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A B S T R A C T

Surface albedo is widely used in climate and environment applications as an important parameter for controlling
the surface energy budget. There is an increasing need for albedo data to be available for use in applications that
require a fine spatial resolution and for validating coarse-resolution datasets; however, such products with long-
term global coverage are not available thus far. Existing algorithms for Landsat albedo estimation all require
surface reflectance from explicit and reliable atmospheric correction, which may sometimes be unavailable or
carry uncertainties due to saturated visible bands or a lack of dense vegetation. In addition, most of the existing
algorithms require concurrent clear-sky observations from the Moderate Resolution Imaging Spectroradiometer
(MODIS) for bidirectional reflectance distribution function (BRDF) correction, which limited the data avail-
ability for Landsat albedo estimation. To overcome these problems, in this study, we adopt the direct estimation
approach previously used with coarser resolution data, such as MODIS and Visible Infrared Imaging Radiometer
Suite (VIIRS), and apply it to multiple Landsat data obtained by Multispectral Scanner (MSS), Thematic Mapper
(TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI). By incorporating Landsat
spectral response functions and a database of bidirectional reflectance distribution function (BRDF) into ra-
diative transfer simulations, a unified algorithm is developed to estimate surface albedo directly from the
Landsat top-of-atmospheric reflectance data obtained by MSS, TM, ETM+, and OLI with few ancillary inputs. To
overcome the saturation problems in the visible bands of TM and ETM+ over very bright surfaces, a refined
approach is employed by using only non-saturated bands. The validation results against ground measurements
over various land cover types and climate regions show that our algorithm is effective for both snow-free and
snow-covered surfaces and can achieve root-mean-square errors (RMSEs) of not more than 0.034. In addition, we
show the high potential of the earlier MSS data for producing consistent surface albedo estimations based on
inter-comparison with TM-based results with RMSEs of 0.011–0.017 and R2 of 0.858–0.963. This long-term, 30-
m resolution surface albedo estimation can date back to the early 1980s, which allows for improved under-
standing of long-term climate change and land cover change effects.

1. Introduction

Land surface albedo is widely used as a controlling factor of the
Earth's energy budget by regulating the amount of solar radiation re-
flected by the surface (Liang et al., 2010). Satellite remote sensing of
land surface albedo has continuously improved during the past three
decades, and many satellite products are now available for coarse re-
solution climate modeling applications (He et al., 2014a; Li and Garand,
1994; Liang et al., 2013; Martonchik et al., 1998; Muller et al., 2012;
Pinty et al., 2000; Popp et al., 2011; Riihela et al., 2013; Schaaf et al.,

2002; Wang et al., 2013).
Although satellite albedo products with a fine spatial resolution are

in high demand, which describes the spatial heterogeneity of land
surface albedo and represents the changes in albedo due to small-scale
land cover changes (Roman et al., 2013; Shuai et al., 2011; Shuai et al.,
2014). However, no such products with long-term global coverage are
available. Factors such as scale differences between coarse-resolution
data and ground measurements have prevented more accurate assess-
ment of existing satellite data for research on climate modeling in the
absence of fine-resolution data (e.g., Burakowski et al., 2015; Roman
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et al., 2013; Wang et al., 2012). As a result of the free access to Landsat
data (Woodcock et al., 2008) and recent technical advancements in
data processing (e.g., Masek et al., 2006), there is the potential for al-
bedo data to be used in applications that require data at finer spatial
resolutions, such as urban environmental assessment (Zhou et al.,
2012), agricultural monitoring (Gao et al., 2014; Li and Fang, 2015),
forestry management (Kuusinen et al., 2014; Vanderhoof et al., 2014),
and ecosystem functioning evaluation (Lagomasino et al., 2015).

Physically-based or semi-empirical algorithms based on the tem-
poral accumulation of angular samples have been widely used with
coarse-resolution data, such as the algorithms developed for Moderate
Resolution Imaging Spectroradiometer (MODIS) data (Lyapustin et al.,
2011; Schaaf et al., 2002). For data from fine-resolution satellite sensors
(e.g., Landsat) it is difficult to apply such physically-based or semi-
empirical algorithms due to insufficient angular samples from one
sensor within a short period for capturing surface anisotropy caused by
the reduced revisit frequency. Previous studies reported that failure to
correct the effects of surface bidirectional reflectance distribution
function (BRDF) can introduce errors of up to 60% in fine-resolution
data (e.g., Gao et al., 2014), which demonstrates the importance of
converting surface directional reflectance to albedo.

To attempt to correct for the BRDF effects without BRDF model
inversion and to produce land surface albedo from Landsat data, several
previous studies have shown promising results over snow-free surfaces.
Shuai et al. (2011) proposed a method of using the concurrent 500 m
MODIS albedo/BRDF product to convert Landsat surface reflectance to
albedo, by taking the advantage of surface BRDF information derived
from coarse-resolution data which cannot be obtained directly from
Landsat data. Two general assumptions were made in their method.
First, land surface was assumed to be invariant within the 16-day
compositing period of MODIS data. Second, the ratio of reflectance to
albedo was assumed to be the same between a Landsat pixel and a
MODIS pixel with the same land cover type. To avoid the selection of
homogeneous MODIS pixels at Landsat spatial resolution and to reduce
the gridding artifacts in MODIS 500 m data reported in Tan et al.
(2006), Franch et al. (2014) presented a two-step method for Landsat
albedo estimation. The first step is to estimate surface BRDF from the
MODIS 0.05° surface reflectance data, assuming a stable BRDF shape
with changing reflectance magnitude during a short period (Vermote
et al., 2009) in which the seasonal BRDF shape variation is derived from
the normalized difference vegetation index (NDVI). In the second step,
the BRDF from MODIS data is then disaggregated to the corresponding
Landsat pixels with the help of a land cover map. Both methods (Franch
et al., 2014; Shuai et al., 2011) rely on clear-sky MODIS data close to
Landsat acquisition date to produce accurate snow-free albedo esti-
mation with root-mean-square errors (RMSEs) of 0.015–0.024; how-
ever, they are sometimes not applicable when clear-sky MODIS data are
not available and are limited for application past 2000. In addition, a
reliable atmospheric correction is required to generate surface re-
flectance from Landsat TOA reflectance (Masek et al., 2006), which is
then used for albedo estimation. For sensors prior to Landsat-8 Op-
erational Land Imager (OLI), Landsat-based atmospheric correction
sometimes can be unreliable when accurate aerosol loadings are not
available (Ju et al., 2012) with a possibility to obtain inaccurate albedo
estimation.

For snow-covered albedo estimation, two studies have estimated
shortwave albedo based on the method proposed in Shuai et al. (2011),
which was originally designed for snow-free albedo estimation. Wang
et al. (2012) reported biases from −0.076 to 0.01 of isotropic version
surface shortwave albedo estimated from non-saturated Landsat TM
data versus ground measurements obtained at the Barrow site, in which
Landsat albedo was used for MODIS albedo product inter-comparison
over snow-covered surfaces. A recent study reported an RMSE of 0.043
for the snow albedos estimated from Landsat 8 data (Wang et al., 2016).
While the reported snow-covered albedo estimation accuracies are
reasonably good, it is difficult to apply such approaches to the Landsat

Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+)
data acquired over highly reflective surfaces because of saturation issue
(Wang et al., 2016; Wang et al., 2012), which were designed with dy-
namic range to accommodate the variance in reflectivity over various
surface types. However, the data of the visible bands are often saturated
if the sensor is put in the low-gain mode (Karnieli et al., 2004). We
found that the default AOD values were used (e.g., 0.06 over Greenland
and 0.01 over the US) in the atmospheric correction for saturated
scenes when producing the current version of the Landsat surface re-
flectance products, which may lead to biased surface reflectance esti-
mation in certain regions. Benefiting from the improved radiometric
characteristics, the OLI onboard Landsat 8 is not affected by the sa-
turation issue.

To satisfy an increasing demand for studies on the surface energy
budget related to long-term climate change (e.g., Ghimire et al., 2014;
O'Halloran et al., 2012), the development of accurate and consistent
surface albedo products is important. However, challenges in such
product development includes but are not limited to difficulties in es-
timating surface albedo resulting from ephemeral snow at mid- to high-
latitude regions and inter-sensor calibration of coarse-resolution data
such as the Advanced Very High Resolution Radiometer (AVHRR)
(Molling et al., 2010). Unlike AVHRR sensors onboard different sa-
tellites, each of Landsat satellites has a relatively long temporal cov-
erage. In terms of its data consistency, long-term assessment of Landsat
sensor calibration has shown that the sensor degradation has been well
characterized for Landsat data since the 1980s (Chander et al., 2009;
Kim et al., 2014), which enables the use of the legacy data in the de-
termination of surface albedo. To extend Landsat albedo products to the
pre-MODIS era for a comprehensive understanding of albedo con-
sequences of forest disturbance and recovery at a fine spatial resolution,
a BRDF look-up table (LUT) approach was proposed by considering
factors including land cover type, forest disturbance age and severity,
and the topography over the United States, as well as high-quality al-
bedo/BRDF information from the MODIS BRDF product (Shuai et al.,
2014). RMSE of 0.016 with measured albedo values ranging from 0.06
to 0.14 was achieved based on validation against tower measurements
at six forest sites showed, which enabled extending Landsat albedo
estimation back to mid-1980s as long as all the necessary information
required by the forest disturbance BRDF LUT is available.

All the existing approaches for deriving surface albedo from Landsat
data all require surface reflectance derived from a reliable atmospheric
correction. However, it is unlikely to generate accurate surface re-
flectance when dark dense vegetation was not present in the scene or
saturation occurred to visible bands. Applying the direct estimation
approach to Landsat data could overcome such limitation; meanwhile it
enables the exploration of possible means for further extending the
albedo data records to the pre-TM era. This method has been developed
and refined for data from several satellite platforms (He et al., 2015a;
He et al., 2015b; Liang et al., 2003; Qu et al., 2014; Wang et al., 2013).
The basic principle of this approach (Liang, 2003; Liang et al., 1999;
Liang et al., 2005) is to employ the empirical relationship built from
extensive radiative transfer simulations in estimating surface albedo
from top-of-atmosphere (TOA) observations. To mitigate non-linearity
issues, the empirical relationships between TOA observations and sur-
face albedo are established on an angular-bin basis. Following this
approach, an assumption of a stable surface BRDF during a certain
period or an explicit atmospheric correction is unnecessary.

The main objective of this paper is to evaluate a unified approach
for estimating surface albedo from Landsat TOA reflectance over dif-
ferent land cover types without being constrained by any concurrent
high-level satellite products as the inputs. This method can use the le-
gacy data obtained from the entire Landsat satellite series as long as
their radiometric and geometric calibration accuracies permit. The al-
gorithm is validated at different locations over various land cover types.
These efforts will allow for an improved understanding of surface al-
bedo changes that occur in finer scales, such as forest cover changes,
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agricultural expansion, and urban environment changes. Moreover, the
results can be used to investigate the uncertainties in coarse-resolution
datasets over heterogeneous landscapes.

In this study, several efforts for evaluating the unified approach for
Landsat surface albedo estimation have been made. A unified approach
previously developed for coarse resolution data is adopted and applied
to the Landsat data series including the Multispectral Scanner (MSS),
TM, ETM+, and OLI without the need for any concurrent high-level
satellite products for correcting atmospheric and surface BRDF effects.
The Landsat surface albedo estimates are then evaluated against ground
measurements obtained from sites over various land cover types and
climate regions. Moreover, the application of the direct estimation
approach is demonstrated for the estimation of spectral albedo as well
as other broadband albedos, including visible albedo.

2. Methods

2.1. Landsat satellite data

Landsat satellite data have been available since the early 1970s.
Onboard the early series Landsat satellites 1–5 were MSS sensors with
four spectral bands in the visible to near-infrared spectral range at an
approximate spatial resolution of 60 m; band 4 of Landsat 5 MSS failed
in 1995. The TM onboard Landsat 4 and 5 satellites with seven spectral
bands covered the shortwave range at a resolution of 30 m from 1984 to
2011. Landsat 7, launched in 1999, carried the ETM+ with spectral
bands and spatial resolution similar to those of the TM. To mitigate the
saturation problem over bright surfaces at high latitudes, ETM+ was
designed to have two modes including a low-gain mode, which is si-
milar to TM, and a high-gain mode (Masek et al., 2001). ETM+ had
been working well until May 2003, when the failure of the scan line
corrector (SLC) resulted in image data gaps. The most recent satellite in
the Landsat family, Landsat 8, was launched in February 2013 carrying
a 30-m resolution OLI with improved quantization and calibration
along with two additional optical bands for improved monitoring of
aerosols and cirrus clouds. The spectral response functions of the four
sensors onboard Landsat 5, 7, and 8 satellites were obtained from the
U.S. Geological Survey (USGS). The band information is shown in
Table 1.

Radiometric calibration efforts have been conducted during the past
three decades for the sensors onboard the Landsat satellites with a
nominal calibration accuracy of 5% (Chander et al., 2009; Thome et al.,
1997). The geolocated and terrain-corrected product, Level 1T (L1T) is
available for each of the sensors, with a geolocation uncertainty of less
than a half pixel for TM, ETM+, and OLI. The relative geolocation error
is slightly larger for MSS data, sometimes up to 2 pixels (Tucker et al.,
2004).

In this study, we downloaded all available Landsat data from the
1990s to 2016 with matched ground measurements; Section 2.3 pre-
sents details on Landsat data selection. To mitigate issues such as re-
duced data quality, clouds, and reduced geolocation accuracy, the L1T
data with only a small amount of cloud coverage and the highest data
quality according to the USGS website, with a quality flag of 9, were
used for validation purposes. TOA reflectance data were calculated by
using the coefficients included in the Landsat data L1T metadata files.

2.2. MODIS BRDF database and surface spectrum

MODIS has been generating surface albedo/BRDF products since
2000 (Schaaf et al., 2002). In the MODIS algorithm, surface reflectance
data collected every 16 days at 8-day intervals were used to fit the Ross-
Li kernel models, expressed as:

= + +ρ θ θ φ f f k θ θ φ f k θ θ φ( , , ) ( , , ) ( , , )s v iso geo geo s v vol vol s v (1)

where ρ(θs,θv,φ) is the surface reflectance with a solar zenith angle θs,
view zenith angle θv, and relative azimuth angle φ; kgeo and kvol are the
kernels representing the geometric optical mutual shadowing and vo-
lumetric scattering components of the surface reflectance, respectively;
fgeo and fvol are the weights of the two components; and fiso is the iso-
tropic reflectance component.

A BRDF database was built from the multiyear 500 m MODIS albedo
products (MCD43A Collection 5). From a wide range of land cover types
from the MODIS land cover product (MCD12Q1), 1000 samples of
MODIS BRDF data including vegetation, soil, water, and snow/ice were
collected. The samples of BRDF data were randomly selected. Three
quality check parameters were used to ensure that the selected BRDF
data were reliable and accurate: 1) quality flag, selecting data with the
highest quality only; 2) spatial homogeneity, using pixels from homo-
genous land cover; and 3) data range, ensuring that the directional
reflectance calculated from the BRDF parameters for all possible
viewing geometries were in the range of zero to 1. Each sample re-
presents a set of BRDF parameters for seven MODIS land bands per
pixel. The qualified random samples consist of 28% for dense vegeta-
tion with NDVI> 0.7 (e.g., dense forest), 47% for vegetation with
0.15 < NDVI< 0.7 (e.g., cropland and grassland), 14% for barren
land or sparse vegetation with NDVI< 0.15, 11% for snow, ice, or
water. This BRDF database has been used for estimating surface albedo
from MODIS (Wang et al., 2015) and VIIRS (Wang et al., 2013; Zhou
et al., 2016).

Because of the differences between the spectral response of the
MODIS and Landsat bands, direct application of the MODIS BRDF to
Landsat data leads to errors. To mitigate this issue, we first collected
245 surface reflectance spectra of vegetation, soil, rock, water, snow,
and ice (He et al., 2014b; He et al., 2012) from the USGS (Clark et al.,
2007) and Advanced Spaceborne Thermal Emission and Reflection
(ASTER) (Baldridge et al., 2009) libraries. The surface spectrum was
then used to establish the relationship between MODIS and Landsat
bands by assuming that the band conversion coefficients can be applied
to both directional reflectance and albedo. Although the Landsat band
design of several sensors (TM, ETM+, and OLI) is similar (Table 1),
band conversions (Eq. 2.) for each individual sensor are still needed to
reduce uncertainties when applying the MODIS BRDF database to
Landsat data. Moreover, this approach can be further extended and
applied to data from other optical sensors given the linearity of the
MODIS Ross-Li kernel-driven models (He et al., 2015a), expressed as.

∑= ⋅
=

F f ai
Landsat

j
j
MODIS

j
1

7

(2)

where fjMODIS is the BRDF parameter for MODIS band j, and aj is the
regression coefficient for calculating the BRDF parameter FiLandsat for
Landsat band i. The band conversion coefficients for each Landsat

Table 1
Spectral bands of Landsat 5 Multispectral Scanner (MSS), Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager
(OLI) used for albedo estimation. The spectral response function data were obtained from the U.S. Geological Survey (USGS).

Band 1 2 3 4 5 6 7

MSS 0.50–0.60 0.60–0.70 0.70–0.81 0.81–1.04 N/A N/A N/A
TM 0.45–0.52 0.52–0.60 0.63–0.69 0.76–0.90 1.55–1.75 Not used 2.08–2.35
ETM+ 0.45–0.52 0.52–0.60 0.63–0.69 0.77–0.90 1.55–1.75 Not used 2.09–2.35
OLI 0.43–0.45 0.45–0.51 0.53–0.59 0.64–0.67 0.85–0.88 1.57–1.65 2.11–2.29
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sensor are tabulated in Table 2.

2.3. Ground measurements and Landsat data collection strategy

Surface albedo can be estimated from tower measurements of up-
ward and downward solar radiation. In this study, we used the ground
data obtained from the networks including Surface Radiation
(SURFRAD), AmeriFlux, Baseline Surface Radiation Network (BSRN),
and Greenland Climate Network (GC-Net) for validation (Table 3).

SURFRAD sites began obtaining ground measurements of shortwave
radiation in 1995 through the support of National Oceanic and
Atmospheric Administration (NOAA) Office of Global Programs.
SURFRAD network is part of the BSRN. To avoid any confusion in the
texts that follow, the BSRN sites in this study refer to the BSRN sites not
included in the SURFRAD network hereafter. The SURFRAD data are
available at http://www.esrl.noaa.gov/gmd/grad/surfrad/index.html.
In January 2009, the data-recording time intervals were reduced from
initial averages of 3 min to 1 min. AmeriFlux network is currently
supported and managed mainly by the U.S. Department of Energy at
Lawrence Berkeley National Laboratory (LBNL) with data available at
http://ameriflux.lbl.gov/. Sites from AmeriFlux provide data at 30 min
intervals. To match the ground measurements with satellite data, the
flux data recorded within± 30 min of the satellite overpass time were
averaged to calculate the ground shortwave albedo. In addition to solar
shortwave radiation data, several AmeriFlux sites also provide mea-
surements of downward and upward photosynthetically active radia-
tion (PAR, 400–700 nm) in which the visible albedo data are calculated
by same process as that for shortwave albedo. Because the selected sites
from both networks are located in North America, where USGS has the
best and most complete Landsat data archive throughout the past
decades, only the highest-quality Landsat L1T data with nominal zero
cloud cover were downloaded for calibration/validation purposes.
However, it is noteworthy that scattered clouds remained in some
scenes and were later manually removed on a scene-by-scene basis. By
using the data from SURFRAD sites, we were able to assess the per-
formance of the direct estimation approach for various Landsat sensors
over both snow-free and snow-covered conditions. AmeriFlux data can
help us understand the estimation accuracies for both shortwave and
visible albedos over sites with different land cover types. The selected
AmeriFlux sites in Table 3 have observations for both shortwave and
visible albedos; however, the shortwave and PAR flux measurements

for the same site are not always available at the same time. To keep the
validation results consistent, only data with simultaneous measure-
ments of shortwave and visible albedos were included in the validation
section.

Ground measurements of surface albedo were calculated as the ratio
of total upward to total downward radiation. Known as blue-sky albedo,
this parameter reflects the actual radiation budget (Roman et al., 2010).
In this study, as a result of using MODIS products as training, blue-sky
albedo from Landsat was calculated as a combination of black-sky al-
bedo (BSA) and white-sky albedo (WSA) weighted by the diffuse sun-
light fraction measured at the stations. When the diffuse sunlight
fraction was not available for the station, the value of 0.2 was used as
the default. Footprints of the tower measurements (D: footprint dia-
meter) were calculated on the basis of the instrument height H and
effective field of view θ based on Eq. 3 (Roman et al., 2009). Tower
height was used to proximate the instrument height in this study.
Average values of satellite pixel-level estimation within the tower
footprints were used for comparison against ground measurements.

= ⋅D H θ2 cos (3)

Initiated by the World Climate Research Programme (WCRP), BSRN
is an international network for observing surface radiation budget. Its
data can be obtained at http://bsrn.awi.de/. By following a data col-
lection strategy of Landsat images similar to that used for SURFRAD
and AmeriFlux sites, we selected only clear scenes with small amounts
of scattered cloud cover (< 30%) during the temporal range of
1999–2012 when both Landsat data and ground measurements were
available for the BSRN sites. Both Landsat TM and ETM+ data
manually identified as clear-sky at the site locations were included in
this study. Validation at the BSRN sites can help demonstrate the per-
formance of the unified algorithm over various land cover types and
climate conditions.

Ground measurements of surface shortwave radiation have been
collected over Greenland since 1995 at 30 min intervals, which are
maintained by a project sponsored by National Aeronautics and Space
Administration (NASA) and the National Science Foundation (NSF).
The GC-Net data are available at http://cires1.colorado.edu/steffen/
gcnet/. The sites over Greenland include two types of snow conditions:
permanent snow cover and fluctuating seasonal snow cover. To in-
vestigate the capability of the direct estimation algorithm and Landsat
data in the surface albedo estimation, we collected Landsat data over

Table 2
Band conversion coefficients and uncertainties in simulated spectral reflectance.

Sensor Band a1 a2 a3 a4 a5 a6 a7 RMSE

MSS 1 0.173 −0.013 0.169 0.671 0 0 0 0.003
2 0.989 0.010 −0.023 0.024 0 0 0 0.002
3 0.198 0.956 0 0 −0.280 0.205 −0.080 0.021
4 0 0.751 0 0 0.349 −0.137 0.040 0.009

TM 1 0.020 −0.023 0.831 0.167 0.011 0 0 0.011
2 0.277 0 0.022 0.707 −0.009 0 0 0.021
3 1.070 0 0 −0.073 0 0.020 −0.012 0.006
4 −0.029 1.007 −0.028 0.067 −0.032 0.014 0 0.007
5 0 0 0 0 0.064 0.791 0.158 0.019
7 0 0 0 −0.051 0.213 −0.357 1.127 0.029

ETM+ 1 0.016 −0.016 0.899 0.098 0.008 0 0 0.006
2 0.177 −0.010 0.055 0.778 0 0 0 0.016
3 1.084 0 0 −0.087 0 0.015 −0.007 0.006
4 −0.033 1.013 −0.030 0.074 −0.044 0.018 0 0.008
5 0 0 0 0 0.033 0.857 0.115 0.016
7 0 0 0 −0.049 0.197 −0.341 1.128 0.027

OLI 1 −0.043 0.018 1.182 −0.161 0 0 0 0.012
2 0.023 −0.020 0.872 0.121 0.009 0 0 0.008
3 0.139 −0.004 0 0.867 0 −0.010 0.007 0.011
4 1.054 0 0.010 −0.065 0 0.005 0 0.004
5 0.010 0.985 0 −0.016 0.029 −0.012 0 0.003
6 0.017 −0.021 0 0 −0.009 0.992 0.019 0.014
7 0 0 0 −0.036 0.192 −0.275 1.074 0.029
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four sites covering different parts of Greenland, including SwissCamp,
JAR1, Saddle, and NASA-E. In particular, validation results demonstrate
the algorithm's performance over snow surfaces when the visible bands
are saturated. Because of the limited availability of TM data to match
ground measurements, only ETM+ data were used in the validation
analysis. It is noteworthy that the LI-COR200SZ pyranometers used for
flux measurements at GC-Net sites have a spectral coverage of
400–1100 nm, which leads to an overestimation in snow albedo values
compared with those covering 300–3000 nm (Stroeve et al., 2013;
Stroeve et al., 2006). To evaluate the accuracy of snow albedo esti-
mation at GC-Net sites from this study, the 500 m MODIS albedo pro-
duct with the best quality (quality flag equals to zero) closest to the
Landsat acquisition date is included for comparison. The MODIS albedo
data with the best quality means that during the 16-day composite
period, the majority of the MODIS clear-sky reflectance for the pixel is
either snow-free or snow-covered with a BRDF model fitting error

below a certain threshold (Shuai et al., 2008).

2.4. Direct estimation approach

Surface albedo can be calculated through angular and spectral in-
tegration of surface directional reflectance, the former of which is
prescribed by a BRDF model (Eq. 1). However, the satellite sensor ob-
serves the TOA signal (e.g., TOA reflectance) modulated by the surface
and atmospheric conditions through a physically-based radiative
transfer. Without accurate estimation of atmospheric condition, surface
reflectance either cannot be estimated from an atmospheric correction
or contains large error, making it difficult to obtain surface albedo. To
overcome this issue, Liang et al. (1999) proposed a statistical method,
the so-called direct estimation approach, to estimate surface albedo
directly from TOA reflectance without requiring atmospheric correc-
tion. The empirical relationship was built through linear regression

Table 3
Information of ground stations used for validation.

Site name Network Latitude (°) Longitude (°) Land cover typea Temporal range Tower height (m) Number of scenesb

BON SURFRAD 40.0516 −88.3733 CRO 1995–2016 10 115
DRA SURFRAD 36. 6232 −116.0196 OSH 1998–2016 10 237
FPK SURFRAD 48.3080 −105.1018 GRA 1995–2016 10 121
GWN SURFRAD 34.2547 −89.8729 GRA 1995–2016 10 179
PSU SURFRAD 40.7203 −77.9310 CRO 1998–2016 10 47
SXF SURFRAD 43.7343 −96.6233 GRA 2003–2016 10 111
TBL SURFRAD 40.1256 −105.2378 GRA 1995–2016 10 94
CA-NS1 AmeriFlux 55.8792 −98.4839 ENF 2001–2005 24 15
CA-NS2 AmeriFlux 55.9058 −98.5247 ENF 2001–2005 20 11
CA-NS3 AmeriFlux 55.9117 −98.3822 ENF 2001–2005 10 10
CA-NS5 AmeriFlux 55.8631 −98.4850 ENF 2001–2005 9 7
CA-NS6 AmeriFlux 55.9167 −98.9644 ENF 2001–2005 6 8
CA-NS7 AmeriFlux 56.6358 −99.9483 ENF 2002–2005 6 4
US-ARM AmeriFlux 36.6058 −97.4888 CRO 2004–2013 60 72
US-Aud AmeriFlux 31.5907 −110.5092 GRA 2002–2011 4 142
US-Bar AmeriFlux 44.0646 −71.2881 DBF 2004–2011 30 31
US-Bkg AmeriFlux 44.3453 −96.8362 GRA 2004–2010 4 34
US-Blk AmeriFlux 44.1580 −103.6500 ENF 2004–2008 24 26
US-Bo1 AmeriFlux 40.0062 −88.2904 CRO 1996–2008 10 47
US-Bo2 AmeriFlux 40.0061 −88.2918 CRO 2004–2007 10 18
US-CaV AmeriFlux 39.0633 −79.4208 GRA 2004–2010 4 6
US-ChR AmeriFlux 35.9311 −84.3324 DBF 2005–2010 60 25
US-FPe AmeriFlux 48.3077 −105.1019 GRA 2000–2008 3.5 41
US-Fuf AmeriFlux 35.0890 −111.7620 ENF 2007 23 6
US-Fwf AmeriFlux 35.4454 −111.7718 GRA 2005–2010 4 29
US-Goo AmeriFlux 34.2547 −89.8735 GRA 2002–2006 4 36
US-IB1 AmeriFlux 41.8593 −88.2227 CRO 2005–2011 4 32
US-IB2 AmeriFlux 41.8406 −88.2410 GRA 2004–2011 3.76 34
US-MOz AmeriFlux 38.7441 −92.2000 DBF 2004–2013 30 59
US-NR1 AmeriFlux 40.0329 −105.5464 ENF 2006–2013 26 24
US-Ne1 AmeriFlux 41.1650 −96.4766 CRO 2001–2013 6 81
US-Ne2 AmeriFlux 41.1649 −96.4701 CRO 2001–2013 6 81
US-Ne3 AmeriFlux 41.1797 −96.4396 CRO 2001–2013 6 83
US-Pon AmeriFlux 36.7667 −97.1333 CRO 1997–2000 4.5 16
US-SRM AmeriFlux 31.8214 −110.8661 WSV 2004–2014 7.8 114
US-Shd AmeriFlux 36.9333 −96.6833 GRA 1997–2000 4.5 7
US-WBW AmeriFlux 35.9588 −84.2874 DBF 2001–2007 44 29
US-Wkg AmeriFlux 31.7365 −109.9419 GRA 2004–2014 6.4 155
US-Wrc AmeriFlux 45.8205 −121.9519 ENF 2005–2006 85 4
BAR BSRN 71.3230 −156.6070 TND 1995–2014 4 16
BOU BSRN 40.0500 −105.0070 GRA 1998–2014 300 97
E13 BSRN 36.6050 −97.4850 GRA 1995–2014 20 48
GVN BSRN −70.6500 −8.2500 SNW 1995–2016 1.9 30
PAY BSRN 46.8129 6.9435 CRO 1998–2014 10 50
SYO BSRN −69.0000 39.5833 SNW 2003–2014 1.5 13
TOR BSRN 58.2700 26.4700 GRA 1995–2014 2 30
SwissCamp GC-Net 69.5647 −49.3308 SNW 2000–2012 4 17
JAR1 GC-Net 69.4950 −49.7039 SNW 2000–2012 4 18
Saddle GC-Net 65.9997 −44.5017 SNW 2000–2012 4 13
NASA-E GC-Net 75.0006 −29.9972 SNW 1999–2011 4 25

a Cropland (CRO); Deciduous Broadleaf Forest (DBF); Evergreen Needleleaf Forest (ENF); Grassland (GRA); Open shrubland (OSH); Snow and ice (SNW); Woody Savannas (WSV);
Tundra (TND).

b The number of scenes for each site includes only clear-sky observations used for validation in this study.
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upon the simulated surface albedo and TOA reflectance from extensive
radiative transfer simulations under various prescribed conditions of
surface and atmosphere. This approach was later improved by con-
sidering the surface BRDF effects with regression coefficients built
under different viewing geometries to mitigate errors from non-
linearities (Liang et al., 2005; Wang et al., 2013).

The direct estimation approach was originally developed to derive
the surface shortwave albedo from TOA reflectance based on a statis-
tical relationship established from radiative transfer simulations. Based
on the increasing need for albedo availability in the narrow spectral
domain, we extended the statistical relationship to generate albedos
covering the spectral bands and three broadbands, including the visible
(300–700 nm), near-infrared (NIR; 700–3000 nm), and total shortwave
ranges (300–3000 nm) based on the following linear equation:

∑= ⋅ +α ρ c cλ i
TOA

i 0 (4)

where αλ is the surface albedo for the spectral range of λ, ρiTOA is the
TOA reflectance for spectral band i, and ci and c0 are the regression
coefficients.

To develop such a statistical relationship and apply the relationship
to Landsat albedo estimation (Fig. 1), radiative transfer simulation was
performed to simulate TOA reflectance by considering various types of
surface, atmospheric, and geometric conditions. The sensor spectral
response functions obtained from the USGS and the MODIS BRDF da-
tabase were used as inputs to the vector version of the 6S radiative
transfer code (Vermote et al., 1997) to simulate the TOA reflectance
data. Detailed configurations of the simulations can be found in Table 4.
Following the principle of generating global Landsat data products
(Masek et al., 2006), continental aerosol was used as the default aerosol
type in the radiative transfer simulation. Water vapor, ozone, and CO2

settings are prescribed in the “US62” atmospheric profiles in 6S. An
additional experiment was conducted to assess the improvements when
using different aerosol types (e.g., desert, biomass burning, and urban
aerosols) on albedo estimation at the SURFRAD sites. The linear re-
gression coefficients in Eq. 4 for each of the geometrical combinations
were pre-calculated and are stored in look-up tables (LUTs) for opera-
tional use. All the regression models in the LUT were estimated at the
99% confidence level.

Because of the data saturation problem over bright surfaces in TM
and ETM+ data, the visible bands do not always provide accurate

information. Thus, for albedo estimation over snow surfaces, we tested
three sets of LUTs including one built by using all six Landsat spectral
bands, hereafter referred to as SnowLUT1, and one built by using only
the three infrared bands, which do not saturate, hereafter referred to as
SnowLUT2. Both SnowLUT1 and SnowLUT2 are built up with the same
geometric and atmospheric configurations as the generic LUT listed in
Table 3. An additional LUT, SnowLUT3, was created on the basis of
SnowLUT2 configurations with only lower aerosol loadings (0.05–0.20)
used as inputs in the simulation. SnowLUT3 was used for particularly
high latitude regions where the typical aerosol loading was lower than
that over mid- to low-latitudes (von Hardenberg et al., 2012). Only the
snow samples from the MODIS BRDF database were used in the ra-
diative transfer simulations for the establishment of these three LUTs
built up for snow surfaces. For visible bands with the saturation pro-
blem, TOA reflectance data were calculated directly by using the L1T
digital numbers and conversion coefficients regardless of whether the
data were saturated. For non-saturated data, the generic LUT was used
regardless of whether the surface was covered by snow.

2.5. Temporal continuity of surface albedo from TM, ETM+, and OLI

To evaluate the temporal continuity of surface albedo estimated
from Landsat series, an experiment was carried out to examine the
difference of albedo estimates from different Landsat sensors during the
overlapping periods. Because there is an 8-day acquisition difference
between TM and ETM+ and between ETM+ and OLI, it is not possible
to make direct albedo comparisons due to potential surface changes. To
mitigate such effects on albedo intercomparison between different
sensors, two efforts were made. First, albedo intercomparisons can be
conducted at “pseudo” invariant sites where surface albedo did not

Fig. 1. Flowchart of albedo direct estimation from Landsat data.
The surface BRDF database was built with the MODIS BRDF
product. The 6S codes were used in the radiative transfer simu-
lation.

Table 4
Generic look-up table (LUT) configurations for simulating surface albedo and TOA re-
flectance data.

Parameters Values

Solar zenith angle (°) 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60,
65, and 70

View zenith angle (°) 0, 5, 10, 15, 20
Relative azimuth angle (°) 0, 30, 60, 90, 120, 150, and 180
Aerosol optical depth at 555 nm 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, and 0.60
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have significant changes during the past three decades, at least in cer-
tain seasons. Among the sites listed in Table 3, three sites, including one
desert site (DRA from SURFRAD), one vegetation site (GWN from
SURFRAD), and one site with permanent snow (GVN from BSRN) were
chosen. Second, monthly/seasonal averages of surface albedo were
calculated from all the available clear-sky observations included in this
study to remove the impacts of seasonal variation in surface albedo.
Specifically, based on the Landsat data availability in this study only the
data from September to October over DRA site, data from October to
December over GWN site, and data from December to February for GVN
site were included for intercomparison. To cross compare the temporal
variation of satellite-derived albedo estimates, the ground measure-
ments obtained at the same time of Landsat acquisition were also in-
cluded, statistics of which were calculated in the same manner as those
from the satellite-derived albedo estimates. Albedo anomalies from
satellite estimates and ground measurements were calculated based on
their respective mean values during the period of 1997–2016 to remove
potential systematic bias between the datasets. The temporal continuity
of Landsat albedo estimation was then examined through comparing
the interannual variation of the time series albedo values derived from
satellite estimates and ground measurements.

2.6. Inter-comparison between albedo estimates from MSS and TM data

Because the theoretical basis for the Landsat MSS sensor is the same
as for the other three sensors, the question remains as to whether it is
possible to generate surface albedo from MSS. Owing to the limited
ground measurements available for matching the acquisition time with
MSS before 1995, it is difficult to verify the MSS-derived surface albedo
through direct comparison with ground measurements. Thus, it would
be highly useful to conduct inter-comparisons of surface albedo esti-
mates derived from MSS and other Landsat data to help verify the MSS
albedo accuracy. To mitigate the acquisition time difference between
MSS and other Landsat data to avoid differences in viewing geometries
and atmospheric conditions, several pairs of MSS and TM images on-
board the Landsat 5 satellite were chosen in this study for albedo es-
timation comparison.

Moreover, because the spatial resolution of the MSS image is twice
that of the TM image, disregarding their point spread functions as well
as their geolocation errors (Tucker et al., 2004) would increase the
difference between their albedo values. To further investigate the im-
pacts of point spread functions and geolocation errors, an analysis was
conducted here based on inter-comparisons of MSS and TM albedo es-
timations at seven SURFRAD locations, covering a variety of land cover
types (Table 5).

3. Results

3.1. Theoretical uncertainties in albedo estimation

Fitting RMSEs were used in this study to characterize the theoretical
uncertainties of the direct estimation approach for each of the sensors
in the estimation of surface albedo from the simulated data including

black-sky (BSA) and white-sky albedos (WSA) for broadband and
spectral bands (Fig. 2). It is noteworthy that as a result of atmosphere-
land surface interaction, the RMSEs shown here demonstrate the sen-
sor's capability to estimate surface albedo from simulated TOA ob-
servations with reasonably small errors rather than that from surface
directional reflectance. In general, spectral bands from the three types
of sensors are able to estimate broadband albedos with similar ac-
curacies, with RMSEs ranging from 0.01 to 0.03. The albedo estimation
RMSE increased with the solar zenith angle for both spectral and
broadband BSAs, likely as a result of the bowl shape of BSA dependence
on the solar zenith angle (Yang et al., 2008). WSA estimation was si-
milar to that of BSA except for the near-infrared bands. Among the four
types of sensors, ETM+ bands showed similar performance in the al-
bedo estimation to TM bands. The OLI bands showed slight improve-
ment in albedo estimation in both the visible and near-infrared spectral
ranges as a result of the added band 1 (430–450 nm) for capturing
aerosol information, which generated a magnitude of uncertainty in
shortwave albedo estimation slightly better than that of TM and ETM
+. In fact, the MSS data outperformed the other sensors in the esti-
mation of visible and total shortwave albedo, which occurred likely
because MSS bands have broader spectral coverage, and the errors in
narrow-to-broadband conversion were mitigated. However, because
MSS has only one band in the infrared spectral range the total near-
infrared albedo accuracy was poorer than that from the other three
sensors.

Besides the broadband albedos, the spectral albedo can also be
generated by using data from other spectral bands with fitting RMSEs
within 0.03 based on the simulated data. We determined that the un-
certainty of spectral albedo estimation is related mainly to the band
similarity of Landsat sensors to that of MODIS. For example, the sig-
nificant decrease in uncertainty of ETM+ band 5 (1.55–1.75 μm) is
likely due to the shift in the band design in the shortwave-infrared
range, resulting in improved correlation with MODIS bands.

3.2. Validation at SURFRAD sites

The validation of shortwave albedo against ground measurements
showed promise at the SURFRAD sites (Fig. 3), with a small bias of
approximately −0.001 to −0.011 and an RMSE of 0.028 to 0.030. Our
results for snow-free cases show RMSEs from 0.023 to 0.027, which are
close to those of 0.013–0.037 reported at the SURFRAD sites in Shuai
et al. (2011). To overcome the saturation problem in TM and ETM+
data, the snow albedo shown in Fig. 3 with a value larger than 0.4 was
calculated by using SnowLUT2. The results generated from SnowLUT1
(not shown) have an overestimation of snow albedo up to ~0.05
compared with the results from SnowLUT2. Additional analysis through
the use of the snow LUTs is provided in the validation at GC-Net sites
where more snow albedo data are available.

The combined results from all three sensors on the albedo estima-
tion (N = 904) showed a bias of−0.007 with an RSME of 0.029 and R2

of 0.925. The snow-free albedo estimation (N = 865) had a bias of
−0.008, RMSE of 0.026, and R2 of 0.528, whereas the snow-covered
cases (N = 39) had a bias of 0.007, RMSE of 0.067, and R2 of 0.777.

Table 5
Location, time, and land cover information of MSS and TM data used for albedo comparison.

Site name Scene no. Date Center Lat/Long (°N/°E) Major land covera

BON p023r032 1991-04-01 40.3/−98.1 Cropland, deciduous forest,
DRA p040r035 1992-10-03 36.0/−116.4 Shrubland, barren land
FPK p035r026 1991-09-28 48.9/−104.3 Cropland, grassland
GWN p023r036 1991-08-23 34.6/−90.5 Deciduous forest, cropland, wetland, grassland
PSU p016r032 1992-05-20 40.3/−78.0 Deciduous forest, grassland, cropland
SXF p029r030 1988-06-21 43.2/−97.1 Cropland, grassland
TBL p034r032 1992-06-19 40.3/−105.8 Evergreen forest, shrubland, grassland

a Major land cover information is obtained from the National Land Cover Database 2006 (NLCD2006) (Fry et al., 2011).
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The results also show that our algorithms had similar performance for
the data from the three sensors, among which the results from OLI were
slightly better in terms of bias and R2. This might be attributed to its
improved signal-to-noise ratio (SNR) and radiometric quantization
compared with TM and ETM+.

At the Desert Rock (DRA) site, surface albedo has been consistently
overestimated compared with ground measurements for all three sen-
sors. For example, validation of albedo estimated from the TM data
showed a bias of 0.021 and an RMSE of 0.022, which indicates that the
estimation bias is the primary factor contributed to the uncertainty. The
default “continental” aerosol type used in this study likely led to the
overestimation. An additional experiment was conducted by changing
the aerosol type to “desert”, which greatly improved the albedo esti-
mation by reducing the bias and RMSE to 0.010 and 0.012, respec-
tively. Because the land surface at the DRA site is relatively stable with
the least amount of cloud cover among all SURFRAD sites, data from
this site are helpful for evaluating the stability of the direct estimation
algorithm. Calculated from the clear-sky Landsat TM observations and
ground measurements during 1998–2011, our retrievals showed very
stable albedo estimates with an average value of 0.213 ± 0.007; the

ground measurements during this period had an average value of
0.203 ± 0.008.

For the other SURFRAD sites, by changing the default “continental”
aerosol to “biomass burning” and “urban” aerosols, albedo estimation
accuracy changes from site to site with an RMSE difference of< 0.004.
This suggests that with an accurate aerosol type map, albedo estimation
may improve a little for non-desert area, which confirms the finding in
our earlier study (Liang, 2003).

3.3. Validation at AmeriFlux sites

The validation results for snow-free cases over AmeriFlux sites
showed a similar estimation accuracy of shortwave albedo to that over
SURFRAD sites (Fig. 4). However, for snow-covered cases, the results
were slightly worse with an overestimation of approximately 0.05 (not
shown). The overall estimation accuracy for shortwave albedo over
snow-free (N = 662) cases for TM data was reasonable with an RMSE
and R2 of 0.026 and 0.587, respectively. Results from ETM+ data
(N = 625) showed very similar accuracy of albedo estimation with an
RMSE of 0.026 and an R2 of 0.561. The shortwave albedo accuracy over
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Fig. 2. RMSEs of surface albedo estimation from simulated
Landsat data: (a) MSS BSA; (b) MSS WSA; (c) TM BSA; (d) TM
WSA; (e) ETM+ BSA; (f) ETM+ WSA; (g) OLI BSA; and (h) OLI
WSA. X-axis stands for the spectral bands and three broadbands
including visible (VIS: 300–700 nm), near-infrared (NIR:
700–3000 nm), and shortwave (SW: 300–3000 nm).
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AmeriFlux sites was slightly worse than that at SURFRAD sites possibly
due to the reduced data quality of ground measurements.

By using the radiation data available at the visible spectral range,
we investigated the visible albedo estimation from Landsat data. Such
an investigation has not been reported previously against ground

measurements. In Fig. 4, the estimation of visible albedo shows a si-
milar error magnitude to that of shortwave albedo, with RMSEs of
0.026 and 0.027 for TM and ETM+, respectively. Moreover, visible
albedo estimation always showed a higher R2, at 0.668 for TM and 0.
647 for ETM+, than that of shortwave albedo estimation at 0.587 for
TM and 0.561 for ETM+. This result occurred likely because aerosol
scattering is the main atmospheric factor influencing visible radiation,
whereas the water vapor content also affects shortwave radiation in
ground measurements. Thus, inclusion of a correction for the water
vapor content may help further improve the shortwave albedo esti-
mation. It is noteworthy the spectral coverage difference between the
retrieved visible albedo (300–700 nm) and the AmeriFlux observations
(400–700 nm). According to the surface reflectance spectra database,
the integrated broadband reflectance values for 300–700 nm have an
underestimation of 0.008 compared with the data for 400–700 nm over
non-snow surfaces, which likely explains the majority of negative bias
shown in Fig. 4b and d.

Again, the visible albedo estimation exhibited an overestimation
over snow-covered surfaces. Nevertheless, the snow-covered samples
were very limited, making it difficult to reach solid conclusions on the
algorithm's performance over snow cases at the mid- to low-latitude
sites. Further discussion for snow-covered cases is provided in the va-
lidation of GC-Net sites.

The accuracy of surface albedo estimation showed a dependence on
land cover type. AmeriFlux sites cover multiple land cover types and
were thus used for accuracy assessment. We separated the sites ac-
cording to land cover type and calculated the estimation accuracy of
corresponding TM-based snow-free albedo for each land cover type
(Table 6). In general, the absolute albedo accuracy was better for
densely vegetated forest sites with lower albedo values than that for
sparsely vegetated cropland and grassland sites with higher albedo
values. However, the albedo estimation for evergreen needle leaf forest
presented a larger uncertainty among all land cover types with the
largest standard deviation of its albedo values occurring in both
shortwave and visible spectral ranges. Unlike deciduous broadleaf
forest (DBF), viewing geometry differences from the nadir-view Landsat
sensor and the hemispherical-view ground instrument likely led to the
larger albedo variation at 30-m scales and hence the albedo estimation
uncertainty at evergreen needleleaf forest (ENF) sites. Albedo estimates
at the ENF sites were separated into three groups according to their
solar zenith angles θs: θs≤40°, 40° < θs≤60°, and θs > 60°. The al-
bedo estimation RMSEs for the three groups were 0.019, 0.024, and
0.054, respectively, which increased with an increase in solar zenith
angle. This occurred because that nadir-view satellite sensor can see
deeper through the canopy, whereas the pyranometer, with a wide
field-of-view also receives reflected energy from the ground whether
sunlit or in shadow. With a change in the solar zenith angle, changes
between that viewed by the satellite and the pyranometer greatly affect
the data comparison, which is particularly important when there was
partial snow cover at the ENF sites. To further exclude data with partial
snow-cover, the normalized difference snow index (NDSI) was used.
Table 6 shows that for the ENF samples with NDSI< 0.4 albedo esti-
mation accuracy is generally comparable to that at DBF sites. Among all
land cover types, lower R2 values were observed for albedo estimation
at CRO and GRA sites; however, this is not well-understood. One pos-
sible explanation is that because the pyranometers for the CRO and
GRA sites are usually 3 m to 6 m above the surface, reflection from the
instruments and the limited spatial representativeness of the flux
measurements may contribute to the estimation uncertainty.

The spatial representation of ground measurements has been iden-
tified in MODIS albedo validation (Roman et al., 2013). To help the
investigation of whether the quality of ground measurements or spatial
representation led to albedo estimation uncertainty, nine AmeriFlux
sites identified as non-homogeneous sites at the MODIS resolution
(Wang et al., 2015) were selected to evaluate the accuracy of the
Landsat albedo estimation. In fact, over such non-homogeneous sites,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All cases

Bias: -0.011

RMSE: 0.030

R
2
: 0.926

N: 390

Snow-free cases

Bias: -0.012

RMSE: 0.027

R
2
: 0.479

N: 376

Ground measurements

T
M

 s
h
o
r
tw

a
v
e
 a

lb
e
d
o

Snow-covered cases

Bias: -0.011

RMSE: 0.071

R
2
: 0.779

N: 14

(a)

BON

DRA

FPK

GWN

PSU

SXF

TBL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All cases

Bias: -0.005

RMSE: 0.028

R
2
: 0.880

N: 378

Snow-free cases

Bias: -0.005

RMSE: 0.025

R
2
: 0.534

N: 367

Ground measurements

E
T

M
+

 s
h
o
r
tw

a
v
e
 a

lb
e
d
o

Snow-covered cases

Bias: 0.006

RMSE: 0.071

R
2
: 0.819

N: 11

(b)

BON

DRA

FPK

GWN

PSU

SXF

TBL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All cases

Bias: -0.001

RMSE: 0.029

R
2
: 0.966

N: 136

Snow-free cases

Bias: -0.005

RMSE: 0.023

R
2
: 0.625

N: 122

Ground measurements

O
L
I 
s
h
o
r
tw

a
v
e
 a

lb
e
d
o

Snow-covered cases

Bias: 0.027

RMSE: 0.059

R
2
: 0.800

N: 14

(c)

BON

DRA

FPK

GWN

PSU

SXF

TBL

Fig. 3. Intercomparison of shortwave albedo and ground measurements at SURFRAD
sites: (a) Landsat 5 TM; (b) Landsat 7 ETM+; and (c) Landsat 8 OLI.
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Fig. 5 shows that our Landsat albedo estimation achieved accuracy si-
milar to that using all of the AmeriFlux sites listed in Table 3. Therefore,
our albedo estimation over those sites can be used as a reference for
validating coarse-resolution data to bridge the scale gaps.

3.4. Validation at BSRN sites

Similar to the data collection and processing procedure used for
data from SURFRAD sites, surface shortwave albedo estimated from TM
and ETM+ were generated and compared with ground measurements
obtained globally from BSRN sites. These sites also encompass a variety
of land cover types and climate regions. The TM and ETM+ results
were generally comparable, with RMSEs between 0.022 and 0.029 and
R2 values between 0.974 and 0.991, respectively, including both snow-
free and snow-covered cases (Fig. 6). Combining the results from TM
and ETM+, the albedo estimation showed a bias of −0.012, RMSE of
0.022, and R2 of 0.635 (N = 230) for snow-free cases, and a bias of
−0.010, RMSE of 0.040, and R2 of 0.828 (N = 54) for snow-covered
cases. This estimation accuracy is similar to that shown at SURFRAD
and AmeriFlux sites, which suggests that this unified algorithm does not
cause significant errors at various seasons and locations. It should be
noted is that our results of snow-covered shortwave albedos, including
the results at SURFRAD sites, have proven to be accurate over various
non-permanent snow/ice land cover types compared with the accuracy
of the Landsat 8 OLI-based albedo recently reported in Wang et al.
(2016).

3.5. Validation at GC-Net sites

Ground measurements and ETM+ data collected at four GC-Net
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Fig. 4. Intercomparison of Landsat albedo and ground measurements at AmeriFlux sites: (a) TM shortwave albedo; (b) TM visible albedo; (c) ETM+ shortwave albedo; and (d) ETM+
visible albedo. Colors represent different land cover types. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 6
Albedo estimation accuracy for various land cover types.

Broadband
albedo

Land cover type N Mean SD Bias RMSE R2

Shortwave CRO 228 0.182 0.030 0.002 0.027 0.401
GRA 255 0.167 0.024 −0.015 0.028 0.544
WSV 53 0.168 0.010 0.014 0.015 0.807
DBF 67 0.145 0.022 0.018 0.022 0.649
ENF (all
samples)

59 0.117 0.035 0.019 0.030 0.563

ENF
(NDSI< 0.4)

51 0.106 0.021 0.015 0.024 0.310

Visible CRO 228 0.074 0.030 −0.001 0.020 0.705
GRA 255 0.083 0.025 −0.026 0.034 0.603
WSV 53 0.092 0.010 −0.010 0.011 0.854
DBF 67 0.045 0.031 −0.006 0.014 0.820
ENF (all
samples)

59 0.053 0.044 0.004 0.023 0.751

ENF
(NDSI< 0.4)

51 0.037 0.018 −0.002 0.013 0.494

SD: standard deviation; NDSI: normalized difference snow index.

T. He et al. Remote Sensing of Environment 204 (2018) 181–196

190



sites were used in the comparison to test the direct estimation algorithm
over bright surfaces (Table 7). Although Landsat data showed satura-
tion problem over snow surfaces, the comparison results from
SnowLUT1 based on all six spectral bands had an overestimation
compared with ground measurements with a bias of 0.022, RMSE of
0.044, and uncertainty of about 5% in terms of the relative accuracy.
The pyranometer of GC-Net sites measures only part of the total
shortwave spectral domain, at 400–1100 nm, and the Landsat albedos
were retrieved for 300 − 3000 nm. Therefore, an average over-
estimation in albedo values of about 0.035 was reported at GC-Net sites
for ground measurements at 400–1100 nm compared with the values at
300 − 3000 nm (Stroeve et al., 2013; Stroeve et al., 2006). Thus, the
results from SnowLUT1 would always overestimate shortwave surface
albedo. After excluding the data from the visible bands, the albedo
estimation from SnowLUT2 improved significantly with a smaller bias
of −0.001 and an R2 close to 0.8. Moreover, the relative uncertainty
dropped to ~4%. However, the results from SnowLUT2 still showed
some overestimation if the systematic measurement bias was con-
sidered. Given the fact that the aerosol loadings over polar regions are
significantly lower than those at mid- to low-latitudes (von Hardenberg
et al., 2012), further investigation showed that if only the low-aerosol
loadings at 0.05 to 0.20 (Liang et al., 2005), were considered in
building the LUT with near-infrared bands (SnowLUT3) our Landsat
retrievals were closer to the actual albedo. The negative bias of 0.024

from SnowLUT3 results is closer to the value of 0.035 reported in
previous studies (Stroeve et al., 2013; Stroeve et al., 2006).

Owing to the difference in spectral coverage between ground mea-
surements and Landsat albedo retrievals, it is difficult to investigate the
actual bias of the Landsat albedo estimation approach. Thus, the MODIS
albedo product was introduced here to help verify the Landsat albedo
retrievals. The results shown in Fig. 7 suggest that these two datasets
have a very good agreement with an RMSE of 0.031 and R2 of 0.943,
whereas the Landsat albedo values have a very slight bias of 0.007
compared with the MODIS data. Because only the best quality MODIS
albedo retrievals were selected as shown in Fig. 7, the sample size
(N = 48) is smaller than that in Table 7 (N = 73). If all of the Landsat
retrievals were included in the comparison with MODIS data and the
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Fig. 5. Intercomparison of Landsat TM albedo and ground measurements at selected non-
homogeneous AmeriFlux sites: (a) shortwave albedo; and (b) visible albedo.

Fig. 6. Validations results of albedo estimation at BSRN sites from (a) ETM+; and (b)
TM.

Table 7
Comparison of Landsat albedo estimates from using different LUTs and ground mea-
surements at GC-Net sites (sample size is 73).

SnowLUT1 SnowLUT2 SnowLUT3

Bias 0.022 −0.001 −0.024
RMSE 0.044 0.031 0.039
R2 0.609 0.786 0.751
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data availability of ground measurements was not considered, the
comparison results were slightly worse with a bias of 0.010 and am
RMSE of 0.037 (N = 645); R2 decreased significantly owing to the
clustered high albedo values within the range of 0.7–0.9. This suggests
that the Landsat albedo estimation approach adopted in this study,
SnowLUT3, did not lead to significant bias in the shortwave albedo with
the MODIS albedo products used as a reference.

3.6. Preliminary assessment of temporal continuity of albedos from TM,
ETM+, and OLI

Based on the simplified method proposed in Section 2.5, the tem-
poral continuity was tested with interannual values of monthly/sea-
sonal averages of surface albedo estimates from TM, ETM+, and OLI at
DRA, GWN, and GVN sites. Time series of surface albedos from Landsat
and ground measurements were shown in Fig. 8, in which different
colors represent data from different sensors. During the overlapping
period with data from two sensors, the albedo values from ground
measurements were calculated based on the satellites' actual acquisition
date and time so that two values might be plotted for the same year due
to the acquisition time differences. It should be also noted that for some
year the data point was not shown because either clear-sky satellite
observations or ground measurements were not available.

At the desert site (DRA), the temporal variation of the ground
measurements during the period of 1998–2015 was around± 0.005
(1σ). The albedo anomalies derived from the Landsat estimates and
ground measurements had an overall negligible difference of
0.000 ± 0.005 for the whole period. This suggests that the Landsat
estimates captured the interannual variation in surface albedo quite
well although a consistent overestimation of about 0.018 was observed
due to the use of the generic LUT (discussed in Section 3.2). In the 11-
year overlapping period of TM and ETM+, there was a slight over-
estimation of ETM+ albedo than TM albedo by 0.003 ± 0.005, while
the difference calculated in the same way but using ground measure-
ments was 0.001 ± 0.002. In the 3-year overlapping period of ETM+
and OLI, the overall bias between albedo anomalies from the two
sensors was very small with a slight overestimation of 0.003 from ETM
+ albedos over OLI estimates.

Compared to the desert site, the vegetation site and snow site ob-
served more interannual variations in surface albedo even after the
seasonal variation was considered. At the vegetated site (GWN),
Landsat surface albedo estimation had a general underestimation
around 0.02 as shown in Fig. 3 and Fig. 8. The interannual variation in

surface albedo ground measurements was around± 0.013 (1σ). The
albedo anomalies from the Landsat data matched well with those from
the ground measurements with a difference of 0.000 ± 0.009. Again,
there was an overestimation of 0.002 ± 0.012 from the ETM+ albedo
estimates compared with TM values from 1999 to 2011, while in the
same period there was no significant difference (0.000 ± 0.015) from
the ground measurements. Similar to the results at DRA site, the ETM+
estimates had an overestimation of 0.003 than the albedo values from
the OLI data during 2013–2015, in which period the difference derived
from ground measurements was around 0.001.

At both DRA and GWN sites, ETM+ albedos had a small over-
estimation (0.002–0.003) compared to TM and OLI values. This can be
partly explained by the difference in the way for calculating the average
values, in which ETM+ observations were found to have larger solar
zenith angles in general.

Unlike the above two sites, not enough data within the overlapping
periods of two sensors can support the same statistical intercomparison
at the GVN site, which was covered by permanent snow in the
Antarctica. The interannual albedo variation during 1997–2016 was
around± 0.021 (1σ) with an average value of 0.814. The Landsat es-
timates combining data from three sensors had a small negative bias of
0.007 compared to ground measurements. The Landsat albedo
anomalies matched with the values from ground measurements quite
well with a difference of 0.000 ± 0.023, which was a combined result
of overestimations found in the albedos from the earlier sensors (0.022
for TM and 0.005 for ETM+) and an underestimation of 0.020 in OLI
albedo estimation. Although the ETM+ albedo estimates were con-
sistent with the ground measurements during the period of 2000–2013,
more data from TM and OLI are expected to provide a more reliable
assessment of temporal continuity of albedo estimation at this site.
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Fig. 7. Comparison of surface albedo derived from Landsat ETM+ and best quality
(quality flag equals to zero) MODIS albedo product (MCD43A3) at GC-Net sites.

Fig. 8. Albedo time series from ground measurements and Landsat estimates: (a) DRA site
(September to October); (b) GWN site (October to December); and (c) GVN site
(December to February). Stars represent ground measurements and triangles represent
Landsat estimates. Albedos from TM, ETM+, and OLI are in blue, red, and green, re-
spectively. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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3.7. Possibility for generating surface albedo from MSS data

Fig. 9 shows an example of the albedo maps derived from MSS and
aggregated TM data. These values generally agreed very well in terms
of both spatial distribution and absolute difference in magnitude with
an RMSE of 0.012 and an R2 of 0.893. A slight negative bias of 0.007
between MSS and TM albedo values can be attributed to the errors in
sensor calibration and band conversion.

Visual investigation revealed that the relative geolocation errors
between MSS and TM onboard Landsat 5 were as large as two MSS
pixels (~120 m). In addition, a lower SNR of MSS and point spread
function differences between the two sensors together led to reduced
radiometric separability of MSS data compared with that of TM data
even when the latter was aggregated with 60 m. To investigate the
impact of these issues in the accuracy assessment, a subset of the
Landsat image pair over flat terrain was extracted, as shown in Fig. 10.
The albedo spatial patterns from the two sensors generally agreed well.
The difference map showed that large differences up to± 0.05 existed
at the boundary between high- and low-albedo areas, as represented by
red and purple colors in Fig. 10c. On the contrary, the differences were
relatively stable in the upper right corner of the subset where the sur-
face type is homogenous, which represents the bias between the two
albedo datasets. This result demonstrates that the relative geolocation
errors in MSS data can contribute greatly to the RMSE in such as inter-
comparison shown in Fig. 9.

Statistics of inter-comparisons made with MSS and TM data pairs
are tabulated in Table 8, which shows good agreement between albedo
estimates from MSS and TM data with RMSEs of 0.011 to 0.017 and R2s
of 0.858 to 0.963 over a variety of land cover types. An exception is the
SXF case, in which geolocation errors caused by abundant rugged ter-
rain in the scene led to albedo differences. Moreover, the smaller range
of albedo values also contributed to the low R2 found for the SXF case;
in such a case, spatial aggregation of the comparison to 480 m can
greatly improve the results, with an RMSE of 0.012 and R2 of 0.756.
Additional research is needed to understand the albedo difference
caused by sensor calibration and the geolocation accuracy of the two
datasets.

4. Discussion and conclusions

Satellite albedo products at fine resolution allow for applications
such as agricultural monitoring, urban environment assessment, and
forest management; therefore, the demand for these products is in-
creasing. Moreover, such products are crucial for validating coarse-re-
solution satellite products and reanalysis data, the accuracy of which is
often difficult to evaluate with point-based ground measurements,
particularly over heterogeneous landscapes. In this study, we adopted a
refined direct estimation algorithm and applied it to multiple Landsat
satellite sensors with the possibility of producing surface albedo esti-
mates dating back to the 1980s.

The direct estimation approach has unique advantages over tradi-
tional albedo algorithms for fine-resolution satellite data with low re-
visit frequency. First, its retrieval rate is higher than that obtained by
using the traditional method because it does not sample the surface
anisotropy. Second, there is no need for concurrent coarse-resolution
data or ancillary data as inputs. Third, it can generate surface albedo
over both snow-free and snow-covered surfaces. Finally, it can be easily
extended to other fine-resolution data similar to Landsat data (e.g.,
Sentinel-2).

Extensive validation made against ground measurements show that

Fig. 9. Comparison of shortwave black-sky albedo estimates from (a) MSS data; and (b)
TM data onboard Landsat 5. (c) Scatterplot and statistics; the density plot uses color from
blue to red to represent density from low to high. The data were acquired on September
28th, 1991 (p035r026). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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the proposed approach can generate reliable surface albedo estimates
with accuracy of 0.022 to 0.034 in terms of RMSEs over snow-free
surfaces. These results are comparable to those reported in previous
studies (Franch et al., 2014; Shuai et al., 2011; Shuai et al., 2014). For
snow-covered surfaces, the validations at GC-Net sites showed a sig-
nificant improvement in albedo estimation accuracy with RMSEs of
about half those reported in previous results that used MODIS data. This
highlights the utility of fine-resolution albedo data in calibrating
coarse-resolution data for cryosphere applications.

By comparing the albedos estimated from TM, ETM+, and OLI
data, a generally good temporal continuity has been demonstrated over
different land covers (desert, vegetation, and snow) through a period of
more than two decades. The difference in them is within the error range
of spectral band conversion and sensor calibration in addition to the
acquisition time difference. According to this preliminary assessment,
temporal continuity of surface albedo from Landsat satellite series can
be achieved with a difference up to 0.003 using the unified estimation
approach in this study. More work is expected to investigate the tem-
poral continuity issue more extensively.

Good agreement was reached between albedo estimates from MSS
and TM data with RMSE of 0.011 to 0.018 and R2 of 0.582 to 0.963,
which shows the possibility for further extension of the albedo data
record to the pre-TM era. However, the actual albedo data quality also
depends on radiometric and geometric calibration accuracy for the MSS
data. Further efforts are needed to evaluate the long-term consistency of
MSS-derived surface albedo, particularly during the pre-TM era.

Applying the empirical method may introduce errors in certain re-
gions (e.g. desert) if a proper aerosol type is not used. Although the
default continental aerosol type generally applies to most locations
without introducing significant bias, our experiment shows that it is
possible to improve the estimation by incorporating a location-based
aerosol type map into the retrieval procedure. Inclusion of a land cover
type-based LUT may further improve the estimation accuracy (Wang
et al., 2013).

Another possible limitation of the current approach is associated
with the imperfect strategy for building the BRDF database. In parti-
cular, owing to the strategy adopted here for collecting the BRDF
samples from the MODIS products only high quality data over homo-
geneous areas were included. Thus, it is possible that BRDF shapes from
partial snow-covered vegetation surfaces are underrepresented in the
derived LUTs, hence increasing uncertainties in the albedo estimation
for vegetation surfaces partially covered by snow. However, only very
limited number of albedo ground measurements over such land surfaces
were available to match the cloud-free Landsat scenes in validations. As
a result, further effort is needed to improve the albedo estimation over
partial snow-covered vegetation surfaces by incorporating more ground
measurements and high quality BRDF samples.

Over mid- to high-latitude regions, Landsat TM and ETM+ showed
saturation problems in the visible bands over snow surfaces. In those
cases, our approach of using the non-saturated bands showed better
results than those obtained when all spectral bands were used. To
further improve the results, particularly for ETM+ data, the panchro-
matic band can be included in the retrieval procedure. In addition, for
observations under large solar zenith angles> 65°, incorporating the
in-situ surface BRDF measurements for snow and ice in radiative
transfer simulations may also help reduce the estimation uncertainty.
Topography correction, an additional parameter for improvement, will
be covered in future research.

Fig. 10. Subsets (2.4 km× 2.4 km) of shortwave black-sky albedo estimates from (a)
MSS data; and (b) TM data as shown in Fig. 9. (c) Difference map between (a) and (b).
(For interpretation of the references to color in this figure, the reader is referred to the
web version of this article.)

Table 8
Statistics of intercomparison of shortwave albedo estimates from Landsat 5 TM and MSS
data over different locations (statistics are calculated at the 99% confidence level).

Site name Mean SDa Biasb RMSE R2 Samples

BON 0.169 0.027 −0.006 0.013 0.872 9,095,158
DRA 0.212 0.056 0.001 0.012 0.963 9,119,333
FPK 0.171 0.029 −0.007 0.012 0.893 9,379,374
GWN 0.163 0.033 0.007 0.015 0.910 8,945,138
PSU 0.159 0.022 0.005 0.011 0.858 9,122,343
SXF 0.151 0.021 0.003 0.018 0.582 9,095,044
TBL 0.142 0.060 0.004 0.017 0.925 9,057,375

a Mean and standard deviation (SD) are calculated from the TM albedo values.
b Bias is the mean value of MSS albedo data minus TM albedo data.
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