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Abstract – We point out the universal presence of the excitonic superexchange in spin-orbit-
coupled Mott insulators. It is observed that the restriction to the lowest spin-orbit-entangled
“J” states may sometimes be insufficient to characterize the microscopic physics, and the virtual
excitonic processes via the upper “J” states provide an important correction to the superexchange.
We illustrate this excitonic superexchange from a two-dimensional 5d iridate Sr2IrO4 and explain
its physical consequences such as the orbital-like coupling to the external magnetic flux and the
nonlinear magnetic susceptibility. The universal presence of the excitonic superexchange in other
spin-orbit-coupled Mott insulators such as 3d Co-based Kitaev magnets and even f electron rare-
earth magnets is further discussed.
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Introduction. – There has been a great interest in the
field of spin-orbit-coupled correlated materials [1], ranging
from the correlated spin-orbit-coupled metals or semimet-
als to the spin-orbit-coupled Mott insulators. The latter
cover the 4d/5d magnets like Kitaev materials, iridates,
osmates [2–14], 4f rare-earth magnets [15–21], or even
3d Co-based Kitaev magnets and Ni-based diamond an-
tiferromagnets that are of some recent interest [22–31].
In these materials, the local moments are formed by the
spin-orbit-entangled “J” or “Jeff” states. In the study
of the superexchange interactions between the local mo-
ments, the prevailing assumption was to consider the pair-
wise superexchange interaction between the neighboring
local moments from the lowest J states, and the treat-
ment was to carry out the perturbation theory of the ex-
tended Hubbard model. The result from this assumption
and treatment were somewhat successful, especially in the
systems where the lowest J states are very well separated
from the excited or upper J states and at the same time
the Mott gap is large.

In many of these spin-orbit-coupled Mott insulators, the
spin-orbit coupling is not really a dominant energy scale

(a)E-mail: gangchen@hku.hk (corresponding author)

especially in 3d or 4d transition metal compounds, and
thus the energy separation between the lowest J states
and the upper J states is not quite large compared to the
hoppings and magnetic interactions, though it may involve
both the crystal field effect and the spin-orbit coupling. In
rare-earth magnets, this energy separation is defined by
the crystal field and can sometimes be small compared to
the exchange energy scale. Moreover, the famous Kitaev
materials like iridates and α-RuCl3 are not good insula-
tor as the charge gaps in these materials are not quite
large [12,32–34]. In this work, we explore the excitonic
superexchange process that involves the upper J states
virtually and provide an important and universal correc-
tion to the superexchange interaction in the spin-orbit-
coupled Mott insulators. The excitonic process refers to
the tunneling of the electron from the lowest J states to
the upper J states between the neighboring sites.

What was our previous knowledge about the su-
perexchange interaction of the spin-orbit-coupled Mott
insulators? For the J = 1/2 moments, due to the ab-
sence of the continuous rotational symmetry, all possible
symmetry-allowed pairwise exchange interactions, includ-
ing Heisenberg, Dzyaloshinskii-Moriya and pseudo-dipole
interactions [35], appear in the exchange matrix and are
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likely to be equally important. Moreover, the diagonal
entry of the exchange matrix from the Heisenberg and
the pseudo-dipole interactions can yield the Kitaev [3] or
Kitaev-like anisotropic compass interaction [2,3]. For the
larger J moments (e.g., J = 3/2 or 2), due to the larger
physical Hilbert space and the strong accessibility via the
spin-orbit entanglement, the pairwise interaction contains
the high-order multipole interactions beyond the dipole
moment interactions [4,6,7]. For the special quenched J
moments with J = 0, the coupling with the excited J
states could lead to an exciton Bose-Einstein condensa-
tion with magnetism [29,36]. In this paper, we show that,
for the unquenched local moment J , the excitonic pro-
cess to the excited J states appears virtually and renders
an important correction of the superexchange interaction
between the local moments, especially in the presence of
external magnetic field.

Atomic eigenstates. – Because of the universality
and the broad applicability of this virtual excitonic pro-
cess, we deliver our theory via the simplest J = 1/2 local
moment for the 4d5 or 5d5 electron configuration of the
Ir4+ or Ru3+ ion in the octahedral crystal field environ-
ment. This occurs for example in many iridates such as
Sr2IrO4. The five degenerate atomic d orbitals split into
the t2g and the eg manifolds, with the former having lower
energy. In the case of a large crystal field, the energy gap
is large, leading to a low-spin d5 configuration. There is
one hole in the t2g manifold which consists of orbitals dyz,
dzx, and dxy. The t2g manifold has an effective orbital
angular momentum leff = 1 [37]. Because there is a single
hole in the atomic ground state, we will use the hole rep-
resentation in this paper. The atomic Hamiltonian in the
t2g subspace at site i is

H0i =
U

2

∑
mm′σσ′

′
n
(e)
imσn

(e)
im′σ′−λ

∑
mm′σσ′

lmm′ ·sσσ′c†imσcim′σ′ ,

(1)

where c†imσ (cimσ) is the hole creation (annihilation) op-
erator with orbital m = 1, 2, 3 and spin σ =↑, ↓ at site i.
The first term is the Hubbard interaction with strength
U > 0. The prime of the summation means that the term
with (mσ) = (m′σ′) is excluded. Note that a hole creation
(annihilation) operator is an electron annihilation (cre-
ation) operator. Thus, the electron occupation number

n
(e)
imσ = 1− nimσ in the hole representation. The Hund’s

interactions are relatively small and hence neglected. The
last term is the spin-orbit interaction with strength λ > 0.
In the hole representation, the sign before λ is negative.
The orbital index m = 1, 2, 3 corresponds to the three t2g
orbitals dyz, dzx, and dxy, respectively. In this index or-
dering, the orbital angular momentum matrix elements
(lm)m′m′′ = iεmm′m′′ , in which l1,2,3 refers to lx,y,z, re-
spectively. The sign is opposite to the matrix elements of
the genuine l = 1 orbitals [37]. The spin angular momen-
tum s = σ/2, where σ = (σx, σy, σz) is the vector of Pauli
matrices.

The eigenstates of the SOC term are two jeff = 1/2
states with energy −λ, and four jeff = 3/2 states with
energy λ/2. In the atomic limit, the hole lies on the
two-fold degenerate jeff = 1/2 level, making the ion an
effective spin-1/2 system. As long as the hoppings be-
tween different sites remain relatively weak as compared
with the on-site Coulomb repulsion, the system remains a
spin-orbit-coupled Mott insulator.

Exchange interaction. – The interactions between
the effective spins have their origin in the virtual hop-
ping processes. When the hopping terms between different
sites are taken into account, there are virtual intermedi-
ate states that contain more than one hole on the same
ion site, at the cost of Coulomb repulsion energy. The in-
termediate states are subject to the Pauli exclusion prin-
ciple, which prevents two holes with the same spin from
occupying the same state. Therefore, the resulting energy
correction will be dependent on the spin configurations of
the initial and finial states. The overall effect is the de-
velopment of an effective interaction between neighboring
spins, which is called exchange interaction.
In general, the hopping processes can be described by

the Hamiltonian

T =
∑
ijσ

C†
iσhijCjσ, (2)

in which hij = h†
ji is the matrix for the hopping from site j

to site i, and C†
iσ = [c†i,yz,σ, c

†
i,zx,σ, c

†
i,xy,σ] is a row vector of

the t2g hole creation operators at site i with spin σ. The
Hamiltonian of the entire system is H = H0 + T , where
H0 =

∑
i H0i is the summation of the atomic Hamilto-

nian (1) on each site. For a Mott insulator, H0 dominates
T , so the latter can be treated by perturbation theory.
The matrix element of the effective Hamiltonian up to
third order is

(Heff)mn=(H0)mn+
∑
α

TmαTαn

ω0α
+
∑
αβ

TmαTαβTβn

ω0αω0β
, (3)

where the Latin indices m and n refer to the ground states
of the unperturbed HamiltonianH0, and the Greek indices
α and β refer to the excited states. ω0α is the difference
between the unperturbed energies of the ground state 0
and the excited state α.
We begin by a simple model shown in fig. 1(a), in which

the d5 octahedrally coordinated transition metals arrange
in a two-dimensional square lattice, the same as the CuO2

plane in cuprates.
By symmetry considerations, the hopping matrices for

2 → 1 and 3 → 1 in fig. 1(a) have the form

h12=

⎡
⎣ tδ 0 0

0 tπ 0
0 0 tπ

⎤
⎦ and h13=

⎡
⎢⎢⎢⎢⎢⎢⎣

t′π+t′δ
2

t′π−t′δ
2

0

t′π−t′δ
2

t′π+t′δ
2

0

0 0
3t′σ+t′δ

4

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(4)
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Fig. 1: (a) The square lattice of d5 transition metals (or-
ange balls) with corner sharing octahedra of oxygen ligands
(red balls). Only the in-plane oxygen atoms are shown.
(b) The Peierls phases attached to the hopping paths, where t
(t′) is some nearest-neighbor (next-nearest-neighbor) hopping
parameter. (c) For the spin interaction between site 1 and site
2, there are four types of hopping path for the virtual excitonic
process, represented by the red triangles.

respectively. Their subscripts hint that the hoppings are
similar to the corresponding dd-type Slater-Koster param-
eters, although usually the ligand-mediated indirect hop-
ping is the dominant mechanism. All the other hopping
matrices up to second nearest neighbor can be derived by
symmetry. The hopping terms for further neighbors are
neglected.
Traditionally, the excited states are limited to the ones

that have two holes lying on the same jeff = 1/2 mani-
fold, similar to the one-band Hubbard model [38]. With
this restriction, only the second-order perturbation term
in eq. (3) contributes to the nearest-neighbor spin-spin in-
teraction. By the definition of the spin operator at site i
as (Si)ss′ = c†isσss′cis′/2 where s and s′ refer to the two
jeff = 1/2 states, the effective Hamiltonian for the spin
interaction between site 1 and site 2 is derived as

H12 =
4(2tπ + tδ)

2

9U
S1 · S2. (5)

This is similar to the result for the one-band Hubbard
model. If tπ = tδ = t, then the coefficient 4t2/U is the ex-
pected antiferromagnetic Heisenberg exchange interaction
parameter.

Virtual excitonic process. – In the spin-orbit-
coupled Mott insulator the jeff = 1/2 level is not well sep-
arated from the jeff = 3/2 level, as can be seen in the
typical spin-orbit-coupled Mott insulators Sr2IrO4 [39],
Na2IrO3 [40], and α-RuCl3 [12]. The existence of the
nearby jeff = 3/2 level will have an impact on the spin
exchange interaction.
After taking the jeff = 3/2 level into consideration, the

intermediate excited states represented by the indices α
and β in eq. (3) not only contain those in which two holes
occupy the jeff = 1/2 level, but also those in which one
hole occupies the jeff = 1/2 level and the other hole occu-
pies the jeff = 3/2 level1. The process involving the latter
type of excited states is called the virtual excitonic process,
because it is as if one hole is excited from the jeff = 1/2

1The intermediate states in which two holes occupy the jeff = 3/2
level appear only in higher order terms in the perturbative expansion.

Fig. 2: An example of virtual excitonic process. Each blue rect-
angle represents a d5 transition metal ion, which has a two-fold
degenerate jeff = 1/2 level and a four-fold degenerate jeff = 3/2
level. |n〉 and |m〉 are the initial state and the final state, re-
spectively. |β〉 and |α〉 are two intermediate excited states.

level to the jeff = 3/2 level, leaving an electron behind,
and the virtual pair of the electron and the excited hole
forms a virtual exciton.
Allowing the virtual excitonic process in the perturba-

tion expansion (3), it is found that the correction to the
two-spin exchange interaction comes from the third-order
term, which involves the participation of a third ion, as
schematically shown in fig. 2.
The involvement of a third ion has significant conse-

quences when an out-of-plane magnetic field is applied.
There will be additional Peierls phases in the hopping ma-
trices. The accumulated Peierls phase for a closed loop
should equal 2π times the magnetic flux through the loop
area divided by the flux quantum hc/e. Assuming that
the accumulated Peierls phase for a plaquette is φ, it is
convenient to use the gauge indicated in fig. 1(b). Note
that the second-order interaction (5) is independent of
the magnetic field because the areas of the hopping paths
1 → 2 → 1 and 2 → 1 → 2 are zero.
For a square lattice up to second-nearest-neighbor hop-

ping, fig. 1(c) shows the four hopping paths at the third
perturbation order that contribute to the exchange inter-
action between site 1 and site 2. The resulting correction
term is found to be

H ′
12 =

16(λ+ U)(2tπ + tδ)(tδ − tπ)(3t
′
σ − 2t′π − t′δ)

9U(3λ+ 2U)2

× cos
φ

2
S1 · S2. (6)

In sharp contrast to eq. (5), the correction term is depen-
dent on the magnetic field. This is because the area of
the third-order hopping processes like 1 → 2 → 3 → 1 is
nonzero, leading to a nonvanishing magnetic flux. Such
field dependence is fundamentally different from the Zee-
man interaction, because it is essentially coupled to the
magnetic flux, which is an orbital effect. The above anal-
ysis can be easily generalized to different lattice models,
so the effect should be ubiquitous in various spin-orbit-
coupled Mott insulators.
At the third-order perturbation, there are also the ring

exchange interactions among each group of three neigh-
boring spins. For the spins 1, 2, and 3 in fig. 1(a), the ring
exchange interaction is

H123=−
−2 (2tπ+tδ)

2
(3t′σ+4t′π+5t′δ)

9U2
sin

φ

2
S1·(S2 × S3) .

(7)
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Because the mixed product of three spins breaks the
time-reversal symmetry, the 3-spin ring exchange exists
only when a magnetic field is applied. Hence, it must
be field-dependent. The result (7) does not involve the
virtual excitonic process. The hole only hops between
the jeff = 1/2 states of the three ions. The corrections
by the virtual excitonic process comes at the fourth per-
turbation order, which engages a fourth ion to provide
the jeff = 3/2 states. We expect that the correction terms
have a field dependence of sinφ, because the loop area is
that of a plaquette, and the product [sinφ S1 · (S2 × S3)]
is time-reversal invariant.

Application to Sr2IrO4. – Having demonstrated the
basic concept of the virtual excitonic process and the re-
sults on a simple model, we take a look at its effects in
real material. To demonstrate it, we use Sr2IrO4 as an
example. Sr2IrO4 is a well-known spin-orbit-coupled insu-
lator [3,38,41]. The electron configuration of the Ir4+ ion
is 5d5, the same as our assumption before. It consists of
corner sharing IrO6 octahedra layers with intervening Sr
layers, see fig. 3(a). The crystal structure of Sr2IrO4 is the
Ca2MnO4 type with space group I41/acd [42]. Compared
to the above simple model, the complication is that the
IrO6 octahedra rotate alternately from perfect alignment,
as shown in fig. 3(b).
The TB model without SOC is still given by the form

of eq. (2). But we note that here the d orbitals in the sub-
scripts are defined with respect to the local coordinate
system aligned with the IrO6 octahedron at the corre-
sponding site, as shown by the two sets of local coordinate
systems x′y′z′ in fig. 3(b). On the contrary, the spin di-
rections are defined with respect to the global xyz axes in
fig. 3(b), because in the end we would like to have a spin
interaction Hamiltonian expressed in the global coordinate
system.
We perform the first-principles calculations to obtain

the parameters in the Hubbard Hamiltonian. Wannier
functions and the tight-binding model are constructed
from the Kohn-Sham orbitals, and constrained random
phase approximation is used to calculate the interaction
parameter U . See details in the Supplementary Mate-
rial Supplementarymaterial.pdf (SM), which includes
refs. [42–54].
Considering the crystal symmetry, the hole hopping

matrices between the nearest-neighbor pair 12 and the
second-nearest-neighbor pair 13 in fig. 3(b) are

h12 = −

⎡
⎣−t3 t4 0
−t4 −t1 0
0 0 −t2

⎤
⎦ and h13 = −

⎡
⎣ t′3 −t′4 0
−t′4 t′2 0
0 0 −t′1

⎤
⎦ ,

(8)
respectively. The overall minus signs are to emphasize that
the hopping matrices for holes differ from those for elec-
trons by a sign, while the latter is the direct result of the
first-principles calculations. We note that the zero matrix
elements in h12 and h13 are not strict because of the inter-
layer interactions. However, their magnitudes are around

Fig. 3: (a) The conventional unit cell of Sr2IrO4. It is composed
of four layers stacking along the c-direction. (b) A IrO2 plane.
The corner sharing IrO6 octahedra rotate alternately, resulting
in two sets of local coordinate systems x′y′z′.

Table 1: The parameters of the Hubbard model of Sr2IrO4

(top), and the parameters of the spin interaction between site
1 and site 2 in fig. 3(b) (bottom), in meV.

t1 t2 t3 t4 t′1 t′2 t′3 t′4 λ U
285 243 46.8 27.8 125 30.1 5.92 11.1 365 2232

J D K J ′ D′ K ′

65.2 12.7 1.23 3.51 0.895 0.237

0.1 meV, much smaller than the other matrix elements.
Thus, the smallness of these matrix elements reflects the
weakness of the interlayer interactions. Other hopping
matrices can be inferred by the crystal symmetry. The
hopping parameters t1,2,3,4 and t′1,2,3,4, the SOC strength
λ, and the Hubbard interaction parameter U are listed in
table 1.

By applying the perturbation theory, the spin interac-
tion between the pair 12 in fig. 3(b) is found to be

H12 = JS1 · S2 −D(S1 × S2)z +KSz
1S

z
2

− [J ′S1 · S2 +D′(S1 × S2)z −K ′Sz
1S

z
2 ]

}
cos

φ

2
.

(9)

The analytical expressions for the coefficients are given in
the SM, and their numerical values are listed in table 1.
The terms involving J ′, D′, and K ′ come from the virtual
excitonic processes. The phase φ = eBl2/�, where B is
the out-of-plane magnetic field, and l = 3.88 Å is the
distance between nearest-neighbor Ir atoms. The order
of magnitude φ ∼ 1 corresponds to a magnetic field B ∼
4.4× 103 T.

Nonlinear susceptibility. – The positive coefficient
before Sz

1S
z
2 leads to the easy-plane anisotropy. The in-

plane magnetic structure is canted antiferromagnetic be-
cause of the competition between the Heisenberg and the
Dzyaloshinskii-Moriya interaction (the first two terms of
eq. (9)). With the application of a magnetic field B per-
pendicular to the IrO2 layers, the canted antiferromag-
netic structure develops an out-of-plane component. We
first neglect the virtual excitonic process corrections, then
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the classical energy per site is

E = 2 [JSA · SB −D (SA × SB)z +KSz
AS

z
B]− 2μBBSz

A,
(10)

where SB and SB are the spins on the two sublattices,
with the same z component, and μB is the Bohr magne-
ton. We have used the fact that the Landé g-factor of the
jeff = 1/2 hole state is −2. By minimizing the energy, the
tilting angle of the spins away from the xy plane can be
obtained, and the perpendicular magnetic susceptibility
is found to be

χ⊥ =
Nμ2

B√
J2 +D2 + J +K

, (11)

in which N is the site density. This result (11) has the
same property as the mean-field result for the Néel antifer-
romagnetism that below the Néel temperature it depends
neither on the temperature nor on the magnetic field.
Now we take into account the correction term from

the virtual excitonic process. It amounts to the replace-
ments J → J − J ′ cos(φ/2), D → D +D′ cos(φ/2), and
K → K +K ′ cos(φ/2). With Taylor expansion up to
O(φ2), we find the magnetization

M = χ
(1)
⊥ B + χ

(3)
⊥ B3 + · · · , (12)

where

χ
(1)
⊥ =

Nμ2
B√

(J − J ′)2 + (D +D′)2 + J − J ′ +K +K ′

(13)
is linear susceptibility, and

χ
(3)
⊥ = −

Nμ2
B

[
(J−J ′)J ′−(D+D′)D′√

(J+J ′)2+(D−D′)2
+ J ′ −K ′

](
el2

�

)2

8
[√

(J − J ′)2 + (D +D′)2 + J − J ′ +K +K ′
]2

(14)
is the nonlinear susceptibility [55,56]. Its existence is the
consequence of the virtual excitonic process. This clari-
fies one important source of the nonlinear susceptibility in
these systems.

Discussion. – Here we discuss the applicability of the
excitonic superexchange. We have shown that the virtual
excitonic process appears in the high-order perturbation
theory of the multiple-band Hubbard model. A smaller
spin-orbit-coupling and/or a weak Hubbard interaction
could enhance its contribution. Apparently, in many of
these 4d/5d magnets, the spin-orbit coupling is not really
the dominant energy scale, and the systems also behave
like weak Mott insulators. The 4d magnet α-RuCl3 is a
good example of this kind. This material shows a remark-
able thermal Hall transport result in external magnetic
fields, which is likely to be related to the gapped Kitaev
spin liquid [57–59]. More recently, it has been found that
its thermal conductivity oscillates when an external mag-
netic field is applied [60]. It is believed that the oscillation

originates from the existence of the spinon Fermi surface
of some kind. The orbital quantization of the spinons re-
quires the coupling of the spinons with an internal U(1)
gauge field [61]. Such orbital effect is obviously not con-
trolled via the Zeeman term. The virtual excitonic process
and/or the strong charge fluctuation could provide the mi-
croscopic means to lock the internal U(1) gauge field with
the external magnetic flux, and thereby generating the os-
cillatory behaviors.

For the Co-based Kitaev materials [22–26], the Hub-
bard interaction is large, but the spin-orbit coupling is
weak. Thus, the excitonic superexchange may still be
important. For the rare-earth magnets, the crystal field
enters as an important energy scale. If the crystal field
energy separation between the ground states and the ex-
cited states is not large enough compared to the exchange
energy scale, the excited states would be involved into
the low-temperature magnetic physics. This upper-branch
magnetism has been invoked for the pyrochlore magnet
Tb2Ti2O7 [62–65].

The concept could also be applied to systems such
as metal organic frameworks, molecular magnets, and
Moiré systems, which have large lattice constants. An-
other example is the spin-liquid candidate material 1T-
TaS2 [66–70], which enters into a charge-density-wave
(CDW) phase at low temperature. In the CDW phase,
each supercell has a localized unpaired electron which pro-
vides the spin. The neighboring spins are separated at
a distance l larger than ten angstroms. Moreover, the
orbitals dxy, dx2−y2 , and dz2 have similar energies [71],
which facilitates the excitonic process. The required mag-
netic field B for the phase φ ∼ eBl2/� to be at the order
of O(1) drops to hundreds of tesla, making the effect of
excitonic process more prominent.
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and Ohira-Kawamura S., Phys. Rev. B, 105 (2022)
014439.

[66] Law K. T. and Lee P. A., Proc. Natl. Acad. Sci. U.S.A.,
114 (2017) 6996.

[67] He W.-Y., Xu X. Y., Chen G., Law K. T. and Lee

P. A., Phys. Rev. Lett., 121 (2018) 046401.
[68] Butler C. J., Yoshida M., Hanaguri T. and Iwasa

Y., Nat. Commun., 11 (2020) 2477.
[69] Wang Y. D., Yao W. L., Xin Z. M., Han T. T., Wang

Z. G., Chen L., Cai C., Li Y. and Zhang Y., Nat.
Commun., 11 (2020) 4215.

[70] Li C.-K., Yao X.-P., Liu J. and Chen G., Phys. Rev.
Lett., 129 (2022) 017202.

[71] Rossnagel K. and Smith N. V., Phys. Rev. B, 73 (2006)
073106.

56001-p7


