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Triangular lattice quantum dimer model
with variable dimer density

Zheng Yan 1, Rhine Samajdar 2, Yan-Cheng Wang3, Subir Sachdev 2,4 &
Zi Yang Meng 1

Quantum dimer models are known to host topological quantum spin liquid
phases, and it has recently become possible to simulate such models with
Rydberg atoms trapped in arrays of optical tweezers. Here, we present large-
scale quantum Monte Carlo simulation results on an extension of the trian-
gular lattice quantum dimer model with terms in the Hamiltonian annihilating
and creating single dimers. We find distinct odd and even Z2 spin liquids,
along with several phases with no topological order: a staggered crystal, a
nematic phase, and a trivial symmetric phase with no obvious broken sym-
metry. We also present dynamic spectra of the phases, and note implications
for experiments on Rydberg atoms.

Recent quantum simulation advances have provided remarkable
microscopic access to the quantum correlations of aZ2 quantum spin
liquid (QSL)1,2. The Z2 QSL3,4 is the simplest quantum state in two
spatial dimensions with fractionalized excitations and time-reversal
symmetry, and has the same anyon content as the toric code5. Oncewe
include considerations of lattice and other symmetries,Z2 QSLs come
in different varieties; the distinctions between them are important in
understanding the phase diagrams of possible experimental realiza-
tions. The coarsest classification subdivides Z2 QSLs into “odd” and
“even” classes, depending upon whether elementary translations
anticommute or commute when acting on excitations carrying Z2

magnetic flux6–9, and results in different translational symmetry frac-
tionalization patterns and spectral signatures in the dynamic
response10–15. More refined classifications have been obtained
since16–20.

Quantum dimer models (QDMs)21,22 on nonbipartite lattices have
long been known to host Z2 QSLs. In this work, we investigate an
important—but hitherto unexplored—extension of the quantum dimer
model on the triangular lattice23–25. Unlike the more conventionally
studied QDMs, here, the density of dimers is allowed to vary by terms
in the Hamiltonian which can annihilate and create single dimers on
each link of the triangular lattice. Such a dimer-nonconserving term is
motivated by connections to models of ultracold atoms trapped in
optical tweezers26,27, in which each dimer is identified with an atom
excited to a Rydberg state by laser pumping28–30. The observations of

ref. 2 are for the casewhere the atomsare positionedon the linksof the
kagome lattice; this connects to the quantum dimer model on the
kagome lattice29. Our study pertains to the triangular-lattice dimer
model, which connects to the case where the atoms are placed on the
sites of the kagome lattice24,25,28; such a configuration can be readily
realized in the experiments, and initial explorationsofquantumphases
in such a lattice have already been carried out by the team of ref. 2.

With a dimer-nonconserving term present, here we show, the
triangular-lattice quantum dimer model displays novel features rele-
vant to the Rydberg-atom experiments. When the nonconserving
terms are large, we can obtain a ‘trivial’ phase with neither topological
order nor broken lattice symmetry. More interestingly, the phase
diagram of this extended QDM also harbors both odd and even Z2

liquids. Note that in early discussions of such QSLs in dimer models,
the distinction between the liquids was tied to whether the number of
dimers on each site was constrained to be odd or even24,25. In the
present model, the number of dimers on each site fluctuates between
odd and even values, namely 1 and 2; nevertheless, the distinction
between even and odd QSLs still survives based on the symmetry
transformation properties of excitations with magnetic Z2 flux
(“visons”). In the case with a dimer number constraint on each site,
there is an anomaly relation requiring that odd (even) dimers produce
vison translations that anticommute (commute)18,19. However, in the
case without a dimer number constraint (or a soft constraint), of
interest to us here, microscopic details will determine whether vison
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translations anticommute or commute, andwewill investigate this fate
numerically with quantum Monte Carlo simulations.

Finally, our study also obtains several phases which break lattice
symmetries, but are topologically trivial. This includes two “staggered”
phases23, a “columnar”phase31, and a “nematic”phase24,25,32, andwe also
discuss their density-wave-ordered counterparts in the context of
experiments on Rydberg quantum simulators.

Results
The model
We investigate the following general dimer Hamiltonian, with one or
two dimer(s) per site, on the triangular lattice,

ð1Þ

where the sum on r runs over all plaquettes (rhombi), including the
three possible orientations, and l runs over all links. The different
terms in this Hamiltonian are as follows. The kinetic term (controlled
by t) flips the two dimers on every flippable plaquette, i.e., on each
plaquette with two parallel dimers, while the potential term (con-
trolled by the interaction V) describes a repulsion (V > 0) or an
attraction (V < 0) between nearest-neighbor dimers. The transverse-
field term of strength h creates/annihilates a dimer at link l (similar
terms also appear in the quantum realization of the classical models of
ref. 32), in contrast to the t and V terms, neither of which change the
dimer number. Lastly, μ sets the chemical potential for the occupation
of a link by a dimer. We further impose a soft constraint requiring that
there must be one or two dimer(s) per site. Thus, when μ→ ±∞, the
model reverts to the conventional hard-constrained quantum dimer
modelwith exactly twoor one dimer(s) per site—the phase diagramsof
both these QDMs have been extensively studied in the

literature24,25,31,33–37. Hereafter, we set t = 1 as the unit of energy for the
rest of this paper.

To solve the model in Eq. (1) in an unbiased manner, we employ
the recently developed sweeping cluster quantum Monte Carlo algo-
rithm, which can perform efficient sampling in constrained quantum
many-body systems37–40. By monitoring the behavior of various phy-
sical observables such as dimer correlation functions and structure
factors, wemap out the detailed phase diagrams, such as, for instance,
in Fig. 1. Moreover, in addition to static observables, we also compute
thedynamic dimer correlation functions in imaginary timeand employ
the stochastic analytic continuation method12,13,37,41–46 to obtain the
dynamic dimer spectral functions in real frequencies. Our simulations
are performed on the triangular lattice with periodic boundary con-
ditions and system sizes N = 3L2 for linear dimensions
L = 8, 12, 16, 18, 24,while setting the inverse temperatureβ = L (β = 200)
for equal-time (dynamical) simulations.

The phase diagram
Although the phase diagrams in the two limits with exactly 1/3 and 1/6
dimer fillings are well understood, the manner in which they connect
to each other in the presence of a nonzero transverse field h and
chemical potential μ is an interesting open question. In particular, one
may ask what happens between the two kinds ofZ2 QSLs, i.e., whether
they are separated by a direct phase transition or an intermediate
phase. An important reason this question has remained unaddressed
so far is the lack of a suitable algorithm to deal with the soft constraint.
As discussed in detail in the section in “Methods”, here, we adapt the
sweeping cluster Monte Carlo algorithm used for hard-constrained
QDMs38,39 to soft ones and use it to map out the phase diagram of the
Hamiltonian in Eq. (1). Figure 1 shows the full phase diagram obtained
at h = 0.4, whichwe focus on in themain text, leaving the discussion of
similar phase diagrams with different h to Supplementary Notes 2 and
3 of the Supplementary Information (SI).

The phase diagram exhibits four different symmetry-breaking
phases, including the nematic, the columnar, and two staggered pha-
ses; the schematic plots of these crystalline phases are shown in the
right panels of Fig. 1. Furthermore, we observe two distinct Z2 QSL
phases, which are denoted as “Even QSL” and “Odd QSL” in the figure.
In addition, a trivial disordered—or paramagnetic (PM)—phase exists in
the central region in between the twoQSLs; note that such a PM phase
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Fig. 1 | Phases of the variable-density triangular lattice QDM. Left panel: The full
phase diagram, spanned by the V and μ axes, is obtained from QMC simulations at
h =0.4. The phase boundaries between the paramagnetic (PM) phase and the two
QSLs along thedashed line are studied in Fig. 3; the phase transitions are first-order.
The phase boundaries between theQSLs and the nematic, columnar, and staggered
phases are shown in Supplementary Note 3 of the Supplementary Information (SI).
The associated transitions are either continuous (such as theQSL—nematic andQSL

—columnar) or first-order (such as the QSL--staggered). Right panel: Schematic
pictures of the four crystalline phases (nematic, columnar, 1/3 staggered, and 1/
6 staggered). In the limit of exactly one dimer per site, a
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solid (VBS) phase is known to exist between the odd QSL and the columnar phase.
However, it is nearly degenerate with the columnar phase over a large region in our
simulations, and we depict this schematically by using a lighter shading for the
columnar phase near the odd QSL.
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does not arise in themore familiar QDMswhere the dimer number per
site is exactly constrained. The phase boundaries between these pha-
ses are determined by examining various parameter points and paths
scanning through the phase diagram, such as the dashed line in Fig. 1.

To characterize this rich variety of phases, we compute the equal-
time (τ = 0) dimer-structure factor (see Fig. 2) as

Dðk,τÞ= 1
N

XL3

i,j

α = 1,2,3

eik�rij hni,αðτÞnj,αð0Þi � hni,αihnj,αi
� �

,
ð2Þ

where ni is the dimer number operator on bond i and α stands for the
three bond orientations, at five representative parameter points cor-
responding to the five different phases in the phase diagram.
Figure 2a–c shows D(k, 0) inside the odd QSL, PM, and even QSL
phases, respectively. In the hexagonal Brillouin zone, we observe that
there are no peaks associated with long-range order but only broad
profiles signifying different short-range dimer correlation patterns in
real space. In contrast, Fig. 2d, e presents the dimer-structure factors
inside the columnar and nematic phases, respectively. One now clearly
sees the Bragg peaks at theM points for the columnar phase (there can
be three different orientations of the columnar dimers, corresponding
to all the three pairs of M points), and at the Γ point in the
nematic phase.

The two Z2 QSLs
Having established the lack of long-range dimer–dimer correlations in
the odd/even Z2 QSLs and the PM phase, next, we move on to the
phase transitions between them. Since all three of these phases are
disordered, care needs to be taken in determining their phase
boundaries. Our results in this regard are summarized in Fig. 3, which
shows the data along a path with a fixed V =0.9 and varying μ in the
phase diagram (dashed line in Fig. 1).

First, in Fig. 3a, we illustrate the energy density curves, which
appear to be smooth without any obvious turning points along the
path as μ is scanned. However, when the transverse field becomes
large,we expect that all the links should bepolarized along the x axis (if
there were no constraints). Since the model in Eq. (1) can be regarded
as a spin model with spins on links (occupied/empty links being
equivalent to spin up/down), the polarization

can be used to describe the level of polarized links (spins), and thus, to
probe the PMphase. Indeed, as seen in Fig. 3b,Mx helps us to identify a
first-order phase transition between the PM phase and the two Z2

QSLs. In the PM phase, Mx becomes large but is still far from the
classical saturation value of 1; this is because the soft constraint forbids

all links from being fully polarized simultaneously. We can also
discover similar first-order phase transitions, at the same parameter
points, independently from the dimer filling ρ shown in Fig. 3c. In the
even (odd) Z2 QSL phase, the filling is nearly 1/3 (1/6) while the filling
changes continuously in the PM phase.

In addition, a closed string operator2, schematically defined as in
Fig. 3e, f as〈string〉 =〈(−1)#cut dimers〉 on a rhomboid with odd linear
size, can be used to distinguish the two QSLs and the PM phase. As
shown in Fig. 3e, f,〈string〉 should be ±1 in a pure even/odd Z2 QSL
without spinons and 0 in a PM phase. We measure all the 3 × 3 rhom-
boids in the lattice to obtain the expectation value〈string〉 along the
path scanning μ at V =0.9. The resultant data in Fig. 3d indeed reveal
that inside the odd (even)Z2 QSL phase,〈string〉 ~ −1(〈string〉 ~ 1),
while inside the PM phase,〈string〉 ≈0; the transitions are also seen
to be first-order, in consistency with Fig. 3b, c.

The dynamical dimer spectra
One of the hallmarks of a QSL is its ability to support fractionalized
excitations that cannot be created individually by any local operator. In
this section, we focus on one class of such fractional excitations with
magnetic Z2 flux, i.e., the visons. Naturally, vison configurations with
different fluxes will result in different dimer spectral signatures, thus
realizing, in particular, the interesting phenomenon of translational
symmetry fractionalization10–13,37, which can be further used to distin-
guish the PM and the even/odd Z2 QSLs and make a possible con-
nection to experiments. To this end, we compute the dimer spectra,
obtained from stochastic analytic continuation of the Monte Carlo-
averaged dynamic dimer correlation function D(k, τ) with τ∈ [0, β]
(which can be viewed as the dynamical vison-pair correlation functions
deep inside the Z2 QSLs37; more details can be found in the Supple-
mentary Note 1). Figure 4a shows that in the odd Z2 QSL phase, the
gapped dimer (vison-pair) spectrum forms a continuum, and the dis-
persionminimaare located at both theM and Γpoints35,37. On the other
hand, Fig. 4c illustrates that the dimer (vison-pair) spectrum deep
inside the even Z2 QSL is also a continuum but with minima only at Γ.
These features are consistent with the expectation that the visons of
the odd Z2 QSL carry a fractional crystal momentum, whereas visons
of the even QSL do not12,37. Note that for the single vison dispersion of
an odd QSL, the locations of the minima are dependent on the chosen
gauge30,47,48 whereas the vison-pair spectrum is a gauge-invariant
observable. For the even QSL, refs. 24,25 found that the minima of the
mean-field vison dispersion occur at the three inequivalentM points in
the Brillouin zone. Accordingly, one would then expect the vison-pair
spectrum to exhibit aminimumat Γ (which is equivalent to 2Mmodulo
a reciprocal lattice vector), in agreement with our numerical results.
The arguments above apply generally to the dynamics of an odd/even
QSL and should hold even at finite μ; similar behaviors have also been
observed for the odd/even QSLs of the Balents–Fisher–Girvin (BFG)
model12. In comparison, Fig. 4b presents the dimer spectrum inside the
PM phase; here, there exists no clear continuum in the frequency

Fig. 2 | Equal-time dimer-structure factors. Here, we present D(k, τ =0) in the
Brillouin zone for the (a) odd Z2 QSL (μ = − 3, V =0.9), b PM phase (μ =0, V =0.9),
c even Z2 QSL (μ = 3, V =0.9), d columnar phase (μ = − 3, V = −0.5), and e nematic
phase (μ = 3,V = −0.5) in thephasediagramof Fig. 1. All the data are simulated using

β = L = 12. The upper-right labels in each panel represent the scaling factor for the
intensities such that the five panels can be scaled onto the same color bar. In
addition, the high-symmetry path for the spectra in Fig. 4 is also drawn in (a).
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domain, indicating the lack of fractionalization of dimers into pairs of
visons.Moreover, the overall dispersion isflat, which is consistent with
the dispersionless Sz spectrum in an Sx-polarized state, such as in the
transverse-field Ising model.

Discussion
In this work, we investigate a QDM with variable dimer density on the
triangular lattice and uncover a plethora of interesting phases,

including crystalline solids and twodistinct classes of highly entangled
QSL states hosting fractionalized excitations. Through detailed quan-
tum Monte Carlo analyses, we explore the subtle interplay between
thesedifferent phases andfind theuniqueproperties of their static and
dynamic fingerprints. With the remarkable advances in quantum
simulation, experimental realization of the dimer model in Eq. (1)
should provide new probes of novel QSL phases and their phase
transitions.

(a) (b) (c)

ω ω ω

Fig. 4 | Dynamical dimer spectra. The dimer spectra in the (a) oddZ2 QSL in the
limit of one dimer per site, corresponding to μ→ −∞ and V = 1 in Fig. 1, b PM phase
with μ =0,V =0.9 and h =0.4, and c evenZ2 QSL in the limit of two dimers per site,
corresponding to μ→∞ and V =0.5 in Fig. 1. The dimer spectra exhibit continua in
both (a) and (c), conveying the fractionalization of spins into visons. However, the
dispersionminima in the two cases differ, being located at bothM and Γ for (a) and

only at Γ for (c), representing the translational symmetry fractionalization in the
former and the lack thereof in the latter. In (b), however, the dimer spectrum is flat
and displays less of a continuum in the frequency domain, consistent with a
polarized PMphase. All the data are simulated at β = 200 on a L = 12 lattice, with the
low-temperature T = 1/200 being necessary to overcome the small vison gap and
the transverse field h.
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Fig. 3 | Phase transitions between QSLs and the PM phase. Data along the QSL--
PM--QSL path, indicated by the dashed line at V =0.9 in Fig. 1. a The energy density
is smooth with increasing μ. b The polarization Mx reveals the first-order phase
transition between the PM phase and the two Z2 QSLs. c The dimer filling remains
at approximately ρ ~ 1/3 in the even QSL and ρ ~ 1/6 in the odd QSL. It changes
continuously in the PM phase, and the filling also exhibits a first-order phase
transition between the PM phase and QSLs. d The string operator is zero in the

trivial PM phase but positive (negative) in the even (odd) Z2 QSL. All the data are
calculated forV =0.9, β = L, h =0.4. e In a pure oddZ2 QSLwith dimer filling ρ = 1/6,
a string operator defined on a rhomboid with odd linear size (3 in this case) should
attain the value −1. f In a pure even Z2 QSL with dimer filling ρ = 1/3, the string
operator should always yield 1. The string operators presented in (d) aremeasured
for a 3 × 3 rhombus averaged over the entire lattice for different L.
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In particular, our results could find application to recent experi-
ments with programmable quantum simulators based on highly tun-
able Rydberg-atom arrays, which have emerged as powerful platforms
to study strongly correlated phases of matter and their dynamics.
While our extendedQDMdiffers frommodels of Rydbergatomson the
sites of the kagome lattice28 in the precise form of the V interactions,
the twosystemsbear resemblance in someof their phases. Specifically,
the Rydbergmodel also displays the 1/6 staggered and nematic phases
of Fig. 1, separated by a ‘liquid’ regime with no broken symmetry.
These ordered phases can be mapped to the solid phases of a
triangular-lattice QDM with either one or two dimers per site, which
precisely constitutes our soft constraint. Appealing to the universality
of phase transitions28, possible fates of the liquid state in the Rydberg
model are then one or more of the phases obtained by interpolating
between the 1/6 staggered and nematic phases in Fig. 1 for the present
quantum dimer model: namely, the odd QSL, the PM, and the even
QSL. These considerations highlight the potential utility of variable-
density dimer models in the experimental realm and provide a path-
way to studying their rich physics.

Methods
Sweeping cluster algorithm
This is a quantum Monte Carlo method developed by the authors to
solve the path integral of constrained quantum many-body
models37–40,49. The key idea of the sweeping cluster algorithm is to
sweep and update layer by layer along the imaginary-timedirection, so
that the local constraints (gauge fields) are recordedby update lines. In
this way, all the samplings are performed in the restricted Hilbert
space, i.e., the low-energy space. The original sweeping cluster QMC
method38,39 is designed for hard-constraint models, i.e., models in
which the number of dimer(s) per site is fixed37,50. To solve our models
in this work, we further improve upon the prior methods to be able to
simulate a soft-constrained dimer model.

TheHamiltonian thatwe consider is givenby Eq. (1) supplemented
with the “soft” constraint that there can only be either one or two
dimer(s) per site. The definition of winding numbers39,51–54 for these
two cases are explained in Supplementary Note 3.

Similar to the practice in Stochastic Series Expansion types of
quantum Monte Carlo methods55, we separate the Hamiltonian into
diagonal and off-diagonal parts. It is obvious that the t and V terms will
not change the number of dimer(s) per site, but both the chemical
potentialμ and the transversefield termhwould. Therefore, theMonte
Carlo update will need to obey the soft constraint when we deal with
the μ and h terms.We write the h off-diagonal term and the μ diagonal
term as,

ð3Þ

ð4Þ

where C is a constant to ensure that the corresponding matrix ele-
ments are positive. The label “d/o” indicates whether the operator is

diagonal or off-diagonal, and l labels the links of the lattice. Although
these two terms are single-link operators, they may break the soft
constraint when considering neighbors, so we have to regard the
single-link operator as a multi-link operator instead with all closest
neighbors as shown in Fig. 5.

We can design the Monte Carlo algorithm to update vertices
according to the soft constraint on the cells as shown in Supplemen-
taryFig. 5. Since theoriginal sweeping clustermethod always obeys the
constraints without changing the number of dimers per site, adding
such considerations for the terms in Eq. (1) into the original sweeping
cluster Monte Carlo method makes all samplings satisfy the soft
constraint.

Stochastic analytic continuation
The main idea behind the stochastic analytic continuation (SAC)
method41,42,46,56 is to obtain the optimal solution of the inverse Laplace
transform via sampling dependent on the importance of goodness. A
set of imaginary-time correlation functions G(τ) can be obtained
through the sweeping cluster QMC method first. The real-frequency
spectral function and the imaginary-time correlation function are rela-
ted by a Laplace transformation asGðτÞ= R1

0 dωðe�τω + e�ðβ�τÞωÞSðωÞ=π.
We can inversely solve this equationbyfitting a better spectral function.
Assume the spectral function has a general form, S(ω) =∑iaiδ(ω −ωi).
We can obtain the optimal spectral function, i.e., the optimal choice of
the set {ai,ωi} in the ansatz, numerically through sampling according to
the importance of goodness of fit, with a simulated-annealing approach
and with respect to the QMC errorbars of the imaginary-time correla-
tion data G(τ). The reliability of such a QMC-SAC scheme has been
extensively tested in various quantummany-body systems, such as the
1DHeisenberg chain57 compared to theBethe ansatz, the 2DHeisenberg
model44,58 in comparison to exact diagonalization, field theoretical
analysis and neutron scattering spectra in real square-lattice quantum
magnets, deconfined quantum critical points58,59 and deconfined U(1)
spin liquid phases with emergent photon excitations60, Z2 quantum
spin liquid models with fractionalized spectra12,13,61 via anyon con-
densation theory, and the quantum Isingmodel with direct comparison
to neutron scattering andNMRexperiments62,63.We refer the readers to
the technical descriptions available in the literature for detailed doc-
umentation of our QMC+SAC scheme.

Data availability
The data that support the findings of this study are available from the
authors upon reasonable request.

Code availability
All numerical codes in thispaper are available upon reasonable request
to the authors.
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