, central Africa,
and central Asia.

Regional distributions of climatic conditions are largely
created by local variation in topography in rugged terrain
(Dobrowski et al., 2013; Franklin et al., 2013). The climate
classification and confidence level maps of mountainous ar-
eas of the central Rocky Mountains and Tibetan Plateau
are shown in Figs. 4 and 5, respectively. For each combi-
nation of precipitation and surface air temperature datasets,
we generated a Köppen–Geiger climate classification map
(see Figs. 4a and 5a for 1979–2008 maps for the central
Rocky Mountains and Tibetan Plateau). The final Köppen–
Geiger classification map is derived based on the most com-
mon climate type among all the climate maps (Figs. 4b and
5b). We then calculated corresponding confidence levels to
quantify the uncertainty in the classification maps (Figs. 4c
and 5c). The uncertainty in climate classification in moun-
tainous areas is attributed to the uncertainty existing in cli-
mate data, especially precipitation data. In rugged terrain,
CHELSA precipitation data show more detailed precipitation
patterns, causing disagreement in classification results of the
third-level climate classes which depict precipitation season-
ality.

4.2 Validation

We validated the historical climate maps using the station
observations from Global Historical Climatology Network-
Daily (GHCN-D) (Menne et al., 2012) and Global Summary

of the Day (GSOD) database (National Climatic Data Center
et al., 2015). Figure 6 shows the small-scale distributions of
total accuracy and average precision for historical Köppen–
Geiger climate map series with 10◦ grid cells. Due to un-
even distributions of weather stations, remote areas in the Pa-
cific islands, central Africa, and Amazon forest suffer from
a lack of station observations or underrepresented validation
results.

We summarized the overall accuracy, average precision,
and confidence levels for each continent and the whole globe
(Table 3). The global overall classification accuracy of the
historical Köppen–Geiger climate maps is estimated to be
82.39 %, with the lowest in South America (68.58 %) and
highest in Oceania (92.01 %). The global average precision,
which is calculated as averaged fraction of correct classifi-
cation for all climate classes, is 73.33 %. Similar to over-
all accuracy, South America has the lowest precision level,
equal to 66.35 %, and Oceania the highest, 92.23 %. Having
a good correspondence with accuracy and precision values,
the continental average confidence levels range from 91.55 %
to 94.93 %, and the global level is 92.90 % (Table S2). Over-
all, the spatial patterns of total accuracy and average pre-
cision show good correspondence with classification confi-
dence levels (Fig. 3), indicating a potential of confidence
level to represent classification uncertainty.

Using the same validation datasets from GHCN-D and
GSOD, we tested sensitivity of the climate map series us-
ing different combinations of temperature and precipitation
datasets and different methods of data integration (Table 4).
Results indicated an average total accuracy of the 1 km
Köppen–Geiger classification maps generated with all the
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Table 3. Continental and global overall accuracy, average precision, and confidence level of the historical Köppen–Geiger climate map series
(1979–2008, 1980–2009, 1981–2010, 1982–2011, 1983–2012, 1984–2013). The overall accuracy is calculated as the percentage of correct
climate classes using ground observations, and average precision is the averaged fraction of correct classification for all climate classes.
Confidence level values show the 95 % confidence interval of the confidence level for each continent and the whole globe. All the values are
presented as percentages.

Region Africa Asia Oceania Europe North America South America Global

Accuracy 1979–2008 88.24 % 84.05 % 92.39 % 85.11 % 79.37 % 69.18 % 83.25 %
1980–2009 87.67 % 85.00 % 90.11 % 84.24 % 76.94 % 70.00 % 82.96 %
1981–2010 85.71 % 84.29 % 93.48 % 84.23 % 75.61 % 68.75 % 82.63 %
1982–2011 83.78 % 85.06 % 91.30 % 84.10 % 74.79 % 68.90 % 82.42 %
1983–2012 85.43 % 83.64 % 92.39 % 83.51 % 71.99 % 66.67 % 81.48 %
1984–2013 85.81 % 81.32 % 92.39 % 84.38 % 71.84 % 68.00 % 81.62 %
Average 86.11 % 83.89 % 92.01 % 84.26 % 75.09 % 68.58 % 82.39 %

Precision 1979–2008 80.24 % 72.77 % 92.77 % 75.71 % 64.41 % 66.20 % 71.27 %
1980–2009 88.33 % 73.40 % 89.83 % 75.58 % 65.15 % 68.11 % 73.39 %
1981–2010 79.54 % 71.19 % 94.21 % 74.77 % 67.75 % 67.63 % 74.10 %
1982–2011 70.42 % 71.34 % 91.37 % 75.61 % 70.62 % 66.65 % 74.24 %
1983–2012 71.54 % 68.99 % 92.67 % 69.82 % 66.73 % 64.33 % 72.41 %
1984–2013 71.66 % 68.08 % 92.55 % 76.30 % 67.95 % 65.17 % 74.59 %
Average 76.96 % 70.96 % 92.23 % 74.63 % 67.10 % 66.35 % 73.33 %

Confidence 1979–2008 94.93± 0.002 % 92.08± 0.002 % 91.82± 0.002 % 92.29± 0.002 % 94.55± 0.004 % 92.31± 0.003 % 92.94± 0.002 %
level 1980–2009 94.91± 0.002 % 92.14± 0.002 % 91.73± 0.002 % 92.39± 0.002 % 94.65± 0.004 % 92.24± 0.003 % 92.95± 0.002 %

1981–2010 94.89± 0.002 % 92.17± 0.002 % 91.63± 0.002 % 92.43± 0.002 % 94.51± 0.004 % 92.18± 0.003 % 92.92± 0.002 %
1982–2011 94.92± 0.002 % 92.16± 0.002 % 91.48± 0.002 % 92.41± 0.002 % 94.35± 0.004 % 92.13± 0.003 % 92.87± 0.002 %
1983–2012 94.96± 0.002 % 92.16± 0.002 % 91.31± 0.002 % 92.54± 0.002 % 94.37± 0.004 % 92.05± 0.003 % 92.87± 0.002 %
1984–2013 94.97± 0.002 % 91.22± 0.002 % 91.32± 0.002 % 92.52± 0.002 % 94.45± 0.004 % 92.00± 0.003 % 92.87± 0.002 %
Average 94.93± 0.002 % 91.99± 0.002 % 91.55± 0.002 % 92.43± 0.002 % 94.48± 0.004 % 92.15± 0.003 % 92.90± 0.002 %

Table 4. Accuracy of the 1 km Köppen–Geiger climate map series derived from different combinations of temperature and precipitation
dataset input and by different means of integration of multiple datasets. The values represent overall accuracy based on the technical validation
using ground observation as reference.

Temperature CHELSA, downscaled CRU and UDEL Downscaled CRU and UDEL CHELSA
precipitation CHELSA, downscaled GPCC and UDEL Downscaled GPCC and UDEL CHELSA

Integration of Highest Mean of Highest Mean of –
multiple datasets agreement level multiple datasets agreement level multiple datasets

1979–2008 83.25 % 83.66 % 83.13 % 83.33 % 79.72 %
1980–2009 82.96 % 83.44 % 82.74 % 82.78 % 79.14 %
1981–2010 82.63 % 82.86 % 81.95 % 82.38 % 78.03 %
1982–2011 82.42 % 82.73 % 81.93 % 82.11 % 78.47 %
1983–2012 81.48 % 82.34 % 81.14 % 81.49 % 78.32 %
1984–2013 81.62 % 82.05 % 80.84 % 81.27 % 78.26 %
1985–2014 – – 80.23 % 80.86 % –
1986–2015 – – 79.79 % 80.58 % –
1987–2016 – – 78.76 % 79.62 % –
1988–2017 – – – 78.65 % –

Average 82.39 % 82.85 % 81.17 % 81.31 % 78.66 %

1980–2017 77.65 %
(Beck et al., 2018)

1961–1990 64.70 %
(Kriticos et al., 2012)
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Figure 8.

CHELSA and downscaled CRU, GPCC, and UDEL datasets
and with only downscaled CRU, GPCC, and UDEL datasets
as 82.39 % and 81.17 %, respectively. Using the mean of
multiple datasets, which can potentially reduce the data bias,
led to better classification results. We estimated the total ac-
curacy of the previous high-resolution Köppen–Geiger cli-
mate map products using the same validation datasets. We
applied the same classification system described in the pre-
vious studies and the same time period of the previous cli-
mate map product to process the station observation data and
estimate their overall accuracy. Compared with the previous
high-resolution Köppen–Geiger climate map products, Beck
et al. (2018) and Kriticos et al. (2012), the newly generated

Köppen–Geiger climate map series showed greater accuracy
in total.

We conducted sensitivity analysis of the Köppen classi-
fication scheme and tested multiple timescales, 10 years,
20 years, and 30 years. The selection criteria of station ob-
servations were adjusted accordingly based on the timescale
utilized. Accuracy results exhibited decreasing accuracy for
shorter timescales (Fig. 7). Further, we estimated the to-
tal accuracy for the Köppen–Geiger climate classification
maps from previous studies, Beck et al. (2018) Kriticos
et al. (2012), Peel et al. (2007), and Kottek et al. (2006),
using the same validation dataset and consistent Köppen–
Geiger climate classification scheme the corresponding study
applied. The validation results demonstrate that the new
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Figure 8.

Köppen–Geiger maps have comparatively higher overall ac-
curacy than all the previous studies.

4.3 Regional- and continental-scale comparison

At the regional and continental scale, we compared our
Köppen–Geiger climate classification maps with previous
map products for regions with large spatial gradients in cli-
mates, including central and eastern Africa, Europe, and
North America, and regions with sharp elevation gradients,
including the Tibetan Plateau, central Rocky Mountains,
and central Andes (Fig. 8). We compared the new 1 km
Köppen–Geiger climate classification maps from our study
for time periods of 1980–2009 and 1984–2013 with the high-
resolution Köppen–Geiger maps from two previous studies,
Beck et al. (2018), which has a resolution of 1 km and tempo-
ral coverage of 1980–2016, and Kriticos et al. (2012), which

has a resolution of 0.0167◦ and covers 1961–1990. The Köp-
pen classifications demonstrate good correlation with natural
landscape distributions (Belda et al., 2014; Köppen, 1936;
Trewartha, 1954). To show the agreement between the im-
proved Köppen–Geiger climate classification maps and re-
gional landscape distributions, we also showed maps of for-
est cover and elevation distribution for these regions. Figure 8
illustrates the enhanced regional details of the maps.

Compared with the Köppen–Geiger climate maps from
previous studies with only one time period, the series of the
Köppen–Geiger climate maps from our study demonstrate
the ability to capture recent changes in spatial distributions
of climate zones. For example, our maps can detect the sig-
nificant changes in the climate zones specifically driven by
the accelerated global warming since the 1980s, for example,
the poleward movements of boreal (D) and polar (E) climates
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Figure 8.

in high latitudes in North America shown in the comparison
between the 1980–2009 and 1984–2013 Köppen–Geiger cli-
mate maps (Fig. 8d). Another example is the expansion of
savanna (Aw) climate into the temperate (Cw) climate zone,
witnessed in central Africa (Fig. 8e).

Another improvement of the new series of the Köppen–
Geiger climate maps is the application of a threshold of
−3 ◦C as the boundary of temperate (C) and boreal (D) cli-
mate zones, which show better agreement with global boreal
forest distributions at the regional scale compared with the

Russell (1931) modification of 0 ◦C, which Beck et al. (2018)
and Kriticos et al. (2012) utilized. Based on the comparison
results of the Köppen climate zones and the biome classi-
fications from the World Wildlife Federation (Rohli et al.,
2015b), the boreal (D) climate zone largely corresponds to
the distribution of boreal forest (Cui et al., 2021a). For ex-
ample, evidenced in Fig. 8c, the new Köppen–Geiger climate
classification maps from our study show better agreement
with the boreal forest in the Carpathian Mountains across
central and eastern Europe than Beck et al. (2018) and Kriti-
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Figure 8.

cos et al. (2012). Figure 8d also shows good agreement of
the northern boundary of the boreal (D) climate zone in the
northern part of Quebec in Canada with the boundary of
Canada’s boreal forest.

Moreover, the new Köppen–Geiger maps can show an ac-
curate depiction of important topographic features over the
regions with complex topography. For example, the topo-
climate of the Himalayas’ southern front determined by the
mountain ranges is represented with more detail in the new
Köppen–Geiger maps compared with Beck et al. (2018) and
Kriticos et al. (2012) (Fig. 8b). The abrupt changes in cli-
mate along the edges of the Andes mountains are also well
described in the new maps (Fig. 8f).

In addition, the distribution of tropical (A), temperate (C),
and boreal (D) climate zones in the new Köppen–Geiger
maps correspond closely with tree lines in the forest cover
maps. The temperate (C) and boreal (D) climate distribu-
tions based on the Köppen–Geiger maps show a better agree-
ment with the forest distributions of the middle and south-
ern Rocky Mountains than Beck et al. (2018) and Kriticos
et al. (2012) (Fig. 8a). For another example, the boundaries
of the tropical rainforest in central Africa and South Amer-
ica are clearly delineated in the new Köppen–Geiger maps
(Fig. 8e and f).
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Figure 8.

4.4 Bioclimatic variables

Beyond the Köppen–Geiger climate classification maps, we
calculated a set of bioclimatic variables from the monthly cli-
mate data (see full list in Table 5). The bioclimatic variables
at 1 km spatial resolution can capture regional environmental
variations in particular in mountainous areas and areas with
strong climate variations. These bioclimatic variables can be
used in studies of environmental, agricultural, and biological
sciences, for example, development of species distribution
modeling and assessment of biological impacts induced by
climate change. The variables provide descriptions of annual
averages and seasonality of climates. The warmest half year
or the coldest half year is defined as the period of the warmest
6 months or the coldest 6 months.

We validated the bioclimatic variables from different
datasets with station data from GHCN-D (Menne et al.,

2012) and the GSOD database (National Climatic Data Cen-
ter et al., 2015) (Fig. 9). We calculated a linear regression
model for the 12 bioclimatic variables for each 10◦ grid
cell (Fig. 10). The 30-year average mean annual temperature
(MAT) from the CHELSA dataset shows the overall high-
est fit with station data, with CRU, and UDEL datasets show
a smaller but still strong correlation with station data. The
30-year average mean annual precipitation (MAP) estimates
from the GPCC, UDEL, and CHELSA datasets have consid-
erable uncertainties, indicated by relatively low correlation
with station observations. In current precipitation datasets,
there is a varied degree of discrepancy in annual estimates
over multiple timescales (Sun et al., 2018).
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Figure 8. Köppen–Geiger climate classification maps from previous studies, Beck et al. (2018, 1 km, 1980–2016) and Kriticos et al. (2012,
0.167◦, 1961–1990), and our study (1 km, 1979–2009 to 1984–2013) and associated forest cover and elevation maps, for regions with large
spatial gradients in climates or sharp elevation gradients. (a) Central Rocky Mountains, (b) Tibetan Plateau, (c) Europe, (d) high latitudes in
North America, (e) central and eastern Africa, and (f) central Andes. The forest cover map is the 30 m Landsat-based forest cover map for the
year 2000 (Hansen et al., 2013). The elevation data are the NASA SRTM Digital Elevation 30 m data (Farr et al., 2007). The representative
period of each map is listed in parentheses.

4.5 Future Köppen–Geiger climate maps

Future Köppen–Geiger climate classification maps under
RCP8.5 and associated confidence levels are shown in
Fig. 11. Indicated by confidence levels, there exist larger
uncertainties in the final future climate maps than histori-
cal maps, particularly at midlatitudes and high latitudes. The
climate map for the future period of 2070–2099 shows the
largest uncertainty compared with the other future periods.

Future climate classifications derived from the diverse
GCM projections for four RCPs, which are inherently un-
certain (Winsberg, 2012; Gleckler et al., 2008), provide a
proxy of global distributions of climatic conditions and can

represent potential spatial changes in climate zones under
global warming. The large uncertainty and strong disagree-
ment in projected climate classification maps at high latitudes
and in regions with rugged terrain can be indicated by rel-
atively low confidence levels. Figures 12 and 13 show the
future Köppen–Geiger climate classification maps based on
GCM projections under RCP8.5 and associated confidence
levels for the central Rocky Mountains and Tibetan Plateau.
We generated a future Köppen–Geiger climate classification
map for each bias-corrected and downscaled CMIP5 GCM
projection (see Figs. 12a and 13a for 2070–2099 maps for
the central Rocky Mountains and Tibetan Plateau). Notice-
able regional changes in climate zones have been projected
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Figure 9. Scatter plots of the station observations and estimates of bioclimatic variables from downscaled climatology data. The bioclimatic
variables include the 30-year means of annual temperature (MAT), the air temperature of the coldest month (Tcold), the air temperature of
the warmest month (Thot), total annual precipitation (MAP), precipitation of the summer half year (Psumm), and precipitation of the winter
half year (Pwint). (a) Scatter plots of the station observations and downscaled temperature data from CHELSA, CRU, and UDEL datasets
and (b) downscaled precipitation data from CHELSA, GPCC, and UDEL datasets.

by comparing the 2070–2099 and 1979–2008 climate clas-
sification maps (see Fig. 12b and c for the central Rocky
Mountains and Fig. 13b and c for the Tibetan Plateau).

4.6 Application example: detection of area changes in
climate zones

Changes in climatic conditions under global warming have
significant impacts on biodiversity and ecological systems.
Area changes of climate zones can indicate spatial shrink-
age or expansion of analogous climatic conditions, poten-
tially implying threats for species range contraction or op-
portunities for range expansion (Cui et al., 2021a). To ex-
amine the area changes of climate zones, we calculated the
total area covered by each climate type for each historical
and future period under the high-emission RCP8.5 scenario
(Fig. 14). Our results of changes in area occupied by different
climate zones demonstrate good agreement with results from
previous studies (Chan and Wu, 2015). Results show that ac-
celerated anthropogenic global warming since the 1980s has
caused large-scale changes in climate zones, and shifts into

warmer and drier climates are projected in this century. The
tropical and arid climates are expanding into large areas in
midlatitudes, whereas the high-latitude climates will experi-
ence significant area shrinkage.

5 Data availability

This high-resolution global dataset of the Köppen–Geiger
climate classification and bioclimatic variable dataset is
freely available via http://glass.umd.edu/KGClim (Cui et al.,
2021d) and can also be downloaded at https://doi.org/10.
5281/zenodo.5347837 (Cui et al., 2021c) for historical cli-
mate and https://doi.org/10.5281/zenodo.4542076 (Cui et al.,
2021b) for future climate.

6 Conclusion

Changes in broadscale climatic conditions, driven by anthro-
pogenic global warming, lead to the redistribution of species
diversity and the reorganization of ecosystems. Distributions
of the Earth’s climatic conditions have been widely charac-
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Figure 10. Small-scale comparison of annual temperature (MAT) and mean annual precipitation (MAP) variables derived from different
datasets with station data. Small-scale correlation between the 30-year average mean annual temperature (MAT) and mean annual precip-
itation (MAP) data and ground observations for three historical periods (1979–2008, 1981–2010, 1983–2012). The station data are from
GHCN-D and the GSOD database. The figure shows the R2 value for 10◦ grid cells. Panels (a), (b), and (c) are MAT results. Panels (d),
(e), and (f) are MAP results. (a) MAT is calculated from downscaled monthly temperature data from the CRU dataset, (b) from the UDEL
dataset, and (c) from the CHELSA dataset. (d) MAP is calculated from downscaled monthly precipitation data from the GPCC dataset,
(e) from the UDEL dataset, and (f) from the CHELSA dataset.

terized based on the Köppen climate classification system.
The Köppen climate classification maps require fine resolu-
tions of at least 1 km to detect relevant microrefugia and pro-
mote effective conservation. Studies examining recent and
future interannual or interdecadal changes in climate zones
at the regional scale need more accurate depiction of fine-

grained climatic conditions and continuous and longer tem-
poral coverage.

We presented an improved long-term Köppen–Geiger cli-
mate classification map series for six historical 30-year
periods in 1979–2013 and four future 30-year periods in
2020–2099 under RCP2.6, 4.5, 6.0, and 8.5. To improve
the classification accuracy and achieve a resolution as fine
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Figure 11. Global maps of the Köppen–Geiger climate classification for the future periods (2020–2049, 2040–2069, 2060–2089, 2070–2099)
under RCP8.5 and associated classification confidence levels. (a) Future maps of the Köppen–Geiger climate classification and (b) confidence
levels associated with the Köppen–Geiger climate classification. (c) Future changes in Köppen–Geiger climates from 2020–2049 to 2080–
2099 and (d) the associated confidence levels.
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Figure 12. Future Köppen–Geiger classification and confidence map for 2060–2089 under RCP8.5 with resolution of 1 km for the central
Rocky Mountains in North America. (a) Climate maps based on 30 GCMs, (b) the final climate map derived from the most common climate
class among all the 30 climate maps, (c) present climate map of 1979–2008, and (d) confidence level distribution of the final climate map.
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Figure 13. Future Köppen–Geiger classification and confidence map for 2060–2089 under RCP8.5 with resolution of 1 km for the Tibetan
Plateau. (a) Climate maps based on 30 GCMs, (b) the final climate map derived from the most common climate class among all 30 climate
maps, (c) present climate map of 1979–2008, and (d) confidence level distribution of the final climate map.
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Figure 14. Area changes in climate zones since the 1980s on a global scale under RCP8.5. The error bars for historical periods (1979–2014)
indicate standard error in the Köppen–Geiger classification results based on the nine combinations of observational air temperature and
precipitation datasets and for future periods (2020–2099); the error bars indicate standard error in the Köppen–Geiger classification results
based on the 30 GCMs.

as 1 km, we combined multiple datasets, including World-
Clim V2, CHELSA V1.2, CRU TS v4.03, UDEL, and GPCC
and bias-corrected downscaled CMIP5 model simulations
from CCAFS. The historical climate maps are based on the
most common climate type from an ensemble of climate
maps derived from combinations of observational climatol-
ogy datasets. The future climate maps are based on an en-
semble of climate maps derived from 35 GCMs. We esti-
mated the corresponding confidence levels to quantify the
uncertainty in climate maps. We also calculated 12 biocli-
matic variables at the same 1 km resolution using these cli-
mate datasets for the same historical and future periods to
provide data of annual averages, seasonality, and stressful
conditions of climates.

To validate the Köppen–Geiger climate classification
maps, we used the station observations from GHCN-D and
the GSOD database. Our validation results show that the new
Köppen–Geiger maps have comparatively higher overall ac-
curacy than all the previous studies. Although the new maps
exhibit improved overall accuracy, relatively lower confi-
dence level and larger discrepancy in classification results are
found in particular in mountainous regions and major climate
transitional zones located in midlatitude and high latitudes.
The confidence levels can provide a useful quantification of
classification uncertainty.

Compared with climate maps from previous studies with
a single present-day period, the series of the Köppen–Geiger
climate maps from our study demonstrate the ability to cap-
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Table 5. List of bioclimatic variables derived from downscaled
monthly climate data.

Bioclimatic Description
variables

BIO1 Annual mean temperature (◦C)

BIO2 Temperature of the warmest month (◦C)

BIO3 Temperature of the coldest month (◦C)

BIO4 Annual precipitation (mm)

BIO5 Precipitation of the warmest half year (mm)

BIO6 Precipitation of the coldest half year (mm)

BIO7 Precipitation of the driest month (mm)

BIO8 Precipitation of the driest month in the warmest
half year (mm)

BIO9 Precipitation of the driest month in the coldest
half year (mm)

BIO10 Precipitation of the wettest month (mm)

BIO11 Precipitation of the wettest month in the
warmest half year (mm)

BIO12 Precipitation of the wettest month in the
coldest half year (mm)

ture recent and future projected changes in spatial distribu-
tions of climate zones. On regional and continental scales,
the new maps show accurate depictions of topographic fea-
tures and correspond closely with vegetation distributions.
Our Köppen–Geiger climate classification maps can offer a
descriptive and ecologically relevant way to provide insights
into changes in spatial distributions of climate zones.

One of the limitations is that the future Köppen–Geiger
climate maps built on downscaled climate model projections
exist unavoidable uncertainties. The classification agreement
levels of GCMs are relatively low at high latitudes and in
regions with rugged terrain. The main sources of model
discrepancies and uncertainties are deficiencies in model
physics and varied model resolution. The climate model out-
puts have coarse spatial resolution varying from 70–400 km
and cannot represent future climate change at the same scale
of 1 km as well as our baseline climatology. Through bias-
correction and downscaling methods, we made assumptions
that local relationships between climatic variables remain
constant across different scales, leading to a compromise be-
tween spatial scale and climate model physics.

We also tested the sensitivity of classification results to
different timescales, dataset input, and data integration meth-
ods. Results show that the 30-year timescale exhibited the
highest accuracy results. Moreover, using the mean of multi-
ple datasets from CHELSA, CRU, UDEL, and GPCC could
lead to better classification results. Last, we provided a

heuristic example which used climate classification map se-
ries to detect the long-term area changes of climate zones,
showing how the new Köppen–Geiger climate classification
map series can be applied in climate change studies. With im-
proved accuracy, high spatial resolution, and long-term con-
tinuous time coverage, this global dataset of the Köppen–
Geiger climate classification and bioclimatic variables can
be used in conjunction with species distribution models to
promote biodiversity conservation and to analyze and iden-
tify recent and future interannual or interdecadal changes in
climate zones on a global or regional scale.
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