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A Schedule-Based Model for Passenger-Oriented
Train Planning With Operating Cost and

Capacity Constraints
Jiemin Xie , Shuguang Zhan , Sze Chun Wong , and Siu Ming Lo

Abstract— In the planning stage, train operators design timeta-
bles to serve passenger trips and a train circulation plan
to support these timetables. These designs consider not only
operating costs but also passenger convenience. In this study,
we developed an optimization model for a new problem that
focuses on timetabling and train-unit scheduling while also
considering passenger itinerary choices in a schedule-based train
system. This optimization model minimizes passenger travel costs
within the constraints of a limited budget available for operating
costs. The model is solved by an iterative heuristic that simulates
the interaction between train operations and passenger itinerary
choices. The heuristic solves the timetabling and train-unit
scheduling problem using a decomposition approach to increase
computational efficiency, while passenger loading is solved by a
user-equilibrium passenger assignment model. An example based
on the high-speed railway network in southern China was used to
demonstrate the effectiveness of the proposed model and method.

Index Terms— Schedule-based, train planning, user-
equilibrium passenger assignment, decomposition approach.

I. INTRODUCTION

ATRANSIT system provides transit services to transport
passengers with consideration of passenger and operating

costs [1]–[3]. This study mainly focuses on the rail transit
planning problem. During the planning stage, train operators
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determine the number of scheduled train services and list
these in the timetable by specifying stopping patterns and
departure/arrival times. A train unit (TU) circulation plan helps
operators to assign TUs with sufficient seats for onboard
passengers to support the implementation of the timetable
while considering the capability of depots to manage various
types of TU and the availability of adequate train resources in
depots for the next day’s operations [4].

Additionally, a train plan should consider passenger dynam-
ics. When a plan is used, passengers may change their
itineraries accordingly. For example, fewer passengers may
use train service T1 if a new train service T2 provides better
service. These changes in passenger behaviors may warrant
adjustments to the revised timetable and train circulation plan.
In the above example, a smaller TU than the TU used in the
new plan may be sufficient for T1. A planning process that
could simulate this interaction would reduce the cost incurred
from the various adjustments required to reach the point where
passengers do not change their itinerary choices and operators
do not need to further adjust their plans. Therefore, the
passenger flows should not be fixed but should vary during the
timetabling. However, most current train scheduling methods
only consider fixed passenger flows.

Overall, train planning should (a) manage different types
of TU; (b) allocate adequate TU resources in depots; and
(c) consider passenger dynamics. Existing models incorpo-
rate one or two of these three important aspects, but no
existing schedule-based model incorporates all three. Our
study proposes a schedule-based model to combine these
aspects. The model is to minimize the generalized passenger
cost under the constraint of the operating cost, because the
focus of operators has gradually shifted to market-oriented
designs which aim to provide services that maintain the
feasibility of passengers’ itineraries and reduce their journey
times [5], and operators would like to devote a certain amount
of effort to satisfy existing customers and attract potential
customers.

The model is solved by a new heuristic which addresses
both timetabling and TU scheduling issues based on the
decomposition approach, and adopts a user-equilibrium pas-
senger assignment model to predict passengers’ reactions
to the timetable. The model and method are examined by
applying them to the South China high-speed railway (HSR)
network to demonstrate their efficiency and applicability.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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The remainder of this paper is organized as follows. The
literature is reviewed in Section II. The details of our model
are described in Section III. The solution method is presented
in Section IV. We apply the proposed methodology to one
example network in Section V. Finally, a summary of the
study is provided in Section VI.

II. LITERATURE REVIEW

Our problem includes the line planning problem (LPP),
transit timetabling problem (TTP), vehicle scheduling problem
(VSP), and passenger assignment problem. The LPP, TTP,
and VSP are the three important planning problems faced by
operators and have been the subject of many studies. Guihaire
and Hao [6] provided a review of the LPP and TTP and
proposed integrated models for these problems. Parbo et al. [7]
and Bunte and Kliewer [8] reviewed passenger-oriented TTPs
and VSPs, respectively. We refer interested readers to these
reviews for more details. Here, only the studies that are most
relevant to our integrated planning problem are reviewed.

Some researchers have explored the integration of two or
more of the three planning problems because the solutions
obtained from such integration could potentially reduce costs
and improve service quality. For example,Wang et al. [2]
integrated the TTP and VSP to improve energy efficiency.
The model of Zhao et al. [9] combined the TTP and VSP
to balance the service level and operating cost. Michaelis
and Schöbel [10] suggested a model for the LPP, TTP, and
VSP to maximize the number of passengers using buses.
Laporte et al. [11] proposed a model that solved the TTP,
VSP, and user routing problem simultaneously to reduce the
line running cost, fleet size cost, and passenger inconvenience.

However, previous integration studies have generally not
considered the following aspects that are important to practical
application.

(1) Vehicle type: The vehicle-type problem involves the
assignment of an appropriate vehicle type to a transit service
according to operating cost [12], passenger demand [4], [13],
depot capabilities [14], and energy consumption [15]. If the
assigned vehicle type supplies an insufficient vehicle capacity,
passenger demand cannot be met. Conversely, if the assigned
vehicle capacity supplies an excess vehicle capacity, opera-
tional expenses are wasted.

(2) End-of-day balance: Some depots may not be able to
manage all vehicle types because of equipment restrictions.
The end-of-day balance problem requires each depot to house
the desired number of vehicles of each type at the end of
an operational period, to ensure that sufficient vehicles are
available for the next operational period [4]. Accordingly,
to maintain an end-of-day balance, extra vehicles may need
to be dispatched from some depots to other depots before the
next operational period.

(3) Station-skipping: Station-skipping can help to decrease
operating times, reduce fleet sizes, and enhance passenger
services [16], [17].

(4) Station-track assignment: Station-track assignment
considers station capacity and assigns tracks to train ser-
vices to maintain safe operation [18] and smooth passenger

interchanges by ensuring that various train services share the
same platform [17].

The above studies [2], [9]–[11] have not considered vehi-
cle type or end-of-day balance. Schöbel [19] addressed the
end-of-day balance problem in a frequency-based integrated
model but ignored the stopping pattern design. Moreover, few
integrated models assign tracks with consideration of passen-
ger interchanges. Therefore, we developed a novel schedule-
based model that considers vehicle type, end-of-day balance,
station-skipping, and station-track assignment. In our study,
the timetable design and TU scheduling require an analysis of
passenger flows for each transit service, so compared with
a frequency-based model, a schedule-based model is more
suitable [20]–[22].

Furthermore, previous studies have used the system-
optimum (SO) condition in passenger loading to establish
timetabling models when considering vehicle capacity [23].
However, the SO condition cannot be applied realistically to
a congested scenario, because it requires some passengers to
sacrifice their ideal choices if the total passenger cost is to be
minimized. In contrast, the user-equilibrium (UE) condition
describes a state of equilibrium in which passengers (who are
self-serving and aim to lower their own travel cost) cannot
decrease their costs by choosing another itinerary. Hence,
we used the UE formulation, as it is more appropriate for
transit assignment than the SO condition.

Generally, a real-life problem considers multiple issues,
involves large numbers of transit services and passengers, and
consequently is too complex to solve directly. Thus, heuristics,
such as the hybrid artificial bee colony algorithm [24] and
column-generation-based heuristic [25], have been suggested
to solve such problems. Alternatively, the iterative method
[19], [26] can be used to solve the LPP, TTP, and VSP by
executing an iterative process. Compared with other methods,
the iterative method has the obvious advantage of capturing the
interaction between passengers’ choices and transit planning
via a simulation process [27]. Thus, we adopt an iterative
process.

The adoption of an iterative process alone may not be
sufficient because the TTP is a non-deterministic polynomial-
time (NP)-hard problem for which an exact global optimum
is hard to find [18]. Many methods have been proposed to
solve this problem, including genetic algorithm [28]–[31],
Lagrangian duality theory [32], alternating direction method
of multipliers algorithm[33], and decomposition approach
(DA) [34]–[36]. The DA has been widely adopted to solve
TTPs because it can handle complex problems. Generally,
the DA involves decomposing the whole network into several
zones and subsequently generating timetables within these
zones with consideration of coordinated operations across
the zones [34], or performing the decomposition at the transit
service level [35], [36], wherein a timetable is created for each
transit service. Our proposed DA provides a new approach to
decomposition at the TU level that combines timetabling and
TU scheduling. In each decomposed subproblem, a TU selects
unscheduled train services to form its circulation path, and the
timetables of train services are generated simultaneously such
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that the operating cost can be easily controlled to fulfill the
operating cost constraint.

Train type, end-of-day balance, station-skipping, station-
track assignment, and passenger dynamics are all important
aspects to consider for efficient train planning. However,
no models have been developed that consider all of these
aspects; in particular, station-track assignment has rarely been
used to smooth passenger interchanges. This paper is thus
a useful contribution to the train planning literature as it
describes the development of a schedule-based model that
considers all of the above aspects, and thereby improves
passenger service under the constraint of an operating budget.
An iterative heuristic based on a new decomposition approach
was devised to solve this model. This heuristic simulates the
interaction between passengers’ choices and train planning,
thereby ensuring that solutions are always in line with the
main constraint, i.e., the operating budget constraint.

III. MODEL FORMULATION

A. Problem Description

In this study, a train service is one run of a TU from
the original terminal to the destination terminal, and a line
assembles the train services that pass through the same stations
in the same operating time window. Train services on the same
line are allowed to have different stopping patterns. A schedule
plan includes (a) a line plan that records which train services
should be scheduled and which stopping patterns of scheduled
train services can be used, (b) a timetable that details the
departure/arrival times and station-track assignments of the
scheduled train services, and (c) a train circulation plan that
consists of TU assignments and reallocations.

Operating budget (ε) is generally controlled to generate a
schedule plan in real-life situations. Operators want to provide
the best service to passengers possible in line with budget
constraints. Hence, we treat the generalized passenger cost
(CP) as the objective and include the operating cost (CO) as a
constraint (Inequality III-A.1). Before the introduction of the
problem details, the elements and sets used in this study are
listed in Table I.

CO ≤ ε. (1)

1) Supply Side: Operators are assumed to provide the
operating cost boundary, the train network information, and
the general planning framework. To clarify the train network
information, a small-scale example is given. The simple net-
work has three stations. A station can contain more than
one station track to simultaneously accommodate several train
services. One platform serves one station track; however, a
station track that is not equipped with platforms can only
serve train services that skip the station. Additionally, a real
station can serve more than one train corridor and is divided
into several yards, each of which serves train services in
one train corridor and is modeled as an abstracted station.
Travelers can change between these abstracted stations by
using walking links. Double tracks are assumed to be used
to connect stations, as shown in Fig.1. Each track serves one
direction.

TABLE I

ELEMENTS AND SETS USED IN THE DESCRIPTION OF THE MODEL

Fig. 1. Simple train corridor for the small-scale example.

A depot serves one adjacent terminal. For example, a TU is
dispatched from depot A to the adjacent terminal, station I in
Fig. 1, and then it provides the train service from station I to
station III. When the TU arrives at station III and completes
the train service, it may enter depot B or stop at station III for a
certain duration, which is the layover time. During the layover
time, the crew can prepare for the next trip from station III
to station I. A depot may not be able to serve all train types
because of equipment limitations.

A depot houses the TUs that it can handle at the start of
operations for initial dispatching and the same number of the
same types of TUs must be housed in the depot at the end
of the day to ensure the availability of adequate TU resources
for the next day’s operations. If this requirement cannot be
met, the end-of-day balance cannot be achieved and TUs must
be reallocated.

Hence, the given train network information includes (a) the
tracks without/with a platform at a station, (b) the train types
that can be served by a depot, (c) the walking time between
two platforms serving tracks p and p� (T Walk

pp� ), (d) the safety
train headway (T H), and (e) the minimum layover time (T LT).
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Fig. 2. Schedule plan for the small-scale example.

A general planning framework is derived using previous
operation experience and provides information about line l,
including (a) the passing stations, (b) the operating time
window ([T Start

l , T End
l ]), (c) the minimum and maximum dwell

times at station s (T Smin
sl and T Smax

sl ), (d) the minimum and
maximum running times from s to s

�
(T Rmin

lss � and T Rmax
lss � ),

(e) the fare, and (f) the number of train services.
Moreover, we assume that: (a) the number of available TUs

is sufficient, and depots have sufficient space to accommodate
parking TUs during the operating period; and (b) there are
sufficient staff to form a feasible crew schedule.

The consideration of designing schedule plans can be
explained using the network in Fig. 1. Two lines are planned,
line 1 in the direction from station I to station III and line 2
in the opposite direction. Each line can contain a maximum
of two train services in a one-hour period. A schedule plan
for this example is presented in Fig. 2. If a train service
stops at a station, its path in Fig. 2. extends along the time
axis but not along the station axis. If a train service skips
a station, its path moves along both the station and time
axes.

If a train service is scheduled, the TU assignment problem is
solved to allocate a suitable train type to the service depending
on the onboard passenger flow and the facilities available at
the terminals. Three TUs of the same type are assumed to be
sufficient to support this schedule plan. As shown in Fig. 2,
TU 1 serves T2 and T4 marked in black, while TU 2 serves T1
marked in red and TU 3 serves T3 marked in blue. T1 and T3
cannot be served by the same TU because the time difference
between the arrival of T1 and the departure of T3 is less than
the minimum layover time (T LT). In this case, the number of
departures equals the number of arrivals at a terminal. The end-
of-day balance is maintained. However, if these three TUs are
not the same type or some train services are canceled because
of a limited operating budget, TU reallocation is necessary
to maintain the end-of-day balance. For example, if T4 is
canceled, an extra dispatch from station III to station I is
scheduled outside of the operation period.

As Eq. (2) shows, the operating cost includes the total
variable cost (CVar), total fixed cost (CFixed), and total cost
of TU reallocation (CTR). CVar includes the financial expen-
ditures for energy, attrition, and human resources [8], and is
assumed to be a linear function of the total train running
time (Eq. (3)). CFixed is paid for investment in the planning
period [8], and assumed to be a linear function of the number
of TUs used (Eq. (4)). CTR is introduced because of TU
reallocation to maintain the end-of-day balance and calculated

based on Eq. (5).

CO = CVar + CFixed + CTR, (2)

CVar = cVar ×
�

n∈N,s=sOri
n ,s �=sDes

n
(tArr

ns � − tDep
ns ); (3)

CFixed =
�

f ∈F

�
v∈V f

(cFixed
f × (

�
n∈N

bTU
vnn)); (4)

CTR =
�

f ∈F

�
s∈S

�
s �∈(S−s)

(cTR
f ss � × �TR

f ss �); (5)

where cVar is the average variable cost per minute; tDep
ns is the

time at which train service n departs s; tArr
ns is the time at which

n arrives at s; cFixed
f is the fixed cost for a TU of type f ; and

bTU
vnn� equals 1 when n� �= n and TU v serves n before serving

n�, or when n� = n and n is the last train service served by v,
and 0 otherwise. When

�
n∈N bTU

vnn = 1, v is used; otherwise,
v is not used. cTR

f ss � is the minimum variable cost between s
and s� because the reallocated TU runs at maximum speed
without stopping. �TR

f ss � is the number of TUs of type f that

are dispatched from s to s� to achieve the end-of-day balance.

cVar, cFixed
f , and cTR

f ss � are given by the operators in advance.
2) Demand Side: Based on previous operations, train oper-

ators can predict the demand data and use them for planning.
The given demand data for each OD pair include (a) the origin
and destination zones, (b) the passenger flow, and (c) the
departure time leaving the origin zone. In addition, access and
egress times (i.e., the travel times between stations and their
neighborhood zones) are given.

The generalized passenger cost is formulated as follows:
CP =

�
r∈R

�
i∈I r

(Ai × cIti
i ); (6)

cIti
i = cUnc

i + cCon
i ,∀r ∈ R, ∀i∈Ir ; (7)

where Ai is the number of passengers using itinerary i , and the
generalized cost of i (cIti

i ) is the summation of the uncongested
and congested costs (i.e., cUnc

i and cCon
i ), as shown in Eq. (7).

cCon
i is related to the train capacity and calculated under the

UE condition (the details are given in formulas (13)–(19) in
the next section). cUnc

i is the weighted sum of the in-vehicle
time (IVT, ci1), waiting time (ci2), walking time (ci3), number
of interchanges (ci4), access/egress times (ci5), and fare (ci6):

cUnc
i =

�
j∈[1,6]

(wr j × ci j ). (8)

The weights of these costs (wr j ) can be calibrated in
advance using passenger data. The last three cost components
are fixed, whereas the first three vary as the timetable changes.
The IVT of n in i from the boarding station s to the alighting
station s� is given as follows:

t IVT
in = tArr

ns � − tDep
ns . (9)

Passengers of itinerary i wait for the first train service n at
boarding station s, and the waiting time is given as follows:

tWait
in = tDep

ns − T Ori
i ; (10)

where T Ori
i is the arrival time of i at the origin station and is

calculated by summing the departure time leaving the origin
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zone and the access time needed for i . If passengers of i alight
from n� at s� and interchange to n at s, the waiting and walking
times can be computed as follows:

tWait
in = tDep

ns −
�

tArr
n�s � + tWalk

in

�
; (11)

tWalk
in =

�
p�∈ P̄n�s�

�
p∈ P̄ns

(T Walk
p� p × bTrack

n� p� × bTrack
np ); (12)

where bTrack
np equals 1 if p is used by n, and 0 otherwise.

Eq. (12) shows that only when n stops at p and n� stops
at p� (bTrack

n� p� = bTrack
np = 1) does tWalk

in equal T Walk
p� p . The

value of tWalk
in depends on the value of bTrack

np , which is not
determined in advance but is calculated during the station-track
assignment. For example, consider a station with three tracks:
track 1, track 2, and track 3. If n and n� are assigned to tracks 1
and 2, respectively, and the walking time from platform 1 to

platform 2 (T Walk
2,1 ) is 5 min, then tWalk

in is 5 min. However,
if n and n� are assigned to tracks 1 and 3, respectively,
and T Walk

3,1 is 10 min, then tWalk
in is 10 min. This demon-

strates how station-track assignment affects passenger walking
time.

B. Model Formulation

To build a schedule-based integrated model (SIM) for the
proposed problem, the following constraints are needed:

(a) Constraint III-A.1, which ensures that the operating cost
is within the budget;

(b) the constraint set for passenger loading C SP, which
assigns passengers according to the train capacity limit and
UE condition;

(c) the constraint set for line planning C SL , which sets
rules to design the stopping pattern and determine which train
services should be scheduled;

(d) the constraint set for timetabling C ST , which ensures
that the train timetable is safe and meets the operating require-
ments (such as the running and dwell time limit); and

(e) the constraint set for TU scheduling C SS , which allo-
cates the scheduled train services to TUs with consideration of
train types and the end-of-day balance. Thus, the SIM model
is as follows.

minCP,
s.t. Constraint III-A.1, constraint sets C SP, C SL, C ST,

and C SS.
Details of constraint sets C SP, C SL, C ST, and C SS are

introduced in the following sections.
1) Constraint Set for Passenger Loading C S P:

• Capacity constraints

In the proposed problem, we strictly control the passenger
onboard flow and calculate the surcharge for using n from s to
s� (cSur

nss �) based on the passenger flow. The relative constraints
are as follows (∀n ∈ N , ∀s, s� ∈ Sn : s� = ξDS

ns ):

AFlow
nss � ≤ �

Cap−T
n ; (13)

cSur
nss � =

�
= 0, if�Cap−T

n > AFlow
nss �

≥ 0, if�Cap−T
n = AFlow

nss � ; (14)

where AFlow
nss � is the number of passengers on n from

s to s� (AFlow
nss � = �

r∈R
�

i∈I r
bIti

inss � × Ai , where bIti
inss �

equals 1 if itinerary i uses n from s to s
�
, and 0 oth-

erwise); and �
Cap−T
n is the capacity of n (�Cap−T

n =�
f ∈F

�
v∈V f

�
n�∈N

�
bTU
vnn� × �

Cap
f

�
, where �

Cap
f is the

capacity of a type f TU). Constraint (13) ensures that the
passenger onboard flow from s to s� cannot be larger than the
train capacity. Constraint (14) shows that if the train capacity
exceeds the passenger flow on n from s to s�, cSur

nss � equals 0,
whereas if the train capacity equals the passenger flow on
n from s to s�, cSur

nss � is greater than or equal to 0. Then, the
congested cost of itinerary i in constraint (6) can be calculated
based on cSur

nss � (∀i ∈ I r , ∀r ∈ R), as follows:
cCon

i =
�

n∈N

�
s,s �∈Sn :s �=ξDS

ns
(bIti

inss � × cSur
nss �). (15)

cCon
i is incurred by passengers when they must exert a

certain effort to board a train in a train system that does
not allow seat reservations [37] or must buy tickets in a train
system that does allow seat reservations [38]. Previous studies
[37], [38] have proved that cCon

i in both types of train systems
can be calculated using the same equation, i.e., Eq. (15), which
shows that cCon

i is the sum of the surcharges for all sections
along the itinerary.

• UE condition
The proposed problem considers assigning passengers based

on the UE condition (∀i ∈ I r , ∀r ∈ R), which is represented
as cIti

i , i.e., the generalized cost of i :

cIti
i

�
= c̃r , if Ai > 0

≥ c̃r , if Ai = 0.
(16)

where c̃r is the equilibrium cost over all of the itineraries
of OD pair r . The UE condition states that the generalized
costs of the chosen itineraries are equal to or not greater
than those of any unchosen itinerary. Constraint (16) has been
widely used to describe the equilibrium route flow pattern that
satisfies the UE condition in transit networks (Szeto et al.
2013; Xu et al. 2018).

• Passenger flow constraints
The passenger assignment must be workable. For example,
onboard passenger flows must be non-negative and if n is not
scheduled to stop at s or s� (bStop

sn = 0 or bStop
s �n =0), passengers

cannot use n and the associated flow should be 0 (Ai = 0).
Thus, Constraint (17) is set as follows (∀i ∈ Ir ,∀n ∈ N Iti

i ,
∀r∈R):

0 ≤ Ai ≤ M × bStop
sB

in n
× bStop

sA
in n

(17)

where M is a sufficiently large number and bStop
sn equals 1 if

n stops at s, and 0 otherwise. In addition, constraints (18)
and (19) are set to seek a workable passenger assignment
(∀r ∈ R):

0 ≤ tWait
in × Ai ,∀i ∈ Ir ,∀n ∈ N Iti

i (18)�
i∈Ir

Ai = �Pas
r (19)

where �Pas
r is the number of passengers in OD pair r .

As Constraint (18) states, if i is used (Ai > 0), the waiting
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time for the associated n must be non-negative to ensure that
passengers do not miss n. Constraint (19) requires that the total
passenger flows on the itineraries for OD pair r equal the total
number of passengers. However, if no feasible itineraries can
be found for an OD pair or if some passengers between an OD
pair cannot use any feasible itineraries because of inadequate
train capacity, then these passengers are accommodated by a
residual itinerary (ĩ) with an unlimited capacity. The uncon-
gested cost of ĩ equals the loss caused by a passenger leaving
the train system and opting to take an alternative mode of
transport.

2) Constraint Set for Line Planning C SL: In this study,
we did not consider terminal changes, and thus we set Con-
straint (20) as follows (∀n ∈ N , ∀s ∈ Sn):�

bStop
sn = bSch

n , if s = sOri
n ors = sDes

n

bStop
sn ≤ bSch

n , else; (20)

where bSch
n equals 1 if n is scheduled, and 0 otherwise. If n

is scheduled, it should stop at the origin and destination
terminals, and the stopping pattern of the intermediate stations
is considered.

Moreover, we determined the stopping pattern and schedule
train services based on onboard passenger flows. For determin-
ing the stopping pattern, we have (∀n ∈ N , ∀s ∈ Sn):

bStop
sn × �Min ≤ ABA

ns (21)

where ABA
ns is the number of passengers on n who board

or alight at s (ABA
ns = �

r∈R
�

i∈Ir
(bBA

ins × Ai ), where bBA
ins

equals 1 if passengers on i board or alight from n at s, and
0 otherwise); and �Min is the minimum number of passengers.
Constraint (21) requires that if the number of passengers on n
who board or alight n at s is less than �Min, this station must
be skipped by n to reduce the variable cost.

For scheduling train services, we have (∀n ∈ N , ∀s, s� ∈ Sn:
s� = ξDS

ns ):

bSch
n × �Min ≤ AFlow

nss � , i f bFL
n = 1; (22)

where bFL
n equals 1 if n is the first train service

(
�

f ∈F
�

v∈V f

�
n�∈N,n� �=n

bTU
vn�n = 0) or the last train service

(
�

f ∈F
�

v∈V f

bTU
vnn = 1) served by its assigned TU, and 0

otherwise. Constraint (22) requires that if n is the first train
service or the last train service served by its assigned TU, the
number of passengers on n must not be fewer than �Min. The
model may continue to schedule a connecting train service,
regardless of the number of passengers onboard. For example,
consider a TU serving train services T1, T2, and T3 in the
order T1–T2–T3, where T2 is a connecting train service.
If T1 and T3 serve no fewer than �Min passengers, all three
train services may be scheduled. This would be done if not
scheduling T2 would result in the TU being no longer able
to serve T1 and T3, as this would mean an additional TU
would be required, the operating cost may increase. Hence,
such connecting train services would be scheduled.

3) Constraint Set for Timetabling C ST : Timetabling should
consider the safety and infrastructure restriction, and thus C ST

includes the following constraints (∀l, l � ∈ L; ∀n ∈ N l ;
∀n� ∈ N l�):

• Operating time-window constraint

The proposed problem restricts the operating time window
according to Constraint (23), as follows:�

tDep
ns ≥ T Start

l × bSch
n , ifs = sOri

n

tArr
ns ≤ T End

l × bSch
n , ifs = sDes

n .
(23)

• Running time constraint

The proposed problem considers the train speed limitation in
the form of Constraint (24), which sets the range of running
times between two stations (∀s, s

� ∈ Sn: s
� = ξDS

ns ) as follows:
T Rmin

lss � × bSch
n ≤tArr

ns � − tDep
ns ≤ T Rmax

lss � × bSch
n . (24)

• Dwell time constraint

If n stops at s (∀s ∈ Sn) to allow passengers to alight and
board, the proposed problem limits the range of the dwell
time at s according to Constraint (25), as follows:

T Smin
sl × bStop

sn ≤ tDep
ns − tArr

ns ≤ T Smax
sl × bStop

sn . (25)

• Constraints for headway

To ensure safety, we restrict the headway using Constraints
(26)–(30), as follows (∀s ∈ Sn ∩ Sn� , ∀p ∈ Pns):

tArr
ns + T H ≤ tArr

n�s , i f bArr
nn�s = 1; (26)

tDep
ns + T H ≤ tDep

n�s , i f bDep
nn�s = 1; (27)

bArr
nn�s + bArr

n�ns = bSch
n × bSch

n� ; (28)

bDep
nn�s + bDep

n�ns = bSch
n × bSch

n� ; (29)

tDep
ns + T H ≤ tArr

n�s , i f bTrack
np = bTrack

n� p = bArr
nn�s = 1; (30)

where bArr
nn�s equals 1 if n arrives at s before n�, and 0 otherwise;

and bDep
nn�s equals 1 if n departs from s before n�, and 0 other-

wise. Constraints (26) and (27) impose the necessary headway
(T H) between the arrival and departure times of n and n� at
s; Constraints (28) and (29) apply a logical set of departure
and arrival orders for n and n� at s; and Constraint (30)
maintains safety by ensuring that a sufficient time difference
exists between n and n� if they are operating on the same
station track.

• Constraint for station-track assignment

The proposed problem designs the station-track assignment,
and thus the following constraint is set (∀s ∈ Sn):⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�
p∈Pns

bTrack
np = 0 , ifbSch

n = 0�
p∈Pns

bTrack
np = 1, ifbSch

n = 1andbStop
sn = 0�

p∈ P̄ns

bTrack
np = 1, ifbSch

n = 1andbStop
sn = 1.

(31)

Constraint (31) requires that if n is not scheduled, no track is
assigned to n; whereas if n is scheduled, one track is assigned
to n. In addition, if n stops at s, a track equipped with a
platform must be assigned to n.
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• Overtaking constraint

Overtaking can only happen at a station which has more than
one station track. Hence, we have (∀s, s� ∈ Sn∩Sn� : s� = ξDS

ns ):

bDep
nn�s − bArr

nn�s � = 0. (32)

Constraint (32) ensures that n and n� cannot overtake each
other in a section (s, s�). If n stops at one station track, a later-
arriving train service can use another station track to overtake
n as this is allowed by Constraints (26)–(31). In addition, n
cannot be overtaken at the station that it skips by any other
train service, as this is disallowed by Constraints (25)–(31).

4) Constraint Set for TU Scheduling C SS:

• Scheduled train service constraint

In the proposed problem, TUs are assigned to serve scheduled
train services one by one. Hence, we have (∀n ∈ N):�

f ∈F

�
v∈V f

�
n�∈N

bTU
vnn� = bSch

n ; (33)

�
n�∈N,n� �=n

bTU
vn�n ≤

�
n�∈N

bTU
vnn�, ∀ f ∈ F, ∀v ∈ V f . (34)

Constraint (33) ensures that if n is scheduled (bSch
n = 1),

one TU is assigned to it. When the right side of Constraint
(34) equals 0, v does not serve n; therefore, the left side of
Constraint (34) should also equal 0. When the right side of
Constraint (34) equals 1 (i.e., v serves n), the left side equals
1 or 0. When the left side of Constraint (34) equals 0, n is the
first train service served by v. When the left side of Constraint
(34) equals 1, v serves one train service directly before serving
n. When Constraint (33) applies, Constraint (34) requires a TU
to serve train services one by one.

• TU connection constraint

An improper connection provided by TU v for scheduled n
and n� must be prevented, and thus the following constraint is
set (∀ f ∈ F, ∀v ∈ V f , ∀n, n� ∈ N):

bTU
vnn� = 0, if

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

AFlow
nss � > �

Cap
f ,s, s� ∈ Sn :s� = ξDS

n�s
AFlow

nss � > �
Cap
f ,s, s� ∈ Sn� :s� = ξDS

n�s
sDes

n �= sOri
n�

f /∈ Fs , s ∈ �
sOri

n , sDes
n ,sOri

n� , sDes
n�

�
tDep
n�s < tArr

ns + T LT, wheres = sDes
n = sOri

n�

(35)

Constraint (35) prevents an improper connection being
made if v cannot fulfill the capacity constraint, if the destina-
tion terminal of n and the origin terminal of n� are different,
if the depots serving the terminals of n and n� cannot serve
TUs of type f , or if the minimum layover time requirement
cannot be met.

• TU reallocation constraints

The proposed problem considers the end-of-day balance, the
extra dispatches for which are set based on the distribution of
TUs. Thus, we have (∀ f ∈ F; ∀s ∈ S):

�TR
f ss � ≥ 0,∀s � ∈ (S−s); (36)�

v∈V f

(
�

n∈NEnd
s

�
n�∈N

bTU
vnn� −

�
n∈NSta

s

�
n�∈N

bTU
vnn�)

Fig. 3. Flowchart of the heuristic.

=
�

s �∈(S−s)

(�TR
f ss � − �TR

f s �s). (37)

Constraint (36) requires that the extra dispatches (�TR
f ss �)

should be non-negative, and Constraint (37) determines the
values of the extra dispatches.

�
n∈NEnd

s

�
n�∈N

bTU
vnn� counts how

many times v ends at s, and
�

n∈NSta
s

�
n�∈N bTU

vnn� counts how
many times v starts at s. If the left side of Constraint (37)
equals 0, the number of TUs at the depot of s at the end-of-
day equals that at the beginning-of-day and no extra dispatch
is needed, whereas if the left side of (37) is positive, an extra
dispatch from s is needed; otherwise, an extra dispatch to s is
needed.

Note that mathematical transformations (like introducing
a sufficiently large value of M) can convert Constraints
(26)–(31) to linear constraints. But not all constraints can be
converted to linear ones (e.g., the UE condition). Thus, the
SIM is a non-linear model.

IV. METHODOLOGY

The proposed SIM, a non-linear model with many variables
and complex non-linear constraints, is difficult to solve. Thus,
we decompose the SIM into sub-models. In a sub-model,
some variables of the SIM are fixed as parameters and set
as the values offered by other sub-models, and thus the non-
linear constraints can be linearized. For example, the sub-
model for schedule plan generation provides timetables to
calculate waiting times (i.e., tWait

in = t̄Wait
in , where variable

is a parameter which equals a fixed value set for a variable),
and non-linear Constraint (18) in the sub-model for passenger
assignment can then be a linear constraint as follows:

t̄Wait
in × Ai ≥ 0, ∀n ∈ N Iti

i , ∀r∈R, ∀i ∈ Ir . (38)

Thus, the sub-models can be handled by the CPLEX that is
commonly used for linear programming (LP) problems [26],
[39]. Based on the above discussion, an iterative heuristic is
suggested, as shown in Fig.3.

First, the initial schedule plan generation (ISPG) process
generates a feasible schedule plan. Next, an iterative process
is executed to improve the schedule plan. Each iteration com-
prises four steps: (a) the user-equilibrium passenger assign-
ment (UEPA) process, which is used to identify the feasible
itineraries and compute the passenger flows according to the
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given schedule plan; (b) the line plan design (LPD), which
determines the number of scheduled train services and designs
a stopping plan based on the passenger loading outputted by
the UEPA process; (c) the schedule plan adjustment (SPA)
process, which uses the results of the UEPA process and
the LPD to improve the schedule plan; and (d) the train
service insertion (TSI) process, which inserts unscheduled
train services into the schedule plan adjusted by the SPA
because the adjustment may lower the operating cost and the
budget may allow for additional train services to improve the
passenger service.

The ISPG process and the LPD determine NSch, NUns,
SStop

n , and SSkip
n , and then bSch

n and bStop
sn will be determined

by the constraint set C SLH as follows:

bSch
n =

�
1,n ∈ NSch

0,n ∈ NUns ; (39)

bStop
sn =

�
bSch

n , s ∈ SStop
n

0,s ∈ SSkip
n

; ∀n ∈ N . (40)

The constraint set C SLH describes that if train service n
belongs to the set of scheduled train services (i.e., n ∈ NSch),
bSch

n should be 1, otherwise 0; and if station s belongs to the
set of stations at which n stops (i.e., s ∈ SStop

n ), the value of
bStop

sn is determined by bSch
n , otherwise 0.

The ISPG, UEPA, and SPA processes can be considered as
sub-models that are developed based on the SIM by a certain
modification including fixing some variables and linearizing
some constraints. To clarify the specific modification, the
details are provided in the following sections.

The iterative process ends when the relative change in CP is
smaller than the pre-set gap allowance, and the schedule plan
with the minimum CP is selected as the outputted schedule
plan. Otherwise, the next iteration begins. It is possible that a
transit paradox [40] may occur. In a transit paradox, the oper-
ators implement an adjustment for service improvement that
has the unintended effect of worsening the system performance
in terms of CP. When a transit paradox occurs, the proposed
method opts for the schedule plan with the best performance
rather than the schedule plan in the final iteration.

Moreover, the line plan for train services is designed based
on the information of passenger flows. However, this informa-
tion may be missing in some cases. For example, the passenger
flow on a newly added train service is unknown. To solve this
problem, the passenger flow in such a case is assumed to be
zero, and the newly added train service is assumed to stop at
all passing stations. This line plan is likely to provide more
feasible itineraries than a line plan on which newly added train
services skip some stations. Furthermore, these newly added
train services will use train type f ∗, which has the highest
fixed cost and the highest capacity. Thus, we set that train
services will not use other train types (∀v ∈ V f ; ∀n ∈ NNew;
∀n� ∈ N):

bTU
vnn� = bTU

vn�n = 0,∀ f ∈ (F− f ∗). (41)

This assumption ensures that the operating cost remains within
ε. When the schedule plan is input into the UEPA process, the

TABLE II

DA-ISPG ALGORITHM

passenger flows can be determined, and TUs can be reassigned
according to the onboard passenger flow to minimize the
operating cost. Some TUs may be replaced with TUs of a
different type, and the fixed costs of these TUs are lower than
that of f ∗. Therefore, the operating cost will not exceed ε and
the modified solution given by the SPA will remain feasible.

A. ISPG

The ISPG process can be considered as a modified version
of the SIM that excludes C SP and C SL, but adds some more
constraints including C SLH and Constraints (41) and (42).

Ai = Āi ,∀r∈R ,∀i ∈ I r . (42)

As indicated by Constraint (42), passenger flow on itinerary
i , Ai , is set as a fixed value ( Āi). Because all train services
used in the ISPG process are newly added, Āi is zero according
to the aforementioned assumption. The decision variables
include bSch

n , bStop
sn , bArr

nn�s , bDep
nn�s , tArr

ns , tDep
ns , bTrack

np , bTU
vnn� , and

�TR
f ss � . Because the passenger flows are unknown and the ISPG

process aims to obtain a feasible solution as a starting point for
the later processes, which will improve the solution, this study
does not set a specific objective for the ISPG process. That
is, when the ISPG process finds the first feasible solution, the
process can stop. Thus, the ISPG process can be formulated
as follows.

min0,
s.t. Constraint III-A.1, (41), and (42), constraint sets C SLH,

C ST, and C SS.
Although the ISPG process is relatively simpler than the

SIM model, it remains difficult to solve the ISPG process
directly. Hence, a decomposition approach, DA-ISPG, is pro-
posed. In the DA-ISPG approach, the original problem is
divided into several subproblems in each of which a TU is
used, and the train circulation plan and timetables of its served
train services are determined simultaneously.

1) DA-ISPG: The DA-ISPG algorithm is shown in Table II.
If NUns is empty or the insertion of a new TU violates the
operating cost constraint, the algorithm stops; otherwise, a
new TU is added, and train services are assigned to it. If v
serves more than one train service, these train services can
be considered as predecessors (nPre) or posteriors (nPost). For
example, TU 1 in Fig. 2 serves T2 before serving T4, and we
designate T2 as nPre and T4 as nPost.

The train-service assignment in Table II can then follow
an ascending order or a descending order. In an ascending
order, a train service is first selected as nPre; subsequently,
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TABLE III

TRAIN-SERVICE ASSIGNMENT FOR A TRAIN UNIT

the posterior services are selected one by one. In contrast,
in a descending order, a train service is first selected as nPost;
subsequently, the predecessors are selected one by one. In this
study, the train-service assignment follows a descending order,
and a train service can be selected for the assignment if
(a) it is unscheduled; (b) while looking for a predecessor
of nPost, its destination terminal is the original terminal of
nPost; and (c) its ideal arrival time at the destination is the
latest when compared with those of the other train services
that satisfy the two abovementioned rules. The ideal departure
and arrival times can be given by the operators based on
their previous experience or calculated by a timetabling model
(whose solution is denoted the M-MinPC solution) that can
minimize CP without consideration of TU scheduling [27].
The DA-ISPG algorithm attempts to use information from the
M-MinPC solution when selecting the train services for NUns

because the M-MinPC solution has already minimized the total
generalized passenger cost. Alternatively, the train-service
assignment and the selection of train services for NUns can
follow a random order or other specific rules. This can be
easily altered in the algorithm. The train-service assignment
for a TU is summarized in Table III.

The timetable generation process for train service n used
in the train-service assignment (TTG-TSA) process can be
defined as follows:

min β+ × max (tDep
nsOri

n
− T Ideal

n , 0) + β−

× max (T Ideal
n − tDep

nsOri
n

, 0) + (tArr
nsDes

n
− tDep

nsOri
n

)

s.t.C SLH, C ST, and (43)

tArr
ns + T LT ≤ tDep

n�s ; if train services n and n� are served by
the same TU, and n is the predecessor of n�;

s = sDes
n ; ∀n� ∈ NSch; (44)�

tArr
n�s = t̄Arr

n�s ,∀n� ∈ NFix,∀s ∈ Sn

tDep
n�s = t̄Dep

n�s ,∀n� ∈ NFix,∀s ∈ Sn
(45)

where T Ideal
n is the ideal time departing from the origin termi-

nal sOri
n of n and is set to equal that in the M-MinPC solution;

Fig. 4. DA-ISPG for the small-scale example.

β+ and β− are the penalties for the differences between T Ideal
n

and tDep
nsOri

n
; and in the TTG-TSA process, NFix=NSch−n.

The difference between this solution and the M-MinPC
solution is minimized by objective (43) because the M-MinPC
solution suggests that scheduling n at this spatiotemporal point
may reduce the generalized passenger cost. Moreover, the
running time of n(tArr

nsDes
n

− tDep
nsOri

n
) is minimized to reduce the

variable cost. Constraint (44) ensures that the layover time
(T LT) between two train services served by the same TU is
adequate. Except for n, the train services in NSch have already
been scheduled, and the corresponding arrival and departure
times are known from the previous calculations and are used
to set t̄Arr

n�s and t̄Dep
n�s for Constraint (45). Hence, the TTG-TSA

process focuses on finding a feasible timetable for n.
CO in Tables II and III is calculated using the train circu-

lation plan generation (TCPG) model as follows:
minCO

s.t.C SS, constraints(41), (42), and(45).

In the TCPG model, NFix = N , and t̄Arr
n�s and t̄Dep

n�s are set
based on the result outputted by the TTG-TSA process.

2) A Simple Example for the DA-ISPG: To demonstrate
the DA-ISPG algorithm, we used the simple example given
in Fig.1 and assumed the schedule plan in Fig. 2 to be
the M-MinPC solution. First, TU 1 was selected and the
train-service assignment was run to determine which train
services were served by TU 1. Four train services were
incorporated in the set of NUns, and T4 had the latest arrival
time in the M-MinPC. Thus, T4 was selected as nPost, and
its timetable was generated (as shown in the upper left corner
of Fig. 4).

Second, the operating cost of the presented schedule plan
was less than the budget, so we added the predecessor of
T4. The destinations of T1 and T2 were the same as the
original station of T4. In the solution for M-MinPC, the
arrival time of T2 was later than that of T1, and T2 was
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thus selected. T LT was assumed to be 20 min, and then
the timetable of T2 was generated (as shown in the bottom
left corner of Fig. 4). Because of the limitations of T LT

and the operation window, no predecessor of T2 could be
found, and thus we turned to TU 2 to generate its circulation
plan. If adding an additional TU results in an operating cost
that exceeds the budget, the DA-ISPG stops. Otherwise, train
services are selected for TU 2. Accordingly, T3 was first
selected and then T1 was selected. As this example shows,
the operating cost is checked whenever a new TU or train
service is added, such that the outputted schedule plan can be
easily controlled to ensure that the operating cost constraint
holds.

B. UEPA

The UEPA process focuses on the passenger assignment,
so the timetable is fixed based on the output of the ISPG
or SPA processes, and used to calculate the fixed values for
the waiting time and the uncongested cost. Furthermore, the
respective constraints in the SIM can be deleted to form the
model used in the UEPA process. That is, the UEPA process
can be expressed as a problem that identifies the Ai , c̃r , and
cSur

nss � subject to C SP.

minCP,

s.t. Constraint set C SP.

This problem can be formulated as an LP model after
the mathematical transformations and solved by the column-
generation method, as described in previous studies [27], [37],
[38]. The column-generation method starts by solving the
LP model with the set of the optimal itineraries only. Then
iteratively, itineraries that have the potential to reduce CP are
added. If adding new itineraries would no longer reduce CP,
the procedure terminates.

C. LPD

The LPD determines the values of bSch
n and bStop

sn (∀s ∈
Sn ;∀n ∈ N) in the SIM and thus other processes can use

bSch
n and bStop

sn as fixed parameters to calculate values of
other variables in the SIM. The LPD sets the NSch, NUns,
SStop

n , and SSkip
n based on the passenger assignment outputted

by the UEPA process, constraint set C SLH, and Constraints
(21) and (22). The LPD may cause some itineraries become
infeasible because the used train services are not scheduled or
the used stations are skipped, and passengers who choose these
itineraries in this UEPA process will be assigned to another
feasible itinerary in the next UEPA process.

D. SPA

Based on the SIM, the SPA process fixes Ai (∀r ∈ R,
∀i∈Ir ), bSch

n , and bStop
sn (∀s ∈ Sn;∀n ∈ N) according to

the output of the UEPA process and the design of the LPD,
respectively. Furthermore, the SPA process excludes C SP

except Constraint (18) which ensures that the itineraries used

in the UEPA process are feasible in the SPA solution. Thus,
the SPA process can be formulated as follows.

minCP,

s.t. Constraint III-A.1, (18), and (42),

constraint setsC SLH, C ST, and C SS.

The SPA adjusts the timetable and the train circulation plan
simultaneously, which is a NP-hard problem. To increase the
computation speed, the SPA process first runs the timetable
adjustment (TTA) model which adjusts the timetable with
keeping the train circulation plan, and then uses the TCPG
model to check whether the train circulation plan can be
further improved to reduce CO after the adjustment. The TTA
model is formulated as follows.

minCP,

s.t. C SLH, C ST, constraints (18), (42), (44), and

cVar ×
�

n∈N,s=sOri
n ,s �=sDes

n
(tArr

ns � − tDep
ns ) + CFixed−L

+ CTR−L ≤ ε. (46)

The number of used TUs and the respective train circulation
paths are fixed. Thus, CFixed and CTR equal the values in the
last iteration (CFixed−L and CTR−L, respectively). However,
the train running time and layover time can be changed,
so Constraint (46) requires that the changes of train running
time will not violate the operating cost constraint (III-A.1).
The TTA model decides values of bArr

nn�s , bDep
nn�s , tArr

ns , tDep
ns , and

bTrack
np . It can be solved by a decomposition approach for train

timetable adjustment (DA-TTA).
The DA-TTA approach decomposes the original problem

into several subproblems, and a timetable is generated for
each line. To avoid the spatiotemporal conflict between line
l � and other lines, the subproblem for l � fixes other lines and
focuses on generating a timetable for l �. That is, a subproblem
for l � can be formulated as a new model (M-DA-TTA) that
modifies the TTA model by adding Constraint (45) in which
NFix = N−N l� and the fixed values t̄Arr

n�s and t̄Dep
n�s are obtained

in the previous calculation. After each subproblem, the TCPG
model is used to check whether the train circulation plan could
be further improved to reduce CO. If it could, the updated train
circulation plan is used for a further adjustment. In contrast,
if the DA-TTA decomposed the problem in terms of TUs, the
train circulation plan would be fixed and thus TUs would be
selected one-by-one. That is, the train circulation plan could
not be updated with a better plan during the adjustment. Thus,
the DA-TTA was set to decompose the problem in terms of
line. The DA-TTA algorithm is given in Table IV.

Although the DA-TTA approach cannot always arrive at
the global optimum, it reduces computation time because
the M-DA-TTA model has a smaller solution set and can
thus be solved in a considerably shorter time. Moreover, the
DA-TTA approach improves the solution iteratively until a
local optimum is found.

E. TSI
The TSI process aims to add some new train services

into the output of the SPA process under the operating cost
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TABLE IV

DA-TTA ALGORITHM

Fig. 5. Abstracted network of south china’s HSR.

constraint. When fixing the timetable for scheduled train
services, the TSI process adds unscheduled train services into
NNew one by one and identifies a feasible solution by using
the TTG-TSA process and the TCPG model.

V. NUMERICAL EXAMPLES

The computation described in Section V was completed
on a personal computer equipped with an Intel i7-4790U
central processing unit (3.60 GHz). The settings were applied:
(a) T LT = 15 min; (b) T H = 4 min; (c) cVar = 20 O-units/min,
where O-unit denotes the unit operating cost; (d) �Min =
1 passenger; (e) the gap allowance for stopping the CPLEX
and iteration was 0.1%; and (f) the penalty for schedule
differences was set to β+ = 2β− = 0.02. Based on daily
observations and previous research [40], [41], we set the same
weight coefficients for all passengers (∀r∈ R), as follows:
(a) wr1=1.0; (b) wr2 =1.8; (c) wr3 = 2.0; (d) wr4=10.0 min;
(e) wr5 = 1.0; and (f) wr6 = 2.5 min/yuan.

Thirty-four main stations were selected from the HSR net-
work in South China (Fig. 5). Nanningdong and Zhaoqingdong
stations have two yards, one for each of the two HSR corridors
they serve; accordingly, one yard was modeled as a substation
as stated in Section III. In this manner, a 36-station abstract
network comprising four main HSR corridors was built in
which all depots could serve all train types. The network was
used to test the heuristic from three aspects, the efficiency,
optimality, and the application to a large-size problem, in the
following sections.

TABLE V

DETAILS OF THE DIFFERENT CASES

A. Optimality and Efficiency Test

1) Problem Setting of the Optimality and Efficiency Test:
The model with the UE condition is not a convex problem,
and a TTP is already an NP-hard problem whose globally
optimal solution is difficult to be found. Thus, we transformed
this problem into a simplified problem that relaxes the train
capacity constraint (when the train capacity is sufficiently large
that the passengers always select the itinerary with the lowest
uncongested cost):

minCP,

s.t. Constraint III-A.1, constraint sets C SP, C SL,

C ST, and C SS, and

�
Cap
f = M, f ∈ F. (47)

Constraint (47) allows the non-linear constraints to be
linearized even if the objective is quadratic. The simplified
problem was thus solved using the branch-and-bound algo-
rithm (BBA) via CPLEX, and CP in its optimal solution
was the lower bound for the studied problem. Thus, the
BBA was selected as the method against which to benchmark
the heuristic. Different cases were set to test the heuristic,
as shown in Table V.

2) Optimality Test: Table V shows the results. We explored
the factors that influenced the gaps in CP as follows.

First, the effect of problem size was tested. To increase
the problem size, the number of train services running on a
line was increased in cases 1–5, and the number of OD pairs
(ΠOD) was increased in cases 6–10. The gaps in CP and the
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Fig. 6. Trend of computation times with increase in problem size.

total uncongested cost (CUnc) in these cases illustrated that
the heuristic maintained good solution quality as the problem
size increased. Second, the influence of train capacity was
analyzed in cases 10–12, in which the number of passengers
in an OD pair (ΠPas) was increased. As indicated by the
results, the gaps in CP and CUnc were affected by the increase
in ΠPas because a higher value of ΠPas implies a higher
probability that a greater number of train services do not
have sufficient seats. When some passengers could not use
the itinerary with the lowest uncongested cost because of
insufficient train capacity, the studied problem assigned these
passengers to an alternative or artificial itinerary, whereas the
simplified problem continued to assign all passengers to the
itinerary with the lowest uncongested cost. Both the alternative
and artificial itineraries usually have higher uncongested costs,
and therefore, the gap in CUnc will not be zero. In cases 11 and
12, the congested cost could not have been zero, and the gaps
in CP would thus have been larger than the gaps in CUnc.
Overall, the gaps in CUnc and CP in Table V are below 2%
and 6%, respectively. Hence, the test results demonstrate that
the solutions obtained using the heuristic tend to be close to the
global optima of the simplified problems, indicating that the
heuristic can generate solutions similar to the global optima
of the studied problems.

3) Computation Time Test: The computation time is gener-
ally affected by the number of train services on the network
for scheduling and the number of OD pairs. Therefore, when
comparing the computation times of the BBA and the heuristic,
we selected cases 1–5 and cases 6–10 to test the influences
of these two factors. In these cases, the BBA found the
global optimum, and the heuristic obtained solutions with
the same objective values. Fig. 6 shows the log10 values
of the computation times for clarity. The computation times
of the BBA were shorter than those of the heuristic when
the problem size was small. The BBA tackled only one ILP
problem, whereas the heuristic tackled several ILP problems,
one of which was for a possible train service assignment to a
TU. However, Fig.6 shows that the computation time of the
BBA increased more quickly than that of the heuristic as the
problem size increased, indicating the abilities of the heuristic
to solve large problems are better than those of the BBA.

B. Large-Scale Applicability

1) Problem Setting of a Large-Scale Example: Between
06:15 and 23:30, 240 high-speed train services run on the

Fig. 7. Solutions for the south china HSR network.

network that was collected from the official website of China
Railway (http://www.12306.cn/mormhweb/). Because of dif-
ferences in zone attractiveness and trip time restrictions,
9076 OD pairs were generated. As passenger volume data
were unavailable, passenger volumes were set based on daily
observation. The uncongested cost of a residual itinerary was
3000 min. Additionally, because real TU information was
unavailable, we assumed that there were three train types
(Type 1, Type 2, and Type 3) with different capacities (1000,
1300, and 1600 passengers, respectively) and fixed costs (600,
800, and 1000 O-units, respectively). The operating budget
can be set based on previous operational experience and the
allowable resources. Alternatively, a range of budget levels can
be set and analyzed to find a proper solution that is in keeping
with the allowable resources. We demonstrated this method
with the following example. First, we ran the timetabling
model suggested by.Xie et al. [27] to obtain a timetable min-
imizing the passenger cost, which we denoted the M-MinPC
timetable. Next, we ran the TCPG model to compute the
minimum operating cost (CO−MinPC) to support the M-MinPC
timetable. We then set four operating cost boundaries—80%
of CO−MinPC, 60% of CO−MinPC, 40% of CO−MinPC, and 20%
of CO−MinPC—and denoted their respective models M-OC(1),
M-OC(2), M-OC(3), and M-OC(4).

2) Solutions of the Large-Scale Example: Fig. 7 presents
the best-found solutions that we determined for the M-MinPC
timetable model and each of the above four models (i.e.,
M-MinPC, M-OC(1), M-OC(2), M-OC(3), and M-OC(4)), and
related statistical details.

It can be seen that as the operating budget decreased, the
generalized passenger cost initially increased slowly and then
rapidly. This trend is attributable to the fact that the decrease
in the operating budget led to a decrease in the numbers of
scheduled train services and scheduled TUs, which resulted
in fewer passengers being served. Setting a higher operating
boundary generally enabled a solution to be found that had
a lower generalized passenger cost than that for lower oper-
ating boundaries. However, operators should not necessarily
adopt a higher operating boundary, as extra investment may
occasionally fail to generate a proportionally higher return. For
example, the solution for M-OC(1) required a 33.33% increase
in the operating cost relative to the solution for M-OC(2),
but the corresponding reduction in the generalized passenger
cost (for the solution for M-OC(1) corresponding to that for
M-OC(2)) was only 6.08%. The latter result accounts for the
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Fig. 8. Average Non-IVT time in each outer iteration of M-OC(2).

nearly horizontal line linking these two solutions in Fig. 7.
Thus, the solution for M-OC(2) appeared to be superior to
that for M-OC(1). Therefore, we suggest that if a practical
operation does not have a hard budget, a range of budget levels
should be set and their respective solutions determined and
compared, as this will enable a proper solution to be found
that results in a relatively low passenger cost and operating
cost.

3) Analysis of M-OC(2): The proposed heuristic is an
iterative method. Feedback from the passenger assignment is
generated in each outer iteration and used in the SPA, which
has an inner iteration to improve the schedule plan to reduce
the passenger costs. For example, in M-OC(2), there was a
decreasing trend in both the total generalized passenger cost
and the average non-IVT time (i.e., the sum of the waiting and
walking time). The average non-IVT time in the first 20 iter-
ations of the M-OC(2) without a pre-set criterion is shown in
Fig. 8. The average non-IVT time decreased by 30.43%. After
eight outer iterations, the gap of the total generalized passenger
cost decreased to 0.1% (i.e., the pre-set criterion for stopping
was met), and the heuristic stopped. However, the average
non-IVT time only converged at the 10th iteration; to reach
this convergence point, we could use a lower pre-set criterion
or allow more outer iterations to run. On average, one outer
iteration took 1.52 h, and 29.23% of the computation time was
used to optimize the schedule plan. Generally, the ISPG and
SPA processes were completed within 3.42 min and 26.66 min,
respectively. These long computation times resulted from the
complexity of the passenger assignment. In a future study,
we will consider how to improve the efficiency of passenger
assignment.

To demonstrate that our model and method can manage
different types of trains, we changed some settings. We added
Type 4 trains, which had the same capacity and fixed cost
as Type 1 trains, but we assumed that Type 1 and Type 4
trains needed different equipment in depots. All depots were
assumed to serve all train types, except for the depot serving
Shenzhenbei Station, which was assumed to serve only Type 2,
Type 3, and Type 4 trains. We reran M-OC(2) to identify a new
solution, which we denoted Solution 2; thus, we denoted the
original solution of M-OC(2) as Solution 1. Both solutions
had a similar number of used TUs (gap ≈ 2.08%), average
running times per TU (gap ≈ 2.20%), and average non-IVT

time (gap ≈ 1.10%). Solution 1 used 39 Type 1 TUs and
Solution 2 used 10 Type 1 TUs and 27 Type 4 TUs. The
depot serving Shenzhenbei Station had a unique structure:
Type 4 vehicles were used in Solution 2 to take over the work
of the Type 1 vehicles that were related to this depot and used
in Solution 1.

4) Comparison of M-OC(1), M-OC(2), and M-MinPC: The
M-MinPC solution is obtained via the traditional hierarchical
approach which first designs a timetable and then find a train
circulation plan to support the timetable. In this approach,
a timetable which can fully use the network capacity to provide
a good service to passengers, but the respective operating
cost may be too high. For example, if the operators want
to control the operating cost within 80% of CO−MinPC, the
operating cost of the M-MinPC solution exceeds the limit
by 25%. Thus, the traditional hierarchical approach usually
includes a further step to delete train services from the
M-MinPC solution to meet the requirement of the operating
cost.

Our approach integrates the consideration of operating cost
into planning, so that an outputted solution meets operating
cost requirements and attempts to maintain service quality. For
example, when the operating budget was 80% of CO−MinPC,
our approach generated a solution that met the requirement
(i.e., the solution for M-OC(1)). Compared with the solution
for M-MinPC, in the solution for M-OC(1), the number of
served passengers was decreased by 6.5%, and the average
waiting time was increased by 8.9 min. Similarly, when the
operating budget was 60% of CO−MinPC, our approach gen-
erated the solution for M-OC(2). Compared with the solution
for M-MinPC, in the solution for M-OC(2), the number of
served passengers was decreased by 8.1%, and the average
waiting time was increased by 19.9 min. This decrease in
service quality was due to the reduction in the operating
cost. However, given that the latter was 40% (1 − 60%),
this decrease in service quality may be acceptable in real-life
operations.

This comparison indicates the advantages of our approach to
generate a schedule plan to balance the needs of operators and
passengers. In summary, our large-scale example demonstrates
that our approach can be applied to a practical-sized train
problem.

VI. CONCLUSION

A schedule-based model is proposed in this study to solve
a new integrated problem that comprises the LPP, TTP, VSP,
and the UE passenger assignment problem. To fulfill the
requirements of operators and passengers, the model min-
imizes the generalized passenger costs under the operating
cost constraint. To obtain high-quality solutions within a
reasonable time, a new heuristic was developed. The model
and algorithm were applied to numerical examples. The results
show that the heuristic can obtain the similar results as the
BBA at considerably faster computation speeds. Furthermore,
the algorithm was able to handle an integrated problem that
involved 9076 OD pairs, 240 high-speed train services, and
36 stations forming a four-corridor HSR network. Therefore,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

the model and the algorithm can be used for a practical-sized
train planning problem.

However, in this study, we made some assumptions that may
not hold in real applications. For example, we assumed that
double tracks were used between stations, TUs and crews were
sufficient to support schedule plans, and passengers can always
find a feasible access/egress mode in time. In future studies,
we will relax these assumptions to construct a planning tool
that can be applied in various practical scenarios.
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[15] Ş. Yıldırım and B. Yıldız, “Electric bus fleet composition and schedul-
ing,” Transp. Res. Part C: Emerg. Technol., vol. 129, Aug. 2021,
Art. no. 103197.

[16] V. Cacchiani, J. Qi, and L. Yang, “Robust optimization models
for integrated train stop planning and timetabling with passenger
demand uncertainty,” Transp. Res. B, Methodol., vol. 136, pp. 1–29,
Jun. 2020.

[17] J. Xie, S. C. Wong, S. Zhan, S. M. Lo, and A. Chen, “Train
schedule optimization based on schedule-based stochastic passenger
assignment,” Transp. Res. E, Logistics Transp. Rev., vol. 136, Apr. 2020,
Art. no. 101882.

[18] X. Zhou and M. Zhong, “Single-track train timetabling with guar-
anteed optimality: Branch-and-bound algorithms with enhanced lower
bounds,” Transp. Res. B, Methodol., vol. 41, no. 3, pp. 320–341,
Mar. 2007.

[19] A. Schöbel, “An eigenmodel for iterative line planning, timetabling and
vehicle scheduling in public transportation,” Transp. Res. C, Emerg.
Technol., vol. 74, pp. 348–365, Jan. 2017.

[20] A. Nuzzolo and U. Crisalli, “The schedule-based modeling of transporta-
tion systems: Recent developments,” in Schedule-based Modeling of
Transportation Networks. Boston, MA, USA: Springer, 2009, pp. 1–26.

[21] J. Xie, S. C. Wong, and S. M. Lo, “Three extensions of Tong
and Richardson’s algorithm for finding the optimal path in schedule-
based railway networks,” J. Adv. Transp., vol. 2017, Jan. 2017,
Art. no. 9216864.

[22] X. Wu, H. Dong, and C. K. Tse, “Multi-objective timetabling optimiza-
tion for a two-way metro line under dynamic passenger demand,” IEEE
Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 4853–4863, Aug. 2021.

[23] Y.-H. Chang, C.-H. Yeh, and C.-C. Shen, “A multiobjective model for
passenger train services planning: Application to Taiwan’s high-speed
rail line,” Transp. Res. B, Methodol., vol. 34, no. 2, pp. 91–106, 2000.

[24] W. Y. Szeto and Y. Jiang, “Transit route and frequency design: Bi-level
modeling and hybrid artificial bee colony algorithm approach,” Transp.
Res. B, Methodol., vol. 67, pp. 235–263, Sep. 2014.

[25] Y. Yue, S. Wang, L. Zhou, L. Tong, and M. R. Saat, “Optimizing train
stopping patterns and schedules for high-speed passenger rail corridors,”
Transp. Res. C, Emerg. Technol., vol. 63, pp. 126–146, Feb. 2016.

[26] L. P. Veelenturf, L. G. Kroon, and G. Maróti, “Passenger oriented
railway disruption management by adapting timetables and rolling stock
schedules,” Transp. Res. C, Emerg. Technol., vol. 80, pp. 133–147,
Jul. 2017.

[27] J. Xie, S. Zhan, S. C. Wong, and S. M. Lo, “A schedule-based timetable
model for congested transit networks,” Transp. Res. C, Emerg. Technol.,
vol. 124, Mar. 2021, Art. no. 102925.

[28] H. Niu and X. Zhou, “Optimizing urban rail timetable under time-
dependent demand and oversaturated conditions,” Transp. Res. C, Emerg.
Technol., vol. 36, no. 11, pp. 212–230, 2013.

[29] X. Yang, B. Ning, X. Li, and T. Tang, “A two-objective timetable
optimization model in subway systems,” IEEE Trans. Intell. Transp.
Syst., vol. 15, no. 5, pp. 1913–1921, Oct. 2014.

[30] H. Sun, J. Wu, H. Ma, X. Yang, and Z. Gao, “A bi-objective timetable
optimization model for urban rail transit based on the time-dependent
passenger volume,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 2,
pp. 604–615, Feb. 2019.

[31] Y. Bai, Q. Hu, T. K. Ho, H. Guo, and B. Mao, “Timetable optimization
for metro lines connecting to intercity railway stations to minimize
passenger waiting time,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 1,
pp. 79–90, Jan. 2021.

[32] X. Sun, S. Zhang, H. Dong, Y. Chen, and H. Zhu, “Optimization of metro
train schedules with a dwell time model using the Lagrangian duality
theory,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3, pp. 1285–1293,
Jun. 2015.

[33] S. Zhan, S. C. Wong, P. Shang, and S. M. Lo, “Train rescheduling
in a major disruption on a high-speed railway network with seat
reservation,” Transportmetrica A, Transp. Sci., pp. 1–36, Feb. 2021, doi:
10.1080/23249935.2021.1877369.

[34] X. Guo, J. Wu, H. Sun, R. Liu, and Z. Gao, “Timetable coordi-
nation of first trains in urban railway network: A case study of
Beijing,” Appl. Math. Model., vol. 40, nos. 17–18, pp. 8048–8066,
Sep. 2016.

[35] M. B. Khan and X. Zhou, “Stochastic optimization model and
solution algorithm for robust double-track train-timetabling prob-
lem,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 1, pp. 81–89,
Mar. 2010.

[36] S. Zhan, S. C. Wong, P. Shang, Q. Peng, J. Xie, and S. M. Lo, “Integrated
railway timetable rescheduling and dynamic passenger routing during a
complete blockage,” Transp. Res. B, Methodol., vol. 143, pp. 86–123,
Jan. 2021.

[37] W. Y. Szeto, Y. Jiang, K. I. Wong, and M. Solayappan, “Reliability-based
stochastic transit assignment with capacity constraints: Formulation and
solution method,” Transp. Res. C, Emerg. Technol., vol. 35, pp. 286–304,
Oct. 2013.

[38] G. Xu, H. Yang, W. Liu, and F. Shi, “Itinerary choice and advance
ticket booking for high-speed-railway network services,” Transp. Res.
C, Emerg. Technol., vol. 95, pp. 82–104, Oct. 2018.

[39] Z. Hou, H. Dong, S. Gao, G. Nicholson, L. Chen, and C. Roberts,
“Energy-saving metro train timetable rescheduling model considering
ATO profiles and dynamic passenger flow,” IEEE Trans. Intell. Transp.
Syst., vol. 20, no. 7, pp. 2774–2785, Jul. 2019.

http://dx.doi.org/10.1080/23249935.2021.1877369


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: SCHEDULE-BASED MODEL FOR PASSENGER-ORIENTED TRAIN PLANNING 15

[40] W. Y. Szeto and Y. Jiang, “Transit assignment: Approach-based formu-
lation, extragradient method, and paradox,” Transp. Res. B, Methodol.,
vol. 62, pp. 51–76, Apr. 2014.

[41] C. O. Tong and A. J. Richardson, “A computer model for finding the
time-dependent minimum path in a transit system with fixed schedules,”
J. Adv. Transp., vol. 18, no. 2, pp. 145–161, Mar. 1984.

Jiemin Xie received the Ph.D. degree in transporta-
tion engineering from The University of Hong Kong,
Hong Kong.

She is currently an Assistant Professor with
the School of Intelligent Systems Engineering,
Sun Yat-sen University. Her current research inter-
ests include analysis of passenger behaviors and
transit planning.

Shuguang Zhan received the Ph.D. degree in trans-
portation planning and management from Southwest
Jiaotong University, Chengdu, China.

He is currently a Professor with the School of
Automotive and Transportation Engineering, Hefei
University of Technology. His current research inter-
ests include analysis of passenger behaviors and
railway planning.

Sze Chun Wong received the Ph.D. degree in
transport studies from University College London,
London, U.K.

He is currently a Chair Professor with the Depart-
ment of Civil Engineering, The University of
Hong Kong. His current research interests include
dynamic transit assignment problems, traffic equilib-
rium problems, optimization of traffic signal settings,
road safety, and urban taxi services.

Siu Ming Lo received the Ph.D. degree in
architecture from The University of Hong Kong,
Hong Kong.

He is currently a Professor with the Department of
Architecture and Civil Engineering, City University
of Hong Kong. His current research interests include
urban and land use planning, spatial planning for
pedestrian movement and evacuation modeling, and
building development.


