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Type III interferons (IFN-λs) have been demonstrated to inhibit a number of viruses, 
including HIV. Here, we further examined the anti-HIV effect of IFN-λs in macrophages. 
We found that IFN-λs synergistically enhanced anti-HIV activity of antiretrovirals [azidothy-
midine (AZT), efavirenz, indinavir, and enfuvirtide] in infected macrophages. Importantly, 
IFN-λs could suppress HIV infection of macrophages with the drug-resistant strains, 
including AZT-resistant virus (A012) and reverse transcriptase inhibitor-resistant virus 
(TC49). Mechanistically, IFN-λs were able to induce the expression of several important 
anti-HIV cellular factors, including myxovirus resistance 2 (Mx2), a newly identified HIV 
post-entry inhibitor and tetherin, a restriction factor that blocks HIV release from infected 
cells. These observations provide additional evidence to support the potential use of 
IFN-λs as therapeutics agents for the treatment of HIV infection.

Keywords: iFn-λ, drug-resistant hiV, antiretrovirals, Mx2, tetherin

inTrODUcTiOn

Highly active antiretroviral therapy (HAART) has substantially reduced morbidity and mortality 
in HIV-infected individuals since its introduction in 1996 (1). Although HAART can suppress 
plasma viral loads to undetectable levels and improve patient life span (2), a substantial fraction 
of patients fail therapy and/or experience serious side effects from treatment, accompanied by the 
emergence of drug-resistant viruses (3, 4). More importantly, patients with HIV-1 infection can 
harbor the virus in latent reservoirs, such as macrophages, one of the key targets of HIV-1 infec-
tion. Studies have shown that the intracellular concentrations of antiretrovirals were significantly 
lower in macrophages than these in T lymphocytes (5, 6). It is known that macrophages play a 
crucial role in the host defense against HIV-1 infection, as they produce the multiple intracellular 
HIV restriction factors (7, 8). As HIV-1 latency is the major obstacle in preventing the eradication 
of the virus, it is necessary to identify agents that can induce intracellular antiviral factors against 
HIV-1 in macrophages.

Type III interferons (lambda interferons, IFN-λs) or interleukin-28/29 (IL-28/29) display IFN-
like activities (9, 10), although they exert their functions through a receptor distinct from type 
I IFNs (11, 12). IFN-λ subfamily includes three structurally related cytokine members, IFN-λ1 
(IL-29), IFN-λ2 (IL-28A), and IFN-λ3 (IL-28B). IFN-λs could be activated by viral infections or 
activation of toll-like receptors (13, 14). IFN-λs functionally resemble type I IFNs, the activation 
of which can trigger antiviral activity in  vitro (11, 15–18) as well as in  vivo (19, 20). However, 
unlike type I IFNs that have receptors expressed on many cell types, including the cells in brain, 
the expression pattern of IFN-λ receptors is more limited to specific cell types (17, 21–24). Thus, 
IFN-λs have fewer side effects than type I IFNs. The clinical importance of IFN-λs as novel antiviral 
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FigUre 1 | effect of iFn-λs on hiV (Bal strain) infection of 
macrophages. Seven-day-cultured macrophages were incubated in the 
presence or absence of IFN-λs (1, 2, or 3; 100 ng/ml each) or classic 
antiretrovirals at indicated concentrations (AZT: 10−11M; efavirenz: 10−10M; 
indinavir: 10−15M; and emfuviride: 10−8M) for 24 h and then infected with HIV 
Bal strain. HIV-1 p24 production and Gag gene expression was determined 
at day 8 postinfection. (a) The cell culture supernatant was subjected to 
ELISA assay to detect HIV p24. (B) Total RNA from cells was subjected to 
HIV Gag gene expression by real-time RT-PCR. The data are expressed as 
RNA levels relative (percent) to the control (without treatment, which is 
defined as 100%). The results shown are the mean ± SD from three 
independent experiments with triplicate wells (*p < 0.05, **p < 0.01, IFN-λ, or 
antiretroviral vs. control; Efa, efavirenz; Idv, indinavir; Enf, enfuvirtide).
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therapeutic agents has recently become apparent. Several stud-
ies (12, 25–27) reported that the endogenous IFN-λ system 
is associated with treatment-induced clearance of hepatitis C 
virus (HCV). Furthermore, pegylated IFN-λ works as well as 
pegylated IFN-α for treating chronic hepatitis C (28–31), but 
with less side effects in several clinical trial studies. While it 
has been reported that IFN-λs could inhibit HIV replication 
in macrophages (17, 18) and CD4+ T cells (32), it is unclear 
whether IFN-λs can inhibit HIV infection with drug-resistant 
strains. In the present study, we investigated the antiviral effect 
of IFN-λs on antiretroviral-drug-resistant HIV strains in primary 
human macrophages. We also determined whether IFN-λs have 
synergistic effect on anti-HIV activity of antiretroviral drugs in 
infected macrophages.

MaTerials anD MeThODs

Monocyte and Macrophage culture
Purified human peripheral blood monocytes were purchased 
from Human Immunology Core at the University of Pennsylvania 
(Philadelphia, PA, USA). The Core has the Institutional Review 
Board approval for blood collection from healthy donors. 
Monocytes were plated in 48-well culture plates (Corning 
CellBIND Surface, Corning Incorporated, Corning, NY, USA) at 
a density of 0.25 × 106 cells/well or 96-well culture plates (Corning 
CellBIND Surface, Corning Incorporated, Corning, NY, USA) at 
a density of 105 cells/well in the DMEM containing 10% FCS (33, 
34). The medium was half-changed every 2 days. Monocytes dif-
ferentiated to macrophages after in vitro cultured for 5–7 days. We 
used 7-day-cultured macrophages for experiments of this study.

hiV strains and Other reagents
Based on their differential use of the major HIV receptors (CCR5 
and CXCR4), HIV isolates are classified to R5, X4, and R5X4 strains 
(35). HIV Bal strain (R5 tropic), AZT-resistant HIV A012 G691-6 
strain (R5X4 tropic) (36) and the antiretroviral drugs (AZT, efa-
virenz, indinavir, and enfuvirtide) were obtained from the AIDS 
Research and Reference Reagent Program at NIH (Bethesda, MD, 
USA). Reverse transcriptase (RT) inhibitor-resistant HIV TC49 
strain (R5 tropic) was kindly provided by Dr. David Katzenstein 
(Stanford University, Palo Alto, CA, USA). Recombinant human 
IFN-λ1 and IFN-λ2 were purchased from PeproTech Inc. (Rocky 
Hill, NJ, USA). Recombinant human IFN-λ3 was purchased from 
R&D Systems, Inc. (Minneapolis, MN, USA).

iFn-λs and/or anti-hiV Drug Treatment 
and hiV infection
For infection with the resistant HIV strains, 7-day-cultured 
macrophages (105 cells/well in 96-well plates) were incubated 
with or without IFN-λ1, λ2, or λ3 (100  ng/ml each) and/
or anti-HIV drugs: azidothymidine (AZT) 10−11M; efavirenz 
10−10M; indinavir 10−15M, and enfuvirtide 10−8M for 24 h. Cells 
were then infected with different strains of HIV (6  ng p24/
well) for 2  h. After washed three times with plain DMEM, 
cells were cultured with fresh 10% DMEM containing IFN-λs 
and/or antiretroviral drugs. For HIV Bal infection, culture 
supernatant was harvested at day 8 postinfection for RT and 

p24 assays. Infected and untreated cells served as controls. 
HIV Gag gene expression in infected cells was also examined 
at day 8 postinfection. For anti-HIV drug-resistant virus (A012 
G691-6 or TC49) infection, culture supernatant was harvested 
for HIV p24 protein by ELISA at days 3, 5, 7, and 10 postin-
fection. The cell cultures were replaced with the fresh media 
supplemented with IFN-λ1, λ2, or λ3 and/or the antiretrovirals 
every 2–3  days. The culture supernatant collected at day 10 
postinfection was also subjected to RT assay.

hiV rT and p24 elisa assays
HIV RT activity was determined based on the technique (37) 
with modifications (38, 39). For HIV p24 assay, the cultured 
supernatant was analyzed ELISA as described in the protocol 
provided by the manufacturer (Chiron Corp., Emeryville, 
CA, USA).

rna extraction and real-time rT-Pcr
RNA was extracted from cell cultures with Tri-Reagent (Molecular 
Research Center, Cincinnati, OH, USA) as previously described 
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FigUre 2 | effect of iFn-λs and/or antiretrovirals on hiV Bal infection of macrophages. Seven-day-cultured macrophages were incubated in the presence 
or absence of IFN-λs (1, 2, or 3; 100 ng/ml each) or classic antiretrovirals (a) AZT: 10−11M; (B) efavirenz: 10−10M; (c) indinavir: 10−15M; and (D) emfuviride: 10−8M) for 
24 h and then infected with HIV Bal strain. HIV RT activity was determined at day 8 postinfection. The data shown are the mean ± SD from three independent 
experiments with triplicate wells (*p < 0.05, **p < 0.01, IFN-λ+ antiretrovirals vs. antiretrovirals only; Efa, efavirenz; Idv, indinavir; Enf, enfuvirtide).
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(40, 41). Total RNA (1 μg) was subjected to RTusing the RT system 
(Promega, Madison, WI, USA) for 1 h at 42°C. The reaction was 
terminated by incubating the reaction mixture at 99°C for 5 min, 
and the mixture was then kept at 4°C. The resulting cDNA was 
then used as a template for real-time PCR quantification. Real-
time PCR was performed with 1/10 of the cDNA with the iQ SYBR 
Green Supermix (Bio-Rad Laboratories, Hercules, CA, USA) as 
previously described (41–43). The oligonucleotide primers were 
synthesized by Integrated DNA Technologies, Inc. (Coralville, 
IA, USA) and sequences will be available upon request. For the 
Gag gene expression, the specific oligonucleotide primers are 
listed as follows: Gag gene primer: 5′-ATAATCCACCTATCCC-
AGTAGGAGAAA-3′ (SK38) and 5′TTTGGTCCTTGTCTT 
ATGTCCAGAATGC-3′ (SK39) (44). For the tetherin gene 
expression, the specific oligonucleotide primers are listed as fol-
lows: 5′-AAGAAAGTGGAGGAGCTTTGAGG-3′ (Sense) and 
5′-CCTGGTTTTCTCTTCTCAGT-CG-3′ (anti-sense). For the 
Mx2 gene expression, the specific oligonucleotide primers are 
listed as follows: 5′-CAGCCACCACCAGGA AACA-3′ (Sense) 
and 5′-TTCTGCTCGTACTGGCTGTACAG-3′ (anti-sense). The 
data were normalized to glyceraldehyde-3-phosphate dehydro-
genase (GAPDH, primers are 5′-GGTGGTCTCCTCTGACTTC 

AACA-3′ for sense and 5′-GTTGCTGTAGCCAAATTCGTT 
GT-3′ for anti-sense, respectively) and presented as the change in 
induction relative to that of untreated control cells.

Flow cytometric analysis
Cultured macrophages (2.5  ×  105 cells/well in 48-well plate) 
were incubated with or without IFN-λ 1, 2, or 3 (100 ng/ml) for 
24 h. Cells were then harvested, washed twice with phosphate-
buffered saline containing 1% fetal bovine serum, incubated with 
PE-conjugated anti-human tetherin (CD317; BioLegend, San 
Diego, CA, USA) on ice in dark for 30 min. Unstained or isotope-
matched mouse immunoglobulin G1-stained cells were included 
as a negative control. Stained cells were acquired by fluorescence-
activated cell sorting (FACSCalibur; BD Biosciences, San Jose, 
CA, USA) and analyzed using FlowJo software (Tree Star Inc., 
Ashland, OR, USA).

Western Blotting for cell lysates
The expression of the Mx2 and tetherin were evaluated by immu-
noblot analysis. Following incubation with polyclonal antibodies 
to Mx2 (Novus, Littleton, CO, USA) or polyclonal rabbit anti-
BST-2 (tetherin) serum (AIDS Research and Reference Program, 
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FigUre 3 | effect of iFn-λs on drug-resistant hiV infection of macrophages. Seven-day-cultured macrophages were incubated in the presence or absence 
of IFN-λs (1, 2, or 3; 100 ng/ml each) for 24 h and then infected for 6 h with two drug-resistant viruses (A012 G691-6 or TC49). The HIV p24 antigen (a,c) was 
detected at indicated time points post HIV infection using a commercially available ELISA kit, and HIV RT activity (B,D) was assayed from the culture supernatant at 
day 10 postinfection. The data shown are the mean ± SD from three independent experiments with triplicate wells (*p < 0.05, **p < 0.01, IFN-λ vs. control; Efa, 
Efavirenz, 10−10M; Idv, Indinavir, 10−15M; AZT 10−11M).
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Bethesda, MD, USA) and extensive washing in PBS containing 
0.05% Tween-20, the membranes were incubated with horserad-
ish peroxidase-conjugated IgG (Pierce, Chester, UK) for 1 h at 
room temperature. The membranes were further washed in PBS. 
The immunoblots were visualized by enhanced chemilumines-
cence detection (Amersham, Bucks, UK).

statistical analysis
For comparison of the mean of two groups, statistical signifi-
cance was assessed by Student’s t-test. One-way ANOVA were 
used for comparison of result between the different groups 
(multiple comparisons). All graphs were generated and statisti-
cal analyses were performed with GraphPad InStat Statistical 
Software (GraphPad Software Inc., San Diego, CA, USA), and 
the data are presented as mean ± SD. Statistical significance was 
defined as p < 0.05.

resUlTs

iFn-λs enhance anti-hiV 
activity of antiretrovirals
We first determined the effect of IFN-λs and/or the antiretrovirals 
(AZT, efavirenz, indinavir, and enfuvirtide) on HIV Bal infection 

of macrophages. IFN-λs (1, 2, or 3) or the antiretrovirals (AZT, 
efavirenz, indinavir, and enfuvirtide) significantly inhibited 
the expression of HIV p24 antigen (Figure  1A) and Gag gene 
(Figure 1B) in macrophages. IFN-λs (1, 2, or 3) also enhanced the 
anti-HIV (Bal) effect of AZT (Figure 2A), efavirenz (Figure 2B), 
indinavir (Figure 2C), and enfuvirtide (Figure 2D).

iFn-λs inhibit Drug-resistant  
hiV infection of Macrophages
We next examined whether IFN-λs (1, 2, or 3) can inhibit drug-
resistant HIV infection of macrophages. While AZT had little  
effect on AZT-resistant HIV strain (A012) infection (Figures 3A,C 
IFN-λs 1, 2, or 3) potently suppressed infection of macrophages by 
the AZT-resistant HIV strain (A012) (Figures 3A,C). Similarly, 
IFN-λ 1, 2, or 3) could suppress RT inhibitor-resistant HIV 
(TC49) infection of macrophages. In contrast, the RT inhibitors 
(efavirenz) could not inhibit TC49 strain infection of macrophage 
(Figures 3B,D).

iFn-λs Upregulate Tetherin
Tetherin, an important IFN-α inducible cellular restriction 
factor, has been shown to inhibit HIV infection of host cells by 
preventing release of virus from an infected cell (45, 46). Thus, we 
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FigUre 4 | effect of iFn-λs on tetherin expression. (a) Tetherin 
messenger RNA (mRNA) expression. Seven-day-cultured macrophages 
were incubated in the presence or absence of IFN-λs (1, 2, or 3; 100 ng/ml) 
for 3, 6, or 24 h. Total RNA was extracted from cells and then the real-time 
RT-PCR was performed to determine the induced mRNA expression of 
tetherin and GAPDH. The data are expressed as mRNA levels for tetherin 
relative (fold) to the control (without IFN-λ treatment, which is defined as 1). 
The results shown are the mean ± SD from three independent experiments 
with triplicate wells (**p < 0.01; *p < 0.05; IFN-λ vs. control). (B) Tetherin 
protein expression (flow cytometry). Seven day-cultured macrophages were 
treated with or without IFN-λs (1, 2, or 3; 100 ng/ml each) for 24 h. Cells 
were stained with fluorescence-conjugated anti-human tetherin (CD317) 
antibody and analyzed for tetherin expression by flow cytometry. The isotope 
control is staining with isotope-matched antibody (immunoglobulin G1). 
A representative histogram graph was shown. (c) Tetherin protein 
expression (Western blot). Seven day-cultured macrophages were treated 
with or without IFN-λ (1, 2, or 3; 100 ng/ml each) for 24 h. Total protein 
exacted from macrophages was subjected to Western blot assay using 
antibody against tetherin and actin. The inserts below the panels show the 
signal intensities [density scan unit (DSU)] of protein bands of the 
representative blot, expressed as densitometry scanning units. The results 
shown are representative of three independent experiments.
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examined whether IFN-λ treatment of macrophages can induce 
the tetherin expression. As shown in Figure 4, IFN-λ treatment 
of macrophages significantly increased the tetherin expression 
at both messenger RNA (mRNA) (Figure  4A) and protein 
(Figures 4B,C) levels.

iFn-λs enhance Mx2
As an IFN-α-inducible cellular factor, Mx2 has recently been 
identified to inhibit HIV at post-entry level (47–49). Mx2 could 
abolish capsid-dependent nuclear import of subviral complexes 
(41–43). We thus examined whether IFN-λs can induce Mx2 
expression in macrophages. As shown in Figure 5, IFN-λ treat-
ment of macrophages significantly upregulated the Mx2 expres-
sion at both mRNA (Figure 5A) and protein (Figure 5B) levels.

DiscUssiOn

To find new antiretroviral agents remains to be an important area 
of anti-HIV studies. Our earlier studies showed that IFN-λs could 
inhibit in vitro HIV infection/replication (17, 18, 50). IFN-λs are 
a class of recently identified members of IFN family, including 
three IFN-λ (lambda) molecules called IFN-λ1, IFN-λ2, and 
IFN-λ3 (also called IL-29, IL-28A, and IL-28B, respectively) (51). 
IFN-λs bind to their own distinctive receptor complex, IL-10Rβ 
and IL-28Rα, which activates janus kinase/signal transducers and 
activators of the transcription (JAK/STAT) signaling pathway, 
resulting in the phosphorylation of STAT proteins and forming 
of IFN-stimulated gene factor 3 complex (11, 15, 52).

While the IL-10Rβ shows a broad expression pattern (53), 
expression of the IFN-λ receptor subunit IL-28Rα is much more 
restricted (11, 54, 55). Earlier analysis of the expression pattern 
of IL-28Rα in human tissues showed that IL-28Rα mRNA levels 
were highest in the lung, heart, liver, and prostate, while low 
mRNA levels were detected in the central nervous system, bone 
marrow, testis, uterus, and skeletal muscle (22, 54, 55). A  few 
immune cells express IL-28Rα especially at the mRNA level (e.g., 
B cells, macrophages, and plasmacytoid DCs), but conflicting 
protein expression data are reported in the literature (17, 22, 
54–57). Although some evidence indicates that IFN-λ receptor 
expression on peripheral leukocytes is not functional (22), other 
evidence shows clear antiviral innate defense in some of these 
cells, and IFN-λ signals stimulate monocytes and macrophages 
to produce IL-6, IL-8, and IL-10 (58).

Studies from different investigators have demonstrated that 
IFN-λs have the ability to inhibit the replication of a number 
of viruses, including HCV and hepatitis B virus (16, 59), cyto-
megalovirus (60), Apeu virus (61), herpes simplex virus type 
2 (HSV-2) (19), encephalomyocarditis virus (11), vesicular 
stomatitis virus (60), West Nile virus (62), and dengue virus 
(63). IFN-λs also had antiviral effect in vivo (19, 64, 65). Recent 
in  vivo studies with mice showed that IFN-λs had the ability 
to reduce hepatic viral titer of HSV-2 and completely blocked 
HSV-2 replication in vaginal mucosa (19). IFN-λs contribute 
to innate immunity of mice against influenza A virus (66, 67). 
In addition, their role in direct antiviral effects in vivo has also 
been demonstrated in IL-28RA and STAT1 knockout animals, 
where a significant increase in influenza A virus replication was 
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FigUre 5 | effect of iFn-λs on Mx2 expression. (a) Mx2 messenger 
RNA (mRNA) expression. Seven-day-cultured macrophages were incubated 
in the presence or absence of IFN-λs (1, 2, or 3; 100 ng/ml each) for 24 h. 
Total RNA extracted from cells was subjected to the real-time RT-PCR was 
performed for Mx2 mRNA and GAPDH. The data are expressed as Mx2 
mRNA levels relative (fold) to the control (without IFN-λ treatment, which is 
defined as 1). The results shown are the mean ± SD from three 
independent experiments with triplicate wells (**p < 0.01; *p < 0.05; IFN-λ 
vs. control). (B) Mx2 protein expression (Western blot). Seven day-cultured 
macrophages were treated with or without IFN-λ (1, 2, or 3; 100 ng/ml 
each) for 24 h. Total protein exacted from macrophages was subjected to 
Western blot assay using antibody against Mx2 and actin. The inserts 
below the panels show the signal intensities [density scan unit (DSU)] of 
protein bands of the representative blot, expressed as densitometry 
scanning units. The results shown are representative of three independent 
experiments.
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observed (66–68). Others and we have shown that IFN-λs could 
inhibit HIV infection of CD4+ T cells (32) and macrophages 
(17, 18, 50). Mechanistically, IFN-λ1 and IFN-λ2 were able to 
induce the intracellular expression of type I IFN, CC chemokines 
(the ligands for CCR5), and APOBEC3G/3F, the cellular HIV 
restriction factors (17). In addition, we demonstrated that IFN-
λ3 could induce multiple antiviral cellular factors (ISG56, MxA, 
OAS-1) (18). We also showed that all three IFN-λs could induce 
the expression of pattern recognition receptors in macrophages 
(50). The in  vivo production of IFN-λ1 also was monitored in 
HIV-infected patients. Tian et al. found that the plasma IFN-λ1 
levels were increased along with the depletion of CD4+ T cells in 

HIV-1-infected patients, but the elevated IFN-λ1 showed limited 
repression of viral production (32).

In the present study, we further examined the anti-HIV activ-
ity of IFN-λs. We showed that all three IFN-λs not only inhibited 
drug-resistant virus replication (Figure  3) but also enhanced 
the anti-HIV effect of commonly used antiretrovirals (Figures 1 
and 2), including zidovudine (AZT, a nucleoside RT inhibitor), 
efavirenz (a non-nucleoside RT inhibitor), indinavir (protease 
inhibitor), and enfuvirtide (HIV fusion inhibitor). In addition 
to the reported mechanisms involved in IFN-λ-mediated HIV 
inhibition (17, 18, 50): the induction of extracellular factors, e.g., 
CC chemokines that block HIV entry into macrophages, and the 
activation of intracellular innate immunity, e.g., the induction 
of type I IFNs and APOBEC3G/F, we demonstrated that IFN-λ 
treatment of macrophages induced the expression of tetherin, a 
cellular factor that can block HIV infection by preventing virus 
release from infected cells (Figure 4). In addition, IFN-λs also 
enhanced the expression of Mx2 (Figure 5), a newly identified 
HIV post-entry inhibitor that can abolish capsid-dependent 
nuclear import of subviral complexes (41–43). These anti-HIV 
cellular factors are the contributors for IFN-λ-mediated anti-HIV 
activity. These findings in conjunction with our previous observa-
tions (17, 18, 50) indicate that IFN-λs are attractive alternative 
for HIV treatment, as it would be extremely difficult for HIV to 
develop resistance to IFN-λs that can suppress the virus at various 
steps of its replication. However, further studies are necessary to 
determine the impact of IFN-λs on drug-resistant HIV strains in 
ex vivo and in vivo systems. These additional studies shall explore 
the clinical potential for developing IFN-λs-based therapy for 
HIV/AIDS.
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