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New Metrics and the Combinations for Estimating
Forest Biomass From GLAS Data

Yuzhen Zhang

Abstract—Geoscience laser altimeter system (GLAS) data have
been widely used for forest aboveground biomass (AGB) estima-
tion, but there is no consensus on the optimal metrics. To explore
whether a few optimal GLAS metrics could generate accurate
AGB estimates, we proposed five metrics and explored their com-
binations with ten existing ones. The importance of these metrics
was measured according to their contributions to changes in the
cross-validated mean-squared error. The two to eight most im-
portant metrics were then selected to develop AGB models, and
their performances were evaluated using field AGB. The optimal
combination of GLAS metrics was finally used for AGB estimation
at GLAS footprints from 2004 to 2007 within a 2°x2° spatial
extent in Tahe and Changbai Mountain, China. The results showed
that four GLAS metrics, including our proposed metric CRH25
(25th percentile of canopy reflection heights) combined with Lead,
quadratic mean canopy height, and H75, yield the best AGB esti-
mates, with an R? of 0.61-£0.15 and RMSE of 52.204-23.50 Mg/ha,
and the inclusion of more GLAS metrics did not improve the results.
The estimated forest AGB in Tahe was 89.03+19.16 Mg/ha and
103.074-23.42 Mg/ha in Changbai Mountain. In both regions, the
annual average forest AGB estimates for 2005 were higher than
the AGB estimates for 2004, 2006, and 2007. The results of this
study suggested that a few waveform parameters could enable the
accurate estimation of forest AGB. Moreover, this study indicated
that GLAS data might be able to monitor forest AGB changes,
which require further investigation.

Index Terms—Forest biomass, geoscience laser altimeter system
(GLAS) data, waveform parameters.

I. INTRODUCTION

OREST aboveground biomass (AGB) plays an important
F role in the global carbon cycle and climate change studies,
but its magnitude, patterns, and uncertainties remain poorly
quantified [1]-[3]. Over the past decades, the science community
has paid much attention to forest AGB estimates from multiple
remote sensing datasets, including optical images, synthetic
aperture radar (SAR), and light detection and ranging (LiDAR)
data, or a combination of them [4]—-[11]. LIDAR data are capable
of retrieving forest AGB, particularly in forests with high AGB
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values where optical remote sensing and SAR techniques suffer
from signal saturation problems [12]-[15].

LiDAR remote sensing for forestry applications can be cat-
egorized into ground-based, airborne, and spaceborne LiDAR,
according to the platform used [16]-[18]. Currently, ground-
based and airborne LiDAR has been successfully applied for in-
dividual tree species classification [19], deriving leaf area index
[20], [21], analyzing forest canopies [22], [23], and estimating
forest structure and biomass [24]-[26] but is only feasible at
local scales at effective costs. Spaceborne LiDAR provides the
solution for large-area or even global forest AGB estimates [27].
The first spaceborne LiDAR for continuous global observations
of the earth was the geoscience laser altimeter system (GLAS),
carried on the ice, cloud, and land elevation satellite (ICESat)
[28], [29]. Due to its availability on a global scale from 2003
to 2009, GLAS has been widely used to estimate tree heights
and forest biomass across wide areas [5], [7], [30]-[32]. In
2018, the ICESat-2 satellite and global ecosystem dynamics
investigation (GEDI) mission were launched. A few studies have
demonstrated that AGB mapping accuracy could be improved
through the fusion of ICESat-2 and GEDI [33], [34]. Until now,
ICESat-2 and GEDI have covered a relatively shorter period
compared with GLAS data.

Previous studies estimated forest AGB with GLAS data
mainly by initially extracting waveform metrics and then using
them as predictor variables [9], [35]. The canopy height, which
is the distance between the signal beginning to ground return
[36]; the maximum, mean, median, and quadratic mean canopy
height (QMCH) proposed by Lefsky et al. [37]; the height of
median energy (HOME) [38], [39]; the waveform extent, leading
edge extent, and trailing edge extent [40]; the energy quantiles
H25, H50, H75, and H100 from Sun et al. [35]; the canopy
closure [36], [41]; the mean canopy transmittance (MCT) and
50th percentile of the canopy transmittance calculated from the
canopy transmittance profile [42]; and the amplitude, heights,
width, and area of Gaussian peaks in the GLA 14 product [9] have
been extensively used. However, there is no consensus among
researchers regarding promising metrics for AGB prediction.
For example, Hu et al. [43] used waveform extent, leading edge
extent, and trailing edge extent, in combination with optical
data, to produce a wall-to-wall global forest AGB map. Fayad
et al. [44] extracted the waveform extent, Gaussian peaks from
the decomposition of each GLAS waveform, canopy height
percentiles (10 through 90%), leading edge, and trailing edge
and selected the best variables with stepwise regression based on
the Bayesian information criterion to build the AGB estimation
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model in French Guiana. Chi et al. [45] calculated the mean
and median canopy heights, waveform length, top tree height,
quantile heights, decile heights, leading edge extent, training
edge extent, terrain index, and vegetation to surface ratio from
waveform data for estimating forest AGB at GLAS footprints.
The main limitations of these published studies are evident. The
role of different GLAS metrics in deriving forest AGB has not
been carefully examined, hindering the usage of GLAS metrics
across the different forests or regions. Moreover, a large number
of GLAS metrics were included in AGB modeling, which could
lead to overfitting and, thus, poor accuracy of AGB predictions,
particularly when a small number of field samples were used.

Therefore, we aim for the following.

1) Explore whether fewer waveform metrics could generate

the accurate AGB predictions.
2) Find a few promising GLAS metrics for forest AGB
estimates.

3) Assesstheimpacts of GLAS metrics on biomass estimates.

In this article, we proposed some new metrics extracted
from GLAS waveform data and evaluated the AGB models
developed with a combination of GLAS metrics to explore
whether fewer metrics and which combination of metrics yield
the best biomass estimates. In addition, we examined the effects
of GLAS metrics on the accuracy of AGB estimates compared
with the training samples, which had become an important
factor affecting the accuracy of model prediction due to limited
field biomass data [46]. Finally, a model developed with an
optimal combination of GLAS metrics was used to estimate
forest AGB at GLAS footprints within a 2°x2° spatial extent
around the field measurements.

II. DATA AND METHODS
A. Field AGB Data

Field measurements were used to build biomass models to-
gether with GLAS metrics. They were geographically located
at GLAS footprints in the Tahe and Changbai Mountain forest
regions of Northeast China (see Fig. 1), where the main forest
types are conifer mixed forests, conifer forests, and broadleaf
mixed forests [9]. A total of 86 GLAS footprints were measured
in 2006 and 2007. For each footprint, four sampling plots with
a radius of 7.5 m were located using differential GPS. Three
sampling plots were distributed along the radial direction of the
center sampling plots at 120° angles and 22.5 m away from the
center sampling plot. For all trees with diameters at breast height
(DBH) larger than 5 cm in the four sampling plots, the DBH and
tree height were measured, and the tree biomass was computed
using the allometric equation [47], [48]. Plot-level AGB was
obtained by summing all the tree biomasses in the four sampling
plots and then dividing by the total area of these plots.

B. ICESat-1 GLAS Data
The National Snow and Ice Data Centre provided 15 standard
GLAS data products.! We used the L1A global altimetry data

![Online]. Available: https://nsidc.org/data/icesat/data.html, accessed on 28
July 2020
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Fig. 1. Location of the study area. Red stars represent the field measurements
in Tahe County and the Changbai Mountain region, and the pink points represent
the GLAS footprints within a 2° x 2° spatial extent surrounding the field mea-
surements in Tahe and Changbai Mountain. The background digital elevation
data were provided by the NASA shuttle radar topographic mission.

product (GLAHO1) and L2 global land surface altimetry data
(GLAH14). The GLAHOI1 data included the transmitted and
received waveforms from the altimeter and were the source
data for extracting key waveform parameters closely correlated
with forest AGB. The GLAH14 data provide the geolocation of
GLAS footprints and are linked with GLAHO1 by the record
index and shot number [35]. The GLAS shots corresponding
to field measurements and within a 2°x2° spatial extent sur-
rounding the field measurements in Tahe County and Changbai
Mountain are shown in Fig. 1. AIl GLAS shots from 2004 to 2007
were selected, and their waveforms were processed as follows.

We first removed the background noise contained in the raw
data of full waveforms according to the noise threshold that was
determined using the following:

Threshold = p+n x o (D)

where the mean background noise level (1) and standard devi-
ation (o) are provided in GLAHO1, and n was 4.5. The signal
start and end locations were determined where three consecutive
bins were higher than the noise threshold [40], [49], [50].

Gaussian filtering was carried out for waveform denoising
to identify the initial amplitude, width, and sigma of the
Gaussian decomposition components [51], [52]. We then
implemented the Gaussian decomposition method to fit the
raw waveform from the signal start and end locations using
the nonlinear Levenberg—Marquardt algorithm [52]-[55]. By
searching forward from the signal endpoint, the center of a
Gaussian component with higher amplitude between the last
two components was considered the ground position. We
determine the ground position using the last two Gaussian
components instead of the last Gaussian component, which
could reduce the influences of complex terrain [56], [57].

The GLAS shots were excluded when the signal start location
was more than 60 m above the ground position, suggesting
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TABLE I
GLAS METRICS DERIVED FROM WAVEFORM DATA

GLA_S Definition Reference
metrics
Quantile heights, calculated by subtracting
H25. H50 the ground elevation from the elevation at
? > which 25%, 50%, 75%, and 100% of the [35]
H75, H100 . X
accumulated energy starting from signal
beginning to signal end occur
. Leading edge extent and trailing edge extent
Lead, Trail calculated from the waveform (401
MeanH, Mean canopy height, median canopy height,
MedH, and quadratic mean canopy height calculated [37]
QMCH from the canopy height profile
MCT Mean canopy trangmlttance, calculated from [42]
the canopy transmittance profile
CRH25 Quantile canopy reflection heights calculated
CRHSO’ by subtracting the lowest canopy elevation This stud
CRi7s  from the clevation at which 25%, 50%, and Y
75% of the accumulated canopy energy occur
MCR Mean canopy reﬂec'tlon height calculated This study
from canopy reflection profiles
QMCR Quadratic mean canopy reflection height This study

possible cloud cover or noisy return [58]. Noisy waveforms,
where the maximum return value was lower than twice the mean
background noise level or less than 20 times the background
noise standard deviation, were also eliminated. To ensure that
the GLAS shots were more likely reflected from the forest
canopy, we assumed that the waveforms characterized by only
one Gaussian component were due to bare ground reflection
[59], [60] and excluded them.

C. Extracting GLAS Metrics for Estimating Forest AGB

Ten widely used waveform parameters, including four quan-
tile heights (H25, H50, H75, and H100), leading edge and
trailing edge extents, mean canopy height (MeanH), median
canopy height (MedH), QMCH, and MCT, were extracted from
GLAHO1 waveform data. Methods to obtain these metrics can
be found in the literature, as given in Table I. In addition, we
propose five metrics as a supplement for AGB estimation. The
five proposed metrics in this study are all based on the canopy
reflectance profile (CRP), which is defined as the ratio of energy
from canopy returns to the sum of canopy energy and calculated
using the following:

CR(h)

CRP(h) - max
s T CR(h)

)

where CR is the energy of the waveform from canopy returns, % is
the distance between the canopy returns and the lowest canopy
return, and Y 5% T CR(h) is the sum of canopy reflection
returns, referred to as the canopy reflection sum [36]. ~ = 0
and maxTH in (2) represent the lowest canopy return and the
distance between the canopy top and the lowest canopy return,
respectively.

To define the CRP, it is essential to separate the ground returns
and canopy returns of a waveform. The portion of the waveform
below the detected ground peak was mirrored above it, which
was the ground return [42]. The canopy returns were obtained
by subtracting the ground return from the filtered waveform
and are shown in Fig. 2 with green-filled areas. Based on the
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Fig. 2. GLAS waveform in the study area. The light gray dots represent
the raw waveform; the pink curve indicates the sum of Gaussian decomposed
components; and the green filled area represents the canopy returns. The new
proposed waveform parameters, CRH25, QMCR, CRH50, MCR, and CRH75,
represent, respectively, the location where 25% of the accumulated canopy
energy occur, QMCR height, where 50% of the accumulated canopy energy
occur, MCR height, and where 75% of the accumulated canopy energy occur,
respectively, and are shown from left to right.

CRP, the proposed metrics CRH25, CRH50, and CRH75 were
derived by subtracting the lowest canopy elevation from the
elevation at which canopy energy accumulation reached 25, 50,
and 75% of the canopy reflection sum that occurred from the
beginning of the signal. The mean canopy reflection (MCR)
height and the quadratic mean canopy reflection (QMCR) height
were calculated from the CRP as follows:

max TH

MCR= Y  CRP(h)xh 3)
h=0

MC _\/ InaXTHC P(h B2

QMCR=4/>" "~ " CRP(h) x h2. @)

D. Modeling Forest AGB With GLAS Metrics

Since published studies have suggested that the random forest
(RF) and support vector regression (SVR) algorithms exhibit
good performances in estimating forest AGB with GLAS data
[9], [61], we modeled forest AGB with GLAS metrics using the
RF model, the SVR with the linear kernel (SVR-linear) algo-
rithm, and SVR with the radial basis function kernel (SVR-RBF)
algorithm in this study. For each algorithm, three AGB models
were developed based on the different combinations of GLAS
metrics. The first model was built with 10 GLAS metrics defined
in previous studies, including H25, H50, H75, H100, Lead, Trail,
MeanH, MedH, QMCH, and MCT (Metrics I), the second model
was built with 5 proposed GLAS metrics, including CRH25,
CRH50, CRH75, MCR, and QMCR (Metrics II), and the last
model was built with all 15 metrics, including both Metrics |
and Metrics II (Metrics III). A total of nine AGB models were
developed, including RF, SVR-linear, and SVR-RBF trained
with Metrics I, Metrics II, and Metrics III, respectively.

All data were randomly split into training data and test data.
The training data were used to train these models, and the
test data were used to evaluate their performances. To explore
whether random splitting or the number of test data affects the
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performance diagnostics of AGB models, we split the whole
datasets using the following four strategies:

1) 90% for training and 10% for testing;

2) 80% for training and 20% for testing;

3) fivefold cross validation;

4) tenfold cross validation.

For the first and second scenarios, 100 runs were implemented
to randomly split the data into training data and test data.
The procedures of fivefold cross validation and tenfold cross
validation were repeated 20 and 10 times, respectively, to ensure
that all four strategies had 100 evaluation results.

Moreover, to investigate whether only a few GLAS met-
rics could enable the accurate estimation of forest AGB, AGB
models were developed with different numbers of promising
predictors ranging from 2 to 8 using the optimal AGB modeling
algorithm among RF, SVR-linear, and SVR-RBF, and their per-
formances were assessed in terms of R?> and root-mean-square
error (RMSE). The GLAS metrics were selected according to
their importance. We first built an AGB model with all 15
predictors, ranked their importance, applied the backward elimi-
nation method, and progressively eliminated the least promising
variable from the GLAS metrics [62]. The above steps were
repeated until only one predictor remained as input for the
AGB model. The importance of a variable was measured by
the change of the mean-squared error (MSE) when the variable
was excluded for AGB modeling, and the removal of a more
important variable corresponded to a larger increase in MSE.
We ranked the GLAS metrics according to the changes in MSE
and progressively eliminated the metric with the smallest MSE.
The linear Borda count was used to score a variable, and a higher
score corresponded to a more important variable.

In agreement with the AGB modeling with different combina-
tions of waveform parameters, we used fivefold cross validation
for splitting the training and test datasets and repeated 20 times,
generating 100 rankings of GLAS metrics according to their
importance measured by changes in MSE. For a visual display
of variable importance, the 100 rankings of GLAS metrics were
linearly aggregated through weighted voting [63].

Finally, to fully address the performances of five proposed
metrics CRH25, CRH50, CRH75, MCR, and QMCR
(MetricsIT) for AGB estimates, comparisons with their similar
metrics (H25, H50, H75, MeanH, and QMCH, Metrics IV) were
carried out. For each of the newly proposed metrics (Metrics II)
and their similar metrics (Metrics IV), the relationship with field
AGB was explored, respectively. Furthermore, we evaluated
the performances of Metrics II, Metrics 1V, five importance
metrics among the ten metrics (CRH25, CRH50, CRH75,
MCR, QMCR, H25, H50, H75, MeanH, and QMCH), and the
optimal combination of GLAS parameters from Metrics III
in estimating forest AGB, using the optimal AGB modeling
algorithm among RF, SVR-linear, and SVR-RBF. Consistent
with the exploration of optimal combinations of waveform
parameters, fivefold cross validation was used to split the whole
datasets and 20 times were repeated.

E. Estimating Forest AGB at GLAS Footprints

Based on the optimal AGB modeling algorithms and optimal
combination of GLAS metrics, we built 100 AGB models with

7833

2 04 06 08 10
SVR-RBF (Metrics I)

B _;ﬁ\'“"

w00 o 06 08 10 s 10

02 04 06 0
SVR-RBF (Metrics 1)

00

00
00 02 04 06 08 10
SVR-linear (Metrics I11)

00
00 02

04 06
RF (Metrics 111)

08 10

©10% for test ©20% for test 4 5-fold CV x 10-fold CV

Fig. 3. Performances of nine forest AGB models in terms of R2. Metrics
I, Metrics II, and Metrics III represent that the AGB models were developed
with the GLAS metrics in previous studies (H25, H50, H75, H100, Lead, Trail,
MeanH, MedH, QMCH, and MCT), GLAS metrics proposed in this study
(CRH25, CRH50, CRH75, MCR, QMCR), and all the metrics included in
Metrics I and Metrics 11, respectively. The 10% for the test and 20% for the
test indicate that the whole dataset was randomly split into training data (90%)
and test data (10%) and training data (80%) and test data (20%), and the test data
were used to evaluate the estimated AGB. Fivefold CV and tenfold CV represent
that the whole data were split, and the results were evaluated by fivefold cross
validation (repeating 20 times) and tenfold cross validation (repeating 10 times),
respectively.

bootstrap samples of field AGB and estimated forest AGB at
GLAS footprints from 2004 to 2007 within a 2°x2° spatial
extent in Tahe and Changbai Mountain. Forest AGB estimate
results from 100 bootstrap samples were averaged, and the
coefficient of variation (CV) of AGB estimates was calculated
to quantify the impacts of training samples on estimated AGB.

III. RESULTS
A. Performances of AGB Models

The performances of the nine AGB models for 100 runs
in terms of R? and RMSE are shown in Figs. 3 and 4, re-
spectively. The comparison results show large discrepancies
in the accuracies of estimated forest AGB between the RF
model with Metrics I and that with Metrics II, which also
holds true for the SVR-linear and SVR-RBF algorithms (see
Fig. 3). However, when Metrics Il was added to Metrics I, no
substantial changes in the accuracy of estimated AGB by RF,
SVR-linear, and SVR-RBF algorithms are found for most of
the 100 points, as shown in Figs. 3 and 4, indicating that it
might be essential to perform feature selection or select optimal
variables when GLAS parameters are used for predicting forest
AGB.

Compared with the SVR-linear and SVR-RBF, RF models
developed with Metrics I and those with Metrics III are more
different, particularly when tenfold cross validation was used to
evaluate the models. This could be partly because RF models
are more sensitive to the training samples when the sample sizes
are small, while the SVR algorithms are excellent for prediction
in the cases of small sample sizes [9].
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Fig. 4. Performances of nine forest AGB models in terms of RMSE (in units
of Mg/ha). Metrics I, Metrics II, and Metrics III represent that the AGB models
were developed with the GLAS metrics in previous studies (H25, H50, H75,
H100, Lead, Trail, MeanH, MedH, QMCH, and MCT), GLAS metrics proposed
in this study (CRH25, CRH50, CRH75, MCR, and QMCR), and all the metrics
included in Metrics I and Metrics II, respectively. The 10% percent for the test
and 20% for the test indicate that the whole dataset was randomly split into
training data (90%) and test data (10%) and training data (80%) and test data
(20%), and the test data were used to evaluate the estimated AGB. Fivefold CV
and tenfold CV represented that the whole data were split, and the results were
evaluated by fivefold cross validation (repeating 20 times) and tenfold cross
validation (repeating 10 times), respectively.

In addition, the performances of nine AGB models for 100
runs were quite diverse, with R? ranging from approximately
zero to 0.99 provided by the SVR-RBF algorithm with Metrics
IIT and RMSE ranging from 15.90 to 157.83 Mg/ha provided by
the RF algorithm with Metrics I (see Figs. 3 and 4), which indi-
cates the large impacts of the training datasets on the estimated
results. This phenomenon is more evident in terms of RMSE,
showing that the 100 RMSE values are generally grouped into
two separate parts for each of the nine AGB models due to the use
of different datasets for training and testing of the AGB model.

The validation methods also affected the performances of the
AGB models. Fig. 4 shows that the results of AGB estimates
are more diverse with the changes in training datasets and
predictor variables when 10% of the whole datasets are used for
testing, either through random splitting or through tenfold cross
validation. In contrast, the results are more stable when 20% of
the data, in particular fivefold cross validation, are selected for
evaluation of the estimated AGB.

SVR-linear and SVR-RBF significantly outperform RF and
provide more accurate AGB estimates (see Figs. 3 and 4). The
SVR-RBF models perform better than the SVR-linear model
when fivefold cross validation is used to evaluate the accuracy
of the AGB estimates. Therefore, the following analysis results
are based on the SVR-RBF algorithm and evaluated by fivefold
cross validation.

B. Importance of GLAS Metrics in Forest AGB Estimation

Since more variables could not lead to improved AGB esti-
mates, we selected key GLAS parameters for retrieving forest
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AGB using the feature selection method, as mentioned in Sec-
tion II-D. The results showed that Lead had the largest contri-
butions to the estimation of forest AGB, followed by CRH25,
QMCH, H75, MeanH, QMCR, MCT, and MedH (see Fig. 5).
Based on the SVR-RBF algorithm, we explored the opti-
mal number of GLAS metrics that could provide the accurate
AGB estimates. The fivefold cross-validated R> and RMSE of
the SVR-RBF models developed with the two to eight most
important variables for AGB estimates are shown in Fig. 6.
The results suggest that the SVR-RBF model with four vari-
ables, including Lead, CRH25, QMCH, and H75, provides
AGB estimates that are more accurate, with the highest cross-
validated R? of 0.614-0.15 and the lowest cross-validated RMSE
of 52.20+23.50 Mg/ha. SVR-RBF built with the four most
important predictors significantly outperforms the SVR-RBF
built with all the GLAS metrics, as shown in Fig. 7(a) and (b).

C. Performances of Newly Proposed Metrics and Previous
Metrics for Estimating Forest AGB

The relationships of five newly proposed metrics and their
similar metrics with field AGB were shown in Fig. 8. The
results showed that in comparison with previous metrics H25,
MeanH, and QMCH, the proposed metrics CRH25, MCR, and
QMCR had better relationships with field AGB, while H50 and
CRH50 had comparable correlations with forest AGB. However,
H75 had a closer relationship with AGB than CRH75.

Although newly proposed Metrics II generally had better
relationships with field AGB than Metrics IV, Metrics IV out-
performed Metrics II and provided more accurate estimation
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metrics among Metrics III (Lead, CRH25, QMCH, and H75), respectively.
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Fig. 8. Relationships of newly proposed metrics (CRH25, CRH50, CRH75,
MCR, and QMCR) and their similar metrics (H25, H50, H75, MeanH, and
QMCH) with field AGB.

of forest AGB (see Fig. 8). This could be attributed to the
strong correlations among Metrics II [(see Fig. 8(f)]. When
we selected five most important metrics among Metrics II and
Metrics IV (see Fig. 5), which were CRH 25, QMCH, H75,
MeanH, and QMCR (Metrics V), the accuracy of estimated AGB
was improved in comparison with that obtained using Metrics
IV. Four important metrics Lead, CRH25, QMCH, and H75
led to further improved estimation of forest AGB (see Fig. 8).
Averaging the results for 20 runs obtained using Lead, CRH25,
QMCH, and H75, we found that the estimated AGB was closer
to field AGB than those obtained using Metrics IV (see Fig. 9).
These results suggested that the newly proposed metrics could
make an effective complement to published GLAS metrics for
estimating forest AGB.
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Fig. 10.  Forest AGB estimates at GLAS footprints in the study area. (a) and (b)
represent the mean AGB estimates in the Tahe and Changbai Mountain regions,
respectively. (c) and (d) represent the CV of forest AGB in the Tahe and Changbai
Mountain regions, respectively.

D. Estimated Forest AGB at GLAS Footprints

At the GLAS footprints from 2004 to 2007 in the Tahe and
Changbai Mountain regions, forest AGB was estimated with
Lead, CRH25, QMCH, and H75 using the SVR-RBF algorithm.
The results of the mean value and CV of AGB estimates from 100
AGB models built with bootstrap samples are shown in Fig. 10.

The forest AGB in Tahe County is generally lower than that in
Changbai Mountain [(see Fig. 10(a) and (b)]. According to the
previous studies, the lower AGB in Tahe is due to the severe fire
disturbance that occurred in 1987 [64]. In Tahe County, 53.80%
of the GLAS footprints have a forest AGB of no larger than
90 Mg/ha, while only at 6.12% of the GLAS footprints is the
estimated forest AGB more than 120 Mg/ha [see Fig. 10(a)].
Forest AGB estimates in the Changbai Mountain region vary
in a wider range, with more than half of the GLAS footprints
having AGB values ranging from 90 to 120 Mg/ha. In addition,
at 20.00% of the GLAS footprints, the estimated forest AGB
is larger than 120 Mg/ha. Averaging the estimated AGB at all
GLAS footprints, we found that the forest AGB was 89.03 +
19.16 Mg/ha within a 2°x2° spatial extent in Tahe and 103.07
4 23.42 Mg/ha in Changbai Mountain. The estimated results
are in agreement with published studies that used GLAS data to
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Fig. 11.  Annual forest AGB estimates and the associated CV from 2004 to

2007 in the Tahe and Changbai mountain regions.

estimate AGB [9] and slightly higher than the AGB estimates
with optical data [65].

The CV results show that the training samples greatly affect
the estimated forest AGB, particularly in the Tahe region [see
Fig. 10(c) and (d)]. The CV values are larger than 30% at 23.59%
of GLAS footprints in Tahe and 14.88% in Changbai Mountain.
Only 11.59% of footprints in Tahe and 25.67% of footprints in
Changbai Mountain have a CV of no more than 15%. These
results highlight the importance of training samples on the AGB
models with GLAS data, especially in forests with lower AGB
values.

We separated the annual GLAS footprints from 2004 to 2007
and found that most forests in the Tahe and Changbai Mountain
regions had forest AGB values of approximately 85 Mg/ha and
100 Mg/ha, respectively, and the annual forest AGB estimates
in Tahe had a more concentrated distribution (see Fig. 11). The
annual mean forest AGB ranges from 84.68 Mg/ha in 2007
to 91.01 Mg/ha in 2005 in Tahe, and the corresponding CV
ranges from 23.51% in 2005 to 25.82% in 2007. In the Changbai
Mountain region, the annual averages of forest AGB are between
101.46 Mg/ha in 2006 to 105.59 Mg/ha in 2005, with CV values
ranging from 20.64% in 2005 to 21.80% in 2007. Forest AGB
estimates for 2005 are higher than forest AGB estimates at
GLAS footprints for 2004, 2006, and 2007, with an average
AGB of 91.01£19.78 Mg/ha in Tahe and 105.59+24.91 Mg/ha
in Changbai Mountain. Meanwhile, the uncertainty of AGB
estimates associated with the resampling of training data was
the lowest in 2005.

IV. DISCcUSSION
A. Performances of AGB Modeling Algorithms

The RF, SVR-linear, and SVR-RBF algorithms were selected
to predict forest AGB with GLAS data in this study. RF is
a tree-based ensemble algorithm and is regarded as one of
the best machine learning algorithms to estimate forest AGB
due to its high predictive accuracy and high computational
speed [66], [67]. However, RF tends to overfit noisy regression
problems [68]. SVR, due to its excellent performance even
with limited training samples, is also widely used in remote
sensing fields [69]. In most studies, SVR is mainly referred to as
SVR-RBF [67], [70]. The RBF kernel was chosen for the SVR
algorithm because it has been shown to be effective for forest
parameter retrieval [24]. Until now, few studies have focused
on the SVR model with a linear kernel, although the linear SVR
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gave competitive accuracy for some applications and had a much
faster speed of training and testing.

In this study, we explored the performances of RF, SVR-linear,
and SVR-RBF in estimating forest AGB with GLAS data. Our
results suggested that SVR-RBF and SVR-linear outperformed
RF for forest AGB estimates with GLAS data, and SVR-RBF
provided slightly better accuracy of estimates than the SVR-
linear models. Some published results have also suggested that
SVR-RBF could produce more accurate estimates of forest AGB
than other algorithms, including RF [24]. However, some studies
have indicated that the SVR-RBF model is inferior to the RF
model. With GLAS data as well as Thematic Mapper data, Liu
et al. [61] found that the RF model had better estimates of forest
AGB than the SVR-RBF and stepwise regression. Wu et al.
[70] compared five regression approaches, including stepwise
regression, K-nearest neighbor, SVR, RF, and stochastic gradi-
ent boosting, and found that the RF algorithm provided the best
estimates of AGB with Landsat data. The inconsistent results
on the accuracy of AGB estimates using different algorithms
could be due to the predictors (e.g., LIDAR metrics, derived
from optical data, or a combination of multiple sources), sample
sizes, and forest conditions.

B. Importance of GLAS Metrics for AGB Estimates

Since there is no consensus among studies regarding which
GLAS metric was suitable for forest AGB estimates, researchers
generally extract a large number of variables from GLAS data in
combination with metrics from other remote sensing data, and
then select some predictors for modeling forest AGB mainly
based on stepwise regression. Fayad et al. [44] suggested that
GLAS metrics, including the waveform extent, the leading edge,
and canopy height percentiles h20 and h80 and the top of canopy
heights, were the best variables to estimate forest AGB in French
Guiana, which were correlated with field AGB estimation with
an R? of 0.54 and RMSE of 48.3 Mg/ha. Liu et al. [61] selected
eight GLAS metrics (quantile height H25, HOME, QMCH, top
tree height with correction Treeht2, area under the waveform
from vegetation, intensity of the first waveform from Gaussian
decomposition, LEE, and TEE) and five metrics extracted from
Landsat 5 data for AGB modeling and achieved a prediction
accuracy with an R? of 0.76 and RMSE of 39.60 Mg/ha. Guo
et al. [71] implemented stepwise regression to select GLAS
parameters from a set of metrics, including the MeanH and
MedH calculated from the waveform, top tree height from
GLA 14 products, top tree heights with various slope corrections,
quantile heights, ratio between energy from vegetation and land
surface, and locations of the six Gaussian peaks in GLA14 for
forest AGB estimation, and generated optimal AGB prediction
models based on seven GLAS metrics. The R? and RMSE of the
AGB model for the conifer forest were 0.68 and 15.93 Mg/ha,
respectively. For broadleaf forests, the R?> was 0.71, and the
RMSE was 17.02 Mg/ha. In this study, we ranked the importance
of GLAS metrics for AGB estimates and selected key GLAS
variables to predict forest AGB. The results showed that the four
most important waveform parameters, Lead, CRH25, QMCH,
and H75, generated the best predictive accuracy, with an R? of
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0.6140.15 and RMSE of 52.20423.50 Mg/ha, and the inclusion
of more GLAS variables did not result in improved estimates.
Our results indicated that a few GLAS metrics might provide
sufficient information for AGB estimates, which highlighted the
importance of finding optimal GLAS parameters for forest AGB
estimates in future studies and could facilitate the use of GLAS
data for estimating forest AGB across large regions or the globe
in a simple and efficient way.

It was observed that forest AGB was underestimated at high
AGB values, which could be partly attributed to the limited
number of samples at high AGB values for AGB modeling. More
samples should be used for AGB modeling with GLAS metrics
in future studies.

We did not find that the HOME metric or the 50% energy
quantiles (H50) was extremely important for AGB estimates
[35], [38], [39]. In our study, the proposed GLAS metric CRH25
was demonstrated to be a key predictor of forest AGB. Compared
with previous height metrics (e.g., quantile heights), CRH25
and other GLAS metrics proposed in this study were calculated
from the canopy return and, thus, might be less sensitive to the
slope. To further confirm that CRH25 is an important predictor
of forest AGB, more extensive field data need to be obtained,
and the analysis should be carried out in other regions.

With GLAS data, we only achieved an accuracy with an R2
of 0.61 and an RMSE value of 52.20 Mg/ha, lower than the
published studies that included LiDAR data as well as optical
imagery or SAR data[44], [61]. Optical and radar remote sensing
data could be considered to improve the accuracy of the AGB
estimates at GLAS footprints. When other types of remote
sensing data were included in forest AGB estimates, the optimal
number and combination of predictor variables to estimate forest
AGB need to be further investigated.

C. Impacts of Sample Sizes on AGB Estimates

Due to the difficulties in collecting plot-level AGB data,
previous studies typically included a few tens of field mea-
surements for estimating forest AGB [46]. The sample size is
often small relative to the predictor variables we could retrieve
from remote sensing data, which had notable effects on the
accuracy assessments [72]. In this study, a total of 86 field
measurements were used for the calibration of remote sens-
ing data and evaluation of estimated forest AGB. The results
showed considerable variances of AGB estimates associated
with random splitting of training and test samples, consistent
with previous studies that found that when a small number of
sample units were applied, subsampling in the algorithm had
great effects on estimates [46], [73]. The use of more reference
data may improve the results [44]. However, it might not be a
superior way to increase the accuracy of AGB estimates since the
prediction algorithm or data type used could have more effects
than the sample size [46]. Moreover, the accuracy of forest AGB
estimates may be subject to the size of inventory plots. Previous
studies have proven that larger field plots could improve the
performance of forest AGB estimates since they could reduce
the likelihood of coregistration error between GLAS data and
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field plots and increase the chances of capturing the trees located
at the boundary [11], [74], [75].

D. Potential of GLAS Data for Monitoring Forest AGB
Dynamics

Recent studies have paid more attention to the capability of
LiDAR data in monitoring forest AGB changes but have mainly
focused on airborne LiDAR [76], [77]. Due to space and time
limitations, LIDAR data alone could not be applied for the large-
scale estimation of forest AGB dynamics [78].

For GLAS data, the footprints at different periods did not
overlap in space, limiting the direct use of GLAS data from
different years for estimating changes in forest AGB. Therefore,
optical data or SAR data have been included in mapping forest
AGB changes [79]. With the release of ICESat-2 and GEDI data,
LiDAR data with a high laser repetition rate could be obtained.
The combination of ICESat-1, ICESat-2, and GEDI data might
provide promising results in studying monitoring forest AGB
changes.

V. CONCLUSION

We have proposed five GLAS metrics and combined them
with ten existing waveform parameters to estimate forest AGB.
The results suggested that the proposed metric CRH25 was an
important predictor of forest AGB, and the use of four metrics,
Lead, CRH25, QMCH, and H75, provided the best prediction
accuracy of AGB estimates, with an R?0f0.614+0.15 and RMSE
of 52.204+23.50 Mg/ha. The inclusion of more GLAS metrics
did not lead to improved AGB estimates, suggesting that a few
waveform parameters could enable the accurate prediction of
forest AGB, which also provided a simple and efficient way
to estimate forest AGB with waveform LiDAR across large
areas or globally. In addition, training samples tend to greatly
affect the estimated results, even more than the GLAS metrics
used, highlighting the importance of training samples in AGB
estimates.

Based on the four most important GLAS metrics, forest
AGB at GLAS footprints within a 2°x2° spatial extent in the
Tahe and Changbai Mountain regions was predicted using the
SVR-RBF algorithm. The results showed that the average forest
AGB in Tahe was 89.03+19.16 Mg/ha from 2004 to 2007 and
103.07423.42 Mg/ha in Changbai Mountain. In both regions,
forest AGB estimates in 2005 were higher than those in other
years. GLAS data alone or together with ICESat-2 or GEDI may
have the potential to monitor forest AGB changes, which should
be further investigated in future studies.
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