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Abstract: Surface bare soil albedo is an important variable in climate modeling studies and
satellite-based retrievals of land-surface properties. In this study, we used multiyear 500 m albedo
products from the Moderate Resolution Imaging Spectroradiometer (MODIS) to derive the bare soil
albedo for seven spectral bands and three broadbands over the contiguous United States (CONUS).
The soil line based on red and green spectral signatures derived from MODIS data was used as the
basis to detect and extract bare soil albedo. A comparison against bare soil albedo derived from
30 m Landsat data has been made, showing that the MODIS bare soil albedo had a bias of 0.003
and a root-mean-square-error (RMSE) of 0.036. We found that the bare soil albedo was negatively
correlated with soil moisture from the Advanced Microwave Scanning Radiometer-Earth Observing
System (AMSR-E), with a relatively stable exponential relationship reflecting the darkening effect
that moisture has on most soils. However, quantification of the relationship between bare soil albedo
and soil moisture still needs to be improved through simultaneous and instantaneous measurements
at a finer spatial resolution. Statistics of the multiyear climatological bare soil albedos calculated
using soil types and the International Geosphere-Biosphere Programme (IGBP) land cover types
suggest that: Land cover type is a better indicator for determining the magnitude of bare soil albedos
for the vegetated areas, as the vegetation density is correlated with soil moisture; and soil type is a
better indicator for determining the slope of soil lines over sparsely vegetated areas, as it contains
information of the soil texture, roughness, and composition. The generated bare soil albedo can be
applied to improve the parameterization of surface energy budget in climate and remote sensing
models as well as the retrieval accuracy of some satellite products.

Keywords: bare soil albedo; MODIS albedo; contiguous United States; soil line; Landsat albedo;
soil moisture

1. Introduction

Bare soil albedo has been widely used in climate models and remote sensing estimates of surface
energy balance as one key component of the surface albedo by determining the amount of solar
radiation reflected and absorbed at the Earth’s surface [1,2]. Bare soil albedo has also been widely used
in ecological research as a controlling factor in algorithms for deriving leaf area index (LAI) and fraction
of Photosynthesis Active Radiation (fPAR) from satellite observations, which requires fine resolution
data for satellite applications, e.g., [3,4]. A limited number of prescribed bare soil albedo values are
assigned based on global soil color maps [5–7]. However, soil reflectivity varies both temporally
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and spatially. Besides soil color, bare soil albedo is also a function of moisture content [8,9], organic
matter [10], texture/roughness [11], and other surface characteristics. Oversimplified soil albedo
parameterization has been reported to introduce uncertainties both in climate modeling [12,13] and
satellite LAI/fPAR products [14–17]. Significant differences in soil albedo were found in comparisons
of land surface models and satellite products [12], which lead to substantially different estimations of
surface energy balance and hydrologic budget partitioning [18].

Efforts have been made towards generating global or regional soil albedo datasets that
are independent of coarse resolution soil color maps. Zhou et al. [19] analyzed the Moderate
Resolution Imaging Spectroradiometer (MODIS) 1 km albedo products over desert areas using
principle component analysis and found the extracted spatial pattern could improve the soil albedo
parameterization in climate models. In a recent study, a method has been proposed to estimate soil
albedo by removing impacts of solar zenith angle and soil moisture empirically from MODIS albedo
products [20]. In their method, coarse resolution (~15–100 km) soil moisture data from the North
American and Global Land Data Assimilation System (LDAS) were used.

To develop a bare soil albedo dataset over densely vegetated area and without the support of
reanalysis data, a method has been developed based on an empirical relationship between broadband
albedos and the Normalized Difference Vegetation Index (NDVI) [21]. In their method, broadband
albedo of bare soil over densely vegetated area was predicted through extrapolation of linear
logarithmic relationship between albedo and NDVI. It was proposed that bare soil albedos were
estimated at NDVI = 0.09 globally, based on the empirical relationship. However, we found that this
empirical relationship could generate larger values for visible albedo than near infrared albedo due
to lack of training data for extrapolation purposes. In addition, previous studies have proved that
NDVI may not be a good quantitative indicator of surfaces with sparse vegetation coverage because of
mutual shadow effects on surface anisotropy [22,23].

Pisek and Chen [16] proposed a method using multi-angular satellite observations to map
background spectral reflectance in forested pixels and found significant variations between coniferous
and deciduous forests, particularly in the near infrared wavelengths.

In some recent studies, MODIS LAI and fPAR products were introduced to calculate vegetation
fraction used in a linear regression to estimate soil albedo and the difference of vegetation and soil
albedos based on the assumption that these two variables were invariant within a certain period [24,25].
This was later improved by using a Kalman filter to generate dynamic albedo on a daily basis [26].
However, MODIS LAI/fPAR products were derived assuming a prescribed bare soil albedo based
on a soil type map, and these products were believed to have lower reliability during the vegetation
growing season [14,15].

Existing bare soil albedo datasets are subject to several limitations. First, most suffer from
uncertainties in ancillary input products used in the albedo retrieval algorithm due to, for example
residual cloud contamination, inaccurate soil maps, or scale differences between model inputs and
the retrieval scale. Second, most of the existing global bare soil albedo datasets are only available at a
spatial resolution coarser than 5 km, which cannot satisfy the increasing demand for high resolution soil
parameterizations, especially in agricultural and ecological applications, e.g., [27]. Third, validation of
these datasets has been generally limited to inter-comparison against model-simulated results.

In addition to mapping the broadband albedo for bare soil, there is also a need to generate spatially
dynamic background spectral reflectance/albedo to improve the LAI/fPAR estimates from remote
sensing data [16]. Thus, it is important to develop an approach that can generate both spectral and
broadband albedos at a fine spatial resolution (e.g., 30–500 m) to satisfy the needs of climate modeling
and ecosystem monitoring purposes. Significant impacts of soil moisture content on soil reflectivity
have been reported based on laboratory measurements [28,29], ground measurements [8,9,30], and
satellite products [31–33]. However, few studies have demonstrated the relationship over a large
spatial domain, which is critical for land surface energy balance and hydrological modeling purposes.
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The concept of a “soil line”, a linear relationship between red and near infrared (NIR) reflectances
typically observed over bare soils, has been widely used to discriminate vegetation from soil using
spectral information [34–39]. The soil line has been commonly used to develop the vegetation indices,
such as the simple ratio (SR), NDVI, Enhanced Vegetation Index (EVI), and Soil-Adjusted Vegetation
Index (SAVI), to identify dense vegetation. However, this concept had mostly been applied to extracting
information about the vegetation canopy rather than the understory and soil.

The purpose of this study is to build a 500 m bare soil albedo dataset over the contiguous United
States (CONUS) on a pixel-basis from multi-year MODIS data based on the soil line feature and to
explore the relationship between bare soil albedo and other surface properties such as soil moisture,
soil type, and vegetation type. A description of the data and methodology is given in Section 2.
Comparison results against Landsat data are presented in Section 3 and are followed by the evaluation
of soil albedo with regards to soil moisture content, soil type, and land cover type.

2. Materials and Methods

2.1. MODIS Albedo Anisotropy Products

The MODIS albedo and bidirectional reflectance distribution function (BRDF) products
(MCD43A) [40] are available at a 500 m resolution globally using a 16-day temporal acquisition
window. Of the available albedo anisotropy products, this study primarily used three datasets:
Spectral/broadband albedos, nadir view corrected surface spectral reflectance, and quality control
(QC) flags (overall accuracy and snow flag). Two types of albedos were included in the MODIS
products: Black-sky albedo (BSA), also called directional-hemispherical albedo, and white-sky albedo
(WSA), also called bi-hemispherical albedo. Datasets covering CONUS were chosen for the 13-year
period from 2000 to 2012. Information of the datasets used in this study is summarized in Table 1.

To assist in the removal of possible vegetation, water, snow, and residual cloud shadow contaminated
albedo values, the NDVI and normalized difference water index (NDWI) [41] were used, calculated from
nadir BRDF-adjusted reflectances (NBAR) for the spectral bands (Equations (1) and (2)).

NDVI =
ρb2 − ρb1
ρb2 + ρb1

, (1)

NDWI =
ρb2 − ρb5
ρb2 + ρb5

, (2)

where ρb1, ρb2, and ρb5 are the spectral reflectances for MODIS band 1 (620–670 nm), band 2
(841–876 nm), and band 5 (1230–1250 nm), respectively.

Table 1. Information of the datasets used in this study.

Variable Dataset Temporal Coverage Spatial Resolution

Surface albedo MCD43A 2001–2012 500 m
Soil type Natural Resources Conservation Service

(NRCS) soil suborder map
N/A 4000 m

Land cover MCD12Q 2006 500 m
Land cover National Land Cover Dataset (NLCD) 2006 30 m
Soil moisture AMSR-E L3 2002–2011 25 km

2.2. Soil Type Map

Current climate and ecological modeling applications generally use maps of soil type to assign
albedo values to certain locations [42] because soil type is believed to be the dominant factor controlling
soil reflectivity. The Natural Resources Conservation Service (NRCS) in the U.S. Department of
Agriculture (USDA) provides a general soil taxonomy map for the CONUS (Figure 1). In the soil
taxonomy map, a dominant soil type is given for each pixel at 2 arcmin resolution (~4 km) from
the 12 soil types, including: Alfisols, Andisols, Aridisols, Entisols, Gelisols, Histosols, Inceptisols,
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Mollisols, Oxisols, Spodosols, Ultisols, and Vertisols [43]. This soil type map was used in the soil
albedo derivation methodology described in the following sections.
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Figure 1. Dominant soil type map over the contiguous United States (CONUS) extracted from U.S.
Department of Agriculture (USDA) soil survey data.

2.3. Using the Soil Line to Detect Bare Soil

In the solar shortwave range, bare soil surfaces normally have small reflectivity in shorter
wavelength, with reflectance gradually increasing with wavelength [44,45]. In contrast, a vegetation
canopy has very strong absorption in the visible spectrum and back scattering in the near infrared
spectrum. The soil line is one of the key and stable spectral signatures of soil and has been examined
in many experiments [34–36]. The soil line describes the linear feature (the “envelope”) of surface
reflectivity in multi-band space over a landscape of a given soil type. For example, the soil line is
the lower envelope in the red-NIR space and has been commonly used to identify areas with dense
vegetation. However, in practice, the red-NIR soil line can exhibit significant variation because both
residual vegetation (leaf litter) and soil moisture may affect the NIR reflectivity greatly. This can cause
problems for deriving a universal threshold to separate soil from vegetation, especially when sparse
vegetation cover is not available for certain surfaces. In contrast, the green-red based soil line is very
stable [35,46]. To verify the green-red soil line feature, surface spectra from Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) and US Geological Survey (USGS) spectral
libraries [44,45] were collected and used to identify soil line features with different combinations
of spectral albedo and vegetation/soil related indices including NDVI, EVI, SR, NDWI, and Visible
Atmospherically Resistant Index (VARI). Of all combinations tested, the green-red band combination
could detect soil line with the highest R2 of 0.92, while the others ranged from 0.6 to 0.8.

In this study, thirteen years of MODIS albedo/BRDF data (2000–2012) were used to identify bare
soil albedo characteristics over the CONUS using the following procedure. First, the soil line was
generated for each of the 12 major soil types in the NRCS classification using MODIS data in 2005.
To reduce uncertainties and minimize effects of vegetation and snow, only high quality snow-free
albedo values (based on the QC flag in MODIS albedo product) collected between November and
March were used in the soil line generation. MODIS NDVI and NDWI products were used to further
exclude possible vegetation, snow/ice, water, and residual cloud/shadow pixels. Once the soil line
was detected, the second step was to calculate statistics describing the distance of the bare soil albedo
from the soil line for each pixel over the whole period 2000–2012. Considering the accuracy of the
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estimated soil line and the uncertainty in MODIS data products, the soil albedos were considered
as candidates if their distance to the soil line was smaller than 20% of the magnitude of their albedo
values. Our sensitivity test showed that the 20% threshold did not introduce any significant difference
in the soil albedo climatology results, and, at the same time, it significantly increased the number of
samples that were used in the calculation. The bare soil albedos (both spectral and broadband) were
generated at a 16-day interval. The third step was to calculate the mean and standard deviation (SDEV)
of the 16-day bare soil albedos over the entire thirteen years for each location. Figure 2 illustrates the
procedure used to generate the multiyear mean bare soil albedos from the MODIS datasets. In the
final bare soil albedo map, the soil albedo represents the average state of the soil condition, regardless
of the differences in moisture content and organic matter. The SDEV maps contain information
regarding impacts of variation in soil moisture, organic matter, and residual vegetation on the apparent
soil reflectivity.
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Spectroradiometer (MODIS) data based on soil line.

3. Results and Discussion

3.1. Charateristics of Soil Lines Derived from MODIS Albedo

It has been demonstrated that the visible spectral space is useful in estimating vegetation
fraction and indicating crop development stages tested at multiple crop sites with various soil
backgrounds [35,46]. Based on field data, the green-red soil line feature has been proven to be a
robust method for separating bare soil and vegetated surface conditions [35]. However, this feature
has not yet been well documented using long-term satellite data. Figure 3 shows the soil line feature in
green-red space from MODIS albedo samples over different land cover types based on MODIS land
cover product during 2000–2012 using red and green bands.

In both crop and forest MODIS-derived samples, there was an obvious linear-line feature with
relatively high green and red reflectance values in the spectral space (black line shown in Figure 3),
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which was in accordance with in-situ observations [46]. Based on the observations, this line was
occupied mostly by samples in winter when vegetation had not sprouted. Such samples tend to be
bare soil samples with low NDVI and positive NDWI. The variations in surface reflectivity at this stage
were likely due to changes of soil moisture [28].

There are several reasons why data obtained in winter are preferable for deriving the soil line,
as demonstrated in Figure 3. First, the effect of vegetation is minimized during the fall and winter
dormant months. As vegetation grows such as in spring, surface albedos for green and red bands
rapidly decrease due to the strong absorption by chlorophyll pigment in leaves, while the red band
has a larger decrease rate because chlorophyll absorbance coefficient is much higher in red than in
green [47]. Samples were moving downwards in spring when vegetation began to grow and ended
up by a short “vegetation line” with red reflectance almost invariant occupied mostly by samples in
summer when vegetation density was quite high. During the fall at the onset of vegetation senescence,
green and red reflectance increased due to less absorption by the degraded chlorophyll pigments.
As such, the samples at this stage were moving upwards from “vegetation line” back to “soil line”
(red points in Figure 3). Thus, we can see from Figure 3 that albedos in winter are on the soil line and
those in summer are on the vegetation line. For spring and fall, the albedo values lie between these
extremes due to partial (sub-pixel) vegetation cover.
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Second, soil albedo varies with soil moisture. During drier seasons (fall and winter) soil albedo
tends to have a higher value, while during wetter seasons (spring and summer), it decreases as soil
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moisture increases. As soil moisture is usually small in winter (excluding the snow albedo), a small
increase/decrease in moisture can cause large decrease/increase in albedo. Thus, a large range of soil
albedo would produce robust soil line estimation.

Therefore, the soil line features were estimated by fitting the albedo values obtained in winter
after excluding the data with large NDVI (>0.3) and/or negative NDWI to reduce the impacts of dense
vegetation, clouds, and snow/ice.

The scatter plots in the left panel in Figure 3 are based on data at a single 500 m pixel; the plots in
the right panel include data from the 5-by-5 surrounding pixels with the same land cover type. Because
soil albedo varies both seasonally and inter-annually as the averaging area increases, including more
surrounding pixels of the same land cover type as shown in the right panel, the slope of the soil line
does not change much, but the R2 increases. This procedure was tested over other locations with
different land cover types, yielding results similar to those presented in Figure 3.

Soil line characteristics estimated from MODIS data from 2005 are listed in Table 2. The variability
in these soil lines indicates that a global unified soil line may not be good enough to extract bare
soil albedo. Most of the soil line estimations have an R2 greater than 0.9 except for Alfisols, which
demonstrates that the soil type information can support soil line estimations and other soil properties
(e.g., soil moisture, organic matter, and surface texture/roughness) may have a secondary impact to
the soil line [34].

Table 2. Parameters of soil lines estimated for the major soil types over the CONUS

Soil Type
Soil Line: αRed=αGreen·a+b

a b R2 RMSE N of Pixels

Alfisols 1.4830 ± 0.0057 −0.0142 ± 0.0006 0.8407 0.0114 190525
Andisols 1.3557 ± 0.0075 −0.0053 ± 0.0008 0.9393 0.0063 16682
Aridisols 1.3394 ± 0.0014 −0.0028 ± 0.0002 0.9047 0.0132 134894
Entisols 1.3195 ± 0.0016 −0.0027 ± 0.0002 0.9223 0.0112 99206
Gelisols 1.3058 ± 0.0599 −0.0053 ± 0.0053 0.9888 0.0024 1472
Histosols 1.2052 ± 0.0204 −0.0062 ± 0.0014 0.9400 0.0070 8340
Inceptisols 1.3661 ± 0.0089 −0.0116 ± 0.0016 0.9145 0.0084 43997
Mollisols 1.3242 ± 0.0014 −0.0017 ± 0.0002 0.9209 0.0077 262389
Oxisols 1.0827 ± 0.1283 0.0139 ± 0.0107 0.9394 0.0056 457
Spodosols 1.2062 ± 0.0265 −0.0101 ± 0.0019 0.9559 0.0086 120682
Ultisols 1.4115 ± 0.0088 −0.0177 ± 0.0007 0.9449 0.0079 105382
Vertisols 1.2849 ± 0.0082 −0.0030 ± 0.0008 0.9017 0.0067 15343

* Statistics are based on 95% confidence level.

Following the procedure described in Figure 2, bare soil albedo over the CONUS was first
generated on a 16-day interval including black-sky (direct) and white-sky (diffuse) albedos for the seven
spectral bands and three broadbands, and then aggregated temporally to generate the climatological
mean and SDEV for each of the bands. Statistics for broadband white-sky albedos are presented in
Figure 4. Based on visual comparison, a general agreement can be reached in terms of magnitude
and spatial pattern between the bare soil shortwave albedo map generated in this study and the data
aggregated from MODIS data during 2001–2010 in a recent study [26]. The shortwave albedo for soil is
lower in the East and Northwest CONUS (around 0.15~0.18) where dense vegetation is located with a
wetter climate and higher in the central and Southwest CONUS from 0.20 to more than 0.40 where
much of the land is covered with crops, grass, and bare soil with a drier climate. A more detailed
spatial pattern in the soil albedo over the CONUS is provided in this study.
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3.2. Validation of MODIS Bare Soil Albedo

As bare soil albedo ground measurements are not widely available, validation of the bare soil
albedo extracted from MODIS data at 500 m resolution is difficult. In previous studies, bare soil
albedo was either directly compared with model inputs or indirectly validated against MODIS albedo
products using pure vegetation albedo and vegetation fraction as inputs to calculate soil/vegetation
mosaic albedos. In this study, we proposed an approach using finer resolution satellite data to help
verify the 500 m MODIS-based bare soil albedo estimations.

Landsat data are available from the USGS at 16-day intervals and at a spatial resolution of 30 m.
Though it is usually difficult to find pure bare soil pixels at the MODIS resolution, they are considerably
easier to identify at the Landsat resolution. The finer resolution offers a unique capability to observe
the bare soil directly, which is otherwise mixed with vegetation at MODIS resolution. In this study, it
was assumed that if the Landsat pixels that belong to a MODIS pixel with a 500m-by-500m nominal
spatial coverage can be identified as bare soil, the averaged soil albedo value of the Landsat pixels
will represent the bare soil albedo for the MODIS pixel. The Landsat shortwave broadband albedo
was estimated following the procedure described by He et al. [48] for the atmospheric correction and
narrow-to-broadband conversion. Clouds in Landsat data were screened using the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) tool [49].
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from Landsat data.

Potential soil pixels were extracted from the Landsat datasets based on land cover class
designated in the National Land Cover Database 2006 (NLCD2006). Only pixels classified as sparse
vegetation–including developed, barren, and shrubland–were used [50]. Both NDVI and NDWI were
calculated for each Landsat scene to exclude cloud/shadow, water, snow, and vegetation pixels, similar
to the MODIS data processing discussed in previous sections. In this study, we used the Landsat
scenes (path 042, row 034) centered at 119.0◦W, 37.5◦N for validation, which have a variety of land
cover types, including forest, grassland, and cropland. There are four major soil types in this region,
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including Alfisols, Aridisols, Entisols, and Ultisols. All the available Landsat 5 TM scenes for the period
2005–2007 with nominal cloud coverage less than 30% were used. As the NLCD class and vegetation
indices thresholds (NDVI<0.3 same as in Section 3.1) were applied to the Landsat data, it was assumed
that the generated Landsat soil albedo can represent the bare soil surfaces with/without vegetation
cover in a larger area, e.g., a MODIS pixel. As demonstrated in Figure 5, a general agreement can be
found for bare soil shortwave black-sky albedos derived from MODIS and Landsat data with a bias of
0.003, a root-mean-square-error (RMSE) of 0.036, and an R2 of 0.316. There are several possible reasons
for the differences between these two datasets found in the comparison: Landsat albedo estimations
are instantaneous and thus more sensitive to soil moisture changes; Landsat and MODIS surface
reflectance may not fit to 1-to-1 line exactly due to the differences in sensor characteristics and data
processing; and Landsat pixels may not match MODIS pixels exactly due to the different registration
accuracy and adjacency effects in the coarser resolution data.

3.3. Impacts of Soil Moisture Content on Soil Albedo

The water content in the top layer of soil is believed to have great impacts on the soil albedo.
Previous studies have tried to establish the relationship between soil moisture content and soil
reflectivity based on various datasets. Some studies reported that the relationship was linear, while
others found an exponential equation provided a better fit (Equation (3)):

α = A exp(−Bθ) + C, (3)

where α is soil albedo and θ is soil moisture. A, B, and C are regression coefficients.
Gascoin et al. [9] found that the best fit coefficients (A= 0.31, B =12.7 and C =0.15) with an RMSE of

0.030 using various soil samples from field measurements, and Wang et al. [30] reported a lower value
for the B coefficient (B = 3.52, clay soil type). Gascoin et al. [9] also pointed it out that the parameters
must be carefully examined before application to other regions.

In this study, a relationship between bare soil albedo and soil moisture was derived using remote
sensing data over a large spatial domain. White-sky albedo was used exclusively to minimize the solar
zenith impacts on albedo data. In addition, the Advanced Microwave Scanning Radiometer-Earth
Observing System (AMSR-E) Level 3 daily soil moisture products were used as estimates of soil
moisture in the top ~1 cm of soil averaged over the retrieval footprint [51,52]. The 16-day averaged soil
moisture values were generated from the daily AMSR-E products to match the temporal resolution of
MODIS albedo during 2002–2011 (due to demise of AMSR-E in 2011) over the CONUS. The MODIS soil
albedo data were rescaled to 25 km to match AMSR-E soil moisture products. Comparisons between
the soil moisture and broadband white-sky albedos for bare soil in the Southwest U.S. (MODIS tile
h08v05) indicate that soil albedo generally decreases with an increase in soil moisture (Figure 6).
The rate of decrease for all three broadband albedos are very similar, which suggests that the change
of soil moisture is likely the major factor of albedo change and that the soil line approach is resistant
to soil moisture changes. Variation in NIR broadband albedo is larger than that in visible and total
shortwave albedos, which is likely due to the fact that: (1) NIR albedo is larger than visible, and thus
the absolute values are more variant; and (2) soil moisture may cause a larger variation in the longer
wavelength part of the NIR spectral domain [34].

The relationship between bare soil albedo and soil moisture on a 16-day interval was found
to be relatively stable across different seasons and locations over the CONUS (0.18 < A < 0.24;
9.86 < B < 21.33; 0.12 < C < 0.14; 0.031 < RMSE < 0.037). However, as the range of the 16-day averaged
soil moisture variation is relatively small (most soil moisture values are between 0.08 and 0.12 g/cm3),
the exponential relationship between these two variables cannot be verified without simultaneous
instantaneous small soil moisture values (<0.05 g/cm3) and large bare soil albedos (>0.3). Nevertheless,
the relationship found in this study is very close to the results presented in Gascoin et al. [9], considering
that their soil moisture samples were taken at a ~5 cm depth from the surface.
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Soil moisture is among the most important factors that can affect soil reflectivity, which should be
considered in bare soil albedo estimations. However, soil moisture varies both spatially and temporally.
Thus, it is difficult to remove the impacts of soil moisture in the final 500 m bare soil albedo map
without the support of soil moisture products available at a similar resolution.
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3.4. Relationship of Bare Soil Albedo with Major Soil Types and Land Cover Types

Traditional methods directly relate soil albedo with soil types, which are currently used by many
land surface models to simplify the parameterization of soil albedo besides correcting the illumination
angle effects [20].

The climatological bare soil white-sky albedos for different soil types derived for the period
2000–2012 (Table 3) were compared between each other. The Aridisols were found to have the largest
soil albedo values because they tend to be the driest among the 12 major soil types—too dry for
mesophytic plants to grow. Entisols, many of which are found in steep and rocky settings, have the
second largest albedo values. Since the soil reflectivity is very sensitive to moisture changes under dry
conditions, albedos of both Aridisols and Entisols have the largest variations. Among three broadband
albedos, the near infrared albedos have the highest mean and SDEV values, and the visible albedos
have the lowest mean and SDEV values for each soil type.

Table 3. Statistics of broadband soil albedo distribution for each of the major soil types.

Soil Type
Visible Near Infrared Shortwave

Mean SDEV Mean SDEV Mean SDEV

Alfisols 0.0796 0.0152 0.2060 0.0375 0.1479 0.0251
Andisols 0.0738 0.0190 0.1914 0.0457 0.1382 0.0314
Aridisols 0.1196 0.0376 0.2493 0.0553 0.1858 0.0433
Entisols 0.1013 0.0295 0.2330 0.0449 0.1695 0.0345
Gelisols 0.0801 0.0159 0.1804 0.0322 0.1357 0.0227

Histosols 0.0619 0.0158 0.1604 0.0465 0.1174 0.0299
Inceptisols 0.0704 0.0170 0.1820 0.0449 0.1310 0.0296
Mollisols 0.0915 0.0160 0.2258 0.0327 0.1623 0.0230
Oxisols 0.0674 0.0157 0.2138 0.0427 0.1460 0.0258

Spodosols 0.0691 0.0183 0.1702 0.0462 0.1257 0.0304
Ultisols 0.0739 0.0179 0.2004 0.0486 0.1429 0.0320
Vertisols 0.0800 0.0112 0.2248 0.0261 0.1550 0.0167

Table 4. p-value of two tailed t-test on the soil albedos among different soil types.

Soil Type Andisols Aridisols Entisols Gelisols Histosols Inceptisols Mollisols Oxisols Spodosols Ultisols Vertisols

Alfisols *** *** *** 0.78 *** *** *** 0.39 *** *** ***
Andisols *** *** *** *** *** *** 0.55 ** *** ***
Aridisols *** *** *** *** *** 0.36 *** *** 0.40
Entisols 0.66 *** *** *** 0.40 *** *** ***
Gelisols *** *** 0.31 0.34 *** *** ***

Histosols 0.28 *** 0.49 *** *** ***
Inceptisols *** 0.49 *** *** ***
Mollisols 0.39 *** *** ***
Oxisols 0.52 0.38 0.35

Spodosols *** ***
Ultisols *

*: p < 0.05; **: p < 0.01; ***: p < 0.001.

Histosols have the lowest reflectivity, probably because of their high organic matter content.
Oxisols and Spodosols also have low albedo values. Possible reasons are that the Oxisols are mainly
distributed in tropical and subtropical areas where precipitation increases soil moisture, and the
Spodosols are acid soils mainly under forest.

The two tailed t-test results shown in Table 4 suggest that differences between soil albedo values
are statistically significant for most soil types. However, there are several exceptions. Oxisols are quite
inseparable from all the other types. It is also difficult to separate the albedos of Gelisols from those
of Alfisols and Entisols. Their small sample size (Oxisols have less than 0.004% of the total samples;
Gelisols have 0.147% of the total samples) is likely to have resulted in the difficulty in the separation of
their soil albedos because a 4 km soil map grid may contain multiple soil types.



Remote Sens. 2019, 11, 666 14 of 18

Bare soil albedo can also be linked with the type of vegetation above the ground because that the
soil moisture–precipitation feedback [53] and vegetation–soil moisture feedback [54] will determine the
relationship between vegetation type and magnitude of soil albedo (because of soil moisture). Table 5
lists the climatological values of bare soil albedo for each of the International Geosphere-Biosphere
Programme (IGBP) land cover types from MODIS land cover data. In this study, it was found that bare
soil albedo decreases as the vegetation density increases from open shrubland to evergreen needle
leaf forest.

Table 5. Statistics of broadband soil albedo distribution for each of the land cover classes.

IGBP Land Cover
Visible Near Infrared Shortwave

Mean SDEV Mean SDEV Mean SDEV

ENF 0.0458 0.0147 0.1122 0.0296 0.0847 0.0210
EBF 0.0526 0.0193 0.1237 0.0460 0.0938 0.0304
DNF 0.0593 0.0139 0.1308 0.0272 0.1006 0.0191
DBF 0.0633 0.0124 0.1627 0.0265 0.1192 0.0184
MIX 0.0541 0.0134 0.1354 0.0330 0.1009 0.0222
CSH 0.0664 0.0161 0.1692 0.0334 0.1217 0.0234
OSH 0.1096 0.0315 0.2386 0.0512 0.1764 0.0393
WSV 0.0669 0.0142 0.1780 0.0338 0.1283 0.0234
SAV 0.0723 0.0144 0.1911 0.0368 0.1366 0.0252
GRA 0.0987 0.0192 0.2318 0.0341 0.1682 0.0245
WET 0.0489 0.0135 0.1081 0.0301 0.0847 0.0204
CRO 0.0893 0.0136 0.2255 0.0311 0.1610 0.0218
URB 0.0868 0.0191 0.1937 0.0324 0.1428 0.0238
CRC 0.0814 0.0127 0.2090 0.0291 0.1504 0.0200
GLA 0.0925 0.0519 0.1590 0.0663 0.1290 0.0548
BRN 0.1939 0.0551 0.3267 0.0813 0.2561 0.0627

ENF: Evergreen needleleaf forest; EBF: Evergreen broadleaf forest; DNF: Deciduous needleleaf forest; DBF:
Deciduous broadleaf forest; MIX: Mixed forest; CSH: Closed shrubland; OSH: Open shrublands; WSV: Woody
savannas; SAV: Savannas; GRA: Grasslands; WET: Permanent wetlands; CRO: Croplands; URB: Urban and built-up;
CRC: Cropland/natural vegetation mosaic; GLA: Snow and ice; BRN: Barren or sparsely vegetated.

Compared with the statistics of albedo–soil types in Tables 2 and 3, bare soil albedos have smaller
within-class SDEVs for the albedo–land cover types, except for open shrublands and barren surface.
This suggests that land cover type might be a better indicator to quantify the magnitude of bare
soil albedo than soil type for the vegetated areas. For sparsely vegetated areas, the soil type map
provides spatial variation that is necessary to characterize the relationship between bare soil albedo
and soil type.

4. Conclusions

Bare soil albedo is an important ancillary dataset used in both climate and energy balance models
and satellite LAI/fPAR retrieval procedures, but is usually prescribed based on soil type maps at very
coarse spatial resolution. This fixed classification is unable to account for variability observed in soil
albedo due to soil moisture and other soil properties particularly in the spatial domain. Long-term
satellite observations provide a great opportunity to extract the bare soil albedo information at a
much finer resolution. Methods that rely mostly on a single vegetation index (NDVI, LAI, fPAR, etc.)
have been widely practiced in producing the existing soil albedo datasets from satellite data, the
results of which, however, may suffer from the uncertainties in the upstream vegetation index product.
To overcome this problem, a novel method was proposed in this study for the detection and extraction
of bare soil albedo from thirteen years of MODIS albedo product and USDA soil type over the CONUS
based on the soil line concept, NDVI, and NDWI derived from the MODIS spectral bands. The soil line
concept turned out to be very effective in extracting the bare soil information with minimized impact
from vegetation.

The validation of the bare soil albedo is quite challenging over a large spatial domain as ground
measurements are not widely available. In this study, bare soil pixels were extracted from Landsat data
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using the classification map from NLCD. Good agreement has been found between bare soil albedo
from Landsat and our estimations from MODIS data. Further work is expected to make comparisons
using more Landsat and MODIS data over different regions and soil types.

In most cases, the proposed soil line method in mapping the bare soil albedo is very efficient and
effective. However, it is not always effective, especially when the soil is covered by dense evergreen
vegetation canopy. Though the NDVI and NDWI thresholds can help exclude the observations
with dense vegetation canopy coverage, it is very possible that the regressed soil line detects the
observation with least green canopy coverage rather than pure bare soil background. In other words,
the derived climatological bare soil albedo in the evergreen vegetation covered area is not as reliable as
those over land surface with sparser vegetation. Such an issue also exists in other current bare soil
albedo products, which draws attention in applying them over areas covered by evergreen vegetation.
Compared with the existing datasets, the maps generated in this study have reduced uncertainty
because more background soil can be observed with the finer spatial resolution input data.

A decrease in soil albedo with an increase in soil moisture from AMSR-E data has been
demonstrated over a large area. The exponential relationship has been found to be relatively stable for
different time and locations. However, more efforts are still needed to improve the quantification of
this relationship by using instantaneous (or at least daily) albedo and soil moisture in the future.

Statistics of bare soil broadband albedos were calculated based on soil types and land cover types.
The within-class SDEV statistics suggest that: Though both classification schemes could be used as
prescribing indicators for soil albedo, land cover type would be a better choice to determine the albedo
magnitude for vegetated areas, while soil type is better at characterizing the soil line feature for sparely
vegetated areas.

The bare soil broadband albedo could be very useful as one of the key ancillary data for climate
models. On the other hand, our proposed method can also generate the bare soil albedo for the spectral
bands. The derived bare soil albedo dataset has been demonstrated quite effective in improving the
accuracy of satellite LAI and fPAR estimations under low vegetation density conditions [55].
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