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Abstract—This paper describes the design, fabrication, and
record performance of a new class of ultra-wideband wavelength
tuning, ultra-low noise semiconductor laser, the Integrated Coher-
ent Tunable Laser (ICTL). The ICTL device is designed for, and
fabricated in, a CMOS foundry based Silicon Photonics platform,
utilizing heterogeneous integration of III-V material to create the
integrated gain section of the laser—enabling high-volume mass-
market manufacturing at low cost and with high reliability. The
ICTL incorporates three or more ultra-low loss micro-ring res-
onators, with large ring size, in a Sagnac loop reflector geometry,
creating exceptional laser reflector performance, plus an extended
laser cavity length that enables highly-coherent output; ultra-low
linewidth and phase noise. This paper describes record integrated
laser performance; 118 nm wavelength tuning, covering S-, C- and
L-bands, with Lorentzian linewidth <100 Hz, and with excellent
relative intensity noise (RIN) of < —155 dBc/Hz. The remarkable
performance of the ICTL device, coupled with the high volume/low
cost capability of the Silicon Photonics platform enables next-
generation applications including ultra-wideband WDM trans-
mission systems, fiber-optic and medical-wearable sensing sys-
tems, and automotive FMCW LiDAR systems utilizing wavelength
scanning.

Index Terms—Heterogeneous integration, laser tuning, low
relative intensity noise, narrow linewidth, semiconductor laser,
silicon photonics, ultra-low noise, ultra-wideband wavelength
tuning.

I. INTRODUCTION

IGH-PERFORMANCE lasers are key components for a
wide range of communications, sensing, and RF photonics
applications. Extremely low Frequency Noise (FN) is important
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for coherent systems using advanced modulation formats (e.g.,
higher order QAM), where signal and optical local oscillator
are mixed in photodetectors to provide electrical outputs, and in
RF photonics where two optical signals mix in a photodetector
to produce an RF signal [1]. Optical sensing systems including
FMCW LiDAR, distributed fiber sensing, and interferometric
acoustic sensing systems also require extremely small low-
frequency FN and associated ultra-low Lorentzian linewidth.
Applications currently dominated by expensive, bulky, power-
hungry solid state and fiber lasers can now be addressed by
integrated, ultra-low linewidth semiconductor lasers with the
benefits of reduced size, weight, power consumption and cost
(SWaP-C). In addition, many applications require lasers that
operate over a wide wavelength range, e.g., ultra-wide band
(UWB) wavelength division multiplexed (WDM) systems op-
erating across S-, C- and L-Bands [2], or in systems leveraging
ultra-wideband wavelength tunability, e.g., automotive LIDAR
using wavelength for scanning [3], where the wavelength tuning
range is paramount. This paper describes a laser design that ad-
dresses all of these requirements; high power, ultra-low FN and
Lorentzian linewidth, ultra-wideband wavelength tuning, and
extremely low relative intensity noise (RIN) [4]. The Integrated
Coherent Tunable Laser (ICTL) device is developed on a CMOS
Foundry compatible Silicon Photonics platform that is enabled
by heterogeneous integration [5], to create a high-volume, low-
cost, integrated laser with unparalleled performance, that will
be disruptive in many applications [6].

II. ICTL DESIGN

The novel ICTL device design is a new approach for micro-
ring resonator (MRR) based tunable lasers; it is not just a
simple extension of a vernier tuned two MRR based laser, made
by adding a third tuning MRR. Ultra-wide wavelength tuning
together with ultra-low noise performance, i.e., linewidth and
RIN, require a long, low-loss external cavity — therefore made
of ultra-low loss (ULL) waveguides, in addition to excellent
laser cavity singlemode selectivity, i.e., a high suppression of un-
wanted laser modes. Typical two MRR based integrated tunable
lasers use vernier tuning; i.e., two MRRs designed with as small
aradius/circumference as possible in order to expand the tuning
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range while still ensuring singlemode operation, e.g., [7]-[11].
This compromise approach limits the potential tuning range as
well as the laser performance, because small MRRs require
tight optical confinement for low bending losses in the small
radius rings, leading to designs with high waveguide losses and
shorter effective cavity lengths — and therefore larger linewidth.
Additionally, the use of high Q MRRs to increase the effective
cavity length also increases the power density in the MRR and
therefore can increase nonlinear loss. This is particularly impor-
tant in Silicon Photonics foundry based devices using silicon
waveguides, due to two photon absorption (TPA) and associated
free carrier absorption (FCA) in the waveguides [12], which
further increases MRR losses. Conversely, the ICTL utilizes
three or more MRRs fabricated from ULL waveguides and large
circumference MRRs [15], in order to meet all of these require-
ments, without compromise. Extensive numerical simulations
are required in order to create the optimum ring-based laser
reflector designs, to meet all the performance goals, with all
ICTL designs in this paper being carried out using a GUI based
laser reflector optimization tool.

The ICTL device is designed to include a specific external
cavity reflection design, initially modeled on the fiber Bragg
grating (FBG) based extended-distributed Bragg reflector (E-
DBR) laser product developed by Morton Photonics, which
can produce Lorentzian linewidths as low as 15 Hz [13]. A
commercial version of the FBG based E-DBR laser provides
150 mW output power at 1550 nm, Lorentzian linewidth below
100 Hz, and RIN below —165 dBc/Hz [14].

While the laser reflector design for the ICTL was initially
modeled on a custom high-performance FBG design, itis notable
that the limitations of even the best/optimally written FBGs
can be improved upon by using an MRR based reflector. Ad-
ditionally, an MRR based reflector can typically provide wide
wavelength tunability, by tuning the ring resonance frequencies
—requiring more complex control, whereas grating based lasers
are usually single wavelength devices. FBGs can provide a nar-
row reflection peak, with long associated cavity length, however,
due to laser design and FBG writing, practical gratings will have
sidelobes that affect the laser performance. This can be overcome
in an MRR based laser reflector that uses lithography to control
coupling coefficients on each side of the MRR, and the length
of the ring. The ring circumference (optical length) is the key
parameter, and this can be varied by changing the temperature of
the waveguide using the thermo-optic effect, varying effective
optical length and the ring resonance frequencies as a result.
Fluctuations in temperature across the device can be counter-
acted by tuning the overall length of the MRR to its desired
value, while temperature variations along a grating cannot be so
easily counteracted.

A schematic of a three ring ICTL device is shown in Fig. 1. The
gain section can be a silicon rib waveguide with III-V material
bonded on top to provide a III-V/Si hybrid waveguide [5], or
a II-V gain chip heterogeneously integrated by die attach or
by micro-transfer printing [16]. The gain section is coupled to
an external cavity (right) including a phase control element,
a 2:2 tunable coupler (50/50), which, when combined with
the three rings interconnected by bus waveguides, forms the
laser reflector (in blue). The laser reflector is a Sagnac loop
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Fig. 1. Schematic of a 3 ring ICTL device: A III-V heterogeneously integrated
gain element, a tunable loop reflector forming one laser cavity end, and an
ultra-wideband wavelength tunable laser reflector incorporating three large bus-
coupled microresonators in a Sagnac loop configuration forming the other laser
reflector. A phase control element controls the laser cavity mode.

mirror that incorporates three or more MRRs interconnected by
bus waveguides, and with the coupler set at 50/50 then 100%
of the reflection goes back to the gain chip. The tunable 2:2
coupler allows the 50/50 coupling ratio to be achieved over the
full (ultra-wide) wavelength operating range of the ICTL. The
alternative output of the 2:2 coupler can be used to optimize the
coupler splitting ratio, e.g., measuring power on an integrated
photodetector, and minimizing this output would maximize the
power back to the gain chip. Additionally, this alternative output
can be used as the main output of the laser, by changing the
coupling ratio to direct part of the output to it. In this case,
the reflector on the left side of the gain element would be
set to maximum reflectivity, approaching 100%, and the laser
output taken from the alternative output. An advantage of using
this alternative output is that the optical power has just passed
through the laser reflector, which filters amplified spontaneous
emission (ASE) noise away from the lasing wavelength, further
reducing the laser RIN. The ‘standard’ output taken from the
left end of the gain element includes additional ASE noise from
a pass through the gain element.

A tunable loop reflector can be used on the left side of the
gain element to provide the left end of the laser cavity as well as
to provide the optical output. This provides the desired optical
feedback while being an easy element to include on an integrated
platform with other components on a photonic integrated circuit
(PIC), such as a modulator, and allows the reflectivity of that
end of the laser cavity and the output power to be optimized.

The design and operation of the three ring laser reflector is
explained through the reflection spectra shown in Figs. 2 and 3. It
is most easily understood by starting with the reflection spectrum
from a single MRR based laser reflector, as shown in Fig. 2a.
The single ring provides a constant peak amplitude comb of
reflections with an FSR given by the circumference, L, of the ring
(FSR = c/nqg.L), where nqg is the effective index of the MRR
ring waveguide. For the ICTL device described in this paper,
this first Si ring has a radius of 599.967 um (close to the 600
pm minimum radius for ultra-low-loss Si MRR operation), for
an FSR of 22.1 GHz with a group index 3.6064. The bandwidth
of each of these reflections is 0.74 GHz, the time delay/effective
length of the ring is 409 ps. A second ring is added to the
first, with a radius slightly larger than the first (600.856 pm),
providing the broad reflection spectrum shown in Fig. 2b. The
super-structure repeat reflection peaks are seen near 1440 nm
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Fig. 2.  Laser reflector reflection spectra; a) Single Ring (radius 599.967 pm),

and Dual Ring (600.856 pm), on b) wide, and c) narrow wavelength ranges.

and 1680 nm, providing a total tuning range of (1680-1440)/2,
i.e., 120 nm. However, looking close in at the reflection peak
near 1550 nm (Fig. 2¢) there are still many reflection peaks with
similar peak reflectivity, and the dual ring reflector therefore
cannot support single mode laser operation.

The ICTL design process then adds a third ring, this radius
is chosen to provide the optimum laser reflector response, i.e.,
excellent singlemode selectivity over a very wide tuning range,
as well as a high tolerance to potential variations from device
fabrication. This design process is carried out using a custom
Matlab based laser reflector simulation and optimization tool.
Results for the device demonstrated in this paper are shown in
Fig. 3. The wide reflection response in Fig. 3a shows that all
potential lasing modes over 120 nm tuning range (before the
next super-structure peaks) are >8.4 dB lower than the main
reflection peak. As part of the design process more significance
is placed on close in reflection peaks, i.e., +/— 100 GHz from
the central peak, shown in Fig. 3b, as these have more impact
on lasing operation and noise, and in this case, all of the close
in reflection peaks are at least 20 dB lower than the main peak.
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Fig. 3. Three Ring laser reflector spectra; a) wide, b) close (4/— 100 GHz),
and c¢) showing linear reflection central peak, and group delay.

The laser reflector has a peak amplitude reflectivity of 0.5,
assuming a ULL Si loss of 0.25 dB/cm, and for a design with a
coupling coefficient (k) between each ring and bus waveguide
of 0.3 (amplitude). The effective length of this laser reflector
is 108 mm (1.3 ns group delay), enabling the record narrow
linewidths but also explaining how sensitive the device is to
ULL Si waveguide loss. The laser reflector has a design FWHM
of 0.36 GHz.

Initial laser reflectors were designed and fabricated using
SigNy ULL waveguides and excellent performance was shown
[17]; a three ring laser reflector using pulley couplers provided
15 dB suppression of all reflector sidelobes over the full measure-
ment range of 80 nm, whereas a four ring laser reflector design
provided additional sidelobe suppression of 20 dB. Adding
an additional ring (or more) provides additional degrees of
freedom in the ICTL design, allowing the laser reflector and
ICTL performance to be optimized for a specific application.
E-DBR lasers incorporating a SisN4 Bragg reflector and using a
multilayer heterogeneous integration approach to add the III-V
gain element have been demonstrated [18], [19]. This process is
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Fig. 4. UCSB Silicon Photonics Heterogeneous Integration process flow.

being extended in order to create the first SisN, laser reflector
based ICTL devices.

With the development of ULL silicon waveguides as part
of the UCSB heterogeneous silicon photonics platform [20],
which provide singlemode passive waveguide loss as low as
0.16 dB/cm, fully integrated E-DBR lasers with III-V on silicon
hybrid gain elements and ULL Si Bragg gratings were demon-
strated [21]. Low loss and higher optical power handling capabil-
ity could be provided by a multi-micron Si waveguide platform
[22]. Early ICTL devices using ULL silicon waveguides showed
encouraging results [23] by taking advantage of large (600 pum)
MRRs with low waveguide loss, however, processing issues
from wafer bonding and high P-contact resistance required
excessive anneals that damaged the gain sections, leading to low
optical power and degradation during testing. New processes
have been developed to overcome these limitations, leading to
the ICTL devices described in this paper.

III. HETEROGENEOUS SILICON PHOTONICS FABRICATION

ICTL devices were fabricated on the UCSB heterogeneous
silicon photonics platform [5]; the main process sequence is
shown in Fig. 4. SOI wafers with a 500 nm Si device layer
and 1 pm bottom oxide (BOX) were patterned using a 248
nm deep UV stepper, and etched to create strip waveguides,
standard rib waveguides (231 nm etch) and ULL Si waveguides
with a shallow (56 nm) etch depth. III-V epitaxial material
was wafer bonded to the patterned SOI wafers and the InP
substrate was removed before wafer-scale processing of the
III-V material to provide the hybrid (III-V/Si) gain elements.
Processing was finished with encapsulation and metallization to
provide completed ICTL devices.

The gain element is 2.5 mm in length, a hybrid Si/IlII-V
waveguide with a Si width of 850 nm to optimize the optical
field distribution in the Si and III-V multiple quantum well
(MQW) material for low loss and overall high gain. The MQW
material includes three InAlGaAs wells, which provides a —3
dB gain bandwidth of ~69 nm; detailed design and performance
is described in [24]. Transitions from the hybrid Si/III-V gain
section to the passive Si waveguides utilize tapers [24], [25] with
approximately 0.5 dB loss per transition and —33 dB reflections.

The mask layout for the three ring ICTL device, a photograph
of the device used for results in this paper, and a photograph of
a device being probed in the measurement setup are shown in
Fig. 5. The fabricated ICTL device includes a tunable reflector
to the left of the gain element, the output of which is partly
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Fig. 5. Layout of 3 ring ICTL with large probe pads and dice mark (top),
labelled photo of ICTL device (middle), probed ICTL device (bottom).

coupled to a monitor photodiode before the rest of the power is
output from an angled tapered waveguide. Initial measurements
were carried out using this geometry, however, to improve phase
noise/linewidth performance, the loop reflector and additional
elements were diced off and the Si waveguide polished to provide
a natural facet reflectivity, R~ 0.32. The device photograph in
the center of Fig. 5 is of the ICTL after this facet polish. The gain
element includes five enlarged bond pads (contacting N : P : N
: P : N regions of the gain material) for improved heatsinking
over previous designs. The cavity phase control, used in the
experiments, is a heater next to a Si rib waveguide, and the
overall chip size is 9.5 mm x 1.7 mm.

IV. ICTL MEASUREMENTS

An ICTL tuning map was obtained by scanning resonance
frequencies (heater powers) of two MRRs (51 values each),
leaving the other unbiased, at each pair of MRR powers scanning
the cavity phase (21 values) to maximize the output power. When
optical spectra confirmed singlemode operation with side mode
suppression Ratio (SMSR) >30 dB, the bias powers were stored
to file with wavelength, SMSR, and power, without any further
optimization of heater settings. An example of this tuning scan
for 300 mA bias is shown in Fig. 6. Resonances of the two
similar rings, MRR 1 and MRR 2, are close enough across a
small wavelength range for lasing once the third ring, MRR 3, is
tuned to the same resonance frequencies, e.g., for MRR 2 zero
power, when MRR 3 is scanned across its complete range, the
laser wavelength is tuned between 1520 and 1530 nm. As the
MRR 2 heater power is increased, this lasing wavelength range
moves to shorter wavelengths, i.e., ~1510 nm for 20 mW heater
power, with the minimum wavelength near 1490 nm (40 mW
heater), before lasing wavelengths jump to long wavelength near
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1590 nm at 60 mW heater power. The gap in lasing points for
MRR heater powers between 40 mW and 60 mW reduces as the
laser bias current is increased, until the maximum tuning range
is found with no gap, e.g., at 500 mA ~ 118 nm tuning. From
the stored data, SMSR (using a large resolution bandwidth for
the 120 nm wavelength scans) and normalized power are both
plotted versus lasing wavelength in Fig. 6(b), and (c).

The same tuning scan was carried out for a series of bias
currents, finding the wavelength tuning range for each bias,
while also finding the laser threshold current of ~125 mA, from
where the wavelength tuning rage is smallest; as shown in Fig. 7.
A maximum tuning range of 118 nm is found for 500 mA bias,
using the tuning points stored to file, and not trying to further
optimize bias points to extend the range.

High resolution spectra (0.02 nm RBW) were taken on
the ICTL device with the polished facet in order to confirm
singlemode operation and measure SMSR. Spectra for lasing
wavelengths between 1490 and 1600 nm at a 5 nm spacing are
shown in Fig. 8, taken using data from a tuning scan for ring
and phase control heater powers. These spectra demonstrate
the high fidelity of the laser output. The ICTL device can be
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continuously tuned across its full 118 nm tuning range using
appropriate heater values. The maximum fiber coupled output
power seen from these spectra, after a two stage fiber isolator,
is 1.54 mW, for operation at 1555 nm, equivalent to ~15 mW
in the output Si strip waveguide, assuming a 10 dB lensed fiber
coupling loss.

SMSR values close to the lasing wavelength (i.e., +/— 2 nm)
are all above 50 dB, and above 60 dB for operation at longer
wavelengths. Operating at the wavelength extremes provides
much higher ASE ripple near the gain peak at 1550 nm, reducing
the SMSR when considering the full wavelength scan. However,
even in that case SMSR is always above 40 dB. SMSR values
versus wavelength are summarized in Fig. 9, including points for
SMSR close in, and over the full 130 nm measurement range.
Fine tuning the MR resonance frequencies and phase control
would improve operation and SMSR values at the wavelength
extremes, as well as optimizing the central tunable 2:2 coupler
to 50/50 for those wavelengths.

Extensive development of the experimental setup was re-
quired to measure such low values of FN and Lorentzian
linewidth. FN measurements were taken using a commercial
OEWaves OE4000 linewidth/phase noise measurement system.
The ICTL gain section bias current was provided by a Vescent
laser controller (D2-105-500), that includes an ultra-low noise
current source. Keithley analog voltage supplies (2200 series)
plus screened RC filters (~ 5 Hz lowpass) were used to drive the
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Fig. 10.  FN measurements for various Phase Control heater powers, 400 mA.

device heaters. A large temperature controlled stage driven by
an ILX LDT-5910C unit kept the device temperature constant.
Additionally, an aluminum foil coated polystyrene box shielded
the whole experiment, to keep out air flow, acoustic pickup,
and EMI. An erbium doped fiber amplifier (EDFA) was used to
boost the laser power for accurate FN measurements (lowering
the OE4000 noise floor), with data taken to confirm that this did
not affect FN results. Measurements for the ICTL device with
the left side of the gain element polished to provide a natural
reflectivity (R ~ 0.32) facet, as shown in Fig. 5, were taken for
laser bias currents of 300 mA, 400 mA and 500 mA, in each
case varying the cavity phase to move the lasing wavelength
to the long wavelength side of the laser reflector and reduce
the Lorentzian linewidth through detuned loading [26]. Fig. 10
shows measurements of FN versus frequency for a laser bias
of 400 mA and various phase control heater powers. The FN
characteristic describes the 1/f or technical noise of the laser
at lower frequencies, whereas FN should reach a white noise
(flat) floor at higher frequencies, which is associated with the
Lorentzian linewidth, or fundamental linewidth, of the laser, i.e.,
the Lorentzian linewidth is FN2.7, using the white noise floor
value for FN, or lowest FN value if the floor is not reached.
The best results were obtained at 400 mA bias, as shown
in Fig. 10. All of the FN measurements show a long ‘tail’ out
to higher frequencies, which is not typical for a semiconductor
laser, e.g., [13]. This extended tail is seen in all E-DBR and ICTL
heterogeneously integrated lasers [18], [21], [23], the source of
this additional low-frequency FN likely due to carrier trapping
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at the I1I-V/Si bonded interface [27]. As FN is still reducing (on
the same slope) at the highest measured frequency of 100 MHz,
the flat white noise floor has not yet been reached, therefore
results indicate that the Lorentzian linewidth is less than the
value calculated from this minimum FN value, i.e., less than 95
Hz.

Plotting these Lorentzian linewidths versus phase control
heater power in Fig. 11 shows the expected reduction in
linewidth as wavelength (detuned loading) increases, with a
minimum value of 95 Hz found, a record for an integrated
semiconductor tunable laser. The fact that FN is clearly still
reducing even at 100 MHz means that the actual Lorentzian
linewidth is lower than 95 Hz — this lower value could be found
if the FN measurement was extended to higher frequency.

Higher FN was found at 300 mA bias, with an associated
Lorentzian linewidth of 410 Hz, obtained at a lower frequency
of 30 MHz where the white noise floor was reached. Operation
at 500 mA, with higher laser output power than at 400 mA,
provided a higher value for Lorentzian linewidth (at 100 MHz)
of 360 Hz - whereas a lower linewidth is expected. This increase
in Lorentzian linewidth at this highest bias current is likely due
to a larger/extended FN tail from the higher current level. FN
measurements up to higher frequencies would reach the white
noise floor in both the 400 mA and 500 mA bias current cases,
and would provide measurements for Lorentzian linewidths that
are significantly below those found at 100 MHz. The best FN
measurements at each of these three bias current, 300 mA,
400 mA and 500 mA, are included together in Fig. 12. These
results provide a good comparison of the long tail of the FN
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measurements and how it varies with laser bias current. The
lowest FN below 10 kHz is found for 300 mA bias, whereas the
largest FN tail, seen above 100 kHz, is found for the highest bias
current of 500 mA.

This run of heterogeneously integrated ICTL devices using
the improved process steps produced significantly higher power
than earlier devices, and no degradation in operation was seen
during extensive testing. However, the maximum output power
coupled into an optical fiber was only 1.54 mW, when operating
at 1555 nm with a 500 mA bias, due to the low coupling
efficiency of the polished Si strip waveguide facet to a lensed
fiber, which is estimated to provide ~10 dB coupling loss. This
indicates a maximum on chip output power of ~15 mW. This
ICTL device has a polished-back silicon wire waveguide, which
is not optimized for coupling. When using an inverse tapered
waveguide together with a high numerical aperture fiber (e.g.,
Nufern UHNA7) a coupling loss closer to 1 dB is possible,
which would provide over 10 mW of optical power in the output
fiber. This level of optical power is acceptable in many system
applications, especially those that incorporate an EDFA, such as
in telecom systems.

The threshold current found from tuning scans (Fig. 7) was
found to be relatively high, ~125 mA. It is believed that the
excellent loss characteristics measured for passive ULL silicon
waveguides in [20] were degraded by subsequent wafer bond-
ing and III-V processing, leading to higher threshold current
and lower output power than expected, due to the long cavity
length (108 mm) with increased loss. Future devices will include
additional processes to protect the ULL Si waveguides during
later processing steps and to preserve the passive waveguide
loss in the final devices. This will significantly reduce threshold
currents and increase output powers of the ICTL devices, as well
as further reduce low frequency FN and Lorentzian linewidth.

For applications such as interferometric acoustic sensing sys-
tems that require even lower FN at low frequencies, where 1/f
type technical noise dominates (e.g., see Figs. 10 and 12), fre-
quency locking the laser to areference resonator using Pound Dr-
ever Hall (PDH) based electronic feedback [28] can significantly
reduce FN. Recent results from a hybrid integrated E-DBR
laser [13] and a long (4 meter) Silicon Photonics foundry based
integrated coil resonator demonstrated FN < 0.5 Hz/(Hz)"*> at
10 kHz, well below the free running laser response [29]. Such an
MRR based integrated resonator with wideband operation could
be used with, or integrated with, an ultra-wideband tunable laser
such as the ICTL.

RIN measurements were made at 500 mA bias current, 1550
nm operation with 1.2 mW optical power from the ICTL into the
measurement system. Results were taken both with and without
an EDFA, from 1 to 20 GHz, and these measurements are shown
in Fig. 13.

Without the EDFA, the RIN reaches a minimum of approx-
imately —160 dBc/Hz at 3 GHz, peaking at 8 to 12 GHz, then
rising above 15 GHz. The measurement noise floor comes from
both photodetector thermal noise and the spectrum analyzer
noise floor - due to the low optical input power level. Adding
an EDFA and operating at higher optical power into the pho-
todetector (~ 10 mW) improves the RIN values in most cases
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Fig. 13.  RIN vs. phase control heater power (a) No EDFA, (b) With EDFA.

(except near 3 GHz), with an optimistic EDFA noise figure (NF)
of 5 dB added to measured values, providing worst case RIN of
approximately —155 dBc/Hz, the RIN value being below that
over most of that frequency range, with a broad peak near —155
dBc/Hz from 8 to 12 GHz.

V. CONCLUSION

The operating principles and design process of the novel
ICTL device, incorporating three or more large, ultra-low loss
MRRs in a Sagnac loop based laser reflector, have been de-
scribed. The ICTL provides ultra-wideband wavelength tuning
with ultralow noise performance. An ICTL device incorporat-
ing an ultra-low loss Si based laser reflector, fabricated with
heterogeneous integration of a III-V gain element on the Silicon
Photonics platform, is demonstrated to provide a record 118
nm of continuous wavelength tuning and Lorentzian linewidth
below 95 Hz. The ICTL has worst case laser RIN of —155
dBc/Hz, at a maximum on-chip optical power of ~15 mW.
This Silicon Photonics Foundry-ready integrated laser device
provides performance that will be disruptive for many photonic
applications.
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