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Abstract Climate observations are needed to address a large range of important societal issues includ-
ing sea level rise, droughts, floods, extreme heat events, food security, and freshwater availability in the
coming decades. Past, targeted investments in specific climate questions have resulted in tremendous
improvements in issues important to human health, security, and infrastructure. However, the current
climate observing system was not planned in a comprehensive, focused manner required to adequately
address the full range of climate needs. A potential approach to planning the observing system of the
future is presented in this article. First, this article proposes that priority be given to the most critical
needs as identified within the World Climate Research Program as Grand Challenges. These currently
include seven important topics: melting ice and global consequences; clouds, circulation and climate
sensitivity; carbon feedbacks in the climate system; understanding and predicting weather and climate
extremes; water for the food baskets of the world; regional sea-level change and coastal impacts; and
near-term climate prediction. For each Grand Challenge, observations are needed for long-term moni-
toring, process studies and forecasting capabilities. Second, objective evaluations of proposed observing
systems, including satellites, ground-based and in situ observations as well as potentially new, uniden-
tified observational approaches, can quantify the ability to address these climate priorities. And third,
investments in effective climate observations will be economically important as they will offer a mag-
nified return on investment that justifies a far greater development of observations to serve society’s
needs.

Plain Language Summary The current climate observing system cannot address the range
of important scientific and societally important climate issues. A significantly expanded climate
observing system could address major science questions and meet important societal needs. Careful
independent testing can evaluate whether proposed systems can address critical observing needs.
Future investments in climate observations offer large societal benefits and economic return on
investments.
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1. The Challenge

Understanding the Earth’s climate system and how it is changing is an important component for societal
planning, economic health, ecological stewardship, and risk mitigation. Understanding aspects of climate
including water usage (particularly in the food-producing regions of the world), extreme events such as
hurricanes, heat waves and droughts, and sea level rise is important for society to thrive and offers sub-
stantial challenges for the science community. Targeted measurements exist to deal with some of these
challenges, yet an observing system specifically designed to address these joint societal and scientific
challenges has never been established (Dowell et al., 2013; National Research Council [NRC], 2007; Tren-
berth et al., 2013). Current international agreements only address coordination of climate observations;
no commitments exist for building, and maintaining an effective climate observing system, although
national efforts have supplied important components of a climate observing system (e.g., Diamond et al.,
2013; World Meteorological Organization [WMQ], 2015a). The Global Climate Observing System (GCOS),
working with the Global Ocean Observing System (GOOS), has developed approaches to help coordinate
existing efforts and aid in the planning of future observations. The results of extensive discussions is a set of
principles and priorities for future observations, but these two international organizations lack the funding
and authority to establish and manage observing systems on the scale needed to address the current
needs (WMO, 2016). A well-designed suite of climate observations has the potential, in conjunction with
appropriate models, to better characterize key processes, to resolve outstanding climate questions, and to
improve the accuracy of seasonal to interannual climate predictions and multi-decadal climate projections.

Observations to satisfy curiosity are not the goal of this article. Rather, it lays out what is required of a cli-
mate observing system that addresses the essential science questions. Careful analysis leads to developing
an international climate observing system, analogous to the current international weather observing sys-
tem; a rigorously designed system with international commitments to provide vital surface-, in situ-, and
space-based observing system components.

1.1. Motivation

Climate influences many aspects of society, economics, and the environment. The increase in population
and development of agriculture, infrastructure—including buildings, electrical generation, transportation,
and water delivery systems—requires appropriate estimates of the future climate. An effective observing
system will lead to improved understanding of environmental resources and will allow for robust planning
of critical infrastructure. Because the economic risks for climate change are measured in trillions of dollars,
an observing system, with commensurate investments in science and understanding, has the potential to
be of tremendous value to society if properly designed (Cabrera et al., 2007; Katz & Murphy, 1997; Keller
et al,, 2004; Nordhaus, 1994).

Well-designed observations serve a number of roles. The primary benefit from climate quality observa-
tions is a better understanding of Earth’s climate system, whether at the process level of particular com-
ponents (atmosphere, ocean, land, cryosphere) or interactions among the components, with a characteri-
zation and an adequate quantification of the scientific uncertainties. Observations set the stage for initial-
izing and testing climate models to enable predictions and projections on various time scales (e.g., subsea-
sonal, seasonal, interannual, decadal, centennial) (National Academies of Science [NAS], 2016). For example,
global observations of the subsurface ocean improve the predictions of anomalies or extreme weather on
decadal timescales. Sustained global observations will also aid in understanding the Earth system across
the weather-climate interface (e.g., seasonal and interannual phenomena), allowing for societal planning
on a large range of timescales.

The potential for changes to climate with large impacts is one of the major risks to modern society
and understanding the likelihood of future changes is one of the greatest science challenges of this
century (e.g., Intergovernmental Panel on Climate Change [IPCC], 2014; USGCRP, 2014). The approaches
to addressing it include mitigation, adaptation, and potential responses such as geo-engineering (IPCC
WGT, 2013, chap. 7). Mitigation includes decreasing emissions of heat-trapping greenhouse gases such
as carbon dioxide or altering other forcing mechanisms such as emissions of aerosols, or stopping
and even reversing deforestation. Adaptation involves planning for and reacting to the consequences.
Geo-engineering approaches posit mechanisms to alter climate so that some heat balance impacts could
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be lessened. Continuous, comprehensive global observations would help to address the fundamental
gaps in science and to quantify the attendant uncertainties with respect to any of these three approaches.
Better baseline information about the current Earth system leads to improved understanding of poten-
tial impacts of, for instance, solar geo-engineering approaches, to Earth’s hydrologic cycle and regional
climates.

Climate change is but one example of the need to make decisions under deep uncertainty. Developing new
approaches to decision making that go beyond traditional point and probabilistic predictions is the focus
of a new scientific undertaking (e.g., see www.deepuncertainty.org). Developing adaptation pathways that
will be robust under many possible futures will in part require observing systems that are designed with
these needs in mind.

Recent studies (Cooke et al., 2014, 2016; Hope, 2006, 2014) have estimated the economic value of such
a system at ~$10 trillion dollars to the world economy in today’s value (known as “net present value” in
economics using a 3% discount rate). In the simplest sense, this is the economic value of moving climate
scientific understanding forward 15-20 years by using better observations, analysis, and modeling capa-
bilities. The studies further estimated that if the world tripled its current economic investments in climate
research (observations, analysis, modeling) to achieve such an advanced observing system, the return on
investment would be ~$50 for every $1 invested by society. Few investments approach such return. Com-
pare that message to the current situation of a zero-sum economic game in climate observations: one
unresolved science question struggles for funding against another—both critical to achieve. The question
should change from "Which critical climate science observation is more important?" to instead "What is the
rightamount to invest in climate research?" and its corollary "Which observations have the largest economic
return on investment?".

1.2. Current Approaches to Climate Observations

Monitoring the Earth system is a major responsibility of national agencies and is coordinated through inter-
national bodies such as The Global Climate Observing System (GCOS), Committee on Earth Observation
Satellites (CEOS), Coordination Group for Meteorological Satellites (CGMS), and WMO's Global Atmosphere
Watch (GAW). The CGMS promotes coordinated operation and use of data and products from its members’
satellite systems, in support of operational weather monitoring and forecasting, and related aspects of cli-
mate monitoring and coordinates with GCOS. However, disruptions in observing systems and the use of
systems not designed for climate observations have significantly increased uncertainties in climate records,
hindered progress in or increased uncertainty in key climate science such as inadequate aerosol radiative
forcing and cloud feedback observations to constrain climate feedbacks and sensitivity and uncertainties
in upper air trends based on weather observations (e.g., Free et al., 2002). Understanding future climate
is increasingly valuable to the economies of the world and the health of the Earth (IPCC, 2013; USGCRP,
2014). However, uncertainties in projections of the future climate are large; and progress in advancing our
understanding is, in many cases, limited by the observations available, for instance in ocean circulation rates
and century scale global temperature records limit our ability to understand natural variability and global
changes. The IPCC AR5 report evaluates the uncertainty in equilibrium climate sensitivity (ECS) based on
the Climate Model Intercomparison Project (CMIP) climate models, perturbed physics ensembles of climate
models, modern climate observations, and paleontological climate observations. The report concludes that
ECS ranges from 1.5°C to 6°C with a confidence bound of 73% (17th to 90th percentile) and from 1°C to 6°C
with a confidence bound of 85% (5th to 90th percentile). Thus, confidence in climate sensitivity (amount
of global temperature increase for a doubling of CO, level) remains uncertain at a factor of four, while the
ultimate economic impacts scale as the square of the amount of warming: or in the long term roughly a
factor of 16 (Interagency Working Group on Social Cost of Carbon [IWG-SCC], 2010).

Past and existing climate observing systems have often been focused on a single observing question and,
in many cases, have been driven by engineering developments. Often, these systems have been designed
for other purposes such as weather prediction, land resource management, agriculture, air pollution, or
other operational and research topics, resulting in suboptimal climate observations. Individual efforts to
assess the value of added observing systems have often advanced in an ad hoc manner, focusing on just
one aspect of the Earth system. The results have increased our knowledge in specific areas, but with too
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little coordination to allow continued and rapid improvements in our comprehensive understanding of the
integrated climate system.

While existing observations are undeniably valuable and cost effective, they are far below the capabili-
ties we envision for an advanced climate observing system. Limits today are primarily economic and not
technological. In this context, an improved climate observing system is fundamentally an investment for
the benefit of society. This investment is urgent, especially given the long-time scales of both climate and
societal policy actions. The Cooke et al. (2014) economic value study estimated a $650B per-year cost (net
present value, 3% discount rate) to society for every year we delay an advanced climate observing system. At
the same time, it is important to prioritize and estimate the costs and benefit of improvements if society is to
invest in an improved climate observing system as opposed to a zero-sum game of “business as usual” and
“do the best you can,” or the even worse scenario of de-vesting in observations. As an example, important
observation sites in the Arctic, tropical Pacific moorings and even GCOS’ Reference Upper Air Network sites
are decreasing, due primarily to budgetary constraints. The current approach has failed to significantly nar-
row uncertainty in climate sensitivity even after 35 years of effort. This can be seen by simply comparing
the discussion of climate sensitivity uncertainty in the Charney Report (NRC, 1979) to the recent IPCC AR5
(2014). Advances in our understanding of the complexity of the Earth system will likely be slow if we do not
have a significantly improved observing system that will allow for investigation of specific aspects of the
feedbacks in the climate system (Trenberth et al., 2013; Wielicki et al., 2013).

GCOS, which was created in 1992 as a result of the Second World Climate Conference, has helped identify
priorities (Karl et al., 2010; Manton et al., 2010) and coordinate some climate observations with the identi-
fication of the “essential climate variables” (ECVs) (National Centers for Environmental Information, 2017;
WMO, 2015a, 2015b, 2016). The ECVs, developed in a pragmatic way, take into account the past record
and capabilities as well as the needs, and may not include some climate variables regarded as vital but
for which there is no current capability. In addition to assessing the ECVs, GCOS has also highlighted the
value of reprocessing and reanalysis of variables to produce consistent homogeneous datasets (see also
Trenberth et al., 2013). For most of these ECV's, continuity of observations and appropriate overlap with any
new observations will be crucial for developing well characterized long-term datasets.

The role of the ocean is increasingly understood to play a major role in climate and more specifically in
the World Climate Research Program’s (WCRP) Grand Challenges. Essential Ocean Variables (EOVs) (http://
goosocean.org) if fully implemented, could help address many of the uncertainties in the role of oceans
in climate. WCRP’s Climate and Ocean: Variability, Predictability and Change (CLIVAR) has developed and
tested hypotheses for ocean observations with explicit goals of developing parameterizations that can go
into climate models. Deep Ocean Observing System with their plans for Deep Ocean Observations, if fully
supported, will likely make significant progress in providing data that will help improve projections for all of
the current Grand Challenges and may particularly help in improving long-term forecasting, understanding
regional sea level rise, extreme events, and water availability (Heinbach et al., 2014).

The difficulty of achieving a more effective observing system is considerable. Coordination across disparate
research communities with only modest or minimal overlap poses a major challenge. These communities
are focused on surface- and in situ-based climate observations, satellite-based climate observations, climate
modeling and projection science, attribution, economics of climate impacts, and climate policy. In the U.S.,
the USGCRP is currently the only major organization charged with such a broad charter. Internationally, the
WCRP coordinates research for climate, while the intergovernmental group on Earth observations (GEO)
coordinates efforts on all Earth observations. GCOS serves as a system of systems with a more narrow focus,
but it works with WCRP to further climate-related goals. Ultimately, the best vision is one that can be effec-
tive at both national and international levels, one that involves global observations of the Earth system.
The challenge is made more difficult by the complicated, individual budgetary structures and operations of
coordinating bodies such as USGCRP, WCRP, GCOS, GEO together with the individual national agencies. This
disparate decision-making process prevents a coordinated clear vision for a climate observing system that
benefits society, can be broadly supported by scientific leadership, and can be implemented by national
and international efforts.

A more rigorously planned observing system would require that the future observations be organized
and evaluated around clear, testable hypotheses that consider the full Earth System with quantifiable
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performance measures for science and society. It would be beneficial to categorize current and future
observing systems according to how they serve particular quantified climate goals and societal needs.
Such goals could closely align with the USGCRP research goals, WCRP Grand Challenges, and IPCC major
uncertainties identified in the Working Group | assessments. The final result would be an observing system
that focuses efforts on societally important challenges and achieve quantifiable results.

The current article focuses on two key aspects of the above observing system design elements: quantified
science objectives and critical evaluation of proposed observations. The prioritization of science objectives
and the critical evaluation of proposed approaches would provide a critical element of moving from quali-
tative objectives in support of climate exploration-driven science toward quantitative objectives in support
of hypothesis- and societal benefit-driven climate science. This would not be the first time that a focused
scientific effort resulted in important scientific insights. In particle physics, the Standard Model provides
the theory to set the design of high-energy particle accelerator observation requirements such as the recent
search for the Higgs Boson particle using CERN’s Large Hadron Collider. For climate, integrated Earth system
models replace the Standard Model for hypothesis development and testing. There is no “parallel” Earth on
which to experiment; instead state-of-the-art numerical models representative of the climate system are a
critical platform for integrating all known affects and affirming/nullifying hypotheses. These climate mod-
els are highly dependent on available observations to incorporate the chemical, physical, biological and
ecological processes of the Earth accurately.

1.2.1. Coordination of Activities
There are four major climate observation assessments relevant to defining and prioritizing climate obser-
vations and their goals.

In 2012, the U.S. completed the first national Earth Observation Assessment to identify available observing
capabilities. The effort helped establish a baseline for existing observations, but not a path forward for future
observations or priorities. A follow-on effort worked to identify priorities across 13 societal benefit areas,
where climate is only one of those areas.

Second, NOAA has recently carried out a NOAA Observing System Integrated Analysis (NOSIA-II) (Reining
etal, 2016). This analysis is somewhat similar to the EOA and follow up activities’ approach of assigning
priorities to existing services and products with a subjective evaluation of their impact or value (e.g., a qual-
itative Priority 1 through 5 NOSIA-Il does use some observing system simulation experiments (OSSEs) for
weather in a very limited way, but does not for climate observations).

Third, the WMO/WCRP/GCOS documents survey current and planned observations and their value to
climate science, including suggested requirements for accuracy and sampling. These recommendations
are primarily for continuity of existing capability as opposed to an attempt to design the observing sys-
tem required to achieve climate science quantified objectives. Requirements are back-of-the-envelope
estimates in most cases (Ohring et al., 2005). The GCOS (WMO, 2016) also identifies ~50 essential climate
variables. While these variables have not been defined using rigorous evaluations, they offer subjective
selections based on current observation capabilities which can be tested in a more formal sense for
achieving identified climate goals.

Fourth, COSPAR has prepared a new assessment and recommendations: “Observation and integrated earth
system science: a roadmap for 2016-2025.” (COSPAR, 2015; Simmons et al., 2016). It focuses on the com-
bined use of observations and modeling to address the functioning, predictability, and possible evolution of
the Earth system on timescales out to a century or so. It discusses how observations supportintegrated Earth
system science and its applications, and identifies planned enhancements to the contributing observing
systems and other requirements for observations and their processing. However, it offers little prioritiza-
tion of the broad range of climate observational needs, focuses only on the coming 10 years and primarily
highlights the role of space research in climate observations.

These assessments are, by design, limited in their scope, but have provided valuable experience that
can help guide a more comprehensive evaluation of climate observing systems. We conclude that no
existing or near-term studies are designed to define the required climate observing system, one that also
factors in the economic value to society. A number of entities, including GCOS, WCRP, USGCRP, and NRC
could step forward to define quantified climate science objectives as the key starting point of defining
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an advanced climate observing system, but this would require sufficient studies to understand the true
requirements. Once quantified objectives are decided, the next natural step is to quantify observing
system capabilities using rigorous quantifiable approaches. The specific approach will vary with sci-
ence objective, available data and with the maturity of any proposed climate models or climate model
processes.

Lessons from past observations on quality, coordination, calibration, data access and continuity would be
applied to any new observations, because these key attributes directly affect the successful use of climate
observations. These lessons can be augmented with more thorough evaluations of how observing systems
will be used to achieve their stated goals.

1.3. Past Investments Have Benefitted Society

Large investments in our current observing system have resulted in a significantly improved
understanding of societally important services including food, water, energy, transportation, human
health and safety. The combination of satellite, ground-based, and in situ measurements, particularly
when multiple instruments are used in combination, has given us tremendous insights into the Earth
system. Of particular note is the progress that has been made in understanding and predicting the aspects
of the Earth that are most crucial to human activity: water, food production, and health. Some of the many
examples of important advances in our understanding that are directly due to our successful observations
include:

1. Our improved understanding of sea level rise, measured better than in the past, from regional to
global scale, using satellite altimetry since the 1992, along with improved understanding of impacts of
El Niflo/Southern Oscillation variability on coastal regions, has allowed for a better understanding of
the need for resilience in the planning of future coastal infrastructure (Fu & Cazenave, 2000).

2. The documentation of the ozone hole, its growth, stability, and now slow recovery, allowed decision
makers to work internationally to avoid the most serious impacts of increased ultraviolet radiation
including increased crop failure and cancer rates (WMO, 2015b).

3. Melting sea ice has been measured since the 1970s by passive microwave sensors allowing a full
understanding of the spatial extent and rate of sea-ice loss across the Arctic (Stroeve et al., 2014).

4. Melting land ice has been measured by interferometric Synthetic Aperture Radar, altimetry, and the
Gravity Recovery and Climate Experiment: monitoring since the 1990s (sparse), boost in 2002 (GRACE),
extended following IPY (2007) and Landsat/Sentinel (2013) has given us previously unattainable
insight into how much water is going into the oceans from storage in land ice (Rignot et al., 2013;
Velicogna et al., 2014).

5. Careful measurements of CO, have given us a solid understanding of the global increase in carbon
over the past six decades; verification of this rise has allowed a more informed understanding of the
impact of greenhouse gases on the environment (Le Quéré et al., 2015).

6. Underwater measurements of ocean temperature, salinity, and pressure from ARGO floats have given
us unprecedented understanding of how the surface of the ocean relates to the full ocean boundary
layer in a very cost effective manner (Roemmich et al., 2003).

7. Increasing number of observations and steady monitoring of tropospheric and stratospheric aerosols
over the past four decades has yielded quantifiable understanding of the global distribution of
atmospheric aerosols over time, in turn improving the confidence in the estimates of the radiative
forcing due to these species, including areas where they pose serious hazards to air quality and human
health (IPCCWG1, 2013, chaps 6 and 7).

In each case, the investment in observations has resulted in societal decisions that have had large economic
returns, likely far beyond the cost. We recognize that this advance in our understanding has been due to
the careful planning of observations, the insightful analysis of observations, and the international effort to
appropriately interpret all climate science results. The lessons learned from each success story need to be
carried forward to the planning of future climate observations.

1.4. Remaining Uncertainties
Despite the large advances in our climate observations, we now recognize societally and scientifically
important questions that cannot be addressed with our current observing system. Across the Earth system
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literature, specific uncertainties have been highlighted in peer-reviewed journals as well as assessments. A
few examples include:

1. Climate sensitivity and cloud feedbacks are one of the largest uncertainties in the climate system and
yet, our understanding is still limited by accuracy and resolution of the radiation and cloud-property
observing system for long-term trends, as well as a range of atmospheric state variables for cloud
process studies (Bony et al., 2015; IPCC, 2013). Variation and changes to stratospheric aerosols,
circulation, and modes of variability, and their impacts on global radiative forcing and tropospheric
processes remains poorly understood (Solomon et al., 2011).

2. Understanding the loss of Arctic sea ice and the extent that it is affected by boundary layer
atmospheric phenomena or under-ice ocean observations—both of which are not observed well in
the Arctic—remain difficult to understand. Arctic sea ice is critically important to local environments,
indigenous lifestyles, global circulation, and transportation through the Arctic (Vihma, 2014).

3. Precipitation extremes on a range of timescales and our currently poor ability to monitor them prevent
us from understanding and predicting droughts and severe floods (Hou et al., 2014). Understanding
both temperatures over the ocean and air-sea interactions is critical to forecasting flooding events and
seasonal precipitation (Chang et al., 1997).

4. Understanding the full dynamics of the ocean and its role in the Earth’s climate, ocean heat storage
and the uncertainties in regional sea level rise of the 21st century are currently limited by a lack of
understanding of ocean circulation and chemical exchange between the air and the ocean (Bamber &
Aspinall, 2013).

5. Impacts of water management for agricultural and energy usage require better understanding of
seasonal forecasts (Viala, 2008).

6. Understanding carbon fluxes on a continental scale is currently challenged by a lack of high-quality,
detailed observations. Such an understanding could help identify regions of carbon uptake and
regions where energy choices are having a positive impact (Bruhwiler et al., 2017).

7. Seasonal forecasts of the fundamental water, energy, and carbon cycles are needed to support societal
uses of these resources (MacLachlan et al,, 2015; Saha et al., 2014).

The current observing system and coordination of activities are not able to address these and many other
societally important questions about the Earth system.

Without clarification on these issues, planning for future development, including coastal infrastructure,
national energy plans, and regional freshwater allocations are all made with an unnecessarily high level
of risk. Addressing the most important observational gaps needs to take place in a coordinated manner.
The result will be an effective observational system that can reduce uncertainties for the most societally
important climate questions.

2. Prioritizing Observational Needs

For critical climate science questions, some groups have already organized thoughts and identified pri-
orities for climate research. The IPCC WG | report (2013), GCOS, Committee on Space Research (COSPAR),
and other groups have worked to identify priorities.(COSPAR, 2015) The WCRP codified these priorities as
seven Grand Challenges: clouds, circulation and climate sensitivity; melting ice and global consequences;
climate extremes; regional sea-level change and coastal impacts; water availability; carbon cycle and sea-
sonal forecasts. Further progress may be obtained through the USGCRP or through the currently active
NASA/NOAA/USGS 2017 Earth Science Decadal Survey. Unfortunately, to date, goals often express qualita-
tive understanding of needs as opposed to quantitative hypothesis testing. The 2017 Earth Science Decadal
Survey embraces the community’s preference by requesting quantitative science and application objectives
in their second open Request for Information or RFI-2, but focuses only on satellite observations. Similarly,
GCOS has started identifying quantitative observational needs in terms of stability, coverage and accuracy
(WMO, 2016).

A new organization of observational priorities will help decision makers, researchers, and instrument
developers understand what observations are available, being planned, needed or under evaluation.
Observations that can serve the WCRP’s Grand Challenges can be prioritized and comparisons can be
made to different observing options for supporting any of these Grand Challenges as illustrated in Figure 1.
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Instead of discussions around, for instance, satellite priorities, this structure encourages discussions around
important scientific questions: the best observing system can be chosen across all possible platforms or
combination of approaches. The structure also acknowledges that at least three categories of observations
are needed, including observations that help improve forecasts and projections of the climate system,
observations that allow improved understanding of processes and long-term monitoring observations.
Each category may require different specifications for critical parameters. Individual observing systems may
serve multiple climate goals in this structure, as well as other scientific or societal goals such as supporting
weather forecasts. Significantly, WCRP Grand Challenges are re-evaluated and may be augmented over
time, as society’s priorities change, so this proposed structure can be resilient to changing demands of the
climate community.

With a structure, as summarized in Figure 1, the scientific community can identify the critical goals under
each category of observational needs and possible observational sources can be identified. The identi-
fication of the needs, irrespective of what existing capabilities are, can spur innovation and help assure
that observational investments respond to critical science questions. It is vital for the utility and economic
value of observing systems that the evaluation of proposed observations be considered across all plat-
forms and that the evaluation can be applied to proposed observing systems not yet in existence. In the
past two decades observational capabilities have emerged that had not been previously taken seriously
for systematic Earth observations: radio occultation measurements; observations from both small and large
unmanned aircraft and the use of citizen scientists addressing formidable observational challenges (Kursin-
ski et al., 1997; Silvertown, 2009; Watts et al., 2012). Particularly for the more novel, emerging approaches,
objective evaluation will be critical to making the best investments in observations of the future. Innovative
observational advances can be encouraged and appropriately employed by making the climate observa-
tional needs clear and quantified.

Once scientific requirements and recommendations are made and possible observational approaches are
identified, individual agencies will likely address additional considerations in making specific choices. These
considerations may include costs, timeliness of execution, and likelihood of success (NRC, 2015).

The new observing system will form the basis for research and applications of the research which involve
working to:

1. Develop testing to assure observations will be effective

2. Develop and improve analysis and processing methods to produce timely products for multiple uses
(some of which might be transitioned to the private sector)

3. Develop climate services to disseminate information and actively solicit feedback on evolving user
needs

4. Carry out comprehensive evaluations of the observing system and make recommendations on how to
improve it and cut costs

5. Evaluate the success of the observations based on their support of societally relevant information,
including climate services and information that can improve predictions and projections of climate

As long as the efforts between different national agencies remains coordinated, the investment in obser-
vations will likely result in actionable information for society with minimal waste in investments. Both eco-
nomic considerations and the need for continuous records will likely dictate that the new observing system
will build appropriately from the current observations.

2.1. Baseline Information, Continuous Records and Independent Verification

Researchers and decision makers have long valued the need for good baseline information and
continuous records from all observing systems, even as technologies and monitoring approaches change
(e.g., Mitchell & Jones, 2005; Seidel et al., 2009; Wulder et al., 2011). Discontinuities of observations add
tremendous uncertainty to both the observations reported and the derived trends because of the
difficulty in addressing disruptions (Free et al., 2002; Weatherhead et al., 2017). The National Academies of
Sciences, Engineering and Medicine convened a panel to address continuity of Earth observations from
space. The results are summarized in the published report, “Continuity of NASA Earth observations from
space: a value framework” (NRC, 2015). While the focus of this report was on planning and evaluating
NASA observations, many of the results have general application to all Earth observations and have great
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Figure 1. Proposed organizational structure to compare and evaluate existing and proposed observing systems. Note that the categorization is based on whether observations
serve testable hypotheses or quantifiable goals, as opposed to categorization by agency; or by platforms (satellite, in situ, and ground-based). The items listed in the boxes are
examples of possible scientific goals for that category and are not meant to indicate the most important goals.
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overlap with the goals of this document. The report identifies societal benefit as a major motivation for
collecting observations, with four major aspects of benefit defined as: importance, utility, quality, and
success probability:

1. The scientific importance of achieving an objective.

2. The utility of a geophysical variable record for achieving an objective.

3. The quality of a measurement for providing the desired geophysical variable and.

4. The success probability of achieving the measurement and its associated geophysical variable record.

In addition to these four major aspects, affordability is added as a discriminator in evaluating proposed
observing systems. The evaluation of affordability can be addressed relative to the added value of
attaining the specific goal. As an example, improving long-term forecasting—one of the WCRP Grand
Challenges— can offer tremendous societal value: weather impacts to the economy have been estimated
to exceed $450 billion per year in the US, not including the impacts of severe storms (Lazo et al., 2011).
Weather events, particularly costly extreme events need to be evaluated in the context of climate change;
this includes heat waves, droughts, floods, Arctic summer sea-ice extent and thickness, severe storms,
hurricanes and so on. The weather-climate interface becomes an important crux of scientific understand-
ing leading to predictions, and juxtaposes the boundary-value problem in climate with the initial-value
problem involving the Earth system. The combined significance of the atmosphere, land, ocean, chemistry
and ice observations poses an additional challenge in characterizing the uncertainties. A coordinated
observing system can support progress in the understanding of these multi-disciplinary challenges by
requiring the observational needs to be developed jointly across multi-disciplinary communities.

Because societal decisions based on climate observations may be large and potentially expensive, climate
observations and conclusions based on those observations need to be independently verified. In some
cases, this verification will involve independent high-level calibration of the instrumentation; in other cases,
the focus will be on independent observations to assure appropriate interpretations. Peer-reviewed liter-
ature review and international assessments will be important for the interpretation of observations and
development of appropriate model results. Just as importantly, observational systems will need to be eval-
uated after implementation to assure they met their stated goals and help understand any shortcomings
or unexpected benefits that will benefit further observing system planning.

3. Quantitative Evaluation of Observations

Critical to improving the observing system is improving the rigor with which planned observations are
quantifiably linked to clear science objectives. Climate OSSEs can identify the usefulness of different mea-
surements needed to achieve the science goal or question, with specific input to the elements in the list
above. OSSEs and observing system experiments (OSEs) have a long history for Numerical Weather Predic-
tion (Atlas, 1997; Atlas et al,, 2015, 2015; English et al., 2017; Peevey et al., 2017) and have been utilized to
study the ocean (Halliwell et al., 2014; Oke et al., 2015). OSEs and OSSEs use a data assimilation system that is
run with and without a particular set of observations to assess theirimpact, possible biases, and other issues.
OSEs evaluate current observing systems and are routinely performed when new observations come on
line (especially from a new satellite), while OSSEs can simulate potential future observing systems. Climate
OSSEs, or COSSEs, are a set of approaches that estimate the value of a set of observations to address a par-
ticular science question, given the inherent variability, measurement uncertainty, and confounding factors.
The use of OSSEs for climate applications are still being developed, and the climate research community
can improve the soundness of investments in future observations by developing more COSSE capabilities
(Cooperative Institute for Research in Environmental Sciences, 2017a). As the variety of science questions is
broad, so are the types of approaches to evaluate proposed observations.

Simulating the effects of climate observations has been a part of planning of development of Earth observ-
ing systems. In recent years, there is a strong desire to make these efforts more rigorous to assure the
effectiveness of future observations (Weatherhead et al., 2002, 2017). Notable COSSE efforts have included
ocean heat content (Argo) (Abraham et al., 2013), carbon cycle sources and sinks, (OCO-2 and Carbon-
Tracker) (Basu et al., 2013) temperature trends using radio occultation, (COSMIC) (Ho et al., 2009) and cloud
feedbacks (CLARREO/CERES) (Shea et al., 2016). Most of these COSSEs have focused on decadal change mea-
surements, but some involve climate processes (OCO-2, CALIPSO). COSSEs can evaluate many aspects of
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climate observations, ranging from instrument accuracy requirements (Wielicki et al., 2013) to estimations
of retrieval uncertainty (Connor et al., 2008) and sampling uncertainty (MacDonald, 2005). Quantification of
such requirements is important to evaluating cost versus benefit for a climate observation. Unfortunately,
many climate observation programs have yet to develop COSSEs to independently test the capabilities of
proposed observations at addressing critical goals. Such development is not trivial. The examples given
above suggest a typical 2- to 3-year time scale to develop a COSSE capability using an integrated team of
modeling and observation expertise. There is value both for standing COSSE groups to support decisions
and broad research efforts on evaluation techniques to continue the development of the science needed
to support strong, reliable results.

Designing an advanced and more rigorous international climate observing system would be a challenge
in itself that should address the following key elements:

1. Define quantified science goals or questions

2. Identify the key variables or groups of variables needed to address the critical science questions

3. Quantify the spatial coverage and resolution required to address the science questions

4. Quantify the temporal duration and resolution required to meet the science requirements

5. Quantify the accuracy or quality of the measurement needed to achieve the science goal (e.g.,
calibration, orbit or surface sampling, and algorithm uncertainties)

These design elements have sometimes been addressed individually by proponents of specific observ-
ing systems, but have not been applied uniformly to ensure impartial assessment of usefulness. A formal
evaluation effort would allow for the critical comparison of different systems based on similar criteria and
incorporating realistic variability, albeit with assumptions related to the appropriateness of the model used.

COSSEs can be used to address the three major climate observing system elements represented as the three
independent columns in Figure 1: climate monitoring, climate process understanding, and climate predic-
tion uncertainty. In most cases, the proposed observation is simulated either while running the underlying
physical climate/process model or using climate/process model output. In some cases, COSSEs of poten-
tial new observations can be developed as a combination of existing observations and theoretical models.
An example of this method is the case of remote sensing COSSEs using current observations plus radiative
transfer models to simulate future remote sensing observations from space. Some aspects of COSSEs are
highly model-dependent, particularly when COSSEs are used in a method of reanalysis or when global cli-
mate models are used to identify sensitivities to specific parameters. For these reasons, model-independent
COSSE efforts will be used as often as possible to support the appropriate observational capabilities.

While many COSSE examples tend to use one or at most a few underlying climate, weather, or process
models, ultimately COSSEs can more rigorously examine the usefulness of observations in quantitatively
constraining model physics by using a variety of approaches including perturbed physics ensembles (PPEs).
In this case, Bayesian approaches can quantify the relationship between observing system capabilities and
uncertainties in key model parameters. This approach has been used in many research fields and is well
documented in the NRC report "Assessing the reliability of complex models" (NRC, 2012) which also sum-
marizes the limitations of using Bayesian approaches. Where applicable, the Bayesian approach could be a
long-term goal of more rigorous understanding of climate observing system requirements. The increased
human and computer resources required to process, store, and analyze a large number of COSSE simula-
tions with the Bayesian approach poses a major challenge. Developing techniques to address the seasonal,
daily, and subhourly variability will require scientific investments which will likely lead to new insights about
the requirements for climate observations.

While the OSSE techniques needed for evaluating such different observing requirements vary in approach,
some decision-making steps are useful for all COSSE efforts: (1) a set of critical characteristics suitable for
discriminating among measurements; (2) a method for evaluating the measurement characteristics; and (3)
amethod for rating a measurement based on evaluation of its characteristics (NRC, 2015). While this systems
approach may be useful, it does not currently exist, in part due to the lack of coordinated planning of climate
observations and common practices for evaluating proposed observing systems. The combination of COSSE
results and both economic and pragmatic constraints can assure effective investments in observations. Such
practices, if more uniformly employed, will allow observing system requirements to be directly related to
physical hypothesis to link proposed observations to their intended use.
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When applied to improving climate process observations (e.g., aerosols, clouds, chemistry), COSSEs may
require very high-resolution process models, which would be too computationally expensive to run in a
100-year climate simulation. In these cases, model resolution might change from the ~100-km resolution
of an IPCC Climate Modeling Intercomparison Project (CMIP) climate model simulation to 1 km of a cloud
resolving model, or 5 km of a weather prediction or chemistry model. In this sense, there can be an overlap
of OSSE simulations run for weather or air quality purposes and those run as COSSEs. Some of the same
modeling tools can serve as either the basis of the climate process COSSE, or the OSSE output itself might
be used to support a climate process COSSE. The key in these situations is the time/space resolution and
the OSSE physical variables saved in the model output. As a result of this link, recent advances of weather
OSSEs by NOAA (global 7-km resolution simulations) might be very useful for climate process COSSEs. Simi-
lar advances in air quality prediction OSSEs are relevant to climate process COSSEs. High-resolution regional
models are also relevant as they can achieve even higher time and space resolution physics, especially for
cloud systems where boundary layer Large Eddy Simulation models run at 10’s of meter grid scale, or deep
convective cloud resolving models run at ~1-km grid scale. In this latter case, COSSEs could be used to
evaluate cloud field experiment observation requirements.

One major advantage of COSSEs that involves the use of climate models is that, by their nature, they require
a close coordination and continued communication between the climate modeling community and the cli-
mate observation community. Such an advance in communication would likely lead to more rapid use and
application of observations by climate models as well as a clearer understanding by observation researchers
of the key technological advances needed for future observations (Weaver et al., 2013). Often a new obser-
vation technology can be like a hammer looking for a nail; this science-priority approach, together with close
communication between climate modelers and observationalists, reverses this paradigm to the benefit of
the science goals. Additionally, many new observations wait years before being used by the modeling com-
munity. Close coordination and communication of modeling and observation communities through COSSE
efforts can lead to improved approaches to both the development and use of new technologies.

The design of climate observing systems in a thoughtful, science-driven manner can serve as an example
for other large science issues with societal relevance. As described above, COSSEs provide a link between
climate hypothesis tests and goals with observational capabilities. For the range of topics in the Grand Chal-
lenge, this approach could additionally support “seamless prediction” from weather to seasonal to decadal
Earth system prediction. Input from COSSEs will help inform scientific decisions on identification of the
optimal observing system of the future.

Equally valuable to a continually evolving observation system is the re-evaluation of the COSSE conclusions
after a new observational system has been put into place (e.g., Crisp et al., 2017). The skills and usefulness of
COSSEs will only evolve if the approaches are evaluated on their results. The risk of overstating capabilities
either intentionally or by omission of full consideration of the proposed observing system currently hurts
all climate science: the use of resources on a suboptimal system will often delay investment in alternative
systems. The delay of achieving climate results has a quantifiable cost to society. Because of these concerns,
retrospective analyses of how an observing system performs needs to be planned into all new observing
systems, including campaigns and long-term monitoring. The analysis can compare stated and achieved
goals, actual societal use of the climate products, and any cost savings or over-runs. Through objective
analysis of successes and failures, and the public sharing of results, can the observing system of the future
evolve in an efficient and successful manner.

3.1. Examples of Testable Hypotheses and Goals for Climate

A common misconception is that climate observations are simply weather observations over a longer
period of time. The complexity of climate questions dictates sometimes very targeted observations to
address a key science question or supply information for a societal goal. This article proposes that new
observations be hypothesis driven or address a specific gap. Below we give a few examples of potential
quantified hypotheses or goals. Without specific requirements, a well-intended observing system may not
adequately to address its stated purpose.

Hypothesis: The expansion of the tropics is occurring and is directly related to climate change driving the
modification of the Hadley Circulation. Determine the expansion of the tropics to within 15 km/decade at
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95% confidence. Example observational requirements: daily observations of temperature (+0.2°K), humid-
ity (2% RH) and wind (+2 m/s) every 100 m from the surface to the mid-stratosphere over the tropics (30°N
to 30°S) for three decades. Horizontal sampling and accuracy requirements to be determined using COSSEs
that include data assimilation methods.

Hypothesis: Stratospheric ozone levels are increasing due to limitations in production of ozone-depleting
substances. Determine ozone trends to within 1% /decade at 95% confidence interval. Example observa-
tional requirements: Observations every 3 days of stratospheric ozone levels (+2%) across all latitudes (90N
to 90S) for a minimum of 20 years. Sampling and accuracy requirements to be determined using COSSEs
that evaluate projected trends in light of normal stratospheric variability and measurement stability.

Hypothesis: Solar activity influences climate circulation patterns. To monitor such changes in solar radiative
forcing, determine Total Solar Irradiance to an Sl traceable absolute accuracy of 100 ppm and stability of
10 ppm/year (NRC, 2013). Determine Spectral Solar Irradiance to an absolute accuracy of 0.5% and stability
of 0.05%/year. TSI and SSI observations sufficient to determine monthly averages at the traceable accuracy
and stability indicated above.

Hypothesis: Low-level, in situ observations of the boundary layer can reduce uncertainty in climatological
estimates of boundary layer winds (important for aviation turbulence and renewable energy planning) by
as much as 20%, allowing for improved parameterization models. Observational requirements: Boundary
layer measurements of winds (+2 m/s) at up to 24 different locations for a period of 4 years. Space and time
sampling, vertical resolution, and accuracy to be determined using COSSEs that focus on regional variability
in state-of-the-art weather models.

Hypothesis: Upper tropospheric temperatures are increasing at approximately 0.2°K/decade. Monitor this
trend with an uncertainty of 0.08 K/decade (95% confidence interval). Observational requirements: con-
tinuous measurements of temperature (+0.1°K), from the boundary layer to the lower stratosphere, every
10mb, (60°N to 60°S) continuously. Accuracy, vertical resolution, spatial resolution and time resolution
determined using COSSE that accounts for fundamental observational uncertainties, including the benefits
and uncertainties from merging multiple observational systems.

Hypothesis: Regional fluxes of carbon from the eastern half of North America are within 15% of the global
average flux estimates when considered on an annual basis. Observational requirements: 3000 flask mea-
surements per year across the Eastern U.S. for a period of 3 years. Number of flasks and locations determined
by initial COSSE effort that uses weather models for integrating regional sources and transport.

Goal: Reduce the uncertainty in aerosol radiative forcing by 50%. COSSEs would be run with global climate
models to identify observations needed: identify locations for surface air quality measurements and satellite
requirements to establish global, non-urban pollution source estimates.

Goal: Determine the change in global ocean heat storage over a decade time scale to within 0.1 W/m? and
over annual time scale to 0.2 W/m?. This may require ocean vertical profile temperature and salinity mea-
surements using a network of autonomous floats (e.g., Argo), global ocean sea level rise, global ice mass
change, and global net radiative flux. COSSEs will test whether observations with accuracy of 0.1 W/m? will
be required for at least 50 years; space and time sampling requirements will be determined using COSSEs
that integrate ocean observations to the full depth observable (von Schuckmann et al., 2015).

Goal: Narrow uncertainty in equilibrium or transient climate sensitivity by a factor of two relative to the
2013 IPCC report. Observations required for 50 years. Observation requirements (aerosol radiative forcing,
greenhouse gas radiative forcing, land use radiative forcing, SW, LW, and net cloud radiative forcing, ocean
heat storage, surface air temperature, cloud physical and microphysical properties) based on priorities
established by international efforts, and observational requirements determined using COSSEs that include
global climate models and specific physics packages incorporating observed parameters.

Goal: Determine the rate of sea level rise to a global mean accuracy of 0.2 mm/year. The rate of sea level
rise from ice sheet loss is likely to be nonlinear and to accelerate in a warming Earth. Observations required
indefinitely. Observation requirements beyond current ocean and satellite measurements (sea level rise,
ice sheet mass, ocean temperature and salinity profiles [thermal expansion], mountain glacier mass loss)
determined using COSSEs that evaluate potential sea level rise given current measurement uncertainties
and regional effects.
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Goal: Observe or estimate solar radiation at a 1-km? resolution to an accuracy of 5% over a 1-h period.
This is required to support renewable energy applications. Accuracy, time sampling, and space sampling
requirements determined using COSSEs that simulate cloud and aerosol behavior at the 1-km level and
observational uncertainty of both radiation and cloud observations. Importance based on analysis of eco-
nomic value of improved capabilities.

Goal: Measure or estimate boundary layer winds, turbulence, vertical shear, and boundary layer height. This
is required in support of aviation, air quality, and renewable energy with a 25% improvement over current
estimates for each of these parameters. Accuracy, time sampling, space sampling requirements determined
using COSSE. Importance based on analysis of economic value of improved capabilities.

The range of hypotheses and goals for climate observations means that a range of COSSE approaches will
be used. In general, COSSEs will evaluate the spatial and temporal sampling requirements and accuracy
required. In some cases, the COSSEs will evaluate the value added of additional data in order to optimize
the network (Weatherhead et al., 2017). Some COSSEs will involve computer-intensive climate models, while
others will evaluate proposed observing systems’ ability to reach specific goals such as being able to detect
a change of 1%. The range of types of climate COSSEs as well as some publications employing COSSEs can
be viewed in Cooperative Institute for Research in Environmental Sciences (2017b).

While these are neither full proposals nor descriptions of observation plans, they serve as summary
examples to show the scope and intent of examining the climate observational suite and its ability to
support testable hypotheses. By posting and discussing the current, planned, and proposed systems
in terms of testable hypotheses with quantifiable observational requirements, new technologies may
be developed that could allow for cost-saving, innovative approaches to observational needs. Ancillary
benefits of observations, such as their potential usefulness to disaster response or weather forecasting may
also be identified. In almost all cases, COSSEs will help inform scientific judgment on the value of proposed
observation, but final decisions will include additional information, including the pragmatic aspects of
observations, likelihood of success, cost and secondary benefits.

In the quantified hypothesis tests and goals given as examples, several cases include the observations
required for independent verification of results. Examples are ocean heat storage from in situ temperature
and salinity profiles, radiative fluxes, and independent constraints for sea level rise due to ocean thermal
expansion versus ice sheet and glacier loss. Independent observations and analysis are two key scientific
principles required to verify surprises in complex systems. Given the importance of climate to societal deci-
sions and economic impacts, such verification is a significant characteristic of a future rigorous and robust
climate observing system. A similar independent verification is used for the climate sensitivity example.
Independent observation, analysis, and verification should be guiding principles in the design of an inter-
national climate observing system.

All quantified hypothesis tests or goals will not be equally important. In principle, an infinite number of
such tests and goals could be constructed. The importance of these tests and goals to understanding and
predicting future climate, including their societal impact could be used to prioritize them. For example, an
important metric might be estimated based on narrowing uncertainty in economic impact (climate sen-
sitivity, sea level rise, or ocean acidity) or as a function of key climate science uncertainties such as those
evaluated in the IPCC WGlI reports (2013), such as the uncertainty in different anthropogenic radiative forc-
ings, or different climate feedbacks. The scientific community can help identify priorities, as the WCRP has
done in the development of the Grand Challenges.

4, Evaluation of Benefits

While in the past climate observations—and more generally climate science—may have been perceived
as a general societal benefit (“knowledge for sake of knowledge”), we make a different point in this
article—one that has been made in economic analyses and is summarized here: climate observations pro-
vide economic benefit to society because they allow for enhanced planning that can save lives, property
and investments. The arguments presented indicate that climate observations and scientific analyses are
not an entitlement, but an appropriate investment, that can largely succeed when coordinated nationally
and internationally. Designing an observing system to meet the broad climate science needs requires
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Quantified Objectives

COSSE Evaluation

Figure 2. For each societal need, activities can be identified to specify the observing system which supports the societal impact. The
goals of monitoring the Earth, advancing climate processes, and improving climate prediction can result in a robust observing system
that serves science and society in a cost effective, fully justifiable manner.

thoughtful engagement of the community, building from existing efforts, and respecting current organi-
zational structures. Carefully conceived activities can help change the paradigm for developing observing
systems to support climate science from an ad hoc, sometimes engineering-driven approach to a scientif-
ically driven set of decisions that assure appropriate investment in needed observations. We identified a
number of activities that can help achieve this goal.

4.1. Societal Context for Designing a Climate Observing System

GCOS (WMO, 2016) in describing the current observing system noted, “A wide range of studies has demon-
strated the cost-effectiveness of various parts of the global climate observing system.” The activities to
support improved climate observations described in this article can be applied to all of the Grand Chal-
lenges to help improve the effectiveness of observations to support those important goals. Specifically,
quantified climate science objectives, utility of each measurement to achieve the objective, quality of the
measurement required, and finally the cost and success probability of proposed approaches for an obser-
vation each need to be considered. The proposed steps for evaluating proposed climate observations are
listed below in Figure 2.

Notably, climate observations without commensurate scientific activities to analyze the emerging data and
advance climate models will likely not result in successfully addressing any of the Grand Challenges. The
analysis of data, its use in developing improved climate processes and models, and application to the Grand
Challenges is as important as the observations themselves. Without planning appropriately for observa-
tional analyses and model development, the observing system will not effectively benefit society.

It is valuable to further articulate the economic costs and benefits of improved observing and mod-
eling of the Earth system, leading to understanding and predictions/projections. The challenges of
cross-disciplinary work between economists and climate scientists are large, but there is still work to be
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done toward unambiguously addressing damages to life and property on time scales from storms, to inter-
annual climate and to longer time-scale trends. This work would serve us best if built from and expanded
beyond the economic evaluation of weather-related disasters (e.g., hurricanes, tornadoes) with a linkage
whose quantification becomes acceptable to a large community. It would be wise for both climate scientists
and economists to critically evaluate current observing capabilities, starting with existing techniques and,
where necessary, to develop new techniques for evaluating the effectiveness of the observing systems
to address societal priorities and scientific goals. A good starting point would be to examine past events
on time scales longer than daily and weekly events and to evaluate the value and effectiveness of these
systems. A quantified answer based on some “case studies” from the past, over a period during which the
observed changes are robust, would benefit the communication of a coherent observing system strategy.

4.2. Economic Decisions

Assessment of the economic value of future information, the area of economics generally referred to as
value of information (VOI), is well developed in many areas of applied economics, but has primarily been
used to address weather forecasting information within the atmospheric community. Extending VOI to
many sets of problems, particularly the seven Grand Challenges currently identified by the WCRP could
be a good first step. Further developments in this area can highlight which of the many under-observed
systems may have the most societal value.

To assess the economic value of a designed climate observing system requires understanding potential uses
of climate information and how this may change orimprove societal outcomes with changes in the climate
information. The value of climate information lies in its potential to improve decision making. Measuring
this requires comparing potential outcomes between a baseline (e.g., current and future climate observing
systems without a “designed” observing system) and potential outcomes with improved information (i.e., a
designed observing system).

VOI has demonstrated applications in areas from health, information science, energy, economics, agricul-
ture, neuroscience, air quality, and land management (Garner & Thompson, 2012; Keisler et al., 2014; Lazo &
Waldman, 2011). Economists have the necessary theories, methods, and applications for assessing poten-
tial changes in climate-related societal outcomes including potential reductions in health impacts and loss
of life, mitigating impacts of sea level rise, improving agricultural practices, designing climate-appropriate
energy systems, investments in water infrastructure. Much more work is needed though to understand how
potential future changes in climate impact society and how decisions made today based on climate infor-
mation may change outcomes in the future. For instance, decisions on development in certain coastal areas,
planning for future water supplies, and efforts to make cities resilient to extreme events all rely on some esti-
mate of the future climate. Imperfect information limits the certainty with which some of those plans can
be made.

Figure 3 begins with consideration of a “business as usual” emissions scenario, which through climate sensi-
tivity leads to an amount of global climate change and associated economic impacts over time. Meanwhile,
scientists, the public, and government leaders are looking at climate change from past observations (center
linein the figure). Scientists use these observations to determine uncertainties in climate model projections
of past and future climate (IPCC, 2013). But both scientists and the public must look through three fuzzy
lenses in interpretations of the past observations. The first fuzzy lens is that of natural variability of the cli-
mate system such as El Nifio, Pacific Decadal Oscillations, solar variability, and volcanic eruptions. Most of
this natural variability is caused by nonlinear interactions between the atmosphere and oceans that create
“noise” in the climate system (e.g., El Nifo). The noise of natural variability delays the time it takes to rig-
orously detect anthropogenic climate signals (Leroy et al., 2008; Weatherhead et al., 1998) and can confuse
the public (e.g., the so called “hiatus” of warming from 1998 to 2013). The second fuzzy lens is the additional
uncertainty in climate observations themselves. Most of the data systems used for long-term climate obser-
vations were in fact designed for other purposes such as weather, fisheries, air pollution, agriculture, land
resources, or short-time scale scientific process research. As a result they often lack the instrument accuracy
and sampling optimal for reducing uncertainty in decadal time scale climate observations. The third fuzzy
lens is the uncertainty of climate model predictions for any given emissions scenario. In some cases, the
climate models can be improved simply by improving computer power and therefore model space/time
resolution to better resolve climate processes such as clouds. But typically, model improvement requires in

WEATHERHEAD ET AL.

DESIGNING THE CLIMATE OBSERVING SYSTEM 95

85U8017 SUOLILLOD 3AIIER.D 3[cfeo!dde aup Aq peusenob afe Sapie O ‘8sN JO S9N 10y AReid 1T 8UIIUQ 43| UO (SUO I PUOD-PUR-SLLIBY WD A8 [IMARIq 1 U UO//SANY) SUORIPUOD pUe swie | 84} 88S *[z202/TT/ze] uo Arigiauliuo A8|iM ‘sstreiqi Buoy BuoH Jo AiseAlun Aq 229000432T02/200T 0T/10p/LI0d A8 Akeiqiputjuosqndnfe//sdny wouy pspeojumod ‘T ‘8TOZ ‘LLZY82EC



@AG U Earth’s Future

10.1002/2017EF000627

Value of Information Estimation Method

Reduced
Emissions/New
Adaptation

Business As
Usual
Emissions

Climate
Sensitivity

Climate
Sensitivity

Fuzzy
Lens 1

Fuzzy
Lens 2

Fuzzy
Lens 3

Climate
Mode_l

Natural Observing Societal Reduced

Decision Climate Change

Climate

Change -/

Reduced
Economic
Impacts

Economic
Impacts

Climate Science

Value of Information

Figure 3. Business as Usual Emissions will directly affect climate and thus economic impacts. Imperfect knowledge of the climate
system is partly due to natural variability, which can obscure underlying changes, and partly due to a suboptimal observing system, and
partly due to needed improvements in climate prediction and projection models. With available information, decisions will be made that
can result in societal actions. The value of information can be evaluated by economically evaluating the two scenarios.

addition improved climate process observations (e.g., aerosols, clouds, ice sheets, carbon cycle) as well as
improved long-term monitoring observations required to test and validate their decadal time-scale projec-
tions by using past observations. Such observations can be in-situ or satellite based, but commonly require
near global coverage to reach high confidence in conclusions.

As a result, the three fuzzy lenses shown in Figure 3 cause uncertainty in making effective societal decisions
through under or over investment in mitigation (e.g., renewable energy) or infrastructure robustness
in design. Once society decides to act, then progress can be made toward reduced emission scenarios,
which lead to reduced climate change and reduced future economic impacts as shown on the right
side of the figure. The difference between the amount of reduced economic impacts and the cost of
mitigation can be used to evaluate the economic value of improved information such as an improved
climate observing system. Such a higher accuracy system can “clear” the observing system fuzzy lens
and can assist in clearing the climate modeling fuzzy lens. Better observations can provide clearer vision
into the future.

While economics can help characterize the value of improved climate information, it should be noted that
there is significant uncertainty about the future states of the world in which climate change will be actu-
alized and thus it is extremely difficult to reliably quantify benefits far into an unknown future (unknown
even without climate change). Such uncertainties may well be significantly greater than uncertainties in
climate observations and modeling and thus make rational prioritization based on economic analysis diffi-
cult. In addition, in economic analysis future benefits need to be discounted back to present values, which
is highly dependent on the choice of discount rates and functional forms for discounting (Nordhaus, 2007).
Thus determining the VOI for designing climate observing systems involves complexities well beyond the
physical sciences.

Planning the climate observing system to maximize societal benefits would require an understanding of
what future climate-related impacts and benefits are and ways to characterize, measure, and compare
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potential outcomes. Because, to date, the climate observing system has not been planned, but has been
pieced together from available observations, the current climate observing system has inefficiencies and,
attimes, ineffective observations. A more systematic evaluation of the observing systems would likely show
that the investments are not currently commensurate with the importance and economic value of having a
better understanding of future climate. Indeed, while the WCRP Grand Challenges were largely developed
by the scientific community, driving and underlying these priorities should be societal preferences above
and beyond current activities.

While a stronger investment may be justified given the current range of uncertainty in how the climate
will behave, equally important is the economic question; whether the current resources are being spent
appropriately to address the most pressing of climate questions. And even if the system is not optimized
based on socioeconomic values, efforts should be made to evaluate net societal benefits to improve our
understanding of potential outcomes. Using socioeconomic evaluations to demonstrate the importance
of global climate observing systems will also help build support from policy makers and government and
private sector decision makers. And while policy makers often require evidence of the net benefit to soci-
ety from major investments, at a minimum, beginning to ask the question of societal benefits moves the
community toward being able to prioritize investments in observing systems.

A summary and discussion of early research on the economic value of an improved climate observing sys-
tem is provided in Appendix A.

5. Conclusion

Society now recognizes the role of climate science in managing water resources, planning infrastructure,
and responding to severe events. Climate scientists, together with resource managers and policy makers, are
ready to address the highest climate science priorities as summarized in WCRP’s Grand Challenges (clouds,
ice, extremes, sea-level, water, carbon cycle and near-term climate predictions) with coordinated scientific
research supported by appropriate observations. We believe that these can be addressed by continued and
improved observations and the associated analyses that will emerge from these observations.

Some initial steps that would help toward building the observing system outlined in this article above
include: (1) identifying the most critical questions for each Grand Challenge, and the observations most
suited to addressing these questions; (2) evaluating current observations with independent, quantitative
analyses of their ability to address critical questions; and (3) establishing how best to augment existing
observations to address these critical questions. When considering new observations, we need to think
beyond existing and even proposed observing capabilities, with the explicitintention of fostering the devel-
opment of varied new observing approaches.

Our biggest challenge in planning climate observations is to leverage what has already been done and
work as a community to identify the key climate priorities. A climate OSSE approach, in some ways, reverses
how new observations have been nurtured in the past, one where engineering capabilities often led the
charge, thenrecruited science questions and scientists who can make use of those capabilities. The structure
of this new approach engages the consumers of climate observations and works to identify priorities to
significantly advance our climate observing system. This new paradigm for planning climate observations
will support integrated, science-driven observations that underpin the highest priorities in climate science.
The planned observing system together with the formal testing of proposed climate observations will result
in large economic benefits to society and warrant additional investments in observations to serve society’s
most critical needs.

Appendix A

Estimating the Economic Value of an Improved Climate Observing System

Building a designed climate observing system makes a great deal of sense from a scientific standpoint, but
what about an economic perspective? Is such a system a wise economic investment? The purpose of this
appendix is to summarize recent research on this topic.
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A wide range of studies have examined the economic impacts and mitigation costs of climate change,
including Working Groups Il and Ill of the IPCC reports (IPCC, 2013). Much less attention, however, has been
given to the economic value of improved scientific information on this societal challenge. Such studies
are called “value of information” or VOI studies. For weather, the VOI is assessed by examining the value
of improved accuracy in short term forecasts for hurricane tracks and strength, or warnings for frost, hail,
tornado or severe storms. For long-term climate, value is related to narrowing the uncertainty of future
predicted climate changes as a function of human emissions from fossil fuels. For example, the current
uncertainty in ECS is a factor of 4 at 90% confidence interval (IPCC, 2013), a range of 1.5-6°C warming
for a doubling of CO, in the atmosphere. To first order, there is a roughly quadratic relationship between
the amount of global temperature increase and economic impacts (Interagency Memo on the Social Cost
of Carbon 2010, hereafter SCC2010). As a result, a factor of 4 uncertainty in ECS leads to a factor of 16 uncer-
tainty in long term economic impacts. These large impact uncertainties then lead to large uncertainties in
the optimal investment strategy for early mitigation versus later adaptation.

Narrowing the uncertainty in ECS has been used in several VOI articles as an example of how improved
scientific knowledge would lead to improved societal decisions and economic outcomes (Cooke et al., 2014,
2016; Hope, 2014). The Cooke et al. articles use a methodology shown schematically in Figure 3.

The climate change VOI estimates to date use one of the three Integrated Assessment Models (IAMs) used
by SC2010 and the IPCC. These IAMs combine a simplified climate model tuned to the IPCC results with
economic models of future economic development, costs of mitigation, and costs of adaptation. The three
models are called DICE (Nordhaus, 1994, 2007), PAGE (Hope, 2006), and FUND (Anthoff & Tol, 2010; Tol, 2002).

The Hope (2014) article assumes that science can reduce the uncertainty in climate sensitivity by a factor of
two, and then uses the PAGE IAM to estimate the economic value to global society of doing so. They derive
an economic value of about $10 trillion US dollars in net present value using a discount rate of 3%.

The Cooke et al. articles use estimates of the accuracy of current observations, the potential improved accu-
racy of future observations, and the unavoidable noise of natural variability to estimate the time needed to
detect anthropogenic climate trends using current or future improved observing systems. Recent studies
have indicated that higher accuracy observations can shorten the time to detect trends by 15-30years
(NRC, 2015; Shea et al., 2016; Wielicki et al., 2013; Xu et al., 2017). Higher accuracy observations can then
advance in time societal decisions once the observations reach the certainty level required by society. The
value of this more rapid ability to made decisions is then shown to vary from $10 trillion to $20 trillion US
dollars depending on the climate variable. The Cooke et al. results also use a net present value metric at 3%
discount rate. The analysis performs a Monte Carlo analysis over the full range of ECS uncertainty in IPCC
(2013) report and the final VOl is the expected value over the entire ECS distribution. Cooke et al. (2014) note
that while the example calculation uses uncertainty in trends in one climate variable, societal decisions will
clearly depend on the results of confirmation from a wide range of climate variables, so that their results
should be considered as the value of an improved total climate observing system and not just one compo-
nent of such a system. In that sense the VOl is the value of reaching a given level of uncertainty in climate
change observations 15-20 years earlier than with less capable observing approaches.

Net present value or NPV is a standard economic accounting metric that enables a more direct comparison
of the value of investments made today with the payback of those investments in the future. The annual
discount rate is the concept that allows that comparison. The discount rate is applied for every year into
the future the investment will provide its return. An investment that returns in 20 years will be discounted
or reduced by 1.0320 or a factor of 1.8. A return in 50 years will be discounted by 1.0350 or a factor of 4.4.
The correct discount rate to use remains an issue of research in the economics community and can vary
from 1.5% to 5%, with 3% as a common value (SCC2010). A discount rate of 5% would lower the VOI by
a factor of 4, while a discount rate of 2.5% increases the VOI by a factor of 2 (Cooke et al., 2014). From an
investor (public or private) point of view, discounting is the sum of a risk free rate and compensation for
investment risk. Climate sensitivity is large (i.e., uncertainty on risk is high), despite climate change being
close to unequivocal, i.e., risk is high). For the same discount rate, investment will go to the lower ultimate
risk. For a same ultimate risk, the investment will go to the higher discount rate.
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The first question often asked about these studies is how the economic value could be as large as trillions of
dollars. A simple scaling argument helps understand the results. The world Gross Domestic Product (GDP)
is currently about $80 trillion US dollars per year. Climate change impacts in the second half of the 21st
century are estimated to reach between 0.5% and 5% of global GDP ($0.4-$4 trillion US dollars annually)
depending on climate sensitivity and societal decisions (SCC2010). As a result, the impacts could range from
alevel less than that of the recent financial crisis in 2008 to a level much larger than that crisis, but extending
over many decades instead of several years. Even modest optimization of that economic risk leads to large
economic value, value that is measured in trillions, not billions.

The second question often asked is about the robustness of the results. There are two key aspects of this
question: (1) uncertainty in the economic costs of future climate impacts, and (2) sensitivity of the results to
timing and methods of societal decisions which are very uncertain. Estimates of climate impact costs vary
in the current IAMs by a factor of 3 (Kopp et al,, 2012). In addition, there are many climate impacts that have
not yet been incorporated in the estimates. These include the impacts of ocean acidification, species loss,
or any international conflicts caused by the stresses of climate change on populations and economies. The
Cooke et al. (2014) article estimated the impact of unknown societal decision points or “triggers.” This was
done by varying the magnitude of climate trends required for a decision trigger (e.g., 0.2°C or 0.3°C per
decade warming), or varying the statistical confidence of the observed anthropogenic climate trend (95%
versus 97.5% confidence interval). The sensitivity of the VOI to these assumptions was about 30%, much less
than the discount rate or damage function uncertainty (Cooke et al., 2014). The reason for the robustness
to the specific societal decision trigger was found to be that the VOI was a differential measure: no matter
what information society required, it would ultimately be provided 15-20 years earlier by a more accurate
observing system.

While the economic value of a more accurate and complete climate observing system is clearly large, under-
standing its return in investment requires estimating the cost of such an observing system. Cooke et al.
(2014) estimated that a tripling of the current global climate research from $5 billion to $15 billion US dollars
per year might be needed for at least 30 years. The additional $10B per year global cost of such a system in
net present value is ~$200-$250 billion US dollars. When compared to a $10-$20 trillion VOI, the return on
investment varies from 40 to 100 to 1, or roughly $50 return for every $1 invested. Because of the long time
scales involved, most of that return occurs several decades after development of the more advanced cli-
mate observing system. Cooke et al. (2014) also investigated the cost of delaying such an advanced climate
observing system and concluded that the world would lose roughly $250 billion per year of delay (NPV, 3%
discount rate).

Early analysis of the economic value of an designed more accurate and complete climate observing system
suggests an economic value of $10-$20 billion US dollars, a 50 to 1 return on investment, and a $250 billion
loss for every year of delay. Even if total uncertainties in the economic analysis were a factor of 5 below or
5 above such estimates, the return on investment would range from 10:1 to 250:1, a wise investment in any
event.

Future directions of climate VOI research are examining the effect of combining multiple climate variables
in the societal decision trigger using Bayesian Net multivariate statistical approaches. Further steps might
extend the analysis to narrowing uncertainty in additional climate variables such as aerosol radiative forcing,
sea level rise, or carbon cycle feedbacks.
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