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Early triage of critically ill COVID-19 patients using
deep learning
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The sudden deterioration of patients with novel coronavirus disease 2019 (COVID-19) into
critical illness is of major concern. It is imperative to identify these patients early. We show
that a deep learning-based survival model can predict the risk of COVID-19 patients devel-
oping critical illness based on clinical characteristics at admission. We develop this model
using a cohort of 1590 patients from 575 medical centers, with internal validation perfor-
mance of concordance index 0.894 We further validate the model on three separate cohorts
from Wuhan, Hubei and Guangdong provinces consisting of 1393 patients with concordance
indexes of 0.890, 0.852 and 0.967 respectively. This model is used to create an online
calculation tool designed for patient triage at admission to identify patients at risk of severe
iliness, ensuring that patients at greatest risk of severe illness receive appropriate care as
early as possible and allow for effective allocation of health resources.
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ARTICLE

ith coronavirus disease 2019 (COVID-19) now a

pandemic, rapid and effective triage is critical for early

treatment and effective allocation of hospital resour-
ces. COVID-19 disease has shown the worrying trend of sudden
progression to critical illness in 6.5% of cases and with a mortality
rate of 49% in these patients’2. The influx of additional health
resources in Hubei province, which was the epicenter of the
outbreak, greatly improved patient outcomes. Since early inter-
vention is associated with improved prognosis, the ability to
identify patients that are most at risk of developing severe disease
upon admission will ensure that these patients receive appropriate
care as soon as possible.

Clinical researchers have been using survival analysis (also
called time-to-event analysis) to estimate the probability of
prognostic clinical outcomes such as death and cancer recurrence
in the course of disease development and to plan optimal treat-
ment schemes accordingly. The Cox proportional hazards model
(CPH)3 is a widely used statistical model that relies on regression
analysis to determine the association between a predictor cov-
ariate, such as clinical characteristics, with the risk of an event
occurring (e.g. “death”). The model assumes that the risk of an
event is a linear combination of the patient’s covariates, which
may be too simplistic for some complex clinical events such as
progression to critical illness.

The increase in computing power and the availability of big
data has enabled deep learning to be used successfully in many
medical applications*. For instance, convolutional neural net-
works, a form of deep learning, could detect skin cancers as
effectively as dermatologists®. Deep learning could also success-
fully interpret pathology results to diagnose prostate cancer and
basal cell carcinoma®. Deep neural networks have also been used
to recommend personal treatment plans’. In this study, we
integrate deep learning techniques with the traditional Cox model
for survival analysis of the nonlinear effect from clinical covari-
ates to predict clinical outcome of COVID-19 patients. We
demonstrate that this Deep Learning Survival Cox model can
efficiently triage COVID-19 patients with high accuracy.

Results

Data sources and characteristics. On behalf of the National
Clinical Research Center for Respiratory Disease and in colla-
boration with the National Health Commission (NHC) of the
People’s Republic of China, we established a retrospective cohort
to study COVID-19 cases throughout China. We obtained medical

records and compiled the data from laboratory-confirmed hos-
pitalized cases with COVID-19 reported to the NHC between 21
November 2019 and 31 January 2020. The NHC requested that all
of the 1855 designated hospitals for COVID-19 submit clinical
records to the database. Hospitals whose clinical records had not
been submitted by this deadline were requested again. Our cohort
largely represents the overall situation as of 31 January, taking into
account the proportion of hospitals (~one-third) and patient
number (17.2%, 1590/9252 cases), as well as the broad coverage
(covering 31 of 34 provinces/autonomous regions (appendix
illustrated the geographic distribution of cases from all hospitals
that contributed to the database)), although the non-responsive
bias cannot be fully excluded.

Confirmed cases of COVID-19 were defined as patients who
tested positive by high-throughput sequencing or real-time
reverse-transcription PCR assay on nasal and pharyngeal swab
specimens. Only laboratory-confirmed cases were included in our
analysis. Critical illness was defined as a composite event of
admission to an intensive care unit or requiring invasive
ventilation, or death.

Our model training cohort included 1590 patients, of which
131 developed critical illness, from 575 medical centers
(Supplementary Tables 1 and 2, and Appendix). To test the
generalization of our model, we collected three independent
cohorts as external validation sets with wide geographic coverage,
one from a hospital in the epicenter Wuhan (940 patients, 94
critically ill), one from multiple centers in ten cities in Hubei
province, excluding Wuhan (380 patients, 9 critically ill), and
another from a hospital in Guangdong province, representing a
province not suffering from the health resource burnout
experienced in Wuhan (73 patients, 3 critically ill) (Supplemen-
tary Tables 3-5).

Selection of critical illness predictors and model establishment.
Seventy-four baseline clinical features with at least 60% data
completeness were considered as critical illness predictors and
were used for model establishment. Ten features with statistically
significant (P <0.05) hazard ratios were identified through a
machine learning variable selection algorithm called least absolute
shrinkage and selection operator (LASSO)3. These were X-ray
abnormalities, age, dyspnea, COPD (chronic obstructive pul-
monary disease), number of comorbidities, cancer history, neu-
trophil/lymphocytes ratio, lactate dehydrogenase, direct bilirubin,
and creatine kinase (Table 1).

Table 1 Univariate analysis of the selected features for COVID-19 patients in the training cohort.
Critical illness
Total (n=1590) No (n=1459) Yes (n=131)  Hazard ratio p-value AUC (95% CI) C-index (95% CI)
(95% CI)

Age 489 £15.7 47.8+15.2 61.6£14.8 1.059 (1.046-1.071) <0.001 0.755 (0.695-0.812)  0.732 (0.674-0.790)
Dyspnea 331/1394 (23.7) 25771275 (20.2)  74/119 (62.2)  5.759 (3.973-8.346)  <0.001 0.665 (0.590-0.745)  0.659 (0.584-0.739)
Cancer history 18/1590 (1.1) 11/1459 (0.8) 7/131 (5.3) 5.927 (2.766-12.7) <0.001 0.498 (0.495-0.500)  0.498 (0.495-0.500)
COPD 24/1590 (1.5) 12/1459 (0.8) 12/131 (9.2) 7.471 (4124-13.53) <0.001 0.532 (0.495-0.580)  0.516 (0.495-0.549)
No. of comorbidity 1.67 (1.506-1.851) <0.001 0.697 (0.613-0.789)  0.682 (0.597-0.772)

0 1191/1590 (74.9)  1137/1459 (77.9)  54/131 (41.2)

1 269/1590 (16.9)  229/1459 (15.7)  40/131 (30.5)

2 88/1590 (5.5) 68/1459 (4.7) 20/131 (15.3)

3 34/1590 (2.1) 20/1459 (1.4) 14/131 (10.7)

4 5/1590 (0.3) 4/1459 (0.3) 1/131 (0.8)

5 3/1590 (0.2) 1/1459 (0.1) 2/131 (1.5)
X-ray abnormality 24371590 (15.3)  184/1459 (12.6)  59/131 (45) 5315 (3.765-7.504)  <0.001 0.600 (0.524-0.681) 0.614 (0.535-0.696)
Neutrophil/lymphocytes  51+5.6 44+38 127124 1.061 (1.052-1.071) <0.001 0.861 (0.803-0.918)  0.857 (0.795-0.914)
Lactate dehydrogenase  314.3+693.7 273.6£135.2 723.6 £ 2239.5 10-1 <0.001 0.810 (0.745-0.868)  0.787 (0.727-0.846)
Direct bilirubin 4£27 3723 6.5+4]1 1.212 (1.165-1.261) <0.001 0.674 (0.567-0.782)  0.662 (0.551-0.773)
Creatine kinase 135.5 £246.7 123+£125.3 2589+702.8 1.001 (1-1.001) <0.001 0.557 (0.449-0.665)  0.554 (0.441-0.666)
Data are mean £SD, n/N (%), where N is the total number of patients with available data. P-values are calculated by log rank test.
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Performance of the prediction model. We divided the training
cohort into 80% for model training and 20% for internal model
validation with balanced data distribution. The concordance
index (C-index, a standard performance metric for survival
analysis) and area under the receiver-operator characteristic curve
(AUC, a performance measurement for classification problem)
were evaluated on the model validation cohort to assess dis-
criminative ability. The C-index and AUC of our Deep Learning
Survival Cox model were 0.894 (0.95 confidence interval (CI),
0.857-0.930) and 0.911 (0.95 CI, 0.875-0.945), respectively, on
the model validation set, whereas those of the classic Cox model
were 0.876 (0.95 CI, 0.830-0.921) and 0.889 (0.95 CI,
0.843-0.934), respectively (Fig. 1a). The predictive value of this
model was higher than the CURB-6 model®, with a C-index of
0.75 (95% CI, 0.70-0.80). The precision-Recall curves for the
internal validation set is shown in Supplementary Fig. 1.

Risk stratification. We further calculated the risk of each indi-
vidual in the entire training cohort and divided all patients into
three groups based on the risk cut-off at 95% sensitivity and 95%
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specificity. A total of 875, 560, and 155 patients were classified in
low-, medium-, and high-risk group, respectively, with the actual
risk probability of critical illness events at 0.9%, 7.3%, and 52.9%,
respectively. Kaplan-Meier curves of these three patient groups
demonstrated statistically significant separation (Fig. 1b).

External validation. To test the generalization of this model, we
tested the model performance on three independent cohort from
different locations and with different health resource levels. The
first cohort was from the epicenter Wuhan, the second from an
area outside of Wuhan in Hubei province, and the last was from
Guangdong province, a province that was not suffering from
health resource burnout. The Wuhan cohort consisted of
COVID-19 patients admitted in January and February (without
overlap with the training set) to Hankou hospital, the Hubei
cohort consisted of cases from multiple centers in ten cities before
31 January (which did not overlap with the training set), and the
Guangdong cohort that included cases admitted between January
and February to Foshan hospital. Data-processing procedures
were identical to those used for the training cohort. Table 2 and
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Fig. 1 Model performance comparison. a Comparison of ROC curves for the Deep Learning Survival Cox model and the Cox proportional hazards model on
the training-validation set. b The Kaplan-Meier curves for developing critical illness among patients in different risk groups in the training set. Shaded areas
indicate 95% confidence interval. € ROC curves for the three external validation cohorts using the entire datasets. d ROC curves for the three independent
external validation cohorts, excluding patients that were missing more than three values.
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Table 2 Results of Deep Learning Survival Cox analyses on the three independent external validation cohorts.

AUC (95% CI)

C-index (95% CI)
HR&MR recall (95% CI)
HR recall (95% CD

0.893 (0.867-0.919)
0.890 (0.865-0.915)
1.000 (1.000-1.000)
0.833 (0.768-0.900)

0.881(0.854-0.905)
0.878 (0.852-0.903)
1.000 (1.000-1.000)
0.809 (0.736-0.878)

0.888 (0.732-0.984)
0.852 (0.672-0.973)
0.875 (0.625-1.000)
0.500 (0.167-0.800)

0.819 (0.632-0.978)
0.769 (0.556-0.966)
0.778 (0.500-1.000)
0.444 (0.167-0.750)

Cohort Wuhan Hubei Guangdong
Ex3 All cases Ex3 All cases Ex3 All cases
No. of patients (critically) 801 (84) 940 (94) 305 (8) 380 (9) 73 3) 73 3)

0.967 (0.905-1.000)
0.967 (0.906-1.000)
1.000 (1.000-1.000)
0.667 (0.000-1.000)

0.967 (0.905-1.000)
0.967 (0.906-1.000)
1.000 (1.000-1.000)
0.667 (0.000-1.000)

Ex3 excludes data that were missing three or more values, HR high risk, MR medium risk. Guangdong cohort had no missing values.
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Fig. 2 Trend of 30-days critically ill risk probability in the follow-up visit after admission. Red lines with triangle markers are critically ill patients. Green
lines with circle markers are other patients. a Visualization of trend of each individual. Each marker indicates a follow-up exam. For better visualization, line
color has been slightly disturbed for each patient. b Average trend for different groups of patients. Colored area corresponds to the 25% and 75% of the

risk probability.

Fig. 1¢, d show the results of the entire external validation datasets
and Ex3 datasets that excluded patients with more than three
missing clinical features out of the ten required. The C-index
of the entire dataset for the Wuhan, Hubei, and Guangdong
cohorts were 0.878, 0.769, and 0.967, respectively. In the Ex3
dataset, the C-index for these cohorts were 0.890, 0.852, and
0.967, respectively.

Risk monitoring. Among the Wuhan cohort of 940 patients with
dynamic data, 457 patients had follow-up exams (computed
tomography (CT) and blood tests) after hospital admission. In
addition to calculating the risk of developing critical illness at
hospital admission, we also calculated the risk at follow-up exam
times. As shown in Fig. 2, our model not only captures the risk of
critical illness at admission but also can be used to monitor the
trend of the risk during patients’ hospital stay. The prediction
performances of AUC and C-index at the follow-up exam time
are 0.960 and 0.935, respectively, which are higher than those at
the hospital admission (0.881 and 0.878, respectively). These
results indicate that the clinical features better reflect the risk of
critical illness as it draws closer to the event.

Online patient triage tool. Nomogram is a pictorial repre-
sentation for depicting the association between clinical variables
and the probabilities of clinical events such as critical illness,
which provides an intuitive way to interpret the survival model'?.
We developed an online tool embedding a nomogram with our
Deep Learning Survival Cox model at https://aihealthcare.tencent.
com/COVID19-Triage_en.html. After a clinical staff fill in the
online form with baseline clinical features, the tool returns a
personalized nomogram, together with the probability of critical
illness within 5, 10, and 30 days (Fig. 3).

Discussion
All included variables were independently correlated with disease
progression. Age is the most recognized risk factor for prognosis
of COVID-19, with the most severe and fatal cases among
patients over 60 vyears old. Respiratory tract symptoms,
abnormalities in chest X-rays (compared with CT scans), and low
lymphocyte ratios reflect the severity of the disease. Comorbid-
ities, especially COPD and cancer, are strongly linked with the
development of critical illness!!>12, Similarly, age (over 60 years)
and comorbid disease were also risk factors for poor outcome in
severe acute respiratory syndrome (SARS) patients in 200313,
Compared with SARS-CoV and MERS-CoV, more deaths have
been caused by multiple organ dysfunction syndrome rather than
respiratory failure during COVID-19, which may be attributed to
the widespread distribution of angiotensin-converting enzyme 2,
the functional receptor for SARS-CoV-2, in multiple organs!%1>.
This explains why the blood test, such as lactate dehydrogenase,
creatine kinase, will play a role in predicting critical illness.

CPH model is the traditional method for survival analysis and
event prediction. However, it is a semiparametric model that
assumes that a patient’s risk of failure is a linear combination of
the patient’s clinical factors. The deep learning model is able to
learn and infer high-order nonlinear associations between clinical
covariates and patient outcomes in a fully data-driven manner.
Furthermore, data augmentation strategies in deep learning can
make the model more resilient to data noise and missing data,
which commonly occurs in clinical datasets. The deep learning
model can be also extended to incorporate time-dependent cov-
ariates such as vital signs and high-dimensional features such a
CT or X-ray images.

Our model currently uses ten clinical variables, which are all
common demographic and clinical characteristics, as well as
laboratory results that are available at most hospitals. Despite this,
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Fig. 3 Nomogram of the Deep Learning Survival Cox model to triage COVID-19 patients. The patient’s total nomogram point is 209, overall critical illness
probabilities are 0.58, 0.62, and 0.69 within 5, 10, and 30 days, respectively. The patient is triaged as high-risk.

more than 50% of our patients did not have all required values
collected. Missing data can occur particularly with small or poorly
equipped hospitals. Our model has a certain tolerance to missing
data, as we still achieved high performance on the external vali-
dation set for cases missing 30% of the data. However, to take full
advantage of this model, we recommend that all clinical features
are collected at hospital admission. In real-world practice, missing
data on some variables is inevitable. Therefore, missing data on
less than three variables is allowed in our online calculation tool
and the background can still provide a risk estimation based on
deep learning imputation methods.

Our Deep Learning Survival Cox model demonstrated superior
discriminating power compared with the classical Cox model,
because it unravels the nonlinear relationships among complex
clinical covariates and their hazards. To make clinically relevant
comparison, we computed partial the area under the receiver
operating characteristic curve (p-AUROC), where only the por-
tion of the curve with sensitivity 0.8 was counted. The com-
parison between our deep learning survival Cox model and the
classic Cox model is summarized in Supplementary Table 7.
From the results, our proposed model is statistically better than

(p<0.05) the classic Cox model in terms of C-index and p-
AUROC.

We investigated the false negatives in the external validation
sets. Among the 106 critical cases, only 2 cases are classified as
low risk. Both cases suffer from data missing and all the observed
values land in the range of negative samples. For instance, both
cases have no X-ray abnormality findings, no dyspnea, and no
comorbidity including COPD and cancer history. Thus, these two
cases are all outliers. Based on the observed values, we believe it is
reasonable to classify them as low risk.

In our clinical experience, mild COVID-19 cases are generally
self-limiting and it is the severe cases that require the most
medical attention. Our proposed patient stratification tool has
high clinical and economical value for COVID-19 disease man-
agement, particularly in light of the unusually rapid disease
progression that can occur and the high mortality rate associated
with critical illness. By submitting clinical information online,
medical staff can triage patients at hospital admission using the
predicted risk indicator and arrange patient treatment plans
accordingly, ensuring patients receive treatment early and med-
ical resources can be efficiently allocated. Based on the nature of
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deep leaning, future prospective application and validation can
help to further evolve this model.

Methods

Ethical approval. This study was approved by the ethical review committee of the
major included hospitals, who also waived the informed consent from patients.

Data extraction and processing. A team of experienced respiratory clinicians
reviewed, abstracted, and cross-checked the data. Data were entered into a com-
puterized database and cross-checked. Examination and treatment information was
available and collected. The recent exposure history, clinical symptoms and signs,
and laboratory findings upon admission were extracted from electronic medical
records. Radiologic assessments, including chest X-ray or CT, were performed
based on the documentation/description in medical charts or combined with, if
imaging films were available, a review by our medical staff. Major disagreement
between two reviewers was resolved by consultation with a third reviewer.

Study design. We performed a multivariate imputation by chained equation to fill
in the missing data'6. We employed a CPH with LASSO penalty to identify baseline
clinical features that are associated with the later critical illness status. We then
constructed a three-layer feedforward neural network using the selected features for
survival modeling’. We designed a nomogram integrating the deep learning output
as a patient triage tool at hospital admission3. According to the risk probability
returned from the model, the patients are triaged into three groups: low, medium,
and high risk of critical illness, at 95% sensitivity and 95% specificity, respectively.
The C-index and AUC were evaluated on the validation cohort to assess the
discriminative ability. We also compared this model with the CURB-6 model,
which has been used in classification of community-acquired pneumonia cases®.
All statistical tests were two sided and p-values < 0.05 indicated statistical
significant.

Data imputation. We applied multivariate imputation via chained equations to
impute the missing datal®. The overall features were divided into three groups,
numeric features, binary features (with two levels) and factor features (=2 levels).
For each kind of features, we applied different imputation methods. We used
predictive mean matching to impute numeric features, logistic regression to impute
binary variables and Bayesian polytomous regression to impute factor features.
After data imputation, we normalized all features to 0 mean and 1 SD.

Regularized Cox model with LASSO penalty. We performed LASSO algorithm to
select and sort the statistically significant clinical features!”. We used critical illness
as event in the analysis and the training cohort of 1590 patients and 74 clinical
features for feature selection. We performed a tenfold cross-validation on the
training set to calculate the weight of LASSO penalty (denoted as lambda). The
lambda with 1 SE of the minimum partial likelihood deviance was used for feature
selection.

Feedforward neural network for survival modeling. We constructed a three-
layer feedforward neural network for survival modeling (namely deep survival
model)”. The network architecture is illustrated in Supplementary Fig. 2. The ten
selected features were fed into the network after data normalization. The network is
composed by three fully connected layers including two hidden layers and one
output layer. We empirically selected tanh as activation function. Output of the
network is a single node, which predicts the risk score of developing critical illness
event. If an event i:E; = 1 happens before event j:T; > T, then its risk score should
be higher: R; > R;. Given this definition, the loss of the network is defined as
following:

Loss(0) = — Z h(x,|6) — log Z (10) 1)

iE=1 FTST

where 6 is the parameter of the model to be optimized and h(x;|0) is the risk score
predicted by the network given input features x;.

The network was optimized by gradient descending with gradients estimated by
Adam optimizer. To avoid overfitting, dropout was applied after each layer during
training. Hyperparameters including layer size, learning rate, dropout rate, and
training epochs were optimized by Bayesian Hyperparameters Optimization'$. The
final optimized parameters are listed in Supplementary Table 6. The final model
was obtained by training the network with the optimal hyperparameters on the
whole training set.

Deep learning survival Cox model. We combined the ten features selected by the
LASSO Cox model with the output of our deep survival model and constructed an
integrated Cox model (named Deep Learning Survival Cox model). We performed
ridge regression with Cox loss on the same training set described above with a
tenfold cross-validation.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The datasets generated during and/or analyzed during the current study are not publicly
available due to the confidential policy of National Health Commission of China, but are
available from the corresponding author Jianxing He upon reasonable request. In
addition, this database is open for validation of results of other future studies worldwide,
through collaboration with the staff of the China Clinical Research Center for
Respiratory Disease.

Code availability
The code being used in the current study for developing the algorithm is provided at
https://github.com/cojocchen/covid19_critically_ill.
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