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Pathway signatures derived from on-treatment
tumor specimens predict response to anti-PD1
blockade in metastatic melanoma
Kuang Du1,11, Shiyou Wei2,3,4,11, Zhi Wei1,12✉, Dennie T. Frederick5, Benchun Miao5, Tabea Moll6, Tian Tian 1,

Eric Sugarman7, Dmitry I. Gabrilovich 8, Ryan J. Sullivan 5, Lunxu Liu 2, Keith T. Flaherty 5,

Genevieve M. Boland 6,12✉, Meenhard Herlyn 9,12✉ & Gao Zhang 3,4,10,12✉

Both genomic and transcriptomic signatures have been developed to predict responses of

metastatic melanoma to immune checkpoint blockade (ICB) therapies; however, most of

these signatures are derived from pre-treatment biopsy samples. Here, we build pathway-

based super signatures in pre-treatment (PASS-PRE) and on-treatment (PASS-ON) tumor

specimens based on transcriptomic data and clinical information from a large dataset of

metastatic melanoma treated with anti-PD1-based therapies as the training set. Both PASS-

PRE and PASS-ON signatures are validated in three independent datasets of metastatic

melanoma as the validation set, achieving area under the curve (AUC) values of 0.45–0.69

and 0.85–0.89, respectively. We also combine all test samples and obtain AUCs of 0.65 and

0.88 for PASS-PRE and PASS-ON signatures, respectively. When compared with existing

signatures, the PASS-ON signature demonstrates more robust and superior predictive per-

formance across all four datasets. Overall, we provide a framework for building pathway-

based signatures that is highly and accurately predictive of response to anti-PD1 therapies

based on on-treatment tumor specimens. This work would provide a rationale for applying

pathway-based signatures derived from on-treatment tumor samples to predict patients’

therapeutic response to ICB therapies.
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While remarkable success of immune checkpoint
blockade (ICB) therapies has been achieved in treating
patients with metastatic melanoma and many other

types of cancers, only a subset of patients have derived a long-
term benefit and achieved a durable clinical response1–4. The lack
of robust clinical tools to guide ICB therapies not only fails to
triage patients but also leads to its overuse, which may incur
considerable side effects and costs. Therefore, it is necessary to
identify predictive biomarkers of response to ICB therapies in
order to inform and optimize therapeutic decisions.

Previous genomic and transcriptomic studies have identified
numerous biomarkers that predict response of metastatic mela-
noma to ICB therapies5–20. These predictive biomarkers include
tumor mutational burden (TMB) and neoantigens
load5,6,9,10,21,22, HLA-I genotype23,24, cytolytic activity13,
aneuploidy12, and T-cell repertoire11. In addition, gene expres-
sion signatures like immune-predictive score (IMPRES) and IFN-
γ-responsive genes expressed in tumors or tumor immune
microenvironments (TiME) have also been implicated in pre-
dicting response of metastatic melanoma to ICB therapies7,8,11–20.
IMPRES consisting of 15 immune genes was developed and
validated in several independent datasets that showed a high
predictive power of response to ICB therapies in metastatic
melanoma. A pan-tumor T-cell-inflamed gene expression profile
(GEP) consisting of 18 IFN-γ-responsive genes was validated and
confirmed to predict response to ICB therapy in pretreatment
tumor specimens from nine types of cancers, including
melanoma17. MHC-I/II gene signatures can also be utilized as
biomarkers to predict response to ICB therapy in
melanoma19,25,26. Among those signatures, TMB and gene
expression signatures have been widely used in many studies to
predict response to ICB therapies. However, these studies are
limited in most cases because these predictive signatures have
often been constructed based on preclinical models, clinical
cohorts with only pre-treatment biopsies, peripheral blood sam-
ples, and NanoString RNA panel with a limited number of
transcripts as opposed to whole-transcriptomic RNA sequencing
(RNAseq) data8,27–29. Indeed, most of the predictive signatures
for ICB therapies failed to be validated across cohorts because of
batch effect, lack of reproducibility or other reasons, which led to
debates in this field30–33. For example, Carter et al. have raised
their concerns about IMPRES14, stating that it did not repro-
ducibly predict response to ICB therapies in metastatic
melanoma30. Xiao et al. have also raised the reproducibility
question of ImmuneCells.Sig34 across different datasets of
RNAseq data32.

Indeed, it is conceptually and technically challenging to
develop a reliable and robust signature to predict response to ICB
therapies. The reproducibility of a signature across independent
datasets and potentially various cancer types is an essential
requirement before it can be widely used in clinical practice.
Therefore, we have reasoned that single genes or predictive sig-
natures constructed with only a limited number of genes may
reduce the reproducibility and generalizability due to the noise
inherent from gene expression data and batch effects35. Given this
reason, some studies have developed predictive signatures based
on pathways to mitigate batch effects and other technical issues,
which has demonstrated a higher reproducibility compared to
predictive signatures based on individual genes35–38. A previous
study combining oncogenic pathway signatures of BRAF, KRAS,
and PI3KCA mutations revealed a favorable predictive perfor-
mance of response to cetuximab for patients with colorectal
cancer37. Another study integrated gene expression and drug
sensitivity datasets measured for hundreds of anticancer com-
pounds across 10 cancer types, and identified several pathway-
based signatures which were highly predictive of cancers to

therapies35. Unfortunately, most of published pathway-based
signatures have predominantly been focused on predicting
response to chemotherapy or targeted therapies35–37. Therefore, it
warrants further investigation to construct and validate pathway-
based signatures that will faithfully and accurately predict
response to ICB therapies.

In this work, we develop pathway-based signatures to predict
response of metastatic melanoma to anti-PD1-based therapies in
four independent datasets with RNAseq data and clinical infor-
mation available for both pre- and on-treatment metastatic
melanomas. We identify pathway signatures that are significantly
enriched in tumor specimens from anti-PD1 responders (R)
compared to nonresponders (NR) at pre-treatment and on-
treatment time points, respectively. We also identify pathway
signatures that are differentially expressed in pre-treatment versus
on-treatment samples derived from responders. Finally, we
interrogate the capacity of these two types of signatures in pre-
dicting response of metastatic melanoma to anti-PD1 therapies in
comparison with existing predictive signatures. Overall, we
demonstrate that pathway-based signatures derived from on-
treatment tumor specimens are highly predictive of response to
anti-PD1 blockade therapies in patients with metastatic
melanoma.

Results
Patient cohorts and computation framework. In this study, we
analyzed four published datasets and one newly generated dataset
with RNAseq data available for pre- and on-treatment tumor
specimens derived from patients with metastatic melanoma who
were treated with anti-PD-1/PD-L1 monotherapy, anti-PD-1/PD-
L1 monotherapy with prior anti-CTLA-4 monotherapy, or the
combination of anti-PD-1 plus anti-CTLA-4 therapies (Fig. 1a,
b). We designed a computational framework to discover the
pathway-based signatures, which predict patients’ response to
ICB therapies. In this framework, we first generated signatures
through the training dataset and subsequently tested the gen-
eralized predictive power in validation datasets. Since the sample
size of Riaz et al. dataset is the largest among all four datasets, we
designated it as a training dataset and assigned the other three
cohorts of Lee et al., Gide et al., and the MGH cohort for the
validation purpose (Fig. 1c).

In the Riaz et al. dataset39, 68 patients with 108 biopsies
received anti-PD1 monotherapy with (59 biopsies) or without (49
biopsies) prior anti-CTLA-4 therapy (Fig. 1a and Supplementary
Data 1a). After excluding those patients without response
evaluation criteria in solid tumors (RECIST) (n= 4), and those
without RNAseq data (n= 1), a total of 49 biopsies at the
timepoint of pre-treatment and 54 biopsies at the timepoint of
on-treatment were included in the analysis. This corresponded to
84 paired pre- and on-treatment biopsies and 19 unpaired
biopsies. In the cohort of pre-treatment samples, 18 biopsies were
from responders (R), and 31 biopsies were from nonresponders
(NR). In the cohort of on-treatment samples, 21 biopsies were
from R, and 33 biopsies were from NR.

In the Gide et al. dataset40, 54 patients with 63 biopsies
received anti-PD1 monotherapy, of whom 30 patients had prior
anti-CTLA4, and 51 patients with 58 biopsies were treated with
the combination of anti-CTLA4 plus anti-PD1 therapies (Fig. 1b
and Supplementary Data 1b). After excluding 31 biopsies without
RNAseq data, we included 32 paired pre- and on-treatment
biopsies and 58 unpaired biopsies in the analysis. There were 72
pre-treatment samples (45 for R and 27 for NR) and 18 on-
treatment samples (11 for R and 7 for NR).

In the Lee et al. dataset41, 55 patients with 94 biopsies were
treated with anti-PD1 monotherapy, including nivolumab (Nivo)
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Fig. 1 Cohort consolidation and computational workflow. a, b The flowchart of sample inclusion and exclusion criteria. a A melanoma cohort including
patients who were treated with anti-PD-1 therapy was selected as training dataset including 49 pre-treatment and 54 on-treatment samples. b Three
independent melanoma cohorts and one newly generated cohort were enrolled as validation datasets in this study. A total of 135 pre-treatment and 84 on-
treatment samples were included for the final analysis. c The computational workflow of model construction and validation. Predictive models were
constructed using pre-treatment and on-treatment samples, respectively, from the Riaz et al. dataset. Models were validated in three independent datasets.
NE not evaluation, R responders, and NR nonresponders.
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or pembrolizumab (Pembro) (Fig. 1b and Supplementary
Data 1c). A total of 28 paired pre and on-treatment biopsies
and 51 unpaired biopsies were included in the analysis. There
were 44 pre-treatment samples (22 for R and 22 for NR) and 35
on-treatment samples (6 for R and 29 for NR).

We also analyzed the cohort of patients with metastatic
melanoma who were treated with anti-PD1/PD-L1 monotherapy
at Massachusetts General Hospital (MGH), including a published
dataset14 and a newly generated dataset for this study (Fig. 1b and
Supplementary Data 1d). This MGH cohort included 42 paired
pre- and on-treatment biopsies and 8 unpaired pre- and on-
treatment biopsies. In the MGH cohort, there were 19 pre-
treatment tumor samples (n= 6 for R and n= 13 for NR) and 31
on-treatment tumor samples (n= 5 for R and n= 26 for NR).

Pathway-based super signature for pre-treatment samples. To
investigate the predictive performance of signatures derived
from pre-treatment samples in patients with metastatic mela-
noma treated with anti-PD1 blockade, we first used an Elastic-
Net penalized Logistic Regression (ENLR) model to construct
predictive pathway-based signatures based on pre-treatment
samples in the Riaz et al. training dataset. Our pathway-based
signature construction entailed a computation pipeline, which
consisted of differential expression gene analysis (DEGs), gen-
eset enrichment analysis (GSEA), filtration of candidate path-
ways, and training and validation of the ENLR model (Fig. 2a).
By performing the analysis of DEGs, we identified 190 genes
that were significantly upregulated in pre-treatment samples
from R as compared to NR (Log2FoldChange > 1 and Wald test
p < 0.05) (Fig. 2b and Supplementary Data 2a). To identify
genesets among the MSigDB Reactome collection which were
correlated with the phenotype of response in pre-treatment
samples, we implemented GSEA based on the ranked gene list of
DEGs and identified 98 significantly enriched pathways
(enrichment score > 0 and FDR < 0.05) (Supplementary
Data 2b). We ranked the filtered pathways by normalized
enrichment score (NES) and focused on the top 15 ranked
pathways (Fig. 2c). Next, we conducted the single-sample GSEA
(ssGSEA) to derive a score for each of 15 pathways by using the
leading-edge genes and compared ssGSEA values of R to those
of NR by FDR-corrected Welch t-test (FDR < 0.05) (Fig. 2d and
Supplementary Data 2c). Based on pathway scores, we subse-
quently employed the ENLR model to identify pathways with
the highest predictive accuracy. To mitigate the imbalanced
classification issue, cost-sensitivity method and three-fold cross-
validate training method were implemented in the ENLR model
to determine the optimized penalty parameter with the error
that was within 1 standard error of the minimum and to cal-
culate the effect size of each candidate pathway (Supplementary
Fig. 1a, b). Subsequently, we obtained six pathways as the most
effective features for predicting response to anti-PD1 treatment,
including (1) Complement cascade; (2) Regulation of insulin
like growth factor IGF transport and uptake by insulin like
growth factor binding proteins IGFBPS; (3) Binding and uptake
of ligands by scavenger receptors; (4) Plasma lipoprotein
remodeling; (5) Interleukin 2 family signaling; and (6) RA
biosynthesis pathways (Supplementary Fig. 1c, d). Complement
cascade, Binding and uptake of ligands by scavenger receptors,
and Interleukin 2 family signaling pathways are related to
immune and inflammation, whereas Plasma lipoprotein remo-
deling and the RA Biosynthesis pathways are related to meta-
bolism. Using the effective sizes as weight, we calculated a
weighted average of ssGSEA values of these six pathways and
named it pathway-based super signature (PASS) score. The
distribution of PASS scores of pre-treatment samples (PASS-

PRE) in Riaz et al. dataset demonstrated that PASS-PRE scores
were significantly higher in R compared to NR (p= 0.004; one-
sided rank-sum test) (Fig. 2e and Supplementary Data 2d). To
quantify the predictive power of the PASS-PRE, we generated
the Receiver Operator Characteristic (ROC) and observed an
Area under the Curve (AUC) of 0.73 (Fig. 2f), highlighting a
decent predictive power of PASS-PRE. Moreover, we evaluated
the association of pathway signature scores with patients’ sur-
vival. We calculated each sample’s odds ratio based on the
signature score, and then stratified patients into high and low
subgroups by using the mean of their odds ratio as the cutoff
and performed the Kaplan–Meier survival analysis for overall
survival (OS) and progression-free survival (PFS). Compared to
patients with low signature scores, significantly improved OS
and PFS were observed in those with high signature scores (OS:
HR= 3.6, 95% CI 1.5–8.7, p= 0.0028; PFS: HR= 3.6, 95% CI
1.7–7.6, p < 0.001) (Fig. 2g, h).

We further validated the predictive performance of PASS-PRE
in three independent datasets with RNAseq data available for pre-
treatment samples, including Gide et al., Lee et al., and the MGH
cohort. We calculated the ssGSEA value, signature score and odds
ratio for each of pre-treatment samples in each of validation
datasets. We compared ssGSEA values of R to those of NR for
each pathway using FDR-corrected Welch t-test (FDR < 0.05).
The FDR result did not show a significant difference between R
and NR in Gide et al., Lee et al., and the MGH dataset (Fig. 3a–c,
and Supplementary Data 3a–c). The distributions of PASS-PRE
scores of R in Gide et al. was significantly higher than NR
(p= 0.005; one-sided rank-sum test) (Fig. 3d and Supplementary
Data 3d). However, PASS-PRE scores of R in the Lee et al. and the
MGH dataset were not significantly higher than NR (p= 0.72 for
Lee et al.; p= 0.10 for MGH; one-sided rank-sum test) (Fig. 3e, f
and Supplementary Data 3e, f). We generated the ROC and AUC
with signature scores and AUCs were 0.69, 0.45, and 0.69 for Gide
et al., Lee et al., and the MGH dataset, respectively (Fig. 3g).
Additionally, we tested the predictive performance of PASS-PRE
signature in two other melanoma cohorts: the Van Allen et al.6

and Hugo et al.7 datasets. The AUCs of these two datasets in pre-
treatment samples were 0.56 and 0.46, respectively (Supplemen-
tary Fig. 1e). The AUCs suggested the predictive power of PASS-
PRE across all six training and validation datasets was unstable.
Furthermore, we combined the test pre-treatment samples of
Gide et al., Lee et al., and MGH datasets and calculated the AUC
with signature scores. And we generated a combined AUC of 0.65
(Fig. 3h). We used the Youden Index method to find the
optimized cutoff on Riaz et al. PASS-PRE signature score, which
was 0.3834. We predicted treatment response of combined test
pre-treatment samples. The prediction accuracy was 0.59. And
the Mathew Correlation Coefficient was 0.19. Similarly, we
computed each sample’s odds ratio based on PASS-PRE signature
score, and divided pre-treatment samples into two subsets with
high and low signature scores using the mean value of samples’
odd ratios as a threshold. The Kaplan–Meier survival analysis of
all test samples suggested that patients with higher signature
scores were associated with significantly improved PFS (HR=
1.8, 95% CI 1.1–3.0; p= 0.028) and OS (HR= 1.9, 95% CI
1.1–3.2, p= 0.026) when compared to those with lower scores
(Fig. 3i and Supplementary Fig. 1f). We also investigated the
differences of PFS and OS for each dataset. In the Gide et al.
dataset, patients with high scores were associated with better PFS
(HR= 1.9, 95% CI 1.0–3.6, p= 0.042) but not OS (HR= 1.8, 95%
CI 0.9–3.9; p= 0.11) (Fig. 3j and Supplementary Fig. 1g). Since
PFS data were not available for the Lee et al. dataset, we only
performed the OS analysis. And the results did not show a
significant difference in OS between patients with high and low
signature scores (HR= 1.7, 95% CI 0.5–5.1, p= 0.37)
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Fig. 2 Pathway-based super signature for pre-treatment samples. a The computation pipeline of model construction based on pre-treatment samples in
the Riaz et al. cohort. b The volcano plot of differential gene expression analysis between pre-treatment responders (R) and nonresponders (NR) in the Riaz
et al. cohort. Log2Fold change (FC) was calculated. The two-sided Wald test was implemented to test if no differential expression between responder and
nonresponders. The blue dots represent significantly downregulated (Signif. downregulated) genes (log2Fold Change <−1, P-value < 0.05). The red dots
represent significantly upregulated (Signif. upregulated) genes (log2Fold Change > 1, P-value < 0.05). The gray dots represent nonsignificant (NS) genes.
c GSEA results of 15 top ranked candidate pathways. Normalized Enrichment Score (NES) and the size of leading-edge geneset are calculated. The
permutation based P-value shows the statistical significance of the enrichment score. The number of permutation is 10,000. False discovery rate (FDR) is
the estimated probability that the normalized enrichment score represents a false positive finding. d The heatmap of ssGSEA values of pre-treatment
responders (R) and nonresponders (NR) in the Riaz et al. cohort. Nonresponders are presented with the number of samples on the left side, and responders
are presented with the number of samples on the right side. FDR-corrected two-sided Welch t-test was conducted to compare ssGSEA values between R
and NR samples, only FDR < 0.05 showed here. e The boxplot of pre-treatment sample’s Pathway-based super signatures (PASS-PRE) signature score of
responders (R) and nonresponders (NR) in the Riaz et al. cohort. The P-value was computed via a one-sided rank-sum test. Boxplot center lines indicate
median, box edges represent the interquartile range, whiskers extend to the minimum and maximum, and the outliers are plotted individually using the
‘*’ symbol. f ROC and AUC of PASS-PRE on the pre-treatment samples in the Riaz et al. cohort. g, h The Kaplan–Meier survival analysis of overall survival
(OS) (g) and progression-free survival (PFS) (h) of pre-treatment samples in the Riaz et al. cohort. The two-sided log-rank test compared high and low
subgroups based on the mean of pre-treatment samples odd ratio as cutoff. Hazard ratio (HR) was calculated and shown with confidence interval (CI).
Source data are provided as a Source Data file.
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(Supplementary Fig. 1h). For the MGH cohort, significantly
improved OS (HR= 3.4, 95% CI 1.0–12.0, p= 0.04) but not PFS
(HR= 1.5, 95% CI 1.1–3.9, p= 0.4) was observed in patients with
high signature scores compared to those with low scores (Fig. 3k
and Supplementary Fig. 1i).

Taken together, we concluded that the predictive performance of
PASS-PRE signature in the pre-treatment samples was not robust
and stable enough. Lastly, six pathways selected by the ENLR model
did not generalize across different datasets of pre-treatment
samples.
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Pathway-based super signature for on-treatment samples.
Next, we investigated the predictive performance of signatures
derived from on-treatment samples. Similar to the analysis of
pre-treatment samples, we constructed a computation pipeline,
which consisted of DEGs, GSEA, filtration of candidate path-
ways, and the use of ENLR model, to derive a pathway-based
signature for on-treatment samples in the Riaz et al. dataset as
the training set (Fig. 4a). By performing the analysis of DEGs,
we identified 1078 genes that were significantly upregulated in
on-treatment samples from R as compared to NR (Log2Fold-
Change > 1 and Wald test p < 0.05) (Fig. 4b and Supplementary
Data 4a). Subsequently, the GSEA identified 111 Reactome
pathways, which were significantly enriched (enrichment
score > 0 and FDR < 0.05) (Supplementary Data 4b). We ranked
the filtered pathways by NES and focused on the top 15 ranked
pathways as candidates for the downstream analysis (Fig. 4c).
Next, we calculated ssGSEA value for each candidate pathway
by using leading-edge genes and summarized it as a pathway
score (Fig. 4d and Supplementary Data 4c). Based on pathway
scores of 15 candidate pathways, we subsequently employed the
ENLR model to identify pathways with the most predictive
accuracy and estimated their effects. The ENLR model imple-
mented both cost-sensitivity and the three-fold cross-validation
in training method to determine the optimized penalty para-
meter with the error that was within 1 standard error of the
minimum as well as calculated the effect size of each candidate
pathway (Supplementary Fig. 2a, b). Consequently, a signature
of four pathways was identified, including (1) Peroxisomal
Lipid Metabolism; (2) Generation of Second Messenger Mole-
cules; (3) Fatty Acid Metabolism; and (4) PD1 Signaling
(Supplementary Fig. 2c, d). Of note, Peroxisomal Lipid Meta-
bolism and Fatty Acid Metabolism are related to fatty acid and
lipid metabolism42. Generation of Second Messenger Molecules
is a pivotal signaling pathway in T-cell receptor (TCR) stimu-
lation. PD1 Signaling plays an important role in immunor-
egulation as an immunoregulatory signaling pathway. Using the
effective sizes as weight, we calculated a weighted average of
ssGSEA values of these four pathways and named it pathway-
based super signature for on-treatment sample (PASS-ON)
score. The distribution of PASS-ON scores for the Riaz et al.
dataset demonstrated higher scores in R compared to NR
(p < 0.001; one-sided rank-sum test) (Fig. 4e and Supplemen-
tary Data 4d). To determine the predictive power of PASS-ON,
we generated the ROC using the values of PASS-ON. We
observed an AUC of 0.83, highlighting a decent predictive
power of PASS-ON (Fig. 4f). We also evaluated the association
between signature scores and patients’ survival. We first cal-
culated the odds ratio based on each sample’s signature score
and then stratified patients into high and low subgroups based
on the mean value of the odds ratio used as the cutoff. The
Kaplan–Meier survival analysis indicated that patients with
high signature scores were associated with significantly longer

OS and PFS compared to those with low signature scores (OS:
HR= 4.2, 95% CI 1.4–12.0, p= 0.0042; and PFS: HR= 3.5, 95%
CI 1.7–7.3, p= 0.00044) (Fig. 4g, h).

To further validate the predictive performance of PASS-ON,
we tested three independent datasets with RNAseq data available
for on-treatment samples including Gide et al., Lee et al., and the
MGH cohort. We calculated ssGSEA values and compared
ssGSEA values between R and NR for each pathway (FDR < 0.05;
FDR-corrected Welch t-test) (Fig. 5a–c, and Supplementary
Data 5a–c). We also calculated the signature score and odds ratio
for each on-treatment sample in validation datasets. Similar to the
Riaz et al. dataset, the distribution of signature scores derived
from on-treatment samples demonstrated that the signature
scores of R were significantly higher than those of NR in the Gide
et al. (p= 0.003), Lee et al. (p= 0.003), and MGH datasets
(p= 0.002) (Fig. 5d–f, and Supplementary Data 5d–f), respec-
tively. We generated the ROC and AUC with signature scores and
patients’ response data. The AUCs were 0.88, 0.85, and 0.89 for
Gide et al., Lee et al., and MGH datasets, respectively, which
suggested a stable and acceptable predictive power of PASS-ON
across all four datasets (Fig. 5g). We also combined all on-
treatment samples from Gide et al., Lee et al., and MGH test
datasets and generated an AUC of 0.88 (Fig. 5h). Further, we
implemented the Youden Index method to derive the optimized
cutoff, which was 0.4247, from Riaz et al. on-treatment sample
PASS-ON signature scores. Using the optimized cutoff, we
calculated the accuracy of the PASS-ON signature on the
combined test samples. The accuracy was 0.82 and the Mathew
Correlation Coefficient was 0.53. Next, we divided on-treatment
samples into high and low subsets by using the mean value as a
threshold based on the odds ratio and performed the
Kaplan–Meier survival analysis in each individual or combined
datasets. Patients with high signature scores were associated with
significantly improved PFS compared to those with low signature
scores in all test patients (HR= 4.1, 95% CI 1.6–10.0, p= 0.002),
Gide et al. (HR= 3.6, 95% CI 1.0–13.0, p= 0.045), and MGH
datasets (HR= 5.5, 95% CI 1.2–26.0, p= 0.016) (Fig. 5i–k).
Significantly higher OS was also observed in patients with higher
signature scores in the MGH cohort (HR= 5.6, 95% CI 1.1–28.0,
p= 0.02) but not all test patients (HR= 1.8, 95% CI 0.8–4.1,
p= 0.14), Gide et al. (HR= 2.7, 95% CI 0.5–14.0, p= 0.23), or
Lee et al. (HR= 0.65, 95% CI 0.2–2.4, p= 0.52) cohorts
(Supplementary Fig. 2e–h).

From the analysis of on-treatment samples, we identified and
demonstrated PASS-ON effectiveness in predicting patients’
clinical response to anti-PD1 therapies. Furthermore, PASS-ON
scores were able to distinguish patients with better survival
outcomes from those with worse ones.

Time-response interaction pathway-based super signatures for
pre- and on-treatment samples. In contrast to pathway-based
super signatures which were fundamentally based on the

Fig. 3 Pathway-based super signature for pre-treatment samples. a–c The heatmap of ssGSEA values of pre-treatment responders (R) and
nonresponders (NR) in the Gide et al. cohort (a), Lee et al. cohort (b), and MGH cohort (c). Nonresponders are presented on the left side, and responders
are presented on the right side. FDR-corrected two-sided Welch t-test was conducted to compare ssGSEA values between R and NR samples, only
FDR < 0.05 showed here. d–f The boxplot of pre-treatment samples’ PASS-PRE signature scores in the Gide et al. cohort (d), Lee et al. cohort (e), and
MGH cohort (f).The pre-treatment samples were separated into responders (R) and none-responders (NR) with number of samples showed in each
cohorts. The P-values were computed via a one-sided rank-sum test. Boxplot center lines indicate medians, box edges represent the interquartile range,
whiskers extend to the minimum and maximum, and the outliers are plotted individually using the ‘*’ symbol. g ROC and AUC of PASS-PRE on pre-
treatment samples from Gide et al., Lee et al. and MGH cohorts. h ROC and AUC on the all pre-treatment test samples, which combined with Gide et al.,
Lee et al. and MGH cohorts. i–k The Kaplan–Meier analysis of progression-free survival (PFS) of pre-treatment samples in the combined test pre-treatment
samples (i), Gide et al. cohort (j), and MGH cohort (k). The two-sided log-rank test compared high and low subgroups based on the mean of pre-treatment
samples odd ratio as cutoff. Hazard ratio (HR) was calculated and shown with confidence interval (CI). Source data are provided as a Source Data file.
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comparison between R and NR samples at pre- or on-treatment
timepoint, we were also interested in investigating the predictive
performance of pathway-based signatures that reflect the time-
response interaction. We reasoned that those signatures were

dynamically changed during the treatment. In the analysis of
identifying pathway-based signatures that reflect the time-
response interaction, we implemented two independent ENLR
models to derive predictive signatures from pre-treatment and

Fig. 4 Pathway-based super signature for on-treatment samples. a The computational pipeline of model construction based on on-treatment samples in
the Riaz et al. cohort. b The volcano plot of differential gene expression analysis between on-treatment responders (R) and nonresponders (NR) in the Riaz
et al. cohort. Log2Fold change (FC) was calculated. The two-sided Wald test was implemented to test if no differential expression between responder and
nonresponders. The blue dots represent significantly downregulated (Signif. downregulated) genes (log2Fold Change <−1, P-value < 0.05). The red dots
represent significantly upregulated (Signif. upregulated) genes (log2Fold Change > 1, P-value < 0.05). The gray dots represent nonsignificant (NS) genes.
c The GSEA results of 15 candidate pathways. Normalized Enrichment Score (NES) and the size of leading-edge geneset are calculated. The permutation
based P-value shows the statistical significance of the enrichment score. The number of permutation is 10,000. False discovery rate (FDR) is the estimated
probability that the normalized enrichment score represents a false positive finding. d The heatmap of ssGSEA values of on-treatment responders (R) and
nonresponders(NR) in the Riaz et al. cohort. Nonresponders are presented on the left side, and responders are presented on the right side. FDR-corrected
two-sided Welch t-test was conducted to compare ssGSEA values between R and NR samples, only FDR < 0.05 showed here. e The boxplot of on-
treatment sample’s Pathway-based super signatures (PASS-ON) signature score of responders (R) and nonresponders (NR) with the number of samples
showed in the Riaz et al. cohort. The P-value was computed via a one-sided rank-sum test. Boxplot center lines indicate medians, box edges represent the
interquartile range, whiskers extend to the minimum and maximum, and the outliers are plotted individually using the ‘*’ symbol. f ROC and AUC of PASS-
ON on the on-treatment samples in the Riaz et al. cohort. g, h The Kaplan–Meier analysis of overall survival (OS) (g) and progression-free survival (PFS)
(h) of on-treatment samples in the Riaz et al. cohort. The two-sided log-rank test compared high and low subgroups based on the mean of on-treatment
samples odd ratio as cutoff. Hazard ratio (HR) was calculated and shown with confidence interval (CI). Source data are provided as a Source Data file.
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on-treatment samples in Riaz et al. dataset, respectively. We
constructed the computation pipeline, which consisted of DEGs,
GSEA, and candidate pathways filtration. It is worth noting that
the two independent ENLR models shared the same candidate
pathways. Two independent ENLR models in the pipeline were
then implemented to calculate the ssGSEA values and to derive

pathway-based signatures from pre-treatment and on-treatment
samples, respectively (Fig. 6a). Specifically, we performed DEGs
to identify genes whose expression levels were changed between
the pre-treatment and on-treatment timepoint in R samples in
the Riaz et al. dataset (unpaired analysis). The volcano plot
showed 60 upregulated genes in R samples (Log2FoldChange > 1
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and Wald test p < 0.05) (Fig. 6b and Supplementary Data 6a). We
further performed GSEA by using the ranked gene list and
identified 110 significantly upregulated pathways. We selected the
top 15 ranked pathways in R samples as candidates (Supple-
mentary Fig. 3a and Supplementary Data 6b). The pre-treatment
samples’ ssGSEA values were calculated for each candidate
pathway and summarized as a pathway score. Based on the FDR-
corrected Welch t-test, the pathway scores did not show an
obvious difference between R and NR in pre-treatment samples
from all datasets (Supplementary Fig. 3b-e and Supplementary
Data 7a–d). We employed the first independent ENLR model to
screen the predictive pathways from the 15 candidates and esti-
mated their effects. The three-folder cross-validate method was
implemented to determine the number of pathways with asso-
ciated effective sizes in the training process using the first inde-
pendent ENLR model (TimeANLS-PRE) (Supplementary Fig. 3f-
h). Using the effective sizes as weight, we calculated a time-
interaction pathway-based super signature score for each pre-
treatment sample. From the distributions of signature scores in
the Riaz et al., Gide et al., Lee et al., and MGH datasets, R samples
generally have higher values than NR (Supplementary Fig. 3i-l
and Supplementary Data 8a–d). To quantify the predictive power
of the super signature in both training and validation datasets, we
generated the ROC. We observed an AUC of 0.82 in the Riaz et al.
dataset (Fig. 6c), and AUCs of 0.60, 0.49, and 0.76 in the Gide
et al., Lee et al., and MGH datasets, respectively (Fig. 6d). We also
combined all test pre-treatment samples and generated an AUC
of 0.63 (Fig. 6e). Additionally, the AUC with TimeANLS-PRE
signature on Van Allen et al. and Hugo et al. pre-treatment
samples were 0.59 and 0.76, respectively (Supplementary
Fig. 3m). The ROC and AUC results in training and validation
datasets suggested our time-response interaction pathway-based
super signature was not stable based on pre-treatment samples.
We used the mean value of the odds ratio, which was derived
from signature scores, as the cutoff to stratify patients into high
and low groups. We evaluated the association between signature
scores and patients’ survival, which showed significantly
improved OS (HR= 2.4, 95% CI 1.1–5.3, p= 0.03) but not PFS
(HR= 1.6, 95% CI 0.9–3.1, p= 0.13) was observed in patients
with high signature scores when compared to those with low
signature scores in Riaz et al. dataset (Supplementary Fig. 4a, b).
No significant differences of neither OS nor PFS between patients
with high and low signature scores were observed in overall test
pre-treatment cohort, Gide et al., Lee et al., or MGH cohorts
(Supplementary Fig. 4c–h).

For on-treatment samples, we tested the difference of ssGSEA
values between R and NR in on-treatment samples from all
datasets (FDR < 0.05; FDR-corrected Welch t-test) (Supplemen-
tary Fig. 5a–d and Supplementary Data 9a–d). We employed the
second independent ENLR model (TimeANLS-ON) to screen the
predictive pathways from the 15 candidates and estimated their
effects. The TimeANLS-ON model demonstrated a similar profile

as the TimeANLS-PRE model, also adopting the three-folder
cross-validate method in the training process (Supplementary
Fig. 5e–g). The distribution of signature scores showed that R
samples had higher value than NR samples in the Riaz et al., Gide
et al., Lee et al., and MGH datasets (Supplementary Fig. 5h–k and
Supplementary Data 10a–d). To quantify the predictive power of
the super signature in both training and validation datasets, we
generated the ROC. We observed an AUC of 0.81 in the Riaz et al.
dataset (Fig. 6f), and AUCs of 0.75, 0.91, and 0.82 in the Gide
et al., Lee et al., and MGH datasets, respectively (Fig. 6g). We also
combined all test on-treatment samples and generated an AUC of
0.87 (Fig. 6h). The ROC and AUC results in training and
validation datasets suggested the time-response interaction
pathway-based super signature had a decent predictive power
for on-treatment samples. We also used the mean value of the
odds ratio which was derived from on-treatment sample’s
signature score as the cutoff to stratify samples into high and
low groups. When compared to patients with low signature
scores, those with high signature scores were associated with
significantly improved both OS (HR= 3.7, 95% CI 1.6–8.7,
p= 0.0016) and PFS (HR= 4.6, 95% CI 2.1–9.8, p < 0.0001) in
the Riaz et al. (Supplementary Fig. 6a, b). However, no significant
differences in OS analysis were observed in the overall test for on-
treatment cohorts, Gide et al. and Lee et al. (Supplementary
Fig. 6c–g). In the MGH dataset, patients with high signature
scores were associated with better OS (HR= 5.6, 95% CI
1.1–28.0, p= 0.02) but not PFS (HR= 2.7, 95% CI 0.8–9.3,
p= 0.11) compared to those with low signature scores (Supple-
mentary Fig. 6h, i).

Compare pathway-based super signatures with published pre-
dictive signatures. We further interrogated the predictive per-
formance of PASS-PRE and PASS-ON signatures, respectively, in
comparison with that of existing transcriptome-based predictive
signatures, including IFN-γ signature17, T-cell-inflamed GEP17,
Chemokine signature10, Immunoscore10, cytolytic activity
(CYT)13, MHC-I19, MHC-II19, CD8A/CSF1R ratio43, CD8+

T cells CIBERSORT44, and IMPRES14. We derived the AUC of
each published predictive signature across four datasets and then
calculated the average AUC.

First, we compared the predictive performance of PASS-PRE
and TimeANLS-PRE with those of published predictive signa-
tures by analyzing on pre-treatment samples. PASS-PRE and
TimeANLS-PRE showed average AUCs of 0.66 and 0.67,
respectively, which was comparable to other published predictive
signatures (AUCs ranging from 0.51 to 0.66) (Fig. 7a and
Supplementary Fig. 7a).

Similarly, we compared the predictive performance of PASS-
ON and TimeANLS-ON with that of published signatures. PASS-
ON and TimeANLS-ON achieved average AUCs of 0.86 and 0.82,
respectively, which were superior to any other published

Fig. 5 Pathway-based super signature for on-treatment samples. a–c The heatmap of ssGSEA values of on-treatment responders (R) and nonresponders
(NR)in the Gide et al. cohort (a), Lee et al. cohort (b), and MGH cohort (c). Nonresponders are presented on the left side, and responders are presented on
the right side. FDR-corrected two-sided Welch t-test was conducted to compare ssGSEA values between R and NR samples, only FDR < 0.05 showed here.
d–f The boxplot of on-treatment samples’ PASS-ON signature scores in the Gide et al. cohort (d), Lee et al. cohort (e), and MGH cohort (f). The on-
treatment samples were separated into responders (R) and nonresponders (NR) with number of samples showed in each cohorts. The P-values were
computed via a one-sided rank-sum test. Boxplot center lines indicate medians, box edges represent the interquartile range, and the outliers are plotted
individually using the ‘*’ symbol. g ROC and AUC PASS-ON on the on-treatment samples from Gide et al., Lee et al., and MGH cohorts. h ROC and AUC on
the all on-treatment test samples which combined with Gide et al., Lee et al., and MGH cohorts. i–k The Kaplan–Meier analysis of progression-free survival
(PFS) of on-treatment samples in the combined test on-treatment samples (i), Gide et al. cohorts (j), and MGH cohorts (k). The two-sided log-rank test
compared high and low subgroups based on the mean of on-treatment samples’ odd ratio as cutoff. Hazard ratio (HR) was calculated and shown with
confidence interval (CI). Source data are provided as a Source Data file.
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signatures (AUCs ranging from 0.65 to 0.80) (Fig. 7b and
Supplementary Fig. 7b).

Discussion
Although ICB therapies have revolutionized treatment of meta-
static melanoma, only a subset of patients has achieved a durable
response1–4. To counteract considerable side effects and costs of
ICB therapies, the identification of robust signatures predictive of
response to ICB therapies is warranted in order to inform and
optimize therapeutic decisions. Previous studies have reported

genomic and immune signatures that predict the response of
metastatic melanoma to ICB therapies5–19,28,45; however, most of
those signatures were exclusively constructed based only on pre-
treatment tumor samples or peripheral blood specimens. Fur-
thermore, predictive signatures were generally derived from single
genes or genesets of a limited number of genes. Therefore, the
desire remains to identify pathway-based signatures that predict
response to ICB therapies. Herein, we have filled that knowledge
gap by analyzing both pre- and on-treatment tumor samples and
developing pathway signatures to predict response of metastatic

Fig. 6 Time-response interaction pathway-based super signatures for pre- and on-treatment samples. a Computation pipeline of model construction of
time-response interaction pathway-based Super Signatures. b The volcano plot of differential gene expression analysis of response pre-treatment and on-
treatment samples in the Riaz et al. cohort. Log2Fold change (FC) was calculated. The two-sided Wald test was implemented to test if no differential
expression between response pre-treatment and on-treatment samples. The blue dots represent significantly downregulated (Signif. downregulated) genes
(log2Fold Change <−1, P-value < 0.05). The red dots represent significantly upregulated (Signif. upregulated) genes (log2Fold Change > 1, P-value < 0.05).
The gray dots represent nonsignificant (NS) genes. c–e ROCs and AUCs of the time-response interaction pathway-based super signatures for pre-
treatment samples (TimeANLS-PRE) from Riaz et al. cohort (c), Gide et al., Lee et al., and MGH cohorts (d), combined pre-treatment with Gide et al., Lee
et al., and MGH cohorts (e). f–h ROCs and AUCs of the time-response interaction pathway-based super signatures for on-treatment samples (TimeANLS-
ON) from Riaz et al. cohort (f), Gide et al., Lee et al., and MGH cohorts (g), combined on-treatment with Gide et al., Lee et al., and MGH cohorts (h).
Source data are provided as a Source Data file.
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melanoma to anti-PD1 therapy in four published cohorts with
RNAseq data and one newly generated cohort with RNAseq data.
We found that pathway-based signatures derived from on-
treatment tumor specimens are not only predictive of response to
anti-PD1 blockade in patients with metastatic melanoma but also
associated with disease outcomes.

Previous studies have suggested that on-treatment tumor
samples may be more informative compared to pre-treatment
samples with regards to predicting response of breast cancer to
endocrine therapy46–48. Moreover, predictive signatures derived
from on-treatment samples in predicting response of breast
cancer to endocrine therapy are superior to those derived from
pre-treatment samples46,47. To date, however, gene expression
signatures that predict response to ICB therapies have largely
been limited to investigating the association between pre-
treatment samples and patients’ clinical response. In contrast,
Chen et al. previously developed adaptive immune signatures
based on tumor samples obtained during the early course of
treatment, and showed that they were highly predictive of
response to ICB therapies in patients with metastatic melanoma8.
However, they performed gene expression profiling via a custom

795-gene NanoString panel rather than whole-transcriptomic
sequencing. Moreover, they did not evaluated the predictive
capacity of their signatures in other independent datasets. Aus-
lander et al. built an immuno-predictive score (IMPRES), which
encompasses 15 pairwise transcriptomic relations between
immune checkpoint genes to predict response of metastatic
melanoma to ICB therapy14. The IMPRES signature has showed
higher predictive capacity with on-treatment samples compared
to pre-treatment samples in two independent datasets14. This
signature, however, was initially built from neuroblastomas. In
this study, we developed pathway signatures based on pre-
treatment and on-treatment metastatic melanomas, respectively,
and exclusively, to predict response to anti-PD1 therapy in four
independent datasets in which RNAseq and clinical data are
available. We found that pathway-based signatures derived from
on-treatment tumor specimens improved accuracy of predicting
response to anti-PD1 blockade and disease outcomes in patients
with metastatic melanoma when compared to those derived from
pre-treatment samples. This indicated that the identification and
evaluation of signatures should be attempted not only in pre-
treatment samples but more importantly in tumor samples once

Fig. 7 The comparison of pathway-based super signatures with existing signatures. a The performance of pathway-based super signature (PASS-PRE)
and time-response interaction pathway-based super signatures for pre-treatment samples (TimeANLS-PRE) in comparison with publicly existing
signatures. b The performance of pathway-based super signature (PASS-ON) and time-response interaction pathway-based super signatures for on-
treatment samples (TimeANLS-ON) with existing signatures. Each cohort’s sample number were showed in the legend. The mean value and standard
deviation of AUCs were showed as error bar. Source data are provided as a Source Data file.
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ICB therapies have been initiated. This makes sense from the
biological standpoint of view since cancer therapies generally
induce complicated changes in genes and signaling pathways.
Therefore, on-treatment samples may provide more valuable
insights and a window into dynamic changes at the transcrip-
tional level that is correlated with clinical response, thus resulting
in higher predictive accuracy. These findings also have vital
clinical implications and will lead us to reconsider clinical man-
agement in the current clinical practice, as only pre-treatment
samples were profiled from most patients who received ICB
therapies in previous studies. Based on these on-treatment sig-
natures, medical oncologists can accurately predict and poten-
tially identify this subgroup of patients who will more likely
benefit from ICB therapies. For those who may not benefit from
anti-PD1 therapy, other effective therapeutics such as targeted
therapies tailored to tumors’ genetic composition can be admi-
nistrated as early as possible. This would reduce the disease
burden and incidence of side effects caused by ICB therapies and
result in better disease outcomes.

In addition to using on-treatment samples, we also employed
pathway-based methods to build predictive signatures. Actually,
pathway-based methods have already been introduced to build
predictive signatures of response to chemotherapy or targeted
therapies, which showed higher reproducibility and more robust
predictive performance than signatures on individual gene
level35–38. Again, from a biological standpoint, this makes sense
as cancer therapies generally alter numerous genes simulta-
neously; thus, pathway-based methods would make it possible to
not only integrate readouts across multiple genes and genesets but
also generate a more stable metric to mitigate adverse effect
because of the noisy expression pattern of individual genes35,38.
In this study, pathway signatures showed more stable predictive
performances of response to anti-PD1 therapies across different
cohorts of metastatic melanoma compared to existing predictive
signatures for on-treatment samples. These findings suggest that
pathway-based methods could help reduce effects that are unique
to sequencing and profiling platforms and batches across different
datasets, resulting in predictive signatures that are highly robust
and reproducible. Furthermore, pathway-based methods could
also help us identify previously neglected pathways, which are
significantly altered by cancer therapies, but are otherwise unable
to be recognized at single-gene expression level. In the present
study, we identified four pathways including (1) Peroxisomal
Lipid Metabolism; (2) Fatty Acid Metabolism; (3) Generation of
Second Messenger Molecules; and (4) PD1 Signaling to construct
the predictive model tailored to on-treatment samples. Interest-
ingly, two of them were related to fatty acid and lipid metabolism.
To our best knowledge, this is the first study revealing the pre-
dictive capacity of fatty acid and lipid metabolism-related sig-
natures in terms of response to ICB therapies in patients with
metastatic melanoma. A recent study profiled the proteome of
samples from patients with metastatic melanoma undergoing
either tumor infiltrating lymphocyte-based or anti-PD1 immu-
notherapy, and revealed that fatty acid oxidation pathway was
significantly enriched in responders42. This study highly
emphasized the important role of mitochondrial metabolism
including fatty acid metabolism in conferring response to
immunotherapy42. Theoretically, higher mitochondrial activity in
tumor from responders might consume less glucose when com-
pared to nonresponders, which reduce the glucose competition
with cytotoxic T lymphocytes and thereby result in response to
immunotherapy42. Other reports also indicated that promoting
fatty acid catabolism can improve the cytotoxic ability of CD8+ T
lymphocytes and slow down tumor progression upon treatment
with immunotherapy49,50. The findings from these studies along
with our own findings provide a biologically solid foundation for

metabolism-related signatures to predict response to immu-
notherapies, which warrant further mechanistic investigation.

In addition to pathway-based super signature PASS-ON that
was interrogated for the comparison between R and NR samples,
we also investigated the predictive performance of pathway-based
signatures that reflect time-response interaction. Taking the
interaction of treatment time and clinical response into con-
sideration would provide a unique insight into identifying pre-
dictive signatures that were dynamically changed during the
treatment. In this study, we built two ENLR models based on
time-response interaction analysis and performed the prediction
using pre-treatment and on-treatment samples, respectively.
Signatures across three datasets achieved AUCs of 0.49–0.76 for
pre-treatment samples (Fig. 6d). Similarly, signatures across three
datasets achieved AUCs of 0.75–0.91 for on-treatment samples
(Fig. 6g). Taken together, these results indicated that predictive
performance from on-treatment samples is more robust and
superior to that derived from pre-treatment samples.

When compared to previously published signatures, PASS-ON
signature showed more robust and stable predictive performance
(Fig. 7b). As discussed above, on-treatment tumor specimens are
generally much more informative compared to pre-treatment
specimens; and pathway-based signatures can overcome limita-
tions of individual gene-based signatures. These advances might
explain, to a certain extent, why PASS-ON signature is superior to
previously published signatures, which are derived from pre-
treatment tumor specimens. Even though we have demonstrated
the strength and superior performance of PASS-ON signature,
several limitations of this signature still exist, which remain to be
further refined. First, because of the limitation of dataset access,
only four cohorts of metastatic melanoma were analyzed in this
study. It will be critically important to further validate the pre-
dictive performance of PASS-ON signature in other independent
cohorts before it can be implemented for clinical use. Secondly,
PASS-ON signature was generated and validated in anti-PD1/PD-
L1 based cohorts but had not been validated in anti-CTLA4-
based cohorts. Furthermore, it will be interesting to test the
predictive capacity of this signature in other types of ICB thera-
pies such as CAR-T or oncolytic viral therapies. Lastly, PASS-ON
signature was only validated in cohorts of metastatic melanoma.
Therefore, further studies are warranted to test the predictive
performance of this signature in other types of cancers.

In summary, pathway signatures derived from on-treatment
samples are highly predictive of therapeutic response to anti-PD1
therapy in patients with metastatic melanoma. Importantly, we have
shown their robust and stable predictive performance across dif-
ferent cohorts of metastatic melanoma. Our study not only provides
highly accurate and personalized predictive signatures of response
to anti-PD1 therapies but also sheds light on the clinical manage-
ment of patients with metastatic melanoma treated with anti-PD1
therapy. Further studies are warranted to validate the predictive
performance of these signatures in larger cohorts of patients with
metastatic melanoma, other types of ICB therapies and cancers.

Methods
Melanoma datasets and patient selection. Collectively, we analyzed three
published melanoma datasets, Riaz et al.(GEO accession number GSE91061), Gide
et al. (BioProject accession number PRJEB23709), Lee et al. (EGA accession
number EGAD00001005738), a published MGH cohort (GEO accession number
GSE115821), and the newly generated MGH cohort (GEO accession number
GSE168204), in which patients with metastatic melanoma were treated with anti-
PD1 therapy and both pre-treatment and on-treatment biopsy samples were
subject to RNA sequencing. For the newly generated cohort, patient samples were
collected under the Institutional Review Board (IRB) protocols of Dana-Farber
Cancer Institute (protocol 11–181) and The Wistar Institute (Human subjects
protocol 2802240). Written informed consent was obtained from each patient. We
also analyzed two other melanoma cohorts with only pre-treatment samples, Van
Allen et al. (dbGaP accession number: phs000452.v2.p1) and Hugo et al. (GEO
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accession number GSE78220) cohorts. For this study, those patients’ tumor spe-
cimens, which were not subject to RNA sequencing, lacked response evaluation, or
those patients with duplicated tumor specimens of the same timepoint, were
excluded for further analysis. Patients’ responses to anti-PD1 therapy were assessed
according to RECIST criteria. Responders were defined as patients with complete
response (CR), partial response (PR), or stable disease (SD) with progression-free
survival (PFS) longer than 180 days; and nonresponders were defined as pro-
gressive disease (PD) or SD with PFS shorter than 180 days.

RNA sequencing and data processing. In the newly generated MGH cohort, a
total of 27 pre- and on-treatment tumor specimens derived from metastatic mel-
anoma patients with anti-PD1/PD-L1 treatment were used for RNA sequencing
(RNAseq). The methods of RNAseq have been described previously51. Briefly,
RNA was extracted from fresh frozen tumors by use of the Qiagen RNeasy Mini
kit. RNA libraries were prepared with 250 ng RNA per sample following the
standard Illumina protocols. RNAseq was performed at the Broad Institute (Illu-
mina HiSeq2000) and the Wistar Institute (Illumina NextSeq 500). After sequen-
cing, paired fastq files were aligned to GRCh37 reference genome by star52 with
default settings. After obtaining the BAM files, read counts were summarized by
featureCounts53 with the setting that only paired-ended, not chimeric and high
qualified (mapping quality ≥ 20) reads were counted. R package edgeR54 was
applied to eliminate the bias of sequencing depths and gene lengths, and RPKMs
(Reads Per Kilobase of transcript per Million mapped reads) were generated.

Differentially expressed gene analysis. Differential expression analysis used
DESeq2, an R-package. The DESeq2 profiles genes according to model gene count
expression data55 and calculates Log2Fold Change, which estimates the effect size
and represents gene changes between comparison groups. The two-sided Wald-test
statistics are computed to exam the differential expression across the two sample
groups. And the p-values are corrected by multiple testing using FDR/
Benjamini–Hochberg (BH) method. We used the volcano plots to visualize the
differential gene expression results.

Geneset enrichment analysis (GSEA). Geneset enrichment analysis (GSEA) was
implemented by using fgsea, an R-package. The fgsea used both the preranked gene
list that was attained based on differential expression result and the Reactome geneset
(Version 7.1), which is the curated geneset stored on Molecular Signature Database.
The permutations p-value was 10,000. We filtered fgsea result based on the criteria
that the pathway’s enrichment score > 0 and adjust p-value < 0.05. We selected the top
15 pathways as candidates based on the normalized enrichment score from the
filtered list. The selected pathways results were visualized on the GSEA table.

Single-sample GSEA (ssGSEA). We normalized the RNAseq gene raw counts to
transcripts per kilobase million (TPM) expression values using GENCODE version
35 as the reference transcript database. The R-package, GSVA56 computed the
single-sample GSEA (ssGSEA) value of each selected pathways. The heatmap was
used to visualize the ssGSEA values with Hierarchical clustering by using the
“Pearson correlation” method to measure the distance and the “Complete” method
for the clustering approach. Each row represented a specific pathway, and the
column represented samples.

Signature score calculation. Elastic-Net penalized logistic regression model was
used to determine the most prognostic signatures from the candidate pathways.
With the ssGSEA values as input, the R-package glmnet fits the penalized logistic
regression model, which conducts the three-folder cross-validation in the model
training process to avoid overfitting57. We used Cost-Sensitive method to conquer
the imbalanced classification problem, which is the offset in our penalized logistic
regression model. The receiver operator characteristic (ROC) curve was plotted to
visualize prediction performance. The area under the curve (AUC) was calculated
for each curve to quantifying signature’s prediction power. We found the optimized
threshold from Riaz et al. training samples’ signature score by using Youden index
method (48). We combined all the test samples from Gide et al., Lee et al., and
MGH datasets. We calculated both accuracy (range from 0 to 1) and Mathew
Correlation Coefficient (range from −1 to 1) on all test samples. At final, we
calculated the sample’s odd ratio based on the signature score.

Comparing our signatures predictive performance to other published sig-
natures. We compared the performance of our signatures to other published
signatures. To calculate the P-value, we perform 1000 repetitions of: (i) randomly
sampling 80% of the samples in a stratified manner and maintaining the propor-
tion of R versus NR for each cohort, (ii) evaluating the AUC resulting from each
predictor on the randomly selected samples. (iii) implementing one-sided rank-
sum test between our signatures’ AUCs and other published signatures’ AUCs.

Statistical analysis. FDR-corrected two-sided Welch t-test was conducted to
compare ssGSEA values between R and NR samples. One-sided rank-sum test was
conducted to compare the signature scores between R and NR. Survival analysis was
conducted with the Kaplan–Meier method, and samples were separated into high and

low group use mean value of samples’ odd ratio as cutoff. The two-sided log-rank test
was used to determine statistical significance. Hazard ratio (HR) was calculated using
cox regression, while we found that the proportional Hazards assumption generally
held well in most datasets. One-sided rank-sum test was conducted to compare the
prediction power between our signatures and other published signatures. Each time
randomly selected 80% responders and nonresponders samples from each cohort and
calculate each signature;s AUC value. The process was repeated 1000 times.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The transcriptomic data of the newly MGH patients generated in this study have been
deposited in the GEO database under accession code GSE168204. All patients’ data analyzed
from published papers are referenced to and publicly available accordingly. The Riaz et al.
data used in this study are available in the GEO database under accession code GSE91061.
The Gide et al. data used in this study are available in the BioProject database under
accession code PRJEB23709. The Lee et al. data used in this study are available in the EGA
database under accession code EGAD00001005738. The published MGH data used in this
study are available in the GEO database under accession code GSE115821. The Hugo et al.
data used in this study are available in the GSE database under accession code GSE78220.
The access to the Van Allen et al. dataset under the accession number phs000452.v2.p1 was
obtained after the data access request was approved [https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs000452.v2.p1]. Source data are provided with this paper.

Code availability
Codes are implemented in R and are publicly available in GitHub58: https://github.com/
dukekuang/PASS-ON-codes.
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