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Abstract: Landsat has provided the longest fine resolution data archive of Earth’s environment since
1972; however, one of the challenges in using Landsat data for various applications is its frequent large
data gaps and heavy cloud contaminations. One pressing research topic is to generate the regular
time series by integrating coarse-resolution satellite data through data fusion techniques. This study
presents a novel spatiotemporal fusion (STF) method based on a depthwise separable convolutional
neural network (DSC), namely, STFDSC, to generate Landsat-surface reflectance time series at 8-day
intervals by fusing Landsat 30 m with high-quality Moderate Resolution Imaging Spectroradiometer
(MODIS) 500 m surface reflectance data. The STFDSC method consists of three main stages: feature
extraction, feature fusion and prediction. Features were first extracted from Landsat and MODIS
surface reflectance changes, and the extracted multilevel features were then stacked and fused. Both
low-level and middle-level features that were generally ignored in convolutional neural network
(CNN)-based fusion models were included in STFDSC to avoid key information loss and thus
ensure high prediction accuracy. The prediction stage generated a Landsat residual image and is
combined with original Landsat data to obtain predictions of Landsat imagery at the target date.
The performance of STFDSC was evaluated in the Greater Khingan Mountains (GKM) in Northeast
China and the Ziwuling (ZWL) forest region in Northwest China. A comparison of STFDSC with
four published fusion methods, including two classic fusion methods (FSDAF, ESTARFM) and two
machine learning methods (EDCSTFN and STFNET), was also carried out. The results showed that
STFDSC made stable and more accurate predictions of Landsat surface reflectance than other methods
in both the GKM and ZWL regions. The root-mean-square-errors (RMSEs) of TM bands 2, 3, 4, and 7
were 0.0046, 0.0038, 0.0143, and 0.0055 in GKM, respectively, and 0.0246, 0.0176, 0.0280, and 0.0141 in
ZWL, respectively; it can be potentially used for generating the global surface reflectance and other
high-level land products.

Keywords: spatiotemporal fusion; convolutional neural network (CNN); Landsat; forest

1. Introduction

The Landsat archive has become one of the most valuable remotely sensed datasets
since its opening in 2008 [1]; it allows the capture of natural or anthropogenic impacts with
unprecedented spatial detail and quality across large areas in spatial dimensions [2] and
enables retrospective analyses and characterization of changes for nearly 50 years in the
temporal dimension [3]. Landsat time-series data have been widely used in a wide range of
applications, such as land surface phenology mapping [4], assessment of human-induced
land cover changes [5,6], identification of mangrove forests [7], estimation of forest biomass
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and its dynamics [3,8], and monitoring forest disturbance and subsequent recovery [9,10];
however, Landsat time series data often contain gaps due to acquisition frequency, cloud
contamination, data communication issues, or some sensor failure (e.g., with the scan
line corrector off), which affects further application, particularly in retrieving land surface
parameters such as forest biomass [3,11].

To generate gap-filled Landsat time series data, many pixel-based composite algo-
rithms have been developed. A few algorithms used Landsat data alone without auxiliary
datasets, such as the closest-spectral-fit data assimilation method, the alternative similar
pixel method, and the temporal interpolation gap-filling approach [11,12], but most studies
have focused on utilizing data from coarse spatial resolution instruments (e.g., Moderate
Resolution Imaging Spectroradiometer (MODIS) data) through a spatial–temporal fusion
(STF) algorithm, taking advantage of the temporal resolution information of coarse spatial
resolution data. The spatial and temporal adaptive reflectance fusion model (STARFM) is a
widely accepted STF algorithm that was developed by Gao et al. [13] to predict daily surface
reflectance from Landsat and MODIS data and later applied in blending the normalized dif-
ference vegetation index (NDVI), land surface temperature, and evapotranspiration [14–16].
STARFM assumes that land cover types do not change over two dates, and the target
Landsat reflectance can be mapped from MODIS reflectance change over two dates and
Landsat data at the base time. The accuracy of STARFM-predicted reflectance was different
among diverse land cover types and tended to decrease when applied to heterogeneous
fine-grained landscapes [13,17]. Zhu et al. [18] developed an enhanced STARFM method
(ESTARFM), which improved the STARFM for predicting fine-resolution reflectance in
heterogeneous landscapes by introducing observed reflectance changes between two dates
and spectral unmixing analysis through a conversion coefficient calculated for each end-
member, which was later used to observe flooding in heterogeneous scenarios [19]. Based
on the theory that the reflectance of a coarse image pixel is a linear combination of the
reflectance of different endmembers, Wu et al. [20] developed the spatial and temporal data
fusion approach (STDFA) with the assumption that the temporal variation properties of
each endmember class were constant. Huang and Zhang [21] proposed the unmixing-based
spatiotemporal reflectance fusion model (U-STFM) to predict reflectance change without
reference to land cover change or phenological change.

In addition to weight function-based and unmixing-based fusion algorithms, some
hybrid fusion algorithms have also been proposed. Gevaert and García-Haro [22] combined
the characteristics of an unmixing-based fusion algorithm and STARFM and proposed the
spatial and temporal reflectance unmixing model (STRUM). The results of this study
suggested that the STRUM could generate reflectance with a higher correlation with
reference to Landsat images, and in addition, when few high-resolution images were
available, the STRUM was still suitable. Zhu et al. [23] proposed flexible spatiotemporal
data fusion (FSDAF), combining the merits of spectral unmixing analysis and thin-plate
spline interpolation. The FSDAF required minimum input data and was proven to be
suitable for heterogeneous landscapes. Although these fusion methods are elaborately
designed for specific applications, they suffer from a series of assumptions and associated
issues, such as inaccurate estimation of endmember numbers, nonlinear spectral mixing,
land cover changes or disturbed landscapes, and uneven quality of acquired data [24,25].

In recent years, learning-based fusion methods for generating time series images
with high temporal and spatial resolution have gained much attention. These data-driven
methods have been mainly based on sparse representation and deep learning techniques
and learn the processes, spatial patterns, or texture features lying behind satellite images
without strict constraints. Compared with the sparse representation [26,27], the deep
convolutional neural network (CNN) model can extract more abundant information from
massive remote sensing data and carry out STF more effectively. Song et al. [28] designed
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the spatiotemporal fusion using deep convolutional neural networks (STFDCNN) architec-
ture that included a nonlinear mapping CNN between MODIS and low-spatial-resolution
Landsat data, a super-resolution CNN between low-spatial-resolution Landsat data and
original Landsat images, and image fusion. Liu et al. [29] proposed a two-stream CNN
model (STFNET) that contained both temporal dependence and temporal consistency infor-
mation. Temporal consistency was included as a constraint to prevent large discrepancies in
predictions from two streams and ensure the accuracy of prediction results. The enhanced
deep convolutional spatiotemporal fusion network (EDCSTFN) adopted the “encoder–
merge–decoder” architecture, in which the first encoder was to extract Landsat features; the
second encoder was the residual encoder designed for learning the feature differences be-
tween the reference and prediction, and the features from two encoders were then merged
and input into the decoder [25]. Li et al. [30] added attention and multiscale mechanisms
to CNNs and developed the AMNet model. In addition, some Generative Adversarial net-
works (GAN) were also used in the field. For example, Chen et al. [31] used SRresnet-based
GAN for the feature-level fusion of Landsat and Sentinel data. Gao et al. [32] applied CNN
and GAN models for cloud removal application by fusing synthetic aperture radar and
optical data.

In this study, we proposed a novel STF method based on depthwise separable convo-
lution (DSC), namely, STFDSC, for reconstructing Landsat reflectance fast and accurately.
Unlike existing fusion models in which network computation was relatively large, we used
the DSC in the STFDSC. The DSC extracted the features of each channel separately without
changing the number of output feature layers and then applied a pointwise convolution on
different layers to format the output, which significantly reduced the model parameters.
Therefore, the proposed STFDSC is a lightweight CNN model. Compared with CNNs that
use standard convolution, DSC had better performance when using similar amounts of
model parameters [33]; moreover, multilevel features extraction structure is established
in the proposed STFDSC algorithm, which are like feature pyramids [34] to avoid the
loss of detail information and ensure that high accuracy could be achieved, whereas, in
previous CNN-based fusion models, the low-level and middle features were generally
ignored, possibly resulting in lower accuracy or unstable fusion results. The use of batch
normalization and residual structure can speed up STFDSC training and avoid explod-
ing/vanishing gradient problems that often occur in CNN models [35,36]. The performance
in reconstructing Landsat surface reflectance was examined in two forest regions of China.
Intercomparisons with two classical fusion methods (FSDAF and ESTARFM) and two deep
learning algorithms, EDCSTFN and STFNET, were also carried out.

2. Methodology
2.1. Study Area

The Greater Khingan Mountains (GKM) of Northeast China and the Ziwuling (ZWL)
forest area were selected as the study areas (Figure 1).

The GKM is located in a climatic and topographic transition zone from a cold-
temperate coniferous forest biome to a mid-temperate grassland biome with decreasing
latitude [37]. The mean annual temperature ranges from −4 to −2 ◦C, and precipitation
is 350–500 mm. Dominant tree species include Dahurian larch, Scotch pine, Korean spruce,
Japanese white birch, two species of aspen, and Mongolian oak [38].

The ZWL has the largest secondary forests on the Loess Plateau in Northwest China
and plays an important role in climatic regulation [39]. The mean annual temperature is
6–10 ◦C, and the mean annual precipitation is 600–700 mm, of which 60% falls from June to
September [40]. The dominant tree species are Betula platyphylla and Quercus wutaishanica,
accounting for 49.62% and 36.18%, respectively [39].
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Figure 1. Location of the study area, region of interest (purple regions in Box 1 and Box 2), and
coverages of Landsat 5 scenes labeled by Worldwide Reference System 2 (WRS-2) path/row for the
study area in the Greater Khingan Mountains (GKM, Box 1) and Ziwuling Mountains (ZWL, Box 2).
The background data showed different forest types from Li et al. [41] with mapped colors described
in the legend.

2.2. Landsat 5 TM data

Landsat 5 TM surface reflectance data were obtained from the United States Geological
Survey archives (https://earthexplorer.usgs.gov, accessed on 23 December 2020). They
were processed to the L1TP level, which has the highest geometric and radiometric quality
and is suitable for pixel-level time series analysis [42]. We collected all path 120/Row
24 and path 127/Row 35 TM scenes acquired in 2004 and clipped them to an extent of
1500 × 1500 pixels, corresponding to a 45 km × 45 km region of interest (ROI) in size, as
shown in Figure 1. Only clear (<5% cloud cover) Landsat data covering the ROIs in the
GKM and ZWL were used. Landsat surface reflectance at TM band 2, band 3, band 4, and
band 7 were included to train and test the STF methods.

The normalized difference vegetation index (NDVI) and normalized burn ratio (NBR)
were also calculated from TM surface reflectance due to their sensitivities to forest distur-
bances and recovery [9,43], and the performance of five STF methods in reconstructing
both vegetation indices was also evaluated.

2.3. MODIS Data

The MCD43A4 nadir bidirectional reflectance distribution function (BRDF)-adjusted
reflectance (NBAR) data were used to provide ancillary information for reconstructing
Landsat imagery because they could produce more accurate synthetic results than MODIS
daily reflectance data and 8-day composite reflectance data [44,45]. We downloaded the
MODIS NBAR data for 2004 from the Land Processes Distributed Active Archive Center
(https://lpdaac.usgs.gov/products/mcd43a4v006/, accessed on 28 January 2021) in tiles
h25v03 and h26v05 to correspond with Landsat scenes path 120/Row 24 and path 127/Row
35, respectively. MCD43A4 data were reprojected to the Universal Transverse Mercator
(UTM) projection, spatially subset to the ROIs, and resampled to a 30-m spatial resolution
using the nearest neighbor resampling method. Consistent with Landsat data, NBAR data
with at least 95% good quality (full BRDF inversions) pixels were selected. For the ROI in

https://earthexplorer.usgs.gov
https://lpdaac.usgs.gov/products/mcd43a4v006/
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the GKM, Landsat and NBAR data acquired on 15 June, 17 July, 2 August, 18 August, and 3
September were of good quality. For ZWL, data on 25 February, 12 March, 29 April, 15 May,
and 6 October could be used (Table 1). The Landsat data acquired on 2 August from the
GKM and 29 April from the ZWL were test images applied to evaluate the STF methods,
whereas the other data served as training data.

Table 1. Landsat and MODIS data were used in this study for 2004.

Study Area Landsat
Path/Row

MODIS
Tile

Acquisition Dates of Good Quality Landsat and MODIS Data

T1 T2 T3 T4 T5

ZWL 127/035 h26v05 25 February 12 March 29 April 15 May 6 October

GKM 120/024 h25v03 15 June 17 July 2 August 18 August 3 September

2.4. STFDSC Fusion Method
2.4.1. Architecture of STFDSC

Figure 2 illustrates the flowchart of STFDSC for reconstructing Landsat surface re-
flectance on T3 in Table 1. STFDSC is a two-stream model, with one stream predicting
Landsat on T3 from Landsat on T2, as well as MODIS data on T2 and T3 (submodel 23) and
the other stream predicting Landsat on T3 from Landsat on T4 and MODIS data on both
T3 and T4 (submodel 43). The final predicted Landsat TM surface reflectance on T3 was
obtained by combining both stream predictions.
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Figure 2. Architecture of the STFDSC model. Inputs of the STFDSC model were Landsat and MODIS
data at base times (L2, L4, M2, and M4), and MODIS data at the prediction time (M3). Pre_L23
and Pre_L43 were predicted Landsat data using two sub-models, and Pre_L3 was the final Landsat
prediction and obtained by weighted average of Pre_L23 and Pre_L43.
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For each submodel, the input data were Landsat at the base time and MODIS re-
flectance changes from the base time to the prediction time. The submodel consisted
of three stages: (1) feature extraction of fine and coarse images; (2) feature fusion, and
(3) prediction of surface reflectance at TM bands 2, 3, 4 and 7.

The feature extraction stage mainly extracted important features from Landsat data as
well as from MODIS reflectance change over two dates using one standard convolution and
two following DSCs. Coarse image features were extracted based on MODIS reflectance
change instead of original MODIS reflectance in this study, which could provide direct
temporal variations of reflectance in forest regions, and more importantly, reduce the
number of model parameters and avoid network degradation [46].

DSC could significantly reduce the number of model parameters and had better perfor-
mance when using similar amounts of model parameters with standard convolution [33].
To develop a lightweight CNN model, DSC was applied in both feature extraction and
feature fusion. All convolution operations were followed by batch normalization in DSC,
which could reduce internal covariate shift and allow us to use larger learning rates and
thus speed up the optimization of hyperparameters [35]; moreover, previous studies sug-
gested that saturated activation functions in CNN models, such as tanh and sigmoid, could
suffer from exploding/vanishing gradient problems; we thus selected the non-saturated
activation function LeakyReLU in the STFDSC [36].

In the feature fusion stage, the multilevel features generated in the feature extraction
part were stacked. All produced features except the lowest-level features of MODIS
reflectance change were incorporated in the STFDSC. The lowest-level features of MODIS
reflectance change were not considered because coarse MODIS data contained less spatial
information at this level. The DSC operation was performed on all stacked features.
The prediction part included the prediction of fine-resolution residual images and their
combination with Landsat data to finish one-stream surface reflectance reconstruction.

The final predicted result (Pre_L3) was a weighted combination of two-stream predic-
tions [47]. For each band, the weight was calculated according to the difference between
each of the submodel predictions and the corresponding surface reflectance. A smaller
difference corresponded to a higher weight.

Pre_L3 = w23 × Pre_L2→3
3 + w43 × Pre_L4→3

3 (1)

w23 =

∣∣∣∣ 1
Pre_L2→3

3 −M3

∣∣∣∣∣∣∣∣ 1
Pre_L2→3

3 −M3

∣∣∣∣+ ∣∣∣∣ 1
Pre_L4→3

3 −M3

∣∣∣∣ (2)

w43 =

∣∣∣∣ 1
Pre_L4→3

3 −M3

∣∣∣∣∣∣∣∣ 1
Pre_L2→3

3 −M3

∣∣∣∣+ ∣∣∣∣ 1
Pre_L4→3

3 −M3

∣∣∣∣ (3)

In this study, the STFDSC model was implemented in PyTorch deep learning framework.

2.4.2. Training

Two submodels in Figure 2 were trained separately. The parameters in feature extrac-
tion, feature fusion and prediction were jointly optimized using Adam. Submodel 24 was
taken as an example. Input data for the training process included Landsat on T2, which was
expressed as L2, and MODIS residual image on T2 and T4 labeled by M24 was computed as
M24 = M4 −M2, and the target image was Landsat on T4 (L4). The loss function used in
the optimization is expressed as:

loss =
4

∑
i=1

(
weighti ×MAE

(
L4,i − Pre_L2→4

4,i

))
+

λ

2
× ‖W ‖2 (4)
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weighti =
(meanL4,i)

−1

4
∑

j=1

(
meanL4,j

)−1
(5)

where weighti is the weight assigned for the i-th band, MAE represents the mean absolute
error, L4,i is the i-th band of L4, meanL4,j is the average reflectance of the i-th band of L4,
and Pre_L2→4

4,i is the predicted L4,i based on L2, which is also the output of submodel 24 in
the training process.

L2 regularization was included in the loss function to prevent overfitting. We as-
signed more weight to the band with smaller mean reflectance to reduce the problem that
predictions at bands with smaller reflectance values were not accurate.

After the above steps, a trained submodel 24 was obtained. The trained model was
then used to predict Pre_L2→3

3 , as shown in Figure 2. Similarly, submodel 42 was trained
and used to generate predictions Pre_L4→3

3 .

2.5. Comparison of Experiments

To evaluate the impacts of the time intervals of the two nearest good-quality Landsat
datasets on the prediction accuracy, we carried out the following three experiments in the
ZWL and GKM (Table 2). Comparisons of STFDSC with FSDAF, ESTARFM, EDCSTFN, and
STFNET under these scenarios were also performed. Among these methods, the STFDSC,
ESTARFM, EDCSTFN, and STFNET methods required two reference images as input. One
reference image acquired before T3 and one reference image acquired after T3 were used
to reconstruct Landsat imagery on T3 in all experiments. FSDAF required one reference
image, and we used the Landsat reference data close to T3 in each experiment.

Table 2. Comparison experiments carried out in the ZWL and GKM with different time intervals.

Study Area Experiment Time Intervals (Days) between the Left/Right
Reference Image and Target Image

ZWL

T2/T3/T4 48/16

T1/T3/T4 64/16

T2/T3/T5 48/160

GKM

T2/T3/T4 16/16

T1/T3/T4 48/16

T2/T3/T5 16/32

2.6. Generating Landsat Surface Reflectance Time Series

The STFDSC was then used to generate Landsat time series at 8-day intervals between
two reference Landsat, which included Landsat from 15 June to 3 September for GKM, and
from 25 February to 15 May for ZWL.

Due to cloud and residual atmospheric effects, gaps existed in the MODIS reflectance
time series [48]. The linear interpolation method was used to generate spatially and tempo-
rally complete MODIS data time series before reconstructing Landsat data time series.

2.7. Accuracy Assessment

Evaluation indices included the root mean square error (RMSE), correlation coefficient
(CC), and spectral angle mapper (SAM) index. The SAM M index calculates the spectral
angle between the reconstructed image and the observed Landsat reference image. Lower
SAM, lower RMSE, and higher CC values were associated with the higher quality of
a reconstructed image. In this study, the average RMSE, CC, and SAM values of the
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predicted reflectance compared with the observed reflectance on 2 August and 29 April
were calculated for the GKM and ZWL, respectively.

RMSEj =

√
∑n

i=1 (yi − ŷi)
2

n
(6)

CCj =
∑n

i=1 (yi − µy)(ŷi − µŷ)√
∑n

i=1 (yi − µy)
2
√

∑n
i=1 (ŷi − µŷ)

2
(7)

SAM =
1
n

n

∑
i=1

arccos
∑m

j=1

(
yj

i ŷ
j
i

)
√

∑m
j=1

(
yj

i

)2
∑m

j=1

(
ŷj

i

)2
(8)

where n is the number of pixels in an image, y is the observed reflectance, ŷ is the predicted
reflectance, µy is the mean reflectance of the image, µŷ is the mean predicted reflectance of
the image, j is the j-th band, and m is the number of bands.

In addition, pixels with NDVI values larger than 0.30 were extracted, and density
scatter plots were then drawn based on 20,000 randomly selected pixels to further examine
the differences between the observed reflectance and STF-predicted SR in forest pixels.
Mean MAE and bias were computed as follows.

MAE =
1
n

n

∑
i=1
|(yi − ŷi)| (9)

bias =
1
n

n

∑
i=1

(ŷi − yi) (10)

3. Results
3.1. Performance of STF Methods in the Three Experiments

The evaluation indices calculated for the ZWL and GKM are shown in Figures 3 and 4,
respectively. In the ZWL, EDCSTFN generally had better performance in predicting Landsat
surface reflectance, followed by STFDSC. The results of Experiment T2/T3/T4 indicated
that STFDSC performed slightly better in predicting surface reflectance at TM band 3 than
EDCSTFN, with an RMSE of 0.0176 and CC of 0.8747. In Experiment T1/T3/T4, STFDSC
provided an overall more accurate fusion result in terms of RMSE, and ESTARFM provided
comparable results. In Experiment T2/T3/T5, T2 and T5 had a time interval of 208 days,
and T2 and T3 were at an interval of 48 days. Under this condition, two traditional methods,
ESTARFM and FSDAF, had better prediction accuracy than the other three CNN-based
fusion methods (Figure 3). FSDAF had the best performance because it required only one
pair of data for prediction, and Landsat at T2 and MODIS at T2 and T3 served as inputs.
When only a set of Landsat-MODIS data was available, FSDAF could be a suitable choice.
STFDSC outperformed two other CNN methods and had CC values close to those of the
traditional fusion methods. Using the SAM index, STFDSC even outperformed the two
traditional methods and had the best performance.

Figure 3 shows that the RMSE of the STFNET prediction at TM band 4 was significantly
larger than that of the other methods, which may have been caused by the large variation
in reflectance. The mean reflectance was 0.1383 at T2 and 0.3172 at T4 in the ROI in the
ZWL region. Significant variation in reflectance was not found in the GKM region, where
STFNET had good performances (Figure 4).
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Figure 3. Performance of five STF methods in reconstructing Landsat surface reflectance in the ZWL.

Among the three experiments in the GKM, input data of Experiment T2/T3/T4
were Landsat data at T2 and T4 and MODIS data from T2-T4 acquired the closest to
T3. The STFDSC results were much closer to the Landsat reference data than ESTARFM,
FSDAF, EDCSTFN, and STFNET. For all four TM bands, the surface reflectance predicted
by STFDSC had the lowest RMSE and highest CC values. In addition, STFDSC also
corresponded to the lowest SAM index, 0.0219, suggesting the optimal accuracy achieved
(Figures 4 and 5). In Experiment T1/T3/T4, STFDSC still produced the most accurate
synthetic image with an average RMSE of 0.0132 and CC of 0.8266. The surface reflectance
generated by EDCSTFN was observed to be abnormal at TM band 3, partly due to its
sensitivity to data preprocessing. We tried bilinear interpolation instead of the nearest
neighbor method to preprocess the MODIS data and found that it performed normally in
the GKM. The main reason for the observed abnormal phenomena was probably that the
mean reflectance at TM band 3 was 0.0304, substantially lower than 0.3036 at TM band 4
and 0.0615 at band 7, and fluctuations existed in predicting lower reflectance by EDCSTFN.
In this study, the loss function adopted the weighted average method, in which bands with
smaller mean reflectance were assigned a larger weight to avoid substantial prediction
error at TM band 3; therefore, compared with EDCSTFN and STFNET, STFDSC produced a
more stable and accurate results, which also suggested its better performance in generating
Landsat surface reflectance. In Experiment T2/T3/T5, STFDSC still achieved the best
prediction accuracy, with an average RMSE of 0.0081, CC of 0.9314, and SAM of 0.0228
(Figures 4 and 5).
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3.2. Performance of STF Methods in Deriving the NDVI and NBR

We calculated the NDVI and NBR from fused Landsat surface reflectance. As shown
in Table 3, STFDSC provided the most accurate NDVI in the ZWL and GKM, with RMSEs
of 0.0677 and 0.0226, respectively. In addition, STFDSC obtained the closest result to the
reference NBR derived from Landsat data in the GKM, with an RMSE of 0.0281 and CC of
0.8891. In the ZWL, EDCSTFN produced slightly better NBR results than STFDSC, with
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RMSEs of 0.0457 and 0.9467. These results suggested that surface reflectance generated by
STFDSC could be used to derive vegetation indices accurately.

Table 3. Performances of five STF methods in reconstructing the NDVI and NBR.

Method
ZWL GKM

NDVI
RMSE

NDVI
CC

NBR
RMSE

NBR
CC

NDVI
RMSE

NDVI
CC

NBR
RMSE

NBR
CC

STFDSC 0.0677 0.8825 0.0526 0.9268 0.0226 0.9114 0.0281 0.8891

FSDAF 0.0726 0.8455 0.0543 0.9361 0.0288 0.8509 0.0339 0.8433

ESTARFM 0.0696 0.8669 0.0482 0.9444 0.0262 0.8685 0.0354 0.8338

EDCSTFN 0.0800 0.9005 0.0457 0.9467 4.6585 −0.0406 0.0353 0.8202

STFNET 0.1386 0.8656 0.2198 0.9287 0.0345 0.8682 0.0342 0.8649

Moreover, we extracted the pixels with NDVI values larger than 0.30 and then ran-
domly selected 20,000 pixels and drew the density plot of selected pixel TM band 4 and
band 7 under the T2/T3/T4 experiment. The results are shown in Figure 6. All fusion
methods, except EDCSTFN, underestimated the near-infrared reflectance in the ZWL. The
underestimation of STFNET prediction was particularly serious, with a negative bias of
0.0935. The problem could be explained by the algorithm principle. Both STFDSC and
STFNET contained two submodels that combined MODIS reflectance change and Landsat
data to compute the weight, and predictions were the weighted average of results from
the two submodels. ESTARFM and FSDAF also predicted the target Landsat data based
on the differences in MODIS reflectance. In the ZWL, the mean MODIS reflectance change
was 0.1485 from T2 to T3 and 0.0413 from T3 to T4, corresponding to Landsat reflectance
changes of 0.1627 and 0.0162, respectively. MODIS reflectance change was less than Landsat
reflectance change from T2 to T3, while from T3 to T4, MODIS reflectance change was
larger than Landsat reflectance change, which made the predictions to be far from the
reference. EDCSTFN used the MODIS and Landsat reflectance data without incorporating
their changes over time and thus avoided the underestimation caused by the observed
violation. In TM band 7, EDCSTFN achieved the best accuracy in terms of CC, RMSE, and
MAE, followed by STFDSC. The results in the GKM are shown in Figure 7. STFDSC had the
best prediction accuracy, followed by STFNET. EDCSTFN generally overestimated Landsat
reflectance at both band 4 and band 7.
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3.3. Visual Assessment of the Five STF Fusion Methods

Figure 8 shows the prediction results of the five fusion algorithms in the ZWL under
Experiment T2/T3/T4. Due to cloud contamination of Landsat data on T4, the fusion
results of FSDAF, ESTARFM and STFNET were severely affected, where clouds and cloud
shadows were clearly observed. In contrast, no obvious cloud or shadow existed in the
STFDSC and EDCSTFN reconstructed images, suggesting the robustness of the STFDSC
and EDCSTFN fusion methods; however, EDCSTFN likely failed to capture spatial details,
and the corresponding prediction results were more obscured than those from other STF
methods. NDVI and NBR data calculated from fused reflectance by STFDSC were also
close to the real data in the first row (Figure 8). These results demonstrated the optimal
performance of STFDSC in generating Landsat surface reflectance.

Figure 9 shows the performance of the five STF methods in the GKM based on Experi-
ment T2/T3/T4. The predicted results of STFDSC were shown to be very similar to those
of the Landsat reference image in color, especially in the middle and lower right of the
image in the first column. The spatial distribution of the NDVI and NBR in Figure 9 also
suggested the better performance of the STFDSC method; however, in forests with a higher
density such as in the lower right corner, significant differences between observations and
STFDSC predictions were found. Due to the large errors in surface reflectance prediction at
TM band 3, abnormal EDCSTFN NDVI values were observed.

3.4. Landsat Surface Reflectance Time Series Generated Using STFDSC

Landsat data time series from 25 February to 15 May 2004 at 8-day intervals in the
ZWL region were shown in Figure 10. We did not predict the Landsat data from 15 May to
6 October, because the two reference data had an interval of 144-day in acquisition time,
and STFDSC was not quite suitable for prediction with longer time series without any
observation, as shown in Figure 3.

According to the MODIS data time series, significant greening occurred between 5
April and 21 April, which was well captured by reconstructed Landsat data. For Landsat
data at reference time periods, such as 25 February, 29 April, and 15 May 2004, some
pixels were contaminated by cloud; however, the phenomenon was not observed from
Landsat data at prediction times, which indicated that the introduction of MODIS data
could improve Landsat predictions to some degree. These results were also established for
Landsat data time series from 15 June to 3 September 2004 in the GKM region, suggesting
the rationality of STFDSC to generate Landsat data time series (Figure 11). The gaps in
MODIS data (e.g., on 9 July and 25 July) did not greatly affect the accuracy of reconstructed
Landsat due to the preprocess of MODIS data gaps before prediction. We extracted MODIS
and Landsat reference at the green, red, near-infrared, and shortwave infrared bands of
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different forest types in GKM and ZWL, and results showed that Landsat reflectance data
were similar to or even better than MODIS data in temporal trajectories (Figure 12).
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Figure 8. Fusion results on 29 April in the ZWL region. The first column shows the TM band
7-4-2 composite images of the reference image and five STF methods; the second column shows the
zoomed-in details of the black rectangle in the first column; the third column shows the calculated
NDVI, and the last column shows the calculated NBR.
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Figure 9. Fusion results on 2 August in the GKM region. The first column shows the TM band
7-4-2 composite images of the reference image and five STF methods; the second column shows the
zoomed-in details of the black rectangle in the first column; the third column shows the calculated
NDVI, and the last column shows the calculated NBR.
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Figure 10. MODIS and Landsat data time series from 25 February to 15 May 2004 in the ZWL region.
TM images were shown using the 7-4-2 band combination, and MODIS images were shown using
the 7-2-4 band combination. The blue arrow between MODIS and Landsat represented that the
corresponding Landsat data were reconstructed, rather than the observed reference image.
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Figure 11. MODIS and Landsat data time series from 15 June to 3 September 2004 in the GKM region.
TM images were shown using the 7-4-2 band combination, and MODIS images were shown using
the 7-2-4 band combination. The blue arrow between MODIS and Landsat represented that the
corresponding Landsat data were reconstructed, rather than the observed reference image.
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Figure 12. MODIS and Landsat reflectance time series of different forest types in GKM and ZWL
regions. The top row represented the temporal trajectories of reflectance in GKM, and the bottom
row corresponded to temporal trajectories of reflectance in ZWL.

4. Discussion

We proposed the STFDSC method to predict Landsat data time series, which contains
low-level and middle-level features that have been widely ignored in most STF-related
CNN models [29,49]. The usage of multilevel feature information could be the major reason
for its better performance demonstrated in this study.

To build an efficient CNN, we used the DSC in the architecture of STFDSC, which was
especially suitable for mobile and embedded vision applications [50]. The combined use
of DSC and some efficiency tricks (e.g., residual structure, BatchNorm) can prevent the
overfitting and speed up network convergence. Compared with EDCSTFN, the number of
trainable parameters in STFDSC was less. For the prediction of the target image with a size
of 4 × 150 × 150, the forward propagation floating-point computation required by the two
methods as shown in Table 4. STFNET was the lightest model, but at the cost of sacrificing
prediction accuracy.

Table 4. The number of trainable parameters and forward propagated floating-point operations of
the three CNN-based STF methods.

Method Trainable Parameters Million FLOPs

STFNET 70,376 1583.5

STFDSC 97,288 2220.7

EDCSTFN 281,764 10,600.7

Since surface reflectance at four TM bands varied in a wide range (e.g., from 0.0305 at
TM band 3 to 0.3036 at TM band 4 in the GKM), the band with higher reflectance tended to
contribute more to the loss function when the weight factor was not included. Therefore,
we adopted the weighted loss function in STFDSC, assigning the weight for each band
according to the mean surface reflectance value; this could ensure the stability of STFDSC in
predicting surface reflectance at the band with small reflectance values to some degree. We
also obtained the final predicted reflectance using the weighted average of the two-stream
prediction results, which also reduced the variation in the forecast results.

It should be noted that, similar to other STF methods, high-quality reference data were
required in STFDSC; however, this requirement could not be met in practical applications,
or the two nearest reference data points on the acquisition date may have a long-time
interval, which could possibly cause a large bias in the predictions. In some cases, only
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Landsat images with heavy cloud cover are available, particularly in tropical forests; it
would be necessary to consider how to fuse with auxiliary data sources such as SAR
data [51].

The proposed STFDSC could be a unified framework for fusing datasets from different
sensors, including but not limited to Landsat and MODIS data. Future research could be
conducted on the generation of higher spatial or temporal satellite images, such as through
the fusion of WorldView-2 or Sentinel-2 images using the STFDSC algorithm [52,53], and
higher-level processed satellite data products, such as the leaf area index and land surface
temperature [47,54,55].

5. Conclusions

We proposed an STFDSC method for reconstructing Landsat surface reflectance from
Landsat and MODIS data. The performance was evaluated in the GKM and ZWL forest
regions of China, and comparisons with four published fusion methods, FSDAF, ESTARFM,
EDCSTFN and STFNET, were also carried out. The results suggest that the STFDSC based
results were much closer to Landsat reference data in the GKM than ESTARFM, FSDAF,
EDCSTFN, and STFNET. EDCSTFN performed slightly better than STFDSC in ZWL, but
produced abnormal predictions at TM band 3 in the GKM; moreover, the NDVI and NBR
calculated from Landsat surface reflectance generated by STFDSC were very close to those
obtained from Landsat reference data. The results indicated that the STFDSC proposed in
this study had stable and accurate predictions in both the GKM and ZWL. Based on STFDSC,
Landsat reflectance time series at 8-day temporal resolution were also reconstructed in two
regions. Although STFDSC was designed to generate reflectance time series in this study, it
could be used to integrate higher-level processed satellite data products such as the leaf
area index and land surface temperature, which needs to be investigated in future studies.
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