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Abstract
Accurate estimation of latent heat flux (LE) based on remote sensing data is critical in char-

acterizing terrestrial ecosystems and modeling land surface processes. Many LE products

were released during the past few decades, but their quality might not meet the require-

ments in terms of data consistency and estimation accuracy. Merging multiple algorithms

could be an effective way to improve the quality of existing LE products. In this paper, we

present a data integration method based on modified empirical orthogonal function (EOF)

analysis to integrate the Moderate Resolution Imaging Spectroradiometer (MODIS) LE

product (MOD16) and the Priestley-Taylor LE algorithm of Jet Propulsion Laboratory

(PT-JPL) estimate. Twenty-two eddy covariance (EC) sites with LE observation were cho-

sen to evaluate our algorithm, showing that the proposed EOF fusion method was capable

of integrating the two satellite data sets with improved consistency and reduced uncertain-

ties. Further efforts were needed to evaluate and improve the proposed algorithm at larger

spatial scales and time periods, and over different land cover types.

1. Introduction
Terrestrial latent heat flux (LE), the flux of heat from the Earth’s surface to the atmosphere that
is associated with soil evaporation and plant transpiration, and is a key component of the
hydrological and carbon cycles [1, 2]. Accurate and temporally continuous estimation of LE is
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critical for understanding the interactions between the land surface and the atmosphere and
improving water use efficiency [3, 4].

Many LE products were developed at various temporal and spatial resolutions during the
past several decades [5–11], which were needed to study long-term regional and global climate
change [12]. Extensive evaluations of these products were conducted [13–20]. Chen et al. [4]
compared eight evapotranspiration (ET) models (equivalent to LE) and found significant
inconsistencies among the models, largely due to the driving factors. Long et al. [14] assessed
the uncertainty in LE estimates from four land surface models, including two remote sensing-
based products (MODIS and advanced very high resolution radiometer (AVHRR)), and Grav-
ity Recovery and Climate Experiment (GRACE), by inferring ET from water budget, and
found that uncertainty of remote sensing products was approximately 10–15 mm/month. Fur-
thermore, spatial LE interactions were often ignored in most satellite-based LE models [21].
Ershadi et al. [21] used the surface energy balance system (SEBS) and Landsat images to inves-
tigate the effects of aggregation from fine (<100 m) to medium (~1 km) scales. From several
common spatial interpolation algorithms, the simple average method preserved most accu-
rately the spatial pattern of LE compared to the nearest neighbors and bilinear or bicubic inter-
polation methods.

Efforts were made to improve the quality of LE products by developing advanced LE
retrieval algorithms [6, 9–11] and using data assimilation methods [22–29]. Data assimilation
involved numerical models that incorporate measured data to produce final results for fore-
casting or analysis [30]. Caparrini et al. [23] used data assimilation to obtain LE, sensible heat
and ground heat flux. Similar studies on surface temperature, sensible heat flux, and LE were
also performed [25–27]. However, integrating advantages from existing LE products to
improve data accuracy and integrity was the main goal. Previous studies showed that averaged
LE was more accurate than individual LE models [20, 24]. Cammalleri et al. [22] combined
multi-platform remote sensing thermal infrared data to estimate daily field-scale LE data using
a spatial and temporal adaptive reflectance fusion model (STARFM). Yao et al. [28] combined
five process-based LE algorithms using Bayesian averaging method. However, these methods
usually failed to account for spatial and temporal correlations of LE when integrating satellite
LE products.

In geosciences, empirical orthogonal function (EOF) method deals with both, temporal and
spatial patterns [31, 32]. EOF was first used in meteorology to decompose a space-time field
into spatial patterns and associated time indices. Incorporating both spatial and temporal cor-
relations, Chen et al. [33] developed an extended EOF that became a powerful tool to extract
dynamic structure, including trends, oscillations, propagating structures and to filter data.
Smith et al. [34] used EOF analysis to solve the problem of missing data. Beckers and Rixen
[35] developed a “self-consistent” and “parameter-free” EOF interpolation method, data inter-
polating EOF (DINEOF), which had proven useful for oceanographic data analysis [36]. Wang
et al. [37] used hierarchical EOFs (HEOFs) to integrate LAI fromMODIS and Carbon cycle
and Change in Land Observational Products from an Ensemble of Satellites (CYCLOPES) to
improve the quality of satellite based LAI data, which resulted in increase of R2 (from 0.75 to
0.81) and in decrease of root mean square error (rmse) from 1.04 to 0.71.

In this paper, we propose an EOF-based data-fusion method that combines the major spa-
tial and temporal patterns of different LE data to generate a consistent and high accuracy data-
set. Errors in satellite based LE products might arise from the use of different driving factors or
empirical coefficients. Therefore two process-based LE algorithms were selected to perform the
data fusion: the MOD16 algorithm based on the PM approach [38] and the PT-JPL algorithm
based on the PT approach [39]. The objectives of this study were to (1) compare the MOD16
and PT-JPL algorithms at FLUXNET sites; (2) evaluate the performance of the proposed EOF

A Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux

PLOS ONE | DOI:10.1371/journal.pone.0160150 July 29, 2016 2 / 16

Science and Technology Major Projects (grant
number 05-Y30B02-9001-13/15-9).

Competing Interests: The authors have declared
that no competing interests exist.



fusion method by comparing it to MOD16, PT-JPL and a simple fusion method; and (3) assess
the limitations of proposed method.

2. Materials and Methods

2.1 The principle of the empirical orthogonal function (EOF)
A fundamental advantage of the EOF-based method was to reconstruct the original data by
minimizing the noise and the gaps. EOF incorporated principal component analysis (PCA),
but also considered the temporal and spatial characteristics of the data [31]. LE data was stored
in a P × Nmatrix (A), where s 2 [1, P] and represents space and t 2 [1, N] denotes time. Matrix
A was decomposed by singular value decomposition, which is a commonly used method in
linear algebra:

A ¼ ZSHT ð1Þ
where Z stands for the left singular vectors (EOFs). S for a diagonal matrix containing the sin-
gular values sorted in descending order, andH for the right singular vectors (PCs). EOFs repre-
sents the spatial domain, whereas PCs represents the temporal domain. Thus, the spatial and
temporal components were separated. Singular-value decomposition was also used to filter
noise.

We expanded the EOF to emphasize temporal information [33] by subsetting A in time
windows (W) and combining the subsets in a new matrix.

ða1 a2 . . . aNÞ ð2Þ
denotes time series of LE at a specific location, from which a matrix was built using a window
length of W,
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We applied this process to all spatial points, obtaining matrix A0 with dimensionW ×
(N −W + 1). In this study, the EOF analysis was conducted with this matrix A0.
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Traditional EOF analysis addresses matrices that contain no missing data. However,
remote sensing data often does not satisfy this requirement, thus a modified EOF analysis
(DINEOF) [35] was employed which uses iterative algorithms to estimate missing data.
Before iteration, missing data were replaced with zeroes. Then, the following iterative algo-
rithm was applied to the input matrix data with mean subtraction,

ðXaÞij ¼ ðZSNHT
NÞij ¼

XN

k¼1
pkðZkÞiðHT

k Þj; ði; jÞ 2 I ð5Þ

where i and j are the location and time of the missing data, respectively; (Xa)ij is the recon-
structed data using the leading components (N) of the data; and P is the eigenvalue.

Traditional EOF analysis usually employes matrices that contain few spatial points, i.e., the
images had coarse spatial resolution. When handling remote sensing data, the number of spa-
tial point increases and the computational time becomes challenging. A modified HEOF was
used to solve this problem. HEOFs [37] worked on two levels: coarse and fine-resolution. How-
ever, coarse resolution data also required considerable memory capacity. We simplified the
original HEOF procedure by dividing the dataset into small subsets and applying an EOF to
each of them. Because other subset information could not be used, we used the relative
information.

2.2 The Framework of EOF fusion
Implementation of the EOF-based algorithm requires the following steps: (1) Forming the nec-
essary matrix for EOF analysis from a time series of the satellite data (A). One year’s data of
MOD16 and PT-JPL was randomly selected. (2) Defining the number of leading components
of each LE algorithm and the window length. (3) Intergration of MOD16 and PT-JPL output
matrixes by their principal components.

We selected one year (2005) of data for MOD16 and PT-JPL, to test the proposed EOF
method. The good overall performance of PT-JPL model was reported previously [19, 40, 41].
In the proposed EOF method 80% of the PT-JPL components and 20% of the MOD16 compo-
nents were used. From PT-JPL the three leading components explaining about 80% of the total
variance were selected (Fig 1) [42]. In the case of MOD16, leading components were selected

Fig 1. Coefficient of determination of latent heat fluxes (PT-JPLmodel) as a function of the number of
leading EOF components. The left Y-axis is the contribution rate of covariance for each single EOF
components (blue). The right Y-axis is the contribution rate of cumulative total of variance (red).

doi:10.1371/journal.pone.0160150.g001
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from the same position as in PT-JPL, which meant twelve leading components that explain
about 20% of the total variance [42]. Low LE values of PT-JPL during spring and winter caused
negative LE values during EOF reconstruction process, thus these values were replaced by the
main patterns of MOD16. ChoosingW= 1means that no temporal information is used and
the expanded EOF method corresponds to the simple EOF method. To both reduce the com-
putation time and emphasize temporal information the window size was set to 4. The EOF
algorithm then was applied to a 200km × 200 km region for an entire year. For the purpose of
validation, we included the domain around the FLUXNET sites, where each subset contained
one FLUXNET site. We used a simple averaging (SA) model to integrate MOD16 and PT-JPL.
The SA method was a simple fusion algorithm taking a constant weight (0.5) for each model.
(S1 File)

3. Data and Analysis

3.1 Satellite Data
Satellite LE products included MODIS with 1 km spatial resolution, University of California
Berkeley (UCB) with 0.5 degree spatial resolution, Global Land Evaporation: the Amsterdam
Methodology (GLEAM) with 0.5 degree spatial resolution, Atmospheric water balance
(AWB) with 2.5 degree spatial resolution, and University of Maryland (MAUNI) with 1
degree spatial resolution. The reanalysis products include the Global Modeling and Assimila-
tion Office's (GMAO)- modern-era retrospective analysis for research and applications
(MERRA) with ½ degree latitude ×⅔ degree longitude spatial resolution, interim ERA- the
latest global atmospheric reanalysis produced by (ECMWF) with approximately 80 km degree
spatial resolution, The National Centers for Atmospheric Prediction/National Center for
Atmospheric Research (NCAR/NCEP) with 2.5 degree spatial resolution, MERRA-Land
Reanalysis (M-LAND) with ½ degree latitude ×⅔ degree longitude spatial resolution. How-
ever, most global LE products had high uncertainties [2] and low resolution. Satellite data was
used to estimate land surface variables, which were used as inputs for LE algorithm. Satellite
data based LE algorithms were easy to operate for routine, long-term mapping of LE with dif-
ferent spatial scales. However, models structure and physical parameterizations of LE algo-
rithms influenced the accuracy of these products. Dirmeyer et al., 2013 [43] found that model
parameterizations in Penman-Monteith equation based LE algorithms influenced the accu-
racy assessment of LE.

The MODIS LE product algorithm (MOD16) was based on a beta version [5] developed
from Cleugh et al. [44] using the PMmodel [38]. Mu et al. (2011) [11] improved the beta ver-
sion by: (1) simplifying the calculation of the vegetation cover fraction with FPAR; (2) calculat-
ing LE as the sum of daytime and nighttime components; (3) improving calculations of
aerodynamic, boundary-layer, and canopy resistance; (4) estimating the soil heat flux using
available energy and simplified NDVI; (5) dividing the canopy into wet and dry components;
(6) separating moist soil surfaces from saturated wet ones. The MOD16 algorithm was success-
fully extended to generate MODIS global terrestrial LE product from MODIS land cover,
albedo, LAI/FPAR, and a GMAO daily meteorological reanalysis data set [11].

To avoid the complexity of parameterizing aerodynamic and surface resistance, Priestley
and Taylor [45] reduced the atmospheric control term in the PM equation and added an
empirical factor to design a simple LE algorithm. Based on this algorithm, Fisher et al. [6] pro-
posed a novel PT-based LE algorithm (Priestley-Taylor LE algorithm of Jet Propulsion Labora-
tory, Caltech, PT-JPL) with atmospheric (RH and VPD) and ecophysiological constraints
(FPAR and LAI) to downscale potential ET to actual ET. Total ET was the sum of canopy tran-
spiration (ETc), soil evaporation (ETs) and interception evaporation (ETi). Each component

A Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux

PLOS ONE | DOI:10.1371/journal.pone.0160150 July 29, 2016 5 / 16



was calculated using the Priestley–Taylor equation and the corresponding ecophysiological
condition.

MOD16 and PT-JPL methods were applied to estimate global terrestrial LE using the daily
MERRA data sets with spatial resolution of 1/2 degree latitude × 2/3 degree longitude, 8 day
MODIS FPAR/LAI (MOD15A2) product with 1-km spatial resolution, the 16 day MODIS
NDVI (MOD13A2) product with 1-km spatial resolution, the 8 day Global Land Surface Satel-
lite (GLASS) LAI product with 1-km spatial resolution [46], annual Land Cover Type product
(MCD12Q1) with 500 m spatial resolution and the Shuttle Radar Topography Mission
(SRTM30) Digital Elevation Model (DEM) elevation product. Considering the different spatial
resolutions of the MERRA data, spatial interpolation based on the cosine [47] was used to
match the spatial resolutions of MERRA and MODIS data.

3.2 Ground Measurements
The algorithm for EOF integration, MOD16 LE and PT-JPL LE was validated and evaluated
using data of 22 EC towers provided by FLUXNET for 2005, as shown in Fig 2. The flux tower
sites covered eight major global land-surface biomes: deciduous broadleaf forest (DBF; three
sites), deciduous needleleaf forest (DNF; six sites), evergreen broadleaf forest (EBF; two sites),
mixed forest (MF; one site), savanna (SAW; one site), shrubland (SHR; one site), cropland
(CRO; two sites), and grass and other types (GRA; three sites), as shown in Table 1. The sites
were selected according to the following criteria: (a) data being quality controlled; (b) extensive
data set with minimal gaps; and (c) availability of all other requireaad input data for simulation
using the different models considered for this study. Because of high data availability data from
2005 was selected for this analysis.

These data sets included half-hourly or hourly ground-measured incident solar radiation
(Rs), relative humidity (RH), air temperature (Ta), diurnal air-temperature range (DT), wind
speed (Ws), vapor pressure (e), sensible heat flux (H), surface net radiation [48], ground heat
flux (G), and LE. When available, data sets were gap-filled by site principal investigators (PIs),
and daily data was aggregated from half-hourly or hourly data without using additional quality
control [49–51]. The more detailed information of the validation data were listed in Table 1
and Fig 2. Although the EC technique is regarded as a good method for measuring heat fluxes,
the EC based LE values has to be corrected because of the unclosed energy problem (Twine
et al. [52]; Wilson et al. [48]). The method developed by Twine et al. [52] was applied to correct

Fig 2. Spatial distribution of the validation FLUXNET sites used in this study. The maps were drawn by
the MCD12C1 product for 2005.

doi:10.1371/journal.pone.0160150.g002
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LE for all flux towers,

LE ¼ ðRn � GÞ=ðLEori þ HoriÞ � LEori ð6Þ

Where LE is the corrected latent heat flux, Hori and LEori were the uncorrected sensible heat
flux and latent heat flux, respectively.

4. Results and Discussion

4.1 Comparison of MOD16 and PT-JPL algorithms
Daily LE estimates fromMOD16 and PT-JPL based on both tower-measured meteorology data
and MERRAmeteorology data were compared. Furthermore, satellite based LE estimates were
also checked against measured LE data for the FLUXNET sites, as shown in Fig 3.

The two models had good performance over these sites. The correlation coefficients, R2, of
the TP-JPL and MOD16 using in situ meteorology data are higher than 0.6, which corresponds
to a good correlation to the measured LE values. Significant differences were found concerning
theuncertainties of different algorithms when using in situ and forcing data. A possible reason
for the differences might be the scale mismatch issue [53]. The comparison of our validation
results with previous studies were in good agreement. Fisher et al. [40] found that PT-JPL had
high correlation with ground observations from16 FLUXNET sites. Chen et al. [54] reported
that the PT-JPL showed a good performance with R2 equal to 0.8. The MOD16 validation at
Brazil EC sites conducted by Ruhoff et al. [55] showed that the correlation coefficient between
the ground observation and MOD16 estimates for 8-days average was 0.79, RMSE was 0.78

Table 1. Characteristics of the selected validation data at the FLUXNET sites (S1 Table).

Sites ID Site name Latitude Longitude IGBP Available years

US-ARM ARM Southern Great Plains control site 36.61 -97.49 CRO 2000–2013

US-ARC ARM Southern Great Plains control site 35.55 -98.04 GRA 2005–2006

US-Bkg Brookings 44.35 -96.84 GRA 2004–2010

US-Bo1 Bondville 40.01 -88.29 CRO 1996–2010

US-Bo2 Bondville 40 -88.29 CRO 2004–2008

US-Dk2 Duke Forest Hardwoods 35.97 -79.1 DBF 2001–2008

US-FR2 Freeman Ranch- Mesquite Juniper 29.95 -98 SAW 2005–2008

US-MOz Missouri Ozark Site 38.74 -92.2 DBF 2004–2013

US-SO2 Sky Oaks Old 33.37 -116.62 SHR

US-SO3 Sky Oaks- Young Stand 33.38 -116.64 SHR 2001–2006

US-SO4 Sky Oaks New 33.38 -116.64 SHR

US-Syv Sylvania Wilderness 46.69 -89.35 MF 2001–2008

HU-Bug Bugacpuszta 46.69 19.6 GRA 2002–2006

UK-PL3 Pang Lambourne (forest) 51.45 -1.27 DBF 2005–2006

BR-Ban Ecotone Bananal Island -9.82 -50.16 EBF 2003–2006

BR-Ma2 Manaus—ZF2 K34 -2.61 -60.21 EBF 1999–2006

CA-Obs Sask.- SSA Old Black Spruce 53.99 -105.19 ENF 1999–2005

CA-Ojp Sask.- SSA Old Jack Pine 53.92 -104.69 ENF 1999–2005

CA-SF1 Sask.-Fire 1977 54.49 -105.82 ENF 2003–2005

CA-SF2 Sask.-Fire 1989 54.25 -105.88 ENF 2003–2005

CA-SJ2 Sask.-2002 Harvested Jack Pine 53.95 -104.65 ENF 2003–2005

CA-Sj3 Sask.-1975 (Young) Jack Pine 53.88 -104.65 ENF 2004–2005

doi:10.1371/journal.pone.0160150.t001
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mm day-1 and mean bias was 0.54 mm day-1. The good performances of MOD16 and PT-JPL
might be attributed to good physical basis of these two models. However, previous studies also
showed that MOD16 had reduced performance when compared to ground observations. Chen
et al. [4] and Ershadi et al. [20] reported reduced performance of MOD16 compared with Chi-
naflux EC sites and American EC sites. MOD16 validation conducted by Ramoelo et al. [56]
suggested that disagreement of MOD16 and flux tower-based ET could be attributed to the
parameterization of Penman-Monteith model. Therefore, the parameterization of Penman-
Monteith model at different sites or climatic zones might cause the different performances of
MOD16.

Small discrepancies in LE were produced by MOD16 and PT-JPL (Fig 3). Both MOD16 and
PT-JPL showed positive bias compared with ground measurements. However, as published by
Behrangi et al. [57], the MOD16 slightly underestimates LE as compared to PT-JPL. Moreover,
when compared with EC towers in Asia, MOD16 had a negative bias (-17.00 mm 8-day-1) espe-
cially for the cropland sites [58]. This might be due to the different location of the ground
observations, i.e. most of EC sites in this study were collected at high latitudes (Fig 1) and in
high latitudes, temperature has great impact on LE estimations [59].

We found that vegetation type has a great influence on the performance of MOD16 and
PT-JPL (Fig 4). PT-JPL showed the higher R2 (0.96) for MF sites, while MOD16 had the higher
R2 (0.75) for the ENF sites. PT-JPL generally had lower bias than MOD16 for CRO, GRA, DBF
and ENF, whereas the MOD16 showed a lower bias than PT-JPL for EBF, MF, SAW and SHR.
Both algorithms showed negative bias for CRO and GRA sites. The underestimation of
MOD16 for cropland site was also reported in the previous study [58]. Yao et al. [28] also
found that MOD16 and PT-JPL underestimates LE in the case of cropland and grassland sites.
Negative biases in simulated LE by these two algorithms might be attributed to the uncertainty
in soil moisture estimation.

Fig 3. Comparison of MOD16 and PT-JPL with in situ andmeteorological forcing data. (a1) MOD16 vs
in situ data. (a2) MOD16 vs meteorological forcing data. (b1) PT-JPL vs in situ data. (b2) PT-JPL vs
meteorological forcing data.

doi:10.1371/journal.pone.0160150.g003
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4.2 Performance of EOF and SA fusion algorithms
The MOD16, PT-JPL, SA and EOF algorithms exhibited substantial differences when com-
paring the modelled LE to the LE observed at the 22 EC flux tower sites, as shown in Fig 5.
However, MOD16, PT-JPL, SA and EOF algorithms successfully predicted the magnitudes
and seasonal variations of the observed LE at the validation sites. Compared with MOD16
and PT-JPL, the fusion algorithms (SA and EOF) showed closer correlation with observed
LE, LE predicted by EOF being the best estimate for most sites. Generally, previous studies
also showed that fusion methods could produce more accurate LE estimates than the individ-
ual LE algorithm. Ershadi et al. [20] found that the ensemble mean of the individual LE
models produced the best estimates of LE, with the mean value of the Nash–Sutcliffe effi-
ciency of 0.61 and the root mean squared difference of 64 W/m2. Yao et al. [28] introduced a
Bayesian model averaging (BMA) method by merging five process-based LE models. This
BMA method showed improved performance compared with individual LE models from
240 FLUXNET EC sites R2 being equal to 0.8, bias equal to 3.5 W/m2 and RMSE equal to
32.8 W/m2.

For validation the 22 sites were categorized according to land cover type, as shown in Fig 4.
Both EOF and SA showed higher R2 than MOD16 and PT-JPL for CRO, EBF, GRA and DBF
ranging from 0.49 to 0.86. In the case of CRO, EBF and GRA sites, LE estimate by EOF showed
the highest correlation ranging from 0.67 to 0.86. In terms of RMSE EOF produced the lowest
values ranging from 11.07 to 18.10 W/m2 for all biomes. Except for DBF and ENF sites bias
was the lowest for EOF. SA had a relative good performance with bias ranging from -12.37 to

Fig 4. Direct validation results of EOF-integrated LE for FLUXNET sites at eight biomes: cropland
(CRO), evergreen broadleaf forest (EBF), grassland (GRA), deciduous broadleaf forest (DBF), mixed
forest (MF), savanna (SAW), shrubland (SHR) and evergreen needleleaf forest (ENF).

doi:10.1371/journal.pone.0160150.g004
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23.40 W/m2 and RMSE ranging from 15.39 to 28.37 W/m2 over CRO, GRA and DBF sites.
However, SA showed limited improvement for EBF, GRA and MF sites compared with
MOD16 and PT-JPL. However there is a variety of individual LE models with different algo-
rithm structures and parameterization, none of them is capable of providing a best LE estimate
for all biomes. Hence, the reduced performance of SA might be attributed to the simple con-
stant weights of different LE models [28]. Because EOF took both spatial and temporal infor-
mation into consideration when reconstructing LE and maintained the main spatial pattern of
individual LE model [35], compared to SA, EOF provided improved performance over most
vegetation types. The previous study [37] showed that fusion methods based on EOF had sub-
stantially improved the accuracy of LAI with R2 increasing from 0.75 to 0.81 and RMSE
decreasing from 1.04 to 0.71. The simple structure of EOF fusion might partly explain this
improvement. The major advantage of EOF was that it avoided using the measured LE values
which were used by many of the fusion methods [28]. Therefore the sensitivity of this parame-
terization to errors in the input data was substantially lessened [60]. Another advantage was
that it was easy to implement and did not require the use of a precalculated covariance model
and estimation error matrix [37].

Considering all vegetation types (all validation sites), MOD16, PT-JPL, EOF and SA
explained 77%, 74%, 84% and 81% of the variation of the 8 day average LE estimates, respec-
tively (Fig 6), with MOD16 slightly overestimating and PT-JPL overestimating LE. All methods
showed positive bias ranging from 3.67 W/m2 to 7.19 W/m2 and RMSE was in the range of
14.83 W/m2 and 21.84 W/m2. The proposed EOF method showed then lowest bias and RMSE
and the highest R2 (0.84).

To compare spatial patterns of LE in the case of the four algorithms, we randomly selected
images around US-SO2 site (Fig 7). Similar tendencies of LE predicted by the four algorithms
were found, LE was decreasing regularly with time. As expected, for a given day the largest dif-
ference was between LE predicted by SA and EOF. Compared to SA, EOF showed relatively
low LE in upper-left corner of the images, which was more consistent with the LE predicted by
MOD16. EOF and SA both showed high LE in bottom left corner of the images. However, the
SA showed distinct average results of MOD16 and PT-JPL.

Fig 5. Validation of the 8-daymean of predicted and observed LE at all sites in 2005.

doi:10.1371/journal.pone.0160150.g005
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4.3 Limitations of the proposed EOF algorithm
The proposed EOF algorithm requires fewer input parameters than geostatistical approaches,
e.g. a precalculated covariance model. However, EOF does have some limitations, and the com-
putation cost is very high due to matrix calculations and iterations. Uncertainties that are limit-
ing the use of the EOF model are the following:

Fig 6. Validation of EOF, MOD16 and PT-JPL LEmethods across different land use types. 8 day
average LE prediction is compared to ground measurements. The solid line is the 1:1 line.

doi:10.1371/journal.pone.0160150.g006

Fig 7. EOFmaintained major pattern of PT-JPL and removed the extreme values as compared with the
SA, MOD16 and PT-JPLmethods during the periods from February 10, 2005, to March 22, 2005, at the
US-SO2 AmeriFlux Site. The color bar is an 8-day composite LE. Dark gray color means no data (0 value).

doi:10.1371/journal.pone.0160150.g007
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1. The bias for MERRA [61] might lead to substantial bias for the two individual LE algorithms
and hence to the EOF ensembles. Study showed that MERRA surface solar radiation, which
was used as an input of LE models, had an average bias error of +20.2 W/m2 on monthly
and annual scales from American FLUXNET sites [62], resulting in an overestimation of
LE. Zib et al. [63] also reported an annual mean bias of 3.9 W/m2 at two Baseline Surface
Radiation Network (BSRN) sites for MERRA surface solar radiation; Wang and Zeng [64]
found an overestimation of up to 40 W/m2 for MERRA surface solar radiation.

2. Scale mismatch between coarse resolution of input data and the field measurements foot-
print may results in substantial bias in EOF fusion producing. Wolde et al. [65] analyzed the
different pixel resolution of remote sensing inputs, and showed that variation in ET flux
between corn and soybean field could not be effectively distinguished when the input was of
the order of 1000 m [66] found that coarse NCEP/NCAR reanalysis meteorology (NNR)
data can introduce bias to match the local tower footprint in some regions.

3. By integrating the different LE algorithms, bias might be introduced during the EOF fusion
process. The reason it that, when applying the EOF fusion method, EOF reconstruction
scheme [42] does not distinguish between good or degraded quality pixel values. Conse-
quently, bias is introduced, since all pixels in the image are included in the reconstruction
during the spatio-temporal fusion process.

5. Conclusions
We proposed a data merging method based on EOF analysis and applied this method to inte-
grate two satellite-derived LE products (MOD16 and PT-JPL). We also compared the proposed
EOF method with simple SA fusion method. Ground-measured LE data in 2005 from 22 EC
sites, incorporating eight major terrestrial biomes (CRO, DBF, EBF, ENF, GRA, MF, SAW and
SHR), were used for validation, and demonstrated that the proposed method was suitable for
terrestrial LE mapping.

MOD16 and observed data correlated well for EBF, MF, SAW and SHR biomes, producing
higher R2, although somewhat larger RMSE and high bias. For CRO, GRA, DBF and EOF sites,
PT-JPL produced lower bias with lower RMSE. Although SA fusion method provided accept-
able results compared with MOD16 and PT-JPL, the proposed EOF algorithm showed notable
improvement by combining the advantages of MOD16 and PT-JPL and had a relatively low
bias and RMSE with high R2 for all biomes. EOF integrated images were superior to LE maps
generated by the PT-JPL and MOD16 algorithms.

Supporting Information
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was in the S1 Table.xlsx.
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