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Abstract
Coherence, the superposition of orthogonal quantum states, is indispensable in various quantum
processes. Inspired by the polynomial invariant for classifying and quantifying entanglement, wefirst
define polynomial coherencemeasure and systematically investigate its properties. Except for the
qubit case, we show that there is no polynomial coherencemeasure satisfying the criterion that its
value takes zero if and only if for incoherent states. Then, we release this strict criterion and obtain a
necessary condition for polynomial coherencemeasure. Furthermore, we give a typical example of
polynomial coherencemeasure for pure states and extend it tomixed states via a convex-roof
construction. Analytical formula of our convex-roof polynomial coherencemeasure is obtained for
symmetric states which are invariant under arbitrary basis permutation. Consequently, for general
mixed states, we give a lower bound of our coherencemeasure.

1. Introduction

Coherence describes a unique feature of quantummechanics—superposition of orthogonal states. The study of
coherence can date back to the early development of quantumoptics [1], where interference phenomenon is
demonstrated for thewave-particle duality of quantummechanics. In quantum information, coherence acts as
an indispensable ingredient inmany tasks, such as quantum computing [2], metrology [3], and randomness
generation [4]. Furthermore, coherence also plays an important role in quantum thermodynamics [5–7], and
quantumphase transition [8, 9].

With the development of the quantum information theory, a resource framework of coherence has been
recently proposed [10]. The free state and the free operation are two elementary ingredients in a quantum
resource theory. In the resource theory of coherence, the set of free states is a collection of all quantum states
whose densitymatrices are diagonal in a reference computational basis = ñ{∣ }I i . The free operations are
incoherent complete positive and trace preserving (ICPTP) operations, which cannotmap any incoherent state
to a coherent state.With the definitions of free states and free operations, one can define a coherencemeasure
that quantifies the superposition of reference basis. Based on this coherence framework, severalmeasures are
proposed, such as relative entropy of coherence, l1 normof coherence [10], and coherence of formation [11, 12].
Moreover, coherence in distributed systems [13, 14] and the connections between coherence and other
quantum resources are also developed along this line [15–17].

One important class of coherencemeasures is based on the convex-roof construction [11]. For any
coherencemeasure of pure states yñ(∣ )C , the convex-roof extension of a generalmixed state ρ is defined as

år y= ñ
y ñ

( ) (∣ ) ( )
{ ∣ }

C p Cmin , 1.1
p i

i i
,i i

where theminimization is over all the decompositions y ñ{ ∣ }p ,i i of r y y= å ñá∣ ∣pi i i i .When
y y yñ = D ñá(∣ ) ( (∣ ∣))C S , where S is vonNeumann entropy and r rD = å ñá ñá( ) ∣ ∣ ∣ ∣i i i ii is the dephasing

channel on the reference basis I, the correspondingmeasure is the coherence of formation.When
y yñ = á ñ(∣ ) ∣ ∣ ∣C imaxi

2, the correspondingmeasure is the geometric coherence [16]. In general, theminimiza-
tion problem in equation (1.1) is extremely hard. In particular, analytical formula of the coherence of formation
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is only obtained for qubit states. The efficient calculation for this class of coherencemeasure is still an open
problem.

This is very similar to quantifying anotherwell-known quantum resource, entanglement, where free states
are separable states and free operations are local operations and classical communication [18]. In entanglement
measures, convex-roof constructions have beenwidely studied [19, 20]. Similarly, theminimization problem is
generally hard. Fortunately, there are two solvable cases, concurrence [21, 22] and three-tangle [23]. Both of
them are related to a very useful class of functions, referred as polynomial invariant [24]. A polynomial invariant
is a homogenous polynomial function of the coefficients of a pure state, yñ(∣ )Ph , which is invariant under
stochastic local operations and classical communication (SLOCC) [25]. Denote h to be the degree of the
polynomial function, for anN-qudit state yñ∣ ,

k y k yñ = ñ( ∣ ) (∣ ) ( )P L P , 1.2h
h

h

whereκ is an arbitrary scalar and  Î Ä( )L d, N is a product of invertible linear operators representing
SLOCC. For an entanglementmeasure of pure states, one can add a positive powerm to the absolute value of the
polynomial invariant,

y yñ = ñ(∣ ) ∣ (∣ )∣ ( )E P , 1.3h
m

h
m

where the overall degree is hm. Polynomial invariants are used to classify and quantify various types of
entanglement inmulti-qubit [26, 27] and qudit systems [28]. Specifically, the convex-roof of concurrence can be
solved analytically in the two-qubit case [22], and the three-tangle for three-qubit is analytically solvable for
some specialmixed states [29–31]. Recently, a geometric approach [32] is proposed to analyze the convex-roof
extension of polynomialmeasures for the states ofmore qubits in some specific cases.

Inspired by the polynomial invariant in entanglementmeasure, we investigate polynomialmeasure of
coherence in this work. First, in section 2, after briefly reviewing the framework of coherencemeasure, we define
polynomial coherencemeasure. Then, in section 3, we show a no-go theorem for polynomial coherence
measures. That is, if the coherencemeasure only vanishes on incoherent states, there is no such polynomial
coherencemeasurewhen systemdimension is larger than 2.Moreover, in section 4, we permit some
superposition states to take zero-coherence, andwefind a necessary condition for polynomial coherence
measures. In section 5, we construct a polynomial coherencemeasure for pure states, which shows similar form
with theG-concurrence in entanglementmeasure. In addition, we derive an analytical result for symmetric
states and give a lower bound for general states. Finally, we conclude in section 6.

2. Polynomial coherencemeasure

Let us start with a brief review on the framework of coherencemeasure [10]. In a d-dimensional Hilbert space
d, the coherencemeasure is defined in a reference basis = ñ = ¼{∣ }I i i d1,2, , . Thus, the incoherent states are the

states whose densitymatrices are diagonal, d = å ñá= ∣ ∣p i ii
d

i1 . Denote the set of the incoherent states to be  . The

incoherent operation can be expressed as an ICPTPmap r rF = å( ) †K Kn n nICPTP , inwhich eachKraus operator

satisfies the condition r r Î( )† †K K K KTrn n n n if r Î . That is to say, no coherence can be generated from
any incoherent states via incoherent operations. Here, the probability to obtain the nth output is denoted
by r= ( )†p K KTrn n n .

Generally speaking, a coherencemeasure r( )C maps a quantum state ρ to a non-negative number. There are
three criteria for r( )C , as listed in table 1 [10]. Note that the criterion ¢( )C1 is a stronger version than ( )C1 .
Sometimes, a weaker version of ( )C2 is used, where themonotonicity holds only for the average state,

r rF( ) ( ( ))C C ICPTP . In this work, we focus on the criterion ( )C2 , since it ismore reasonable from the physics
point of view.

Next, we give the definition of polynomial coherencemeasure, drawing on the experience of polynomial
invariant for entanglementmeasure. Denote a homogenous polynomial function of degree-h, constructed by
the coefficients of a pure state yñ = å ñ=∣ ∣a ii

d
i1 in the computational basis, as

Table 1.Criteria for a coherencemeasure.

( )C1 d =( )C 0 if d Î ; ¢( )C1 d =( )C 0 iff d Î
( )C2 Monotonicity with post-selection: for any incoherent operation r rF = å( ) †K Kn n nICPTP , r r( ) ( )C p Cn n , where r r= †K K pn n n n

and r= ( )†p K KTrn n n

( )C3 Convexity: r rå å( ) ( )p C C pe e e e e e

2
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å y cñ =
¼ =

(∣ ) ( )P a , 2.1h
k k k

k k k
i

d

i
k

, , , 1d

d
i

1 2

1 2

where ki are the non-negative integer power of ai, å =k hi , and c k k kd1 2
are coefficients. Then after imposing a

proper power >m 0 on the absolute value of a homogenous polynomial, one can construct a coherence
measure as,

y yñ = ñ(∣ ) ∣ (∣ )∣ ( )C P , 2.2p h
m

where the overall degree is hm, and the subscript p is the abbreviation for polynomial.
A polynomial coherencemeasure for pure states yñ(∣ )Cp can be extended tomixed states by utilizing the

convex-roof construction,

år y= ñ
y ñ

( ) (∣ ) ( )
{ ∣ }

C p Cmin , 2.3p
p i

i p i
,i i

where theminimization runs over all the pure state decompositions of r y y= å ñá∣ ∣pi i i i with å =p 1i i and
p 0i , and yñ(∣ )Cp is the pure-state polynomial coherencemeasure as shown in equation (2.2).
A legal polynomialmeasure, in the formof equation (2.1), should satisfy themonotone criteria, showed in

table 1, ( )C1 (or ¢( )C1 ), ( )C2 , and ( )C3 . Note that if the pure-statemeasure equation (2.2) satisfies ( )C1 (or
¢( )C1 ), ( )C2 , themixed-statemeasure via the convex-roof construction equation (2.3)would satisfy ( )C1 (or
¢( )C1 ), ( )C2 , and ( )C3 [11]. This is because the convex-roof construction guarantees the convexity of the

measure. Thus, without loss of generality, we only need to focus on the polynomial coherencemeasure on pure
states in the following sections.

3.No-go theorem

The simplest example of polynomial coherencemeasure is the l1-norm for d=2 on pure state. For a pure qubit
state, y a bñ = ñ + ñ∣ ∣ ∣0 1 , the l1-norm coherencemeasure takes the sumof the absolute value of the off-diagonal
terms in the densitymatrix,

* *y ab a b abñ = + =(∣ ) ∣ ∣ ∣ ∣ ∣ ∣ ( )C 2 . 3.1l1

By the definition of equation (2.2), Cl1 is the absolute value of a degree-2 homogenous polynomial functionwith
a powerm=1.Meanwhile, this coherencemeasure on pure state satisfies the criteria ¢( )C1 , ( )C2 [10]. Thus its
convex-roof construction turns out to be a polynomial coherencemeasure satisfying all the criteria. Note that
when the function equation (3.1) is extended to >d 2, it cannot be expressed as the absolute value of a
homogenous polynomial function. Thus, when >d 2, the l1-norm coherencemeasure is not a polynomial
coherencemeasure.

Surprisingly, for >d 2, there is no polynomial coherencemeasure that satisfies the criterion ¢( )C1 . In order
to show this no-go theorem, wefirst prove the following lemma:

Lemma1. For any polynomial coherencemeasure yñ(∣ )Cp and two orthogonal pure states y ñ∣ 1 and y ñ∣ 2 , there exists
two complex numbers a and b such that

a y b yñ + ñ =( ∣ ∣ ) ( )C 0 3.2p 1 2

where a b+ =∣ ∣ ∣ ∣ 12 2 . That is, there exists at least one zero-coherence state in the superposition of y ñ∣ 1 and y ñ∣ 2 .

Proof. Since >m 0, the roots of yñ =(∣ )C 0p in equation (2.2) are the samewith the ones of yñ =∣ (∣ )∣P 0h in
equation (2.1). That is, we only need to prove lemma for the case ofm=1. Since yñ(∣ )Ph is a homogenous
polynomial function of the coefficients of yñ∣ , one can ignore its global phase. Thus, any pure state in the
superposition of y ñ∣ 1 and y ñ∣ 2 can be represented by

y
y w y

w
ñ =

ñ + ñ

+
∣ ∣ ∣

∣ ∣
( )

1
, 3.31 2

2

where the global phase is ignored,ω is a complex number containing the relative phase, and y yñ  ñ∣ ∣ 2 ,
as w  ¥∣ ∣ .

First, if y ñ =(∣ )C 0p 2 , the lemmaholds automatically.When y ñ >(∣ )C 0p 2 , yñ(∣ )Cp can bewritten as,

y
y w y

w

w y w y

ñ =
ñ + ñ

+

= + ñ + ñ-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟(∣ ) ∣ ∣

∣ ∣

( ∣ ∣ ) ∣ (∣ ∣ )∣ ( )

C P

P

1
,

1 , 3.4

p h

h
h

1 2

2

2 2
1 2

3
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sincePh a homogenous polynomial function of degree h. Note that the condition y ñ >(∣ )C 0p 2 , i.e.,

w y w y+ ñ + ñ >
w¥

-( ∣ ∣ ) ∣ (∣ ∣ )∣ ( )Plim 1 0, 3.5h
h

2 2
1 2

guarantees that the coefficient of wh in y w yñ + ñ =(∣ ∣ )P 0h 1 2 is non-zero. Then, there are h roots of the
homogenous polynomial function ofω,

y w yñ + ñ =(∣ ∣ ) ( )P 0, 3.6h 1 2

denoted by ¼{ }z z z, , h1 2 . Thus, yñ(∣ )Cp can be expressed as

y w wñ = + --

=

(∣ ) ( ∣ ∣ ) ∣ ∣ ( )C A z1 , 3.7p
h

i

h

i
2 2

1

where >A 0 is some constant. In summary, wefind at least oneω, a w= + -( ∣ ∣ )1 2 1 2 and
b w w= + -( ∣ ∣ )1 2 1 2, such that yñ =(∣ )C 0.p ,

Theorem1.There is no polynomial coherencemeasure ind with d 3 that satisfies the criterion ¢( )C1 .

Proof. In the following proof, we focus on the case of d 4 and leave d=3 in appendix A.With d 4, we can
decomposed into two orthogonal subspaces Åd d1 2

in the computational basis, i.e., = ñ= {∣ }id i d1, ,1 1

and = ñ= + {∣ }id i d d1, ,2 1
with the corresponding dimensions d1 and = -d d d2 1both larger than 2.

Suppose there exist a polynomial coherencemeasure yñ(∣ )Cp such that the criterion ¢( )C1 listed in table 1
can be satisfied. Then, there are exactly d zero-coherence pure states ñ∣i = ( )i d1, , , which form the reference
basis. One can pick up two coherent states, y ñ Î∣ d1 1

and y ñ Î∣ d2 2
. That is, y ñ >(∣ )C 0p 1 and y ñ >(∣ )C 0p 2 .

Since two subspacesd1
andd2

are orthogonal, any superposition of these two states, a y b yñ + ñ∣ ∣1 2 with
a b+ =∣ ∣ ∣ ∣ 12 2 , should not equal to any of the reference basis states, i.e., a y b yñ + ñ ¹ ñ " = ∣ ∣ ∣i i d, 1, ,1 2 .
Thus, due to the criterion ¢( )C1 , we have

a y b yñ + ñ >( ∣ ∣ ) ( )C 0. 3.8p 1 2

On the other hand, for the polynomial coherencemeasure yñ(∣ )Cp , lemma 1 states that provided any two
orthogonal pure states y ñ∣ 1 , y ñ∣ 2 , there exists at least a pair of complex numbers, a and b , such that
a y b yñ + ñ∣ ∣1 2 is a zero-coherence state, i.e.

a y b yñ + ñ =( ∣ ∣ ) ( )C 0. 3.9p 1 2

Therefore, it leads to a contradiction. ,

4.Necessary condition for polynomial coherencemeasure

In theorem1,we have shown a no-go result of polynomial coherencemeasure for d 3when the criterion
¢( )C1 in table 1 is considered. Thus, we release ( )C1 to ¢( )C1 and study polynomial coherencemeasurewith the

criteria ¢( )C1 , ( )C2 , and ( )C3 in the following discussions. Then, therewill be some coherent states whose
coherencemeasure is zero. This situation also happens in entanglementmeasures, such as negativity, which
remains zero for the bound entangled states [33]. Here, we focus on the pure-state case and employ the convex-
roof construction for generalmixed states. As presented in the following theorem, wefind a very restrictive
necessary condition for polynomial coherencemeasures that yñ =(∣ )C 0p , for all yñ∣ whose support does not
span all the reference bases { }i .

Theorem2. For any yñ Î∣ d, the value of a polynomial coherencemeasure yñ(∣ )Cp should vanish if the rank of the
corresponding dephased state y yD ñá(∣ ∣) is less than d , i.e. y yD ñá <( (∣ ∣)) drank .

Proof. Suppose there exists y ñ Î∣ d1 such that y ñ >(∣ )C 0p 1 and y yD ñá = <( (∣ ∣)) d drank 1 1 1 .Without loss
of generality, y ñ∣ 1 is assumed to be in the subspace = ñ ñ ñ{∣ ∣ ∣ }dspanned 1 , 2 , ,d 11

. Define the complemen-
tary subspace to be = + ñ + ñ ñ{∣ ∣ ∣ }d d dspanned 1 , 2 , ,d 1 12

, where = - >d d d 02 1 .We prove this
theoremby two steps.

Step 1: we show that if d d 21 , then y ñ >(∣ )C 0p 1 leads to a contradiction to lemma 1.Now that
 d d d21 2, there exists a relabeling unitaryUt that transforms the bases ind1

to parts of the bases ind2
.

For instance, = ñ ñ{∣ ∣ }spanned 1 , 2d1
and = ñ ñ ñ{∣ ∣ ∣ }spanned 3 , 4 , 5d2

, thenUt can be chosen as

ñá + ñá + ñá + ñá + ñá∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣1 3 3 1 2 4 4 2 5 5 . In fact,Ut and
†Ut are both incoherent operation, since they just

exchange the index of the reference bases. Assume thatUtmaps y ñ∣ 1 to a new state y yñ = ñ Î∣ ∣Ut d2 1 2
, thenwe

have y yá ñ =∣ 01 2 . Due to the criterion ( )C2 , it is not hard to show that an incoherent unitary transformation
does not change the coherence,

4
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y yñ = ñ(∣ ) (∣ ) ( )C C . 4.1p p1 2

Define another incoherent operation, composed by two operators = å ñá= ∣ ∣P i ii
d

1 1
1 and = å ñá= + ∣ ∣P i ii d

d
2 11

that project states tod1
andd2

, respectively,

år rF =
=

( ) ( )†P P , 4.2
i

i iICPTP
1,2

which represents a dephasing operation between the two subspaces. Then, for any superposition state,
a y b yñ + ñ∣ ∣1 2 with a b+ =∣ ∣ ∣ ∣ 12 2 , its coherencemeasure should not increase under the ICPTPoperation
with post-selection, as required by ( )C2 in table 1,

a y b y a y b y
y

ñ + ñ = ñ + ñ

= ñ >

( ∣ ∣ ) ∣ ∣ (∣ ) ∣ ∣ (∣ )
(∣ ) ( )

C C C

C 0, 4.3

p p p

p

1 2
2

1
2

2

1

where the last equality comes from equation (4.1). Therefore, a y b yñ + ñ >( ∣ ∣ )C 0p 1 2 for any a and b . This
leads to a contradiction to lemma 1.

Step 2: we show that if < <d d d2 1 , then y ñ >(∣ )C 0p 1 also leads to a contradiction.Now that
< < < <d d d d0 22 1 , for any y ñ Î∣ d2 2

, we have y ñ =(∣ )C 0p 2 due to the above proof in Step 1.
Similar to the proof of lemma 1, we only need to consider the case ofm=1 andwe can get the coherence

measure for the superposition state of y ñ Î∣ d1 1
and y ñ Î∣ d2 2

as w y w y+ ñ + ñ-( ∣ ∣ ) ∣ (∣ ∣ )∣P1 h
h

2 2
1 2 . Since

y w y w yñ = + ñ + ñ =
w¥

-(∣ ) ( ∣ ∣ ) ∣ (∣ ∣ )∣ ( )C Plim 1 0, 4.4p
h

h2
2 2

1 2

the largest degree ofω in the polynomial y w yñ + ñ(∣ ∣ )Ph 1 2 , denoted byμ, is smaller than the degree h.
When m = 0, i.e., the polynomial is a constant, we denote its absolute value by k. Then the coherence

measure becomes,

y wñ = + -(∣ ) ( ∣ ∣ ) ( )C k 1 . 4.5p
h2 2

We show that the constant k=0 in appendix B. As a result, y ñ =(∣ )C 0p 1 . This leads to a contradiction to our
assumption that y ñ >(∣ )C 0p 1 .

When m< < d0 , i.e., y w yñ + ñ(∣ ∣ )Ph 1 2 is a non-constant polynomial ofω, there exists at least one root
< ¥∣ ∣z , such that y yñ + ñ =(∣ ∣ )P z 0h 1 2 . Then, we can find that the coherencemeasure of the state

y y yñ = ñ + ñ +∣ (∣ ∣ ) ∣ ∣z z1r 1 2
2 is y ñ =(∣ )C 0p r . Next, we apply the ICPTP operation described in

equation (4.2) on y ñ∣ r and obtain,

y y y

y

ñ
+

ñ +
+

ñ

=
+

ñ

(∣ )
∣ ∣

(∣ ) ∣ ∣
∣ ∣

(∣ )

∣ ∣
(∣ ) ( )

C
z

C
z

z
C

z
C

1

1 1
1

1
, 4.6

p r p p

p

2 1

2

2 2

2 1

wherewe use y ñ =(∣ )C 0p 2 in the equality. Combing the fact that y ñ =(∣ )C 0p r , we can reach the conclusion
that y ñ =(∣ )C 0p 1 . This leads to a contradiction to our assumption that y ñ >(∣ )C 0p 1 . ,

5.G-coherencemeasure

From theorem2, we can see that only the states with a full support on the computational basis could have
positive values of a polynomial coherencemeasure. Here, we give an example of polynomial coherencemeasure
satisfying this condition, which takes the geometricmean of the coefficients, for yñ = å ñ=∣ ∣a ii

d
i1 ,

yñ = (∣ ) ∣ ∣ ( )C d a a a . 5.1G d
d

1 2
2

Note that it is a degree-d homogenous polynomial functionmodulated by a power =m d2 . This definition is
an analog to theG-concurrence in entanglementmeasure, which is related to the geometricmean of the Schmidt
coefficients of a bipartite pure state [34]. Hencewe call the coherencemeasure defined in equation (5.1)G-
coherencemeasure. Since the geometricmean function is a concave function [35], following theorem1 in [36], we
can quickly show that theG-coherencemeasure satisfies the criteria ( )C1 , ( )C2 and ( )C3 .

When d=2, theG-coherencemeasure becomes the l1-normmeasure on pure state.When >d 2,
according to theorem 2, there is a significant amount of coherent states whoseG-coherence is zero. For instance,
in the case of d=3, the state ñ + ñ(∣ ∣ )0 11

2
has zeroG-coherence and this state cannot be transformed to a

coherent state yñ∣ , where y yD ñá =( (∣ ∣))rank 3, via a probabilistic incoherent operation [12].
Nowwemove onto themixed states with the convex-roof construction. In fact, searching for the optimal

decomposition in equation (2.3) is generally hard.However, like the entanglementmeasures, there exist
analytical solutions for the states with symmetries [37, 38]. Here, we study the states related to the permutation

5
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groupGs on the reference basis. A element Îg Gs is defined as

= ⎜ ⎟⎛
⎝

⎞
⎠ ( )g d

i i i
1 2 ...

...
5.2

d1 2

and the order (the number of the elements) ofGs is !d . The corresponding unitary of g is denoted as
= å ñá∣ ∣U i kg k k . Thenwe have the following definition.

Definition 1.A state ρ is a symmetric state if it is invariant under all the permutation unitary operations, i.e.
" Îg Gs, r r=†U Ug g .

Denote the symmetric state as rs and the symmetric state set as S. Given themaximally coherent state

Y ñ = å ñ∣ ∣id d i
1 , it is not hard to show the explicit formof symmetric states,


r = Y ñáY + -∣ ∣ ( ) ( )p p

d
1 , 5.3s

d d

which is only determined by a single parameter, themixing probability Î [ ]p 0, 1 . Apparently, the symmetric
state rs is amixture of themaximally coherent state Y ñ∣ d and themaximallymixed state  d . The state Y ñ∣ d is the
only pure state in set S. Borrowing the techniques used in quantifying entanglement of symmetric states [38, 39],
we obtain an analytical result r( )CG

s in theorem3, following lemmas 2 and 3.
First, we consider amap

år rL =( )
∣ ∣

( )†

G
U U

1
. 5.4

s g
g g

It uniformlymixes all the permutation unitaryUg on a state ρ, which is an incoherent operation by definition.

Lemma2.Themap rL( ) defined in equation (5.4) satisfies two properties, r" ,

(1) rL Î( ) S, i.e. the output state is a symmetric state, as defined in definition 1;

(2) r ráY Y ñ = áY L Y ñ∣ ∣ ∣ ( )∣d d d d , i.e. the map rL( ) does not change the overlap with the maximally coherent
state Y ñ∣ d .

Proof. For any ¢Ug with ¢ Îg Gs,

å

å

r r

r

r

L =

=

= L

¢ ¢ ¢ ¢

¢ ¢

( )
∣ ∣

( ) ( )

∣ ∣
( ) ( )

† †

†

U U
G

U U U U

G
U U

1

1

. 5.5

g g
s g

g g g g

s g
g g g g

The last equality is due to the fact that by going through all permutations g, the joint permutation ¢g g also
traverses all the permutations in the groupGs. By definition 1, we prove that rL Î( ) S.

The overlap between the output state rL( ) and themaximally coherent state Y ñ∣ d is given by,

å

å

r r

r

r

áY L Y ñ= áY Y ñ

= áY Y ñ

= áY Y ñ

- -

∣ ( )∣ ∣
∣ ∣

∣

∣ ∣
∣ ∣

∣ ∣ ( )

†

†

G
U U

G
U U

1

1

. 5.6

d d d
s g

g g d

s g
d g g d

d d

1 1

where in the second linewe use the relation = -†U Ug g 1 and the last line is due to the fact that Y ñ Î∣ Sd and
Y ñ = Y ñ- ∣ ∣Ug d d1 . ,

Then, we define the following function for a symmetric state rs,

r y y y r= ñ L ñá =
yñ

¯ ( ) { (∣ )∣ (∣ ∣) } ( )
∣

C Cmin . 5.7G
s

G
s

Since the state rs in equation (5.3) only has one parameter p, it can be uniquely determined by its overlapwith

themaximally coherent state r= áY Y ñ = +-∣ ∣K pd
s

d
d

d d

1 1 . Thus, rs linearly depends onK. According to

lemma 2, y yL ñá(∣ ∣) is a symmetric state and the overlap does not change under themapΛ. Hence, the
constraint y y rL ñá =(∣ ∣) s in equation (5.7) is equivalent to y ráY ñ = áY Y ñ∣ ∣ ∣ ∣ ∣d d

s
d

2 . Following the
derivations of theG-concurrence [39], we solve theminimization problem and obtain an explicit formof
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r¯ ( )CG
s ,

 

 
=

-

--

⎧
⎨
⎪⎪

⎩
⎪⎪

¯ ( )
( )

( )
( )

C K
K

d

d

d ab
d

d
K

0 0
1

1
1

, 5.8G
d d1 2

where

= - - -

= +
-

-

( )

( )

a
d

K d K

b
d

K
K

d

1
1 1 ,

1 1

1
.

Details can be found in appendix C.Here, we substitute ¯ ( )C KG for r¯ ( )CG
s without ambiguity.When

 - K 1d

d

1 , ¯ ( )C KG is a concave function [39].We show ¯ ( )C KG in the case of d=4 infigure 1.Moreover,
following the results of [38], we have the following lemma.

Lemma3.The convex-roof of the G-coherencemeasure CG for a symmetric state rs is given by,

å

å

r y

r

= ñ

=

y

r

ñ
( ) (∣ )

¯ ( ) ( )
{ ∣ }

{ }

C p C

q C

min

min , 5.9

G
s

p i
i G i

q j
j G j

s

,

,

i i

j j
s

where y y rå ñá =∣ ∣pi i i i
s, r rå =qj j j

s s, and r Î Sj
s .

Proof.Denote y= å ñy ñ (∣ ){ ∣ }Z p Cmin p i i G i1 ,i i
and r= år ¯ ( ){ }Z q Cmin q j j G j

s
2 ,j j

s . Nowwe prove the lemmaby

showing that both of them equal to,

å åy y y r= ñ L ñá =
y ñ

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭(∣ ) (∣ ∣) ( )

{ ∣ }
Z p C pmin . 5.10

p i
i G i

i
i i i

s
3

,i i

=Z Z1 3: for a decomposition, r y y= å ñá∣ ∣ps
i i i i , after applying themapΛ on both sides, we have

å y y r rL ñá = L =(∣ ∣) ( ) ( )p . 5.11
i

i i i
s s

Here, we use the fact that rs is a symmetric state, which is invariant under themapΛ. That is, any decomposition
satisfies the constraint y y rå ñá =∣ ∣pi i i i

s as required forZ1 also satisfies the constraint y y rå L ñá =(∣ ∣)pi i i i
s as

required forZ3. Thus, we have Z Z3 1. On the other hand, the constraint y y rå L ñá =(∣ ∣)pi i i i
s in

equation (5.10) is also a pure-state decomposition of the state rs, since every component in y yL ñá(∣ ∣)i i is a pure
state y ñ∣Ug i with probability ∣ ∣p Gi s . Thuswe also have Z Z1 3. Consequently, =Z Z1 3.

Figure 1. Illustration for the two functions ¯ ( )C KG andCG(K ) in d=4 case.When   =-K0 0.75d

d

1 , =¯ ( )C K 0;G when

 =- K0.75 1d

d

1 , ¯ ( )C KG is a concave function following the form in equation (5.8), represented by the dashed blue line. Thus

theminimization result via equation (5.13),CG(K ) is the linear function - -( )K1 4 1 , when  =- K0.75 1d

d

1 , described by

the red line.
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=Z Z2 3: In fact, the constraint in equation (5.10) is on y yL ñá Î(∣ ∣) Si i , thuswe can solve theminimization
problemof equation (5.10) in two steps. First, given y yL ñá Î(∣ ∣) Si i , weminimize y ñ(∣ )CG i , which turns out to
be the same as the definition of y yL ñá¯ ( (∣ ∣))CG i i in equation (5.7). Next, we optimize the decomposition of rs in
the symmetric state set S, which turns out to be the same as the definition ofZ2. Thuswe have =Z Z2 3. ,

Theorem3. For a symmetric state r Î Ss ind, the G-coherencemeasure is given by

r = - -( ) { ( ) } ( )C d Kmax 1 1 , 0 , 5.12G
s

where r= áY Y ñ∣ ∣K d
s

d is the overlap between rs and themaximally coherent state Y ñ∣ d .

Proof.According to lemma 3, theG-coherencemeasure for a symmetric state is given by r = år( ) { }C minG
s

q j,j j
s

r¯ ( )q Cj G j
s with r rå =qj j j

s s. Since the symmetric state linearly depends on the overlapK, thisminimization is

equivalent to,

å å= =
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

( ) ( ) ( )
{ }

C K q C K q K Kmin . 5.13G
q K j

j G j
j

j j
,j j

Then, according to the explicit expression of ¯ ( )C KG in equation (5.8):When   -K0 d

d

1 , =¯ ( )C K 0G . Thus,

 =( ) ¯ ( )C K C K 0G G .When  - K 1d

d

1 , fortunately, ¯ ( )C KG is a concave function. It is not hard tofind that

the optimization result is a straight line connecting the point -{ }, 0d

d

1 and { }1, 1 on the { ( )}K C K, G plane.
Consequently, r( )CG

s shows the form in equation (5.12). ,

The dependence of ¯ ( )C KG andCG(K ) onK in the case of d=4 are plotted infigure 1. Furthermore, we can
give a lower bound of theG-coherencemeasureCG for any generalmixed state ρ, with the analytical solution for
rs in theorem 3.

Corollary 1. For amixed state ρ,

r - -( ) [ ( ) ] ( )C d Kmax 1 1 , 0 , 5.14G

where r= áY Y ñ∣ ∣K d d .

Proof. SinceΛ is an incoherent operation, we have,

r rL( ) ( ( )) ( )C C . 5.15G G

From lemma 2, we know that the overlap r r= áY Y ñ = áY L Y ñ∣ ∣ ∣ ( )∣K d d d d and rL Î( ) S. Following theorem 3,
the corollary holds. ,

In fact, the tightness of the bound depends on the overlap. Thus, we can enhance the bound by pre-treating
the state by a certain ICPTPχ that can increase the overlap, i.e.

  r c r c rL - - ¢( ) ( ( )) ( ( ( ))) [ ( ) ] ( )C C C d Kmax 1 1 , 0 , 5.16G G G

where c r r¢ = áY Y ñ > = áY Y ñ∣ ( )∣ ∣ ∣K Kd d d d .

6. Conclusion and outlook

In this paper, we give the definition of polynomial coherencemeasure r( )Cp , which is an analog to the definition
of polynomial invariant in classifying and quantifying the entanglement resource. First, we show that there is no
polynomial coherencemeasure satisfying the criterion ¢( )C1 in table 1, when the dimension of theHilbert space
d is larger than 2. That is, there always exist some pure states yñ ¹ ñ = ¼∣ ∣ ( )i i d1, , possessing zero-coherence
when d 3. Then, wefind a very restrictive necessary condition for polynomial coherencemeasures—the
coherencemeasure should vanish if the rank of the corresponding dephased state y yD ñá(∣ ∣) is smaller than the
Hilbert space dimension d.Meanwhile, we give an example of polynomial coherencemeasure r( )CG , calledG-
coherencemeasure.We conjecture that there are not toomany polynomial coherencemeasures, due to the
restrictive condition given by theorem2; andwe suspect that all the polynomialmeasures would share similar
structure as theG-coherence.Moreover, we derive an analytical formula of the convex-roof ofCG for symmetric
states, and also give a lower bound ofCG for generalmixed states. In addition, we should remark that the
symmetry consideration in our paper is also helpful to understand and bound other coherencemeasures,
especially the ones built by the convex-roofmethod.

In entanglement quantification, the polynomial invariant is an entanglementmonotone if and only if its
degree h 4 in themulti-qubit system [40, 41]. Here, the quantification theory of coherence showsmany

8

New J. Phys. 19 (2017) 123033 YZhou et al



similarities to the one for entanglement. Following the similar approaches in our paper, some results can be
extended to the entanglement case. For example, one can obtain some necessary conditions where a polynomial
invariant serves as an entanglementmonotone, inmore generalmulti-partite system = Ä

d
N

l
, whose local

dimension >d 2l [28].Moreover, polynomial coherencemeasure (especiallyG-coherence) defined heremay
serve as an important quantifierwhen studying the relation and conversion between the two important
quantum resources, coherence and entanglement.

After finishing themanuscript, we find that a coherencemeasure similar to r( )CG is also put forward in [42],
dubbed generalized coherence concurrence, by analog to the generalized concurrence for entanglement [34].
However, the analytical solutions and its relationshipwith polynomial coherencemeasure are not presented
in [42].
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AppendixA. Proof of theorem1 for d=3

In themain part, theorem1 for the case of d 4 has been proved.Herewe prove the d=3 case. First, a lemma
that is an extension of lemma 1 follows.

Lemma4. For any polynomial coherencemeasure yñ(∣ )Cp , and any two pure quantum states y yñ ñ∣ ∣,1 2 satisfying
y yá ñ <∣ ∣ ∣ 12 1 , there is at least one zero-coherence state in the superposition space of them.

Proof. Like in lemma 1, without loss of generality, we just need to consider the scenario of powerm=1. First, if
y ñ =(∣ )C 0p 2 , the lemma holds automatically. Sowe focus on the y ñ ¹(∣ )C 0p 2 case in the following.

Let us denote y yá ñ = q∣ ke1 2
i with <k 1. Then, after ignoring the global phase, any superposition state of

y ñ∣ 1 and y ñ∣ 2 can be represented by

y
y w y

w
ñ =

ñ + ñ∣ ∣ ∣
( )

( )
Z

, A.11 2

whereω is a complex number and the normalization factor w y w y= ñ + ñ =( ) ∣∣ ∣ ∣Z 1 2

w w q q+ + + ¢∣ ∣ ∣ ∣ ( )k1 2 cos2 with w w= q¢∣ ∣ei .
Similar to lemma. 1, we can factorize yñ(∣ )Cp as

y
y w y

w

w
y w y

w
w

ñ =
ñ + ñ

= ñ + ñ

=
¢

P -=

⎛
⎝⎜

⎞
⎠⎟(∣ ) ∣ ∣

( )

( )
∣ (∣ ∣ )∣

( )
∣ ∣ ( )

C P
Z

Z
P

A

Z
z

1

, A.2

p h

h h

h i
h

i

1 2

1 2

1

where ¢A is a constant and = ( )z i h1, 2, ,i are the roots of the polynomial function y w yñ + ñ(∣ ∣ )Ph 1 2 . Thus
we can find at least one root in this y ñ ¹(∣ )C 0p 2 case, or equivalently, a zero-coherence state. ,

With the help of lemma 4, nowwe prove theorem1 for d=3 case. First, similar to themain part, we can
choose two states with non-zero coherence as,

y

y

ñ = ñ + ñ

ñ= ñ + ñ

∣ (∣ ∣ )

∣ (∣ ∣ ) ( )

1

2
1 2 ,

1

2
2 3 . A.3

1

2

Even though these two states share overlapwith each other, any superposition state a y b yñ + ñ∣ ∣1 2 should
not equal to the pure state ñ = ∣ ( )i i d1, 2, , in the computational basis. As required by the criterion ¢( )C1 in
table. 1, ñ = ¼∣ ( )i i d1, 2, , are the only zero-coherence pure state. Thus, a y b yñ + ñ >( ∣ ∣ )C 0p 1 2 . Nonetheless,
it is contradict to lemma. 4. Consequently, there is no polynomial coherencemeasure satisfying the criterion

¢( )C1 for d=3 case.
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Appendix B. Proof for k=0 in equation (4.5)

In themain part, the coherencemeasure for the superposition state of y ñ Î∣ d1 1
and y ñ Î∣ d2 2

shows,

y wñ = + -(∣ ) ( ∣ ∣ )C k 1 .p
h2 2

If >k 0, the coherencemeasure strictly decreases with the increasing of w∣ ∣. That is, for any superposition
state y y w y wñ = ñ + ñ +∣ (∣ ∣ ) ∣ ∣11 2

2 with w >∣ ∣ 0, we have y yñ < ñ(∣ ) (∣ )C Cp p 1 .We denote the state

coefficients by a w= + -( ∣ ∣ )1 2 1 2 and b w w= + -( ∣ ∣ )1 2 1 2 here. In the following, we show that there exists a
state y a y b yñ = ñ + ñ∣ ∣ ∣1 2 with a < 1 (or equivalently w >∣ ∣ 0), such that y yñ ñ(∣ ) (∣ )C Cp p 1 . As a result, this
contradiction leads to k=0.

From [12, 43], we know that Yñ = å Y ñ=∣ ∣ii
d

i1 can transform to Fñ = å F ñ=∣ ∣ii
d

i1 via incoherent operation, if
Y ¼ Y(∣ ∣ ∣ ∣ ), , d

t
1

2 2 ismajorized by F ¼ F(∣ ∣ ∣ ∣ ), , d
t

1
2 2 . Then combing the criteria ( )C2 and ( )C3 in table. 1, we

obtain that the coherencemeasure is non-increasing after incoherent operation. Thus, Yñ Fñ(∣ ) (∣ )C C for any
coherencemeasure.

In our case, first, we denote y ñ = å ñ=∣ ∣a ii
d

i1 1
1 with " >∣ ∣i a, 0i . And choose y ñ = å ñ= +∣ ∣i

d i d
d

2
1

1
2 1

. Thenwe

can build a state y a y b yñ = ñ + ñ∣ ∣ ∣1 2 that satisfies a < 1and y yñ ñ(∣ ) (∣ )C Cp p 1 , with the help of the
aforementionedmajorization condition.

To be specific, if a satisfying,

a b∣ ∣ ( )a d , B.1j
2 2 2

2

where ∣ ∣aj
2 is theminimal value in {∣ ∣ }ai

2 , then a a a b b¼ ¼( ∣ ∣ ∣ ∣ ∣ ∣ )a a a d d, , , , , ,d
t2

1
2 2

2
2 2 2 2

2
2

21
ismajorized by

¼ ¼(∣ ∣ ∣ ∣ ∣ ∣ )a a a, , , , 0, , 0d
t

1
2

2
2 2

1
. Thus, y yñ ñ(∣ ) (∣ )C Cp p 1 . In fact, a = + <-( ∣ ∣ )d a 1 1j2

2 1 2 , when the
inequality is saturated in equation (B.1).

AppendixC.Derivation of equation (5.8)

Asmentioned in themain part, the constraint for the pure state yñ = å ñ∣ ∣a ii i in equation (5.7) is the overlap
y= áY ñ∣ ∣ ∣K d

2, i.e.

å =∣ ∣ ( )a dK , C.1
i

i

and the coefficients ai of the state should also satisfy the normalization condition,

å =∣ ∣ ( )a 1. C.2
i

i
2

When   -K0 d

d

1 , we can always set one of the coefficients aj= 0with Î { }j i , and let the corresponding

CG equal to 0. Thus =¯ ( )C K 0G in thisK domain.

On the other hand, all the coefficients ¹a 0i , when  - K 1d

d

1 . In thisK domain, we shouldminimize

yñ = P(∣ ) ( ∣ ∣)C d aG i i d
2
under the constraints in equations (C.1) and (C.2). Note that å å∣ ∣ ∣ ∣a ai i i i and the

equality can be reachedwhen the coefficients share the same phase. Thus the constraint in equation (C.1) can be
replaced by,

å =∣ ∣ ( )a dK . C.3
i

i

In fact, the function optimized here is the same to the one in [39] for theG-concurrence, after substituting
the Schmidt coefficients for the state coefficients ∣ ∣ai . Thus, utilizing the same Lagrangemultipliers in
SupplementalMaterial of [39], we can obtain equation (5.8) in themain part. Andwe can show that ¯ ( )C KG is a

concave function, when  - K 1d

d

1 , by directly following the derivation there.
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