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Abstract

Coherence, the superposition of orthogonal quantum states, is indispensable in various quantum
processes. Inspired by the polynomial invariant for classifying and quantifying entanglement, we first
define polynomial coherence measure and systematically investigate its properties. Except for the
qubit case, we show that there is no polynomial coherence measure satisfying the criterion that its
value takes zero if and only if for incoherent states. Then, we release this strict criterion and obtain a
necessary condition for polynomial coherence measure. Furthermore, we give a typical example of
polynomial coherence measure for pure states and extend it to mixed states via a convex-roof
construction. Analytical formula of our convex-roof polynomial coherence measure is obtained for
symmetric states which are invariant under arbitrary basis permutation. Consequently, for general
mixed states, we give a lower bound of our coherence measure.

1. Introduction

Coherence describes a unique feature of quantum mechanics—superposition of orthogonal states. The study of
coherence can date back to the early development of quantum optics [ 1], where interference phenomenon is
demonstrated for the wave-particle duality of quantum mechanics. In quantum information, coherence acts as
an indispensable ingredient in many tasks, such as quantum computing [2], metrology [3], and randomness
generation [4]. Furthermore, coherence also plays an important role in quantum thermodynamics [5-7], and
quantum phase transition [8, 9].

With the development of the quantum information theory, a resource framework of coherence has been
recently proposed [10]. The free state and the free operation are two elementary ingredients in a quantum
resource theory. In the resource theory of coherence, the set of free states is a collection of all quantum states
whose density matrices are diagonal in a reference computational basis I = {[i)}. The free operations are
incoherent complete positive and trace preserving (ICPTP) operations, which cannot map any incoherent state
to a coherent state. With the definitions of free states and free operations, one can define a coherence measure
that quantifies the superposition of reference basis. Based on this coherence framework, several measures are
proposed, such as relative entropy of coherence, I; norm of coherence [10], and coherence of formation [11, 12].
Moreover, coherence in distributed systems [13, 14] and the connections between coherence and other
quantum resources are also developed along this line [15-17].

One important class of coherence measures is based on the convex-roof construction [11]. For any
coherence measure of pure states C (|1))), the convex-roof extension of a general mixed state p is defined as

C(p) = min Y p.C(|¥)), (1.1)

i’l i i

where the minimization is over all the decompositions { p., |¢;) } of p = 3, p;|3) (1;|. When

C(l¥)) = S(A([Y) (¢ ])), where Sis von Neumann entropy and A(p) = Y_,|i) (i| pli) (i|is the dephasing
channel on the reference basis I, the corresponding measure is the coherence of formation. When

C (1)) = max;|(i|¢)) |?, the corresponding measure is the geometric coherence [16]. In general, the minimiza-
tion problem in equation (1.1) is extremely hard. In particular, analytical formula of the coherence of formation
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Table 1. Criteria for a coherence measure.

(Cl) C(6)=0if6 €Z;(C1)C(®) =0iff6 € Z

(C2)  Monotonicity with post-selection: for any incoherent operation ®icprp(p) = >, Ky K,C(p) > 2,C(p,), where p, = el / P,
and p, = Tr(K,pK,)

(C3) Convexity: 5, p.C(p,) = CC_. p0,)

is only obtained for qubit states. The efficient calculation for this class of coherence measure is still an open
problem.

This is very similar to quantifying another well-known quantum resource, entanglement, where free states
are separable states and free operations are local operations and classical communication [18]. In entanglement
measures, convex-roof constructions have been widely studied [19, 20]. Similarly, the minimization problem is
generally hard. Fortunately, there are two solvable cases, concurrence [21, 22] and three-tangle [23]. Both of
them are related to a very useful class of functions, referred as polynomial invariant [24]. A polynomial invariant
isahomogenous polynomial function of the coefficients of a pure state, P, (|t))), which is invariant under
stochastic local operations and classical communication (SLOCC) [25]. Denote & to be the degree of the
polynomial function, for an N-qudit state |1)),

Pyu(KLIY)) = K"Py(|9)), (1.2)

where  is an arbitrary scalarand L € S£(d, C)®Y isa product of invertible linear operators representing
SLOCC. For an entanglement measure of pure states, one can add a positive power m to the absolute value of the
polynomial invariant,

Ei"(1¥) = [Pu(I¥)I™, (1.3)

where the overall degree is hm. Polynomial invariants are used to classify and quantify various types of
entanglement in multi-qubit [26, 27] and qudit systems [28]. Specifically, the convex-roof of concurrence can be
solved analytically in the two-qubit case [22], and the three-tangle for three-qubit is analytically solvable for
some special mixed states [29-31]. Recently, a geometric approach [32] is proposed to analyze the convex-roof
extension of polynomial measures for the states of more qubits in some specific cases.

Inspired by the polynomial invariant in entanglement measure, we investigate polynomial measure of
coherence in this work. First, in section 2, after briefly reviewing the framework of coherence measure, we define
polynomial coherence measure. Then, in section 3, we show a no-go theorem for polynomial coherence
measures. That is, if the coherence measure only vanishes on incoherent states, there is no such polynomial
coherence measure when system dimension is larger than 2. Moreover, in section 4, we permit some
superposition states to take zero-coherence, and we find a necessary condition for polynomial coherence
measures. In section 5, we construct a polynomial coherence measure for pure states, which shows similar form
with the G-concurrence in entanglement measure. In addition, we derive an analytical result for symmetric
states and give alower bound for general states. Finally, we conclude in section 6.

2. Polynomial coherence measure

Let us start with a brief review on the framework of coherence measure [10]. In a d-dimensional Hilbert space
'H 4, the coherence measure is defined in a reference basis I = {|i)} ;= ,, ... 4 Thus, the incoherent states are the
states whose density matrices are diagonal, 6 = Zf: 1 217) (i]. Denote the set of the incoherent states to be Z. The
incoherent operation can be expressed as an ICPTP map ®icprp(p) = >, Ky pK T, in which each Kraus operator
satisfies the condition K, pK,:r / Tr(K, pK: ) € T if p € Z.Thatisto say, no coherence can be generated from
any incoherent states via incoherent operations. Here, the probability to obtain the nth output is denoted

by p, = Tr(K,pK)).

Generally speaking, a coherence measure C(p) maps a quantum state p to a non-negative number. There are
three criteria for C(p), as listed in table 1 [10]. Note that the criterion (C1’) is a stronger version than (C1).
Sometimes, a weaker version of (C2) is used, where the monotonicity holds only for the average state,

C(p) = C(Picprp(p)). In this work, we focus on the criterion (C2), since it is more reasonable from the physics
point of view.

Next, we give the definition of polynomial coherence measure, drawing on the experience of polynomial
invariant for entanglement measure. Denote a homogenous polynomial function of degree-#, constructed by
the coefficients of a pure state [1)) = Zfl:l a;|i) in the computational basis, as

2
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d

ki

PlY) = > Xekok, 11 @i 2.1
Kk, ka i=1

where k; are the non-negative integer power of a;, >_k; = h,and x;,; . are coefficients. Then after imposing a

proper power m > 0 on the absolute value of a homogenous polynomial, one can construct a coherence

measure as,

Co(l¥)) = [Pp(l)I™, 2.2)

where the overall degree is hm, and the subscript p is the abbreviation for polynomial.

A polynomial coherence measure for pure states C, (/) can be extended to mixed states by utilizing the
convex-roof construction,

Cp(p) = {mlig} ZP,‘Cp(W}i») (2.3)
where the minimization runs over all the pure state decompositions of p = 3, p|1;) (¢;|with 3=, p, = 1and
p; > 0,and Cy(|¢))) is the pure-state polynomial coherence measure as shown in equation (2.2).

Alegal polynomial measure, in the form of equation (2.1), should satisfy the monotone criteria, showed in
table 1, (C1) (or (C1")), (C2), and (C3). Note that if the pure-state measure equation (2.2) satisfies (C1) (or
(C1")), (C2), the mixed-state measure via the convex-roof construction equation (2.3) would satisfy (C1) (or
(C1")), (C2),and (C3) [11]. This is because the convex-roof construction guarantees the convexity of the
measure. Thus, without loss of generality, we only need to focus on the polynomial coherence measure on pure
states in the following sections.

3.No-go theorem

The simplest example of polynomial coherence measure is the /;-norm for d = 2 on pure state. For a pure qubit
state, [¢)) = «|0) + G|1), the ,-norm coherence measure takes the sum of the absolute value of the off-diagonal
terms in the density matrix,

Ciy(1¥) = laf¥+1a*B] = 2|ap). 3.1

By the definition of equation (2.2), C; is the absolute value of a degree-2 homogenous polynomial function with
apower m = 1. Meanwhile, this coherence measure on pure state satisfies the criteria (C1’), (C2) [10]. Thusiits
convex-roof construction turns out to be a polynomial coherence measure satisfying all the criteria. Note that
when the function equation (3.1) is extended to d > 2, it cannot be expressed as the absolute value of a
homogenous polynomial function. Thus, when d > 2, the /;-norm coherence measure is not a polynomial
coherence measure.

Surprisingly, for d > 2, there is no polynomial coherence measure that satisfies the criterion (C1’). In order
to show this no-go theorem, we first prove the following lemma:

Lemma 1. For any polynomial coherence measure C,(|¢))) and two orthogonal pure states |1),) and |1),), there exists
two complex numbers & and (3 such that

Cplalth) + Bl)) =0 (3.2)
where|a> + |G = L. Thatis, there exists at least one zero-coherence state in the superposition of |1,) and |1),).

Proof. Since m > 0, the roots of C,(|))) = 0in equation (2.2) are the same with the ones of | P, (/)| = 0in
equation (2.1). That is, we only need to prove lemma for the case of m = 1. Since Py, (|))) is ahomogenous
polynomial function of the coefficients of |1/), one can ignore its global phase. Thus, any pure state in the
superposition of |¢;) and |1,) can be represented by

+w
) = |11 Wz)’ (3.3)
J1+ |w)?
where the global phase is ignored, w is a complex number containing the relative phase, and [¢)) — [1,),
as |w| — oo.
First, if C,(|1)2)) = 0, thelemma holds automatically. When C,(|2)2)) > 0, C, (1)) can be written as,
+ w
Gty = | pof 12
J1 4w
= (1 + WP "2Py(¢hn) + wliba))l, (3.4)
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since P, ahomogenous polynomial function of degree h. Note that the condition C, (|1/,)) > 0,i.e.,
lim (1 4 @) "2|Py(j¢n) + wlvha))] > 0, (3.5)

w— 00

guarantees that the coefficient of w" in Py (|th)) + w|1),)) = 0is non-zero. Then, there are h roots of the
homogenous polynomial function of w,

Pyu([th) + wlpa)) = 0, (3.6)
denotedby {z, z, ... , z;}. Thus, C,(|¢)) can be expressed as

h
Co(l) = AQ + |wP) 2] |w — zil, (3.7)

i=1

where A > 0 is some constant. In summary, we find at least one w, v = (1 + |w|*)~'/?and
B=w( + |wP)"'/2 suchthat C,(J1h)) = 0. O

Theorem 1. There is no polynomial coherence measure in H, with d > 3 that satisfies the criterion (C1').

Proof. In the following proof, we focus on the case of d > 4 andleave d = 3 in appendix A. With d > 4, we can
decompose H, into two orthogonal subspaces Hy, & H,, in the computational basis, i.e., Hy = {|i)i=1,....4, }
and Hg4, = {|i)i—4+1,...,4 } with the corresponding dimensions d; and d, = d — d, both larger than 2.

Suppose there exist a polynomial coherence measure C,,(|1))) such that the criterion (C1’) listed in table 1
can be satisfied. Then, there are exactly d zero-coherence pure states |i) (i = 1, -+, d), which form the reference
basis. One can pick up two coherent states, [¢;) € Hg and [1),) € Hg,. Thatis, C,(|201)) > 0and C,(|t)2)) > 0.
Since two subspaces H 4, and H4, are orthogonal, any superposition of these two states, a|;) + (]t),) with
la> + |8 = 1, should not equal to any of the reference basis states, i.e., a|v1) + Bl|,) = |i), Vi =1, -+, d.
Thus, due to the criterion (C1’), we have

Cplaltyn) + Blha)) > 0. (3.8)

On the other hand, for the polynomial coherence measure C, (|1))), lemma I states that provided any two
orthogonal pure states [t1), |1),), there exists at least a pair of complex numbers, & and 3, such that
aly) + Bli,)isazero-coherence state, i.e.

Cpalhr) + Bl,) = 0. (3.9

Therefore, it leads to a contradiction. O

4. Necessary condition for polynomial coherence measure

In theorem 1, we have shown a no-go result of polynomial coherence measure for d > 3 when the criterion
(Cl')in table 1 is considered. Thus, we release (C1) to (C1’) and study polynomial coherence measure with the
criteria (C1"), (C2), and (C3) in the following discussions. Then, there will be some coherent states whose
coherence measure is zero. This situation also happens in entanglement measures, such as negativity, which
remains zero for the bound entangled states [33]. Here, we focus on the pure-state case and employ the convex-
roof construction for general mixed states. As presented in the following theorem, we find a very restrictive
necessary condition for polynomial coherence measures that C, (|¢))) = 0, for all |¢) whose support does not
span all the reference bases {i}.

Theorem 2. For any |¢)) € Hy, thevalue of a polynomial coherence measure C,(|¢))) should vanish if the rank of the
corresponding dephased state A(|1)) (1)) is less than d, i.e. rank(A () (¢])) < d.

Proof. Suppose there exists [1);) € H,suchthat C,(|1y)) > 0and rank(A(|¢)y) (¢1])) = d) < d. Withoutloss
of generality, |¢);) is assumed to be in the subspace H,, = spanned{|1), |2), ---, |d}) }. Define the complemen-
tary subspace to be H,, = spanned{|d; + 1), |d; + 2), -+, |d)}, where d, = d — d; > 0. We prove this
theorem by two steps.

Step 1: we show thatif d; < d/2,then C,(|1/1)) > 0leadsto a contradiction to lemma 1. Now that
d) < d/2 < d,, there exists a relabeling unitary U, that transforms the bases in H, to parts of the bases in H,4,.
For instance, H, = spanned{|1), [2)}and H,, = spanned{|3), |4), |5)}, then U,canbe chosen as
[1) (3] 4+ [3) (1] + |2) (4] + |4) (2] 4 |5)(5].Infact, U,and U, are both incoherent operation, since they just
exchange the index of the reference bases. Assume that U, maps |1/,) to anew state [th,) = Ult);) € Hy,, thenwe
have (11|1),) = 0.Due to the criterion (C2), it is not hard to show that an incoherent unitary transformation
does not change the coherence,
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Coly) = Cp(I¥h2)). (4.1

Define another incoherent operation, composed by two operators P = Y% |i) (iland P, = P al) (il
that project states to H 4, and H,, respectively,
Picere(p) = Y PipP/, (4.2)
i=1,2
which represents a dephasing operation between the two subspaces. Then, for any superposition state,

alyy) + Bly,) with | + |82 = 1, its coherence measure should not increase under the ICPTP operation
with post-selection, as required by (C2) in table 1,

Colalth) + Blva) =1alPCplyn) + 16 Cp(12))
= Cp(Itn)) > 0, (4.3)

where the last equality comes from equation (4.1). Therefore, C, (a|1/1) + Bl1p,)) > 0forany @and (3. This
leads to a contradiction to lemma 1.

Step 2: we show thatif d/2 < d; < d, then C,(|/1)) > 0alsoleads toa contradiction. Now that
0<d <d/2 < d <dforany|¢,) € Ha,wehave C,(|1),)) = 0due to the above proofin Step 1.
Similar to the proof of lemma 1, we only need to consider the case of m = 1 and we can get the coherence
measure for the superposition state of [))) € Hy and [1,) € Hy as (1 + |w)2|Py(|1h) + wl|12))]. Since
Cplyp2)) = lim (1 + |wP)"2|Py(thn) + wlv2)]| =0, (4.4)

w—00

the largest degree of w in the polynomial Pj,(|1);) + w|t),)), denoted by 1, is smaller than the degree h.
When p = 0, i.e., the polynomial is a constant, we denote its absolute value by k. Then the coherence
measure becomes,

Co(l) = k(1 + |w]?)~h2 (4.5)

We show that the constant k = 0 in appendix B. Asaresult, C,(|11)) = 0. Thisleads to a contradiction to our
assumption that C, (|1/1)) > 0.

When 0 < p < d,ie., Py(|t1) + wlw,))isanon-constant polynomial of w, there exists at least one root
|z| < oo, suchthat P,(|¢)1) + z|12)) = 0. Then, we can find that the coherence measure of the state

[,y = () + z|1/12>)/w/1 + |z* is C,(|¢)y)) = 0.Next, we apply the ICPTP operation described in
equation (4.2) on |¢,) and obtain,

2
Colliin)) > 1+1| FCp(l) + f'lzlz Co(la))
1
= TGt (4.6)

where we use C, (|1),)) = 0in the equality. Combing the fact that C,(|¢,)) = 0, we can reach the conclusion
that C,(|¢)) = 0. This leads to a contradiction to our assumption that C, (|31)) > 0. O

5. G-coherence measure

From theorem 2, we can see that only the states with a full support on the computational basis could have
positive values of a polynomial coherence measure. Here, we give an example of polynomial coherence measure
satisfying this condition, which takes the geometric mean of the coefficients, for [¢)) = Z?:I aili),

Co(l¥) = dlmay -+ aql*’?. (5.1)

Note that it is a degree-d homogenous polynomial function modulated by a power m = 2/d. This definition is
an analog to the G-concurrence in entanglement measure, which is related to the geometric mean of the Schmidt
coefficients of a bipartite pure state [34]. Hence we call the coherence measure defined in equation (5.1) G-
coherence measure. Since the geometric mean function is a concave function [35], following theorem 1 in [36], we
can quickly show that the G-coherence measure satisfies the criteria (C1), (C2) and (C3).

When d = 2, the G-coherence measure becomes the [;-norm measure on pure state. When d > 2,
according to theorem 2, there is a significant amount of coherent states whose G-coherence is zero. For instance,
in the case of d = 3, the state %(|0> + |1)) has zero G-coherence and this state cannot be transformed to a
coherent state |¢)), where rank(A(|9)) (¢|)) = 3, viaa probabilistic incoherent operation [12].

Now we move onto the mixed states with the convex-roof construction. In fact, searching for the optimal
decomposition in equation (2.3) is generally hard. However, like the entanglement measures, there exist
analytical solutions for the states with symmetries [37, 38]. Here, we study the states related to the permutation

5
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group G, on the reference basis. A element g € G;is defined as

(12 .. 4d
£§= (il o id) (5.2)
and the order (the number of the elements) of G, is d!. The corresponding unitary of gis denoted as

U; = 2oilix) (k| Then we have the following definition.

Definition 1. A state p is a symmetric state if it is invariant under all the permutation unitary operations, i.e.
Vg€ G, G pUy = p.

Denote the symmetric state as p° and the symmetric state set as S. Given the maximally coherent state

[T = %Z [li), itis not hard to show the explicit form of symmetric states,

p* = plWs) (Wl + (1 — p)%, (5.3)

which is only determined by a single parameter, the mixing probability p € [0, 1]. Apparently, the symmetric
state p® is a mixture of the maximally coherent state | ;) and the maximally mixed state I /d. The state |I;) is the
only pure state in set S. Borrowing the techniques used in quantifying entanglement of symmetric states [38, 39],
we obtain an analytical result C; (p°) in theorem 3, following lemmas 2 and 3.

First, we consider a map

Alp) =

1 :
c > UppUy. (5.4)

Gl %

It uniformly mixes all the permutation unitary U, on a state p, which is an incoherent operation by definition.

Lemma 2. The map A(p) defined in equation (5.4) satisfies two properties, ¥ p,

(1) A(p) € S, i.e. the output state is a symmetric state, as defined in definition 1;

(2) (Y p|Ws) = (V| A(p)|Wy), i.e. the map A(p) does not change the overlap with the maximally coherent
state |Uy).

Proof. Forany Uy with ¢’ € G,

1
U M) U = G > Uy Up) p(Uy Gy )t

1%

1 +
= ﬁ Z Ug’g p Ug’ g
g
= A(p). (5.5)
The last equality is due to the fact that by going through all permutations g, the joint permutation g’g also
traverses all the permutations in the group G;. By definition 1, we prove that A(p) € S.
The overlap between the output state A(p) and the maximally coherent state |¥;) is given by,

(WAl A W) = (W] é S U pU )
sl g

- 300 U o1

= (Wl pl¥s). (5.6)
where in the second line we use the relation U; = U, and thelastline is due to the fact that [¥;) € Sand
Ug W) = V). O

Then, we define the following function for a symmetric state p°,

Co(p”) = nl?gg;l{Cc(IW)lA(W) (Wh = p}. (5.7)

Since the state p* in equation (5.3) only has one parameter p, it can be uniquely determined by its overlap with
the maximally coherent state K = (0| p*|¥;) = p% + %. Thus, p? linearly depends on K. According to

lemma 2, A(|1)) (1)|) is a symmetric state and the overlap does not change under the map A. Hence, the
constraint A(|)) (1)]) = p®in equation (5.7) is equivalent to | (¥| 1) > = (Ty| p*|¥;). Following the
derivations of the G-concurrence [39], we solve the minimization problem and obtain an explicit form of

6
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1.0}
08 |
— d-1
——— Cs(K) K>——
¢(K) y
06T — G(K)
04 |
02 |
0.2 0.4 0.6

Figure 1. [llustration for the two functions Cg (K) and C5(K)ind = 4 case. When 0 < K < % = 0.75, C5(K) = 0; when

% = 0.75 < K < 1, C5(K) isaconcave function following the form in equation (5.8), represented by the dashed blue line. Thus
the minimization result via equation (5.13), C5(K ) is the linear function 1 — 4(1 — K), when % = 0.75 < K < 1,described by
theredline.

Co(p),

Cs(K) = , (5.8)

d
d(abH/d ——— <K< 1

where

a:i(ﬁ—\/d—wl—m,
Jd

1 JI =K
b_ﬁ(ﬁjL——dfﬂ'

Details can be found in appendix C. Here, we substitute Cg; (K) for Cg (p*) without ambiguity. When
% < K < 1, C5(K) isa concave function [39]. We show C(K) in the case of d = 4 in figure 1. Moreover,

following the results of [38], we have the following lemma.

Lemma 3. The convex-roof of the G-coherence measure Cg for a symmetric state p® is given by,

Ce(p®) = {mi%} ZP,—CG(W):‘»

Y

= min > 4,Co()), (59)
{app3} j

P
where 32, pilvi) (Uil = p*, 34,05 = p% and p; € S.

Proof. Denote Z; = miny,, ;) >; p;Co (i) and Z, = min{qj,p;} >4 Cq (p;). Now we prove the lemma by
showing that both of them equal to,

Z3 = min {Z p; CG(|¢i>)‘ZPiA(|¢i> (vil) = PS}- (5.10)

{pol ¥}

Z, = Zs:foradecomposition, p* = 3=, p.|1;) (1)1, after applying the map A on both sides, we have
> P A (wil) = A(p) = p. (5.11)

Here, we use the fact that p° is a symmetric state, which is invariant under the map A. That is, any decomposition
satisfies the constraint Y, p,[1;) (| = p° as required for Z, also satisfies the constraint Y=, p. A(|1);) (1i]) = p*as
required for Z;. Thus, we have Z3 < Z. On the other hand, the constraint 3=, p. A(|¢;) (¢i]) = p*in

equation (5.10) is also a pure-state decomposition of the state p*, since every component in A(|¢);) (¢);|) is a pure
state Uy|¢);) with probability p, /|G. Thus we also have Z1 < Z3.Consequently, Z1 = Z3.

7
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Z, = Zs: Infact, the constraint in equation (5.10) is on A(|¢;) (¢;]) € S, thus we can solve the minimization
problem of equation (5.10) in two steps. First, given A(|2);) (1;]) € S, we minimize Cg(|¢;)), which turns out to
be the same as the definition of Cg (A(|#;) (1;])) in equation (5.7). Next, we optimize the decomposition of p° in
the symmetric state set S, which turns out to be the same as the definition of Z,. Thus we have Z, = Z;. O

Theorem 3. For a symmetricstate p° € S in Hy, the G-coherence measure is given by

Cg(p®) = max{l — d(1 — K), 0}, (5.12)
where K = (Y| p*|W,) is the overlap between p, and the maximally coherent state |U).
Proof. According tolemma 3, the G-coherence measure for a symmetric state is given by Cg (p*) = min{qj) P 2

q; Co( p;) with 37, g, pj = p°. Since the symmetric state linearly depends on the overlap K, this minimization is
equivalent to,

4pRj

Ce(K) = miKI_l} {Z 4,Co (K|S q.K; = K} (5.13)
j j

Then, according to the explicit expression of C;(K) in equation (5.8): When 0 < K < %, Ci(K) = 0.Thus,
Cs(K) < Cg(K) = 0. When % < K < 1, fortunately, Cg; (K) is a concave function. It is not hard to find that

the optimization result is a straight line connecting the point {%, 0}and {1, 1}onthe {K, Cs(K)} plane.
Consequently, Cg (p®) shows the form in equation (5.12). O

The dependence of C;(K) and C(K ) on Kin the case of d = 4 are plotted in figure 1. Furthermore, we can
give alower bound of the G-coherence measure Cg for any general mixed state p, with the analytical solution for
p* in theorem 3.

Corollary 1. For a mixed state p,
Cs(p) =2 max[1 — d(1 — K), 0], (5.14)
where K = (U] p|¥y).

Proof. Since A is an incoherent operation, we have,

Ca(p) = Ce(A(p)). (5.15)
From lemma 2, we know that the overlap K = (9| p|¥;) = (¥,|A(p)|¥;)and A(p) € S.Following theorem 3,
the corollary holds. O

In fact, the tightness of the bound depends on the overlap. Thus, we can enhance the bound by pre-treating
the state by a certain ICPTP y that can increase the overlap, i.e.

Cs(p) = Co(x(p) = Ce(A(x(p))) = max[1 — d(1 — K'), 0], (5.16)
where K’ = (Uy| x(p)[¥y) > K = (Y| p|¥y).

6. Conclusion and outlook

In this paper, we give the definition of polynomial coherence measure C, (p), which is an analog to the definition
of polynomial invariant in classifying and quantifying the entanglement resource. First, we show that thereisno
polynomial coherence measure satisfying the criterion (C1’) in table 1, when the dimension of the Hilbert space
dislarger than 2. That s, there always exist some pure states [1)) = |i)(i = 1, ..., d) possessing zero-coherence
when d > 3. Then, we find a very restrictive necessary condition for polynomial coherence measures—the
coherence measure should vanish if the rank of the corresponding dephased state A(|¢)) (¢/|) is smaller than the
Hilbert space dimension d. Meanwhile, we give an example of polynomial coherence measure Cg(p), called G-
coherence measure. We conjecture that there are not too many polynomial coherence measures, due to the
restrictive condition given by theorem 2; and we suspect that all the polynomial measures would share similar
structure as the G-coherence. Moreover, we derive an analytical formula of the convex-roof of Cg for symmetric
states, and also give alower bound of Cg; for general mixed states. In addition, we should remark that the
symmetry consideration in our paper is also helpful to understand and bound other coherence measures,
especially the ones built by the convex-roof method.

In entanglement quantification, the polynomial invariant is an entanglement monotone if and only if its
degree n < 4 in the multi-qubit system [40, 41]. Here, the quantification theory of coherence shows many
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similarities to the one for entanglement. Following the similar approaches in our paper, some results can be
extended to the entanglement case. For example, one can obtain some necessary conditions where a polynomial
invariant serves as an entanglement monotone, in more general multi-partite system H = H,;*N, whose local
dimension d; > 2[28]. Moreover, polynomial coherence measure (especially G-coherence) defined here may
serve as an important quantifier when studying the relation and conversion between the two important
quantum resources, coherence and entanglement.

After finishing the manuscript, we find that a coherence measure similar to Cg(p) is also put forward in [42],
dubbed generalized coherence concurrence, by analog to the generalized concurrence for entanglement [34].
However, the analytical solutions and its relationship with polynomial coherence measure are not presented
in [42].
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Appendix A. Proof of theorem 1 ford = 3

In the main part, theorem 1 for the case of d > 4 has been proved. Here we prove the d = 3 case. First, alemma
that is an extension of lemma 1 follows.

Lemma 4. For any polynomial coherence measure C,(|¢))), and any two pure quantum states |1)y), |1),) satisfying
[ (2] Y1) | <1, thereis at least one zero-coherence state in the superposition space of them.

Proof. Like in lemma 1, without loss of generality, we just need to consider the scenario of power m = 1. First, if
C,(|12)) = 0, thelemma holds automatically. So we focus on the C,,(|1),)) = 0 case in the following.

Let us denote (1| 1) = kel with k < 1. Then, after ignoring the global phase, any superposition state of
|11) and |1),) can be represented by

_ ) + wlths)

Al
[¥) 7o) (A.D
where wis a complex number and the normalization factor Z (w) = ||¢)1) + w|v,)|=
JU+ P+ 2lwlkcos(d + 0) with w = |wlel?’.
Similar to lemma. 1, we can factorize C, (|1))) as
1) + wltpa)
C =| Pp| ————=
p(|w>) ‘ h( Z(w)
1
Z(w)hl () + wlha))l
A’ h
= Z(w)hHi:”w - zil, (A.2)

where A’ isaconstantand z;(i = 1, 2, ---, h) are the roots of the polynomial function Py, (|¢)1) + w|1),)). Thus
we can find at least one root in this C, (|1/,)) = 0 case, or equivalently, a zero-coherence state. O

With the help of lemma 4, now we prove theorem 1 for d = 3 case. First, similar to the main part, we can
choose two states with non-zero coherence as,

1

|¢n) = \/5(|1> + 12)),
1
|92) = f(|2> + 13)). (A.3)

Even though these two states share overlap with each other, any superposition state a|1);) + (]1,) should
not equal to the puresstate |i) (i = 1, 2, --+, d) in the computational basis. As required by the criterion (C1’) in
table. 1, i) (i = 1, 2, ..., d) are the only zero-coherence pure state. Thus, C,(a|t)1) + ([¢,)) > 0. Nonetheless,
itis contradict to lemma. 4. Consequently, there is no polynomial coherence measure satisfying the criterion
(C1") ford = 3 case.
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Appendix B. Proof for k = 0 in equation (4.5)

In the main part, the coherence measure for the superposition state of 1)) € H,, and |¢),) € H,, shows,
Co(I9)) = k(1 + |wl) /2.

If k > 0, the coherence measure strictly decreases with the increasing of |w|. That is, for any superposition
state [¢) = (|v1) + w|1/)2>)/1/ 1 + |wf? with [w| > 0,wehave C,(|)) < C,(|¢)1)). We denote the state
coefficientsby o = (1 + |w)""/2and 3 = w(1 + |w[*)"'/2 here. In the following, we show that there exists a
state [¢) = aly) + Bli,) with a < 1(or equivalently |w| > 0), such that C,(|¢))) = C,(|3)1)). As aresult, this
contradiction leadsto k = 0.

From [12, 43], we know that U} = Z?:I U|i) can transform to |P) = Zf;l ®,|i) via incoherent operation, if
(1@, ..., [9y?)* is majorized by (|®,?, ..., |P4]*)". Then combing the criteria (C2) and (C3) in table. 1, we
obtain that the coherence measure is non-increasing after incoherent operation. Thus, C(|¥)) > C(|®)) for any
coherence measure.

1

In our case, first, we denote [¢);) = Zf‘zladi) with Vi, |a;] > 0.And choose |¢,) = EZ?:dl+l|i>.Thenwe

canbuild astate [¢)) = aly)) + Bli),) thatsatisfies « < Land C,(|p)) > C,(|¢)1)), with the help of the
aforementioned majorization condition.
To be specific, if « satisfying,

o?lajl* > 3%/d,, (B.1)
where |aj|? is the minimal value in {|a,|* }, then (a?|a*, &?|ayf?, ..., &?lagl?, B%/ds, ..., 3%/d,)" is majorized by

(al?, |af, ..., lagl, 0, ..., 0)". Thus, C,(|1)) = C,(|¢h)). Infact, = (dola;? + 1)7/2 < 1, when the
inequality is saturated in equation (B.1).

Appendix C. Derivation of equation (5.8)

Asmentioned in the main part, the constraint for the pure state [¢)) = 3, a;|i) in equation (5.7) is the overlap
K = [(Wl )P ie.

> ad = VK, (C.1)

and the coefficients g; of the state should also satisfy the normalization condition,

Z|a,»|2 =1 (C.2)

When 0 < K < %, we can always set one of the coefficients a;= 0 with j € {i}, and let the corresponding
Cgequalto 0. Thus Cg(K) = 0in this K domain.

On the other hand, all the coefficients a; = 0, when % < K < 1.Inthis K domain, we should minimize
Cs(J)) = d(IT;]a;|)7 under the constraints in equations (C.1)and (C.2). Note that }_ |a;| > |3, a;|and the
equality can be reached when the coefficients share the same phase. Thus the constraint in equation (C.1) can be
replaced by,

> lai = VK. (C.3)

In fact, the function optimized here is the same to the one in [39] for the G-concurrence, after substituting
the Schmidt coefficients for the state coefficients |a;|. Thus, utilizing the same Lagrange multipliers in
Supplemental Material of [39], we can obtain equation (5.8) in the main part. And we can show that C;(K) isa
concave function, when % < K < 1, by directly following the derivation there.
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