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Abstract

How fusion pore formation during exocytosis affects the subsequent release of vesicle contents remains incompletely
understood. It is unclear if the amount released per vesicle is dependent upon the nature of the developing fusion pore and
whether full fusion and transient kiss and run exocytosis are regulated by similar mechanisms. We hypothesise that if
consistent relationships exist between these aspects of exocytosis then they will remain constant across any age. Using
amperometry in mouse chromaffin cells we measured catecholamine efflux during single exocytotic events at P0, 1 month and
6 months. At all ages we observed full fusion (amperometric spike only), full fusion preceded by fusion pore flickering (pre-
spike foot (PSF) signal followed by a spike) and pure ‘‘kiss and run’’ exocytosis (represented by stand alone foot (SAF) signals).
We observe age-associated increases in the size of all 3 modes of fusion but these increases occur at different ages. The release
probability of PSF signals or full spikes alone doesn’t alter across any age in comparison with an age-dependent increase in the
incidence of ‘‘kiss and run’’ type events. However, the most striking changes we observe are age-associated changes in the
relationship between vesicle size and the membrane bending energy required for exocytosis. Our data illustrates that vesicle
size does not regulate release probability, as has been suggested, that membrane elasticity or flexural rigidity change with age
and that the mechanisms controlling full fusion may differ from those controlling ‘‘kiss and run’’ fusion.
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Introduction

The major mechanism underlying neurotransmitter and hormone

release is exocytosis, the formation of a fusion pore between vesicle

and plasma membranes resulting in release of vesicular contents into

the extracellular space. Carbon-fibre amperometry has provided a

significant proportion of our current understanding of exocytosis,

with several different types of exocytosis events detectable using this

method. These events can be classified as spikes, spikes with pre-

spike foot (PSF) signals and stand-alone foot (SAF) signals. Spikes

result from the rapid stabilization of the fusion pore followed by

substantial, possibly total, release of vesicle contents. PSF signals

represent transient release through the ‘‘flickering’’ of an unstable,

possibly proteinacious, fusion pore prior to pore stabilization [1,2].

Less commonly, a foot signal without a proceeding spike is observed.

This defines a SAF signal and represents pure ‘kiss and run’ type

fusion, where a fraction of vesicle content is released through the

unstable fusion pore before pore closure or collapse. What dictates

the occurrence of each form of exocytosis remains an area of ongoing

investigation. Previous amperometric studies indicate that these

different events may be interdependent. PSF signal size has been

correlated with the amount released per vesicle [3] while total vesicle

content may positively influence release probability [4] and the

probability of a PSF signal occurring [5]. How these factors relate to

each other and the exact nature of their interdependencies has not

been fully characterised and requires further investigation.

Understanding the stringent regulation of exocytosis is impor-

tant in health and disease as it controls the release of molecules

which regulate functions including cognition, synaptic transmis-

sion and blood glucose levels. A loss of control of these processes

can underlie pathological outcomes including hypertension,

psychiatric and neurodegenerative disorders and diabetes. Aging

is also an important factor in these disorders. The expression of

several proteins involved in exocytosis, including SNAP-25,

VAMP and Munc-18, decrease with aging [6,7]. Vesicle size

within rat chromaffin cells also increases with age [8] and vesicle

size is thought to affect the fusion of vesicles with the cell

membrane [5,9] and the probability of neurotransmitter release

[4]. Recent analytical advances illustrate a linear relationship

between PSF signal duration, vesicle size and the membrane

bending properties associated with the transition from reversible to

irreversible fusion pore states [1].

In the current study we used carbon-fiber amperometry to

understand the effects of aging on exocytosis in adrenal chromaffin

cells obtained from newborn (P0), 1 month old and 6 month old

mice. The total amount released per vesicle was lower at P0

compared to 1 and 6 months and similar, but not identical,

changes were seen in PSF signal parameters. Age-related changes

in the number of amperometric spikes or frequency of PSF signals

were not observed and this differed to the SAF signal frequency,

which increased with age. Most strikingly we illustrate significant

age-associated changes in the membrane bending properties of

these cells. Thus we illustrate novel age-related differences in the

occurrence of full fusion versus transient ‘‘kiss and run’’ type fusion

and identify significant changes in the energy requirements for the

transition from fusion pore formation to full fusion with age.
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Results

The probability of ‘‘kiss and run’’, but not full fusion,
changes with aging

We stimulated cells for 60 seconds and measured the total

number of exocytotic events during that time in all 3 age groups

investigated. Each single spike in these traces represents an

individual vesicle undergoing exocytosis and releasing its cate-

cholaminergic contents. We observed no significant alteration in

the number of events occurring in any group, with 97.6612.0

events in P0 cells, 78.668.6 at 1 month and 85.8616.9 at 6

months (Figure 1). Increasing the temporal resolution of these

Figure 1. Aging does not affect the number of vesicles undergoing full fusion. Representative amperometric traces show the 60 second
stimulation period (grey line below trace) in cells from (A) P0, (B) 1 month and (C) 6 months. The average number of events for each cell (D) illustrates
the number of exocytotic events does not change with age. n = 14, 15 and 16 for P0 (white bar), 1 month (striped bar) and 6 months (grey bar),
respectively. Scale bars in (A–C) represent 10sec and 100 pA.
doi:10.1371/journal.pone.0027820.g001

Figure 2. Different types of fusion as observed using carbon fibre amperometry. A full fusion event without a pre-spike foot signal (A), a
full fusion event with a pre-spike foot signal (B) and a kiss and run event represented as a stand-alone foot signal (C) are shown. Scale bars represent
2 ms and 10 pA.
doi:10.1371/journal.pone.0027820.g002

Effects of Aging on Fusion Pore Kinetics
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events illustrates that 3 major types of fusion occur. Spikes without

a PSF signal are observed, representing fusion without flickering of

the developing fusion pore (Figure 2A). Full amperometric spikes

with a PSF signal represent full fusion preceded by a prolonged

unstable flickering of the fusion pore (Figure 2B). We also observed

SAF signals which represent flickering of the fusion pore followed

by rapid pore closure or collapse before the full fusion pore has

developed (Figure 2C). These SAF signals represent what is

commonly termed as ‘‘kiss and run’’ type fusion.

We then measured the occurrence of the SAF and PSF signals.

If these events simply involve identical vesicles that, at the point of

transient fusion pore opening, either do or do not develop a large,

irreversible, stable fusion pore, then we assume that the frequency

of these signals should be similarly affected by aging. We find that

the number of SAF signals per cell increases with age significantly

between P0 (9.361.3 events) and 1 month (21.763.2, p,0.01) and

at 6 months 15.763.2 SAF signals per cell were observed

(Figure 3A). The ratio of full fusion vs. kiss and run fusion is

significantly lower also at P0 (0.160.01) compared to either 1

month (0.2960.04, p,0.01) or 6 months (0.2560.04, p,0.05,

Figure 3B). However the frequency of PSF signals observed did

not change at any age (Figure 3C).

Vesicle size increases with aging
We next measured the kinetics of full fusion events in all 3 age

groups (Table 1). Representative spikes from each age are shown

(Figure 4A). All aspects of fusion kinetics were significantly lower at

P0 compared to other ages and no differences were seen between 1

and 6 months with the exception of spike area, which was

significantly lower at 1 month compared with 6 months (p,0.01,

Figure 4B–F). We consequently observe significant age-related

increases in the total amount of catecholamine released per cell.

The total amount released per cell in P0 cells (8.461.6 nC) was

significantly less than at either 1 (19.664.5 nC, p,0.05) or 6

(26.56.0 nC, p,0.01) months.

Characteristics of fusion pore development also change
with age

We next investigated the changes in PSF signal parameters with

age (Table 2). Similar to the effect of age on full spike kinetics, we

also observe increases in PSF signal parameters with age. PSF

signal area increases at 1 and 6 months compared to P0 (p,0.001,

Figure 5B). Significant differences between all ages were observed

for both PSF signal amplitude and duration (Figure 5A and C).

These age-associated changes lead us to further investigate the

interdependence between fusion pore formation, vesicle size and

membrane elasticity.

Aging affects the relationship between transient fusion
pore opening and full fusion release kinetics

Recent investigations highlight the relationship between PSF

signal duration and vesicle size, which provides insights into

membrane curvature and membrane bending properties during

exocytosis [1]. Spike area scales directly with vesicle size [1,10,11],

which increases with age. We used histograms to illustrate the age-

related changes observed in the frequency distribution of PSF

signal duration, t, and spike area, Q. As these data sets are non-

parametrically distributed we first transformed them to create

parametric data sets. Such frequency distribution plots (Figure 6A)

illustrate that the age-related change in mean PSF signal duration

is caused by a subset of longer PSF signals in the 1 and 6 month

group compared to the P0 group. However when we observe the

relative distribution of Q we see a clear population shift to the

right in the 1 and 6 month age groups (Figure 6B), indicating a

shift towards larger vesicle sizes at these ages.

Fusion pores formed by smaller vesicles dilate more rapidly than

those formed by larger vesicles [1]. This is illustrated by binning Q

and averaging the corresponding t within each bin to produce

linearly correlated plots. We observe this relationship between Q

Figure 3. Aging affects the incidence of pre-spike foot signals
and stand-alone foot signal events differently. The number of
stand-alone foot (SAF) signals observed increases with age (A) as does
the ratio of SAF signals to full spikes (B), while the percentage of spike
displaying a pre-spike foot (PSF) signal is maintained across all ages
studied (C). n = 14, 15 and 16 cells for P0 (white bar), 1 month (striped
bar) and 6 month (grey bar), respectively. *, p,0.05, **, p,0.01,
calculated by Mann-Whitney U tests.
doi:10.1371/journal.pone.0027820.g003

Effects of Aging on Fusion Pore Kinetics
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Table 1. Effect of aging on single amperometric events.

Number of
Events

Spike
Amplitude (pA)

Spike
Charge (pC)

Spike Rise
Time (ms)

Spike Decay
Time (ms)

Spike
Half-width (ms)

Number
of cells

P0 97.6612.0 51.865.0 112.3611.6 0.2960.02 1.1960.13 1.360.1 14

1 month 71.768.6 79.167.4 306.1630.4 0.3860.02 2.2860.20 2.360.2 15

6 months 85.8616.9 88.567.1 423.4633.0 0.4460.04 3.4060.45 3.260.4 16

Values are averages of cell median values 6 SEM.
doi:10.1371/journal.pone.0027820.t001

Figure 4. Aging alters the kinetics of full fusion. (A) Examples of a typical amperometric spike at P0, 1 month and 6 months. Increases in spike
amplitude (B), area (C), rise time (D), decay time (E) and half-width (F) are all evident, indicating that release kinetics and the amount released from each
vesicle increases with age. Graphs represent the mean of each cells median value 6 SEM. *, p,0.05; **, p,0.01; ***, p,0.001, calculated by Mann-Whitney
U tests. n = 14, 15 and 16 for P0 (white bar), 1 month (striped bar) and 6 month (grey bar), respectively. Scale bars in (A) represent 10 ms and 10 pA.
doi:10.1371/journal.pone.0027820.g004

Effects of Aging on Fusion Pore Kinetics
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and t at each age studied (r2 = 0.65 at P0, 0.82 at 1 month and 0.8

at 6 months) and see a difference in the slope with aging

(Figure 6C). This slope is significantly less at P0 compared to both

1 and 6 months (p,0.05) and is less at 1 month compared to 6

months (p,0.05, Figure 6C). Given that reaction rates are

generally exponential functions of energy we transformed the y

axis to ln(1/t). As a vesicle of radius Rv has a membrane curvature

of 1/Rv, and as the volume of a vesicle scales with Q, the

curvature of a spherical vesicle should vary when 1/Q1/3 [1].

Transforming the plots in Figure 6C to plots of ln(1/t) vs. 1/Q1/3

maintained the linear relationships observed when correlating t
and Q. When we compare this relationship amongst different ages

we observe stark changes in the slope (P0 = 13.962.1, 1 month

= 30.2610.4 and 6 months = 105.9625.7, Figure 6D). These

differences are significant between P0 and 6 months (p,0.05).

SAF and PSF signals alter differently with age
We also studied the characteristics of SAF signals in order to see

how the kinetics of kiss and run exocytosis changes with age

(Table 3). SAF signal amplitude is significantly lower at P0

compared to 6 months (p,0.001, Figure 7A). Both SAF signal area

and duration are significantly less at P0 compared to 1 month or 6

months (p,0.001, Figure 7B and C). This is in contrast to the

changes observed in the area and duration of the PSF signal,

where significant differences are observed between all age groups

(Figure 5).

Alterations in Ca2+ entry do not explain aging-related
changes in exocytosis

As we observe clear age-related changes in multiple facets of

exocytosis, we measured whether alterations in Ca2+ entry or Ca2+

handling are altered with age. Cells from each age were loaded

with the Ca2+-sensitive dye, Fluo-4, and stimulated in an identical

fashion to that which occurred for amperometry experiments. To

gauge the Ca2+ handling properties of these cells we measured the

area under the curve upon stimulation-induced increases in cell

fluorescence (Figure 8A). We observe no difference between the

three groups. We also observe no difference between groups in

terms of the maximal fluorescence (DF) change observed

(Figure 8B). We therefore conclude that differences in Ca2+ entry

and Ca2+ handling do not underlie the age-associated changes we

observe in various aspects of exocytosis.

Discussion

We provide new insight into the changing nature of exocytosis

with age. The number of full fusion events and the frequency of

PSF signals are not affected by age as opposed to the number of

SAF signals, representing pure kiss and run events, which increase

with age. Additionally, the kinetics of full fusion, PSF and SAF

signals increase with age. The fact that the changes in kinetics of

these various fusion modes alter differently with aging suggests

different regulatory mechanisms may underlie full fusion and kiss

and run exocytosis. When we compare PSF signal duration with

spike area we observe a linear relationship. However, the slope of

this relationship is significantly increased with age, inferring strong

changes in membrane bending properties over time. Our findings

are relevant to the understanding of the basic mechanisms of

exocytosis in all excitable cell types, including neurons, in which

kiss and run exocytosis, fusion pore flickering and full fusion

exocytosis are all known to occur [12,13,14].

Kiss and run and full fusion probabilities are differentially
affected by age

One of our first observations in this study was that the number

of full fusion events is not affected by aging as observed in a

previous comparison of maternal and embryonic rat chromaffin

cells [15]. We similarly find no age-dependence of the probability

of a PSF signal but observe a clear increase in both the number of

SAF signals and the ratio of kiss and run to full fusion events with

age. A variety of factors are known to regulate kiss and run type

fusion, including synaptotagmin 1 and 4 and forskolin [16], Ca2+

[17] and cholesterol [18]. It will be of interest to know whether

changes in any of these factors dictate this age-dependent increase

specifically in kiss and run fusion. Our results indicate that changes

in Ca2+ entry are unlikely to be responsible for the alterations we

observe. This also fits with the lack of change in the number of full

fusion events with age.

One possible conclusion from our observations is that the

control mechanisms regulating the occurrence of transient and full

fusion exocytosis may differ. This is based on the simplistic

assumption that if the mechanisms underlying these two fusion

modes were the same then we would not have seen different effects

of age on their respective frequencies. However this conclusion is

largely speculative at this stage. What these different controlling

factors are and how they change with aging will be an area of

further investigation.

Membrane bending properties alter with aging
We observe significantly less release per vesicle (spike charge) at

P0 compared to other ages, similar to comparisons made between

maternal and embryonic chromaffin cells [15]. Spike charge is

directly correlated with vesicle size in chromaffin cells [1,19] as

these vesicles maintain a constant internal catecholamine concen-

tration [10]. Therefore spike charge is a direct indicator of vesicle

size and age-related increases in vesicle size have been previously

documented in chromaffin cells [8]. Recent experiments have

highlighted the linear relationship between fusion pore duration,

which represents an estimate of the stability of the initial fusion

pore, and vesicle size, which is represented by spike charge [1]. We

observe the same relationship in our experiments and illustrate

that the slope of this relationship changes significantly with age.

Table 2. Effect of aging on pre-spike foot signals.

Pre-Spike Foot
Frequency (%)

Pre-Spike Foot
Amplitude (pA)

Pre-Spike Foot
Area (pC)

Pre-Spike Foot
Duration (ms)

Number
of cells

P0 37.663.9 19.960.9 27.862.6 3.060.2 14

1 month 40.163.3 16.261.1 33.062.2 4.160.3 15

6 months 41.564.4 53.561.9 66.268.7 5.860.6 16

Values are averages of all cells 6 SEM.
doi:10.1371/journal.pone.0027820.t002

Effects of Aging on Fusion Pore Kinetics
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Transforming this correlation to plots of ln(1/t) versus 1/Q1/3

allowed us to compare elasticity of the fusing membranes with age.

The increases with age that we observe in the slope of this

relationship are not simply caused by the increasing vesicle size

with age, as vesicle size changes only offset the intercept of these

correlations and not the slope [1]. Rather, the increase in slope

with age most likely reflects alterations in either membrane

curvature properties or increasing membrane flexural rigidity [1],

both of which will affect the slope of such relationships. Another,

potentially more straightforward, way to interpret these changes

with age is that, when comparing similar sized vesicles across the 3

ages, more energy is required for full fusion to occur in older cells.

Precisely what underlies these changes remains unknown

although alterations in the lipid composition of the membrane

bilayers involved are strong candidates given lipid perturbations

alter the slope of the ln(1/t) vs. 1/Q1/3 relationship [1]. One

candidate lipid is cholesterol, which imparts high negative

curvature on membranes, which correlates with its facilitation of

membrane fusion [20,21]. Cholesterol levels are decreased in the

aging brain and in hippocampal neurons aged in vitro [22,23,24].

However the lowering of cholesterol in the cytoplasmic leaflet of

chromaffin cells shortens t and reduces the proportion of SAF

signals, whereas an increase in internal cholesterol has opposite

effects [18]. Additionally, cellular cholesterol levels do not alter Q

but have a positive influence on the slope of the relationship

between t and Q [18]. We conclude from this that either

cholesterol levels increase with age in mouse chromaffin cells or

that altered cholesterol levels do not underlie the age-associated

changes in exocytosis we observe. A full analysis of the lipid

composition of vesicle and plasma membranes may be needed in

order to identify whether these factors are altered in aging

chromaffin cells.

Kiss and run fusion and full fusion are differentially
controlled

A simplistic explanation of the process of exocytosis is that the

vesicle and plasma membranes initiate the formation of a fusion

pore which either transforms into a stable fusion pore in full fusion

or collapses, resulting in kiss and run exocytosis. Such an

explanation might assume that, prior to fusion, a vesicle has the

potential to undergo either type of fusion. If true, then factors that

affect exocytosis with age would be assumed to affect both types of

fusion equally. In our experiments, the probabilities of observing

full spikes or PSF signals remain constant with age while SAF

signal probability and the SAF to full spike ratio increase with age.

This result suggests alternate control mechanisms controlling

transient and full fusion, the existence of vesicle heterogeneity in

terms of their protein and lipid components, or heterogeneity of

the protein and lipid components at sites of fusion on the plasma

membrane.

If the energy required to undergo the transition from an early,

potentially proteinaceous, fusion pore to a larger, more stable and

potentially lipidic fusion pore is not adequate, the result may be

the failure of such a transition occurring (ie; kiss and run fusion).

Our finding that membrane bending energy is increased with age

is a potential explanation as to why we observe more kiss and run

exocytosis with age. Additionally, the mean duration of the SAF

signal (,22.3 – 33.2 ms) is vastly longer than that of the PSF signal

(,3.1 – 5.8 ms). Kiss and run events and full fusion events may

therefore involve vesicle or plasma membrane properties which

are inherently different from each other, with these differences

dictating the type of exocytosis that will occur.

Whilst the reasons for these changes are unknown, factors that

may play a role include vesicle-associated proteins, accessory

proteins or the lipid composition of the interacting membranes.

We have already described the potential effect of altering

membrane cholesterol on fusion kinetics but the altered expression

of various proteins may also play a role. A deletion mutant of

SNAP-25 which effects C-terminal zippering results in longer PSF

signal duration and reduced pore conductance [25] while guanine

Figure 5. The kinetics of the transient fusion pore increase with
age. The amplitude (A), area (B) and duration (C) of the pre-spike foot
(PSF) signal change with aging. Graphs show means of all PSF signals at
each age tested 6 SEM. *, p,0.05; **, p,0.01; ***, p,0.001, calculated
by Mann-Whitney U tests. n = 14, 15 and 16 cells and 466, 268, 599
events for P0 (white bar), 1 month (striped bar) and 6 month (grey bar),
respectively.
doi:10.1371/journal.pone.0027820.g005

Effects of Aging on Fusion Pore Kinetics
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nucleotide exchange activity regulates both PSF and SAF signal

frequency [26]. Different regions of synaptotagmin also effect

fusion pore stability [27] and alter kiss and run probability [16].

The factors underlying the changes we observe are beyond the

scope of our present study.

Potential physiological outcomes for the different aging-
related changes in pore formation and vesicle release

While our findings provide new insight into understanding the

control of the fusion pore and the distal steps of exocytosis, they

also have implications which are relevant to other areas of

research. Chromaffin cells are the major source of circulating

catecholamines. Modulation of fusion pore kinetics in these cells

will have direct effects on the amount of catecholamine released in

times of physiological stress. Our results show a significant increase

in total catecholamine released per cell with aging, in line with the

age-associated increases in circulating catecholamines observed in

both rodents [28] and humans [29]. A surge of circulating

catecholamines can have differential effects depending upon the

developmental stage. In the fetus, these changes include decreased

heart rate, a rise in fetal arterial pressure and dramatic increases in

blood flow to the heart, brain and adrenal glands with a

concomitant reduction in blood flow to the kidneys, gut, liver,

lung and extremities [30]. In mature animals this same response

Figure 6. Aging differentially affects membrane bending properties during exocytosis. Frequency distribution of the cube root of pre-
spike foot (PSF) signal duration (A) and spike area (B) illustrates the different ages at which these change. Correlations between PSF signal duration, t,
and spike area, Q (C) shows a linear relationship at all ages (P0: R2 = 0.64, p,0.01, 1 month: R2 = 0.82, p,0.0001, 6 months: R2 = 0.79, p,0.0001).
Transforms of this data to ln(1/t) vs 1/Q1/3 (D) also provides linear relationships at all ages (P0: R2 = 0.81, p,0.0001, 1 month: R2 = 0.44, p,0.05, 6
months: R2 = 0.59, p,0.01). The slope of this plot, representing membrane curvature [1], increases significantly with age. Green – P0, red – 1 month,
blue – 6 months.
doi:10.1371/journal.pone.0027820.g006

Table 3. Effect of aging on ‘kiss and run’ events.

Number of Events Amplitude (pA) Charge (pC) Duration (ms) Number of cells

P0 9.361.3 11.360.56 164.1615.1 22.361.13 14

1 month 21.763.2 11.460.79 154.9612.4 23.760.80 15

6 months 15.763.2 12.660.30 248.8615.70 33.361.30 16

Values are averages of all cells 6 SEM.
doi:10.1371/journal.pone.0027820.t003

Effects of Aging on Fusion Pore Kinetics
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triggers increased heart rate and changes in blood vessel diameter

and air passage dilation as part of the ‘‘flight or fight’’ response.

Adrenal chromaffin cells also release substantial amounts of

biologically active peptides including PACAP and VIP. Recent

evidence has clearly illustrated that modulation of fusion pore

opening in chromaffin cells directly affects the release of such

peptides [31].

In summary, we have illustrated previously uncharacterised age-

dependent changes in the kinetics associated with fusion pore

formation, vesicle release and kiss and run exocytosis. We also

observe an effect of aging on the probability of kiss and run events

but not on full fusion events. Our analysis indicates that

membrane bending capacity or membrane flexural rigidity may

possibly change with aging in chromaffin cells and that this may

underlie the increased incidence of kiss and run type fusion with

age. It will be important to determine the mechanisms underlying

for these differences and what significance these have to our

understanding of exocytosis regulation.

Materials and Methods

Ethics statement
C57Bl/6J mice were used for all experiments and all animals

were killed in accordance with the Flinders University animal

ethics committee. The Flinders University animal ethics commit-

tee approved the use of these animals in this study (approval

numbers 620/06(a) and 715/09).

Chromaffin cell culture
P0 mice were killed by decapitation whilst 1 month and 6

month old mice were killed by overdose with isofluorane. Adrenal

glands were removed from dead mice and the adrenal medulla was

dissected from the gland in cold Locke’s Buffer (154 mM NaCl,

5.6 mM KCl, 3.6 mM NaHCO3, 5.6 mM glucose, 5.0 mM

HEPES, pH 7.4) and incubated with collagenase type A (3 mg/

mL in Locke’s Buffer) (Roche, Germany) in a shaking water bath

at 37uC. The collagenase was then diluted in cold Locke’s Buffer

and cells were pelleted and resuspended in supplemented DMEM

(Dulbecco’s modified Eagle’s medium supplemented with 10% (v/

v) heat inactivated fetal calf serum, 100 units/mL penicillin and

100 mg/mL streptomycin (Invitrogen, Carlsbad, CA, USA) and

filtered through a nylon mesh. Cells were pelleted, resuspended in

supplemented DMEM, plated on 35 mm tissue culture dishes and

incubated at 37uC with 5% CO2. Cells were maintained in

primary culture for 3 to 4 days prior to experiments.

Amperometry
Catecholamine release from single chromaffin cells was

measured using amperometry [32]. A carbon-fiber electrode

(ProCFE, Dagan Corporation, USA) was placed on a chromaffin

cell and +800 mV applied to the electrode under voltage clamp

conditions. Current due to catecholamine oxidation was recorded

using an EPC-9 amplifier and Pulse software (HEKA Electronic,

Germany), sampled at 10 kHz and low-pass filtered at 1 kHz. For

quantitative analysis files were converted to Axon Binary Files

(ABF Utility, version 2.1, Synaptosoft, USA) and secretory spikes

analysed (Mini Analysis, version 6.0.1, Synaptosoft, USA) for a

period of 60 s from the start of stimulation. Each carbon fibre

electrode was typically used no more than five recordings in order

to avoid probe desensitisation. The standard bath solution

contained 140 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM

MgCl2, 5 mM D-glucose, 10 mM HEPES, pH 7.4. A solution

containing a greater concentration of K+, used to stimulate cells,

was identical in composition to the standard bath solution with

70 mM K+ replacing an equimolar amount of NaCl. All solutions

were applied to cells using a gravity perfusion system, the outlet of

which was placed within 500 mm of the cell being recorded. All

experiments were carried out at 37uC using an in-line solution

heater (Warner Instruments, USA).

Data analysis
Amperometric spikes were selected for analysis of event

frequency if spike amplitude exceeded 2.5 times the root-mean-

Figure 7. The kinetics of kiss and run fusion events changes
with aging. The amplitude (A), area (B) and duration (C) of stand-alone
foot (SAF) signals all change with aging. Graphs show means of all SAF
signals at each age tested 6 SEM. ***, p,0.001, calculated by Mann-
Whitney U tests. n = 14, 15 and 16 cells and 130, 273 and 252 events for
P0 (white bar), 1 month (striped bar) and 6 month (grey bar),
respectively.
doi:10.1371/journal.pone.0027820.g007
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squared noise of the baseline. Cells with fewer than 10 or more

than 200 events within the 60 second stimulation period were

excluded from analysis. For kinetic analysis of spikes and PSF

signals, only those events that were not overlapping were included.

Only PSF signals longer than 1 ms and above 2.5 times the root-

mean-squared noise of the baseline were analyzed as foot signals.

Rise time of each spike was calculated from the 50–90% rising

phase in order to avoid skewing caused by PSF signals.

In analyzing spike kinetics, all spikes that met our threshold

criteria were included in calculating the median values of each

spike parameter for each cell. The averages of these median values

were then used to compare each parameter between cell

populations [33]. This was done to avoid errors associated with

pooling large numbers of spikes from cells where there is a large

cell to cell variability. Analysis of PSF and SAF signal kinetics was

performed using pooled data from all recorded cells, as many

recordings contained a low number of foot signals so that an

adequate median value could not be obtained for each cell. PSF

signal onset was defined when the signal exceeded the peak-to-

peak noise of a 5 ms time segment, while the end of the PSF was

defined as the inflection point between the PSF signal and the

spike. PSF signal lifetime, t, was taken as the intervening time

interval. The total event area was taken as the integral from the

PSF onset to the time where the spike current fell to 2.5 times the

root-mean-squared noise of the baseline.

Non-parametrically distributed data sets were evaluated for

statistical significance using the Mann–Whitney U test while

parametrically distributed data sets were initially evaluated using

One-way ANOVA followed by Tukey’s post-hoc analysis.

Statistical significance between slopes was designated based on

non-overlapping 95% confidence intervals. p,0.05 was taken was

the lowest level of statistical significance. All data presented are

shown as mean 6 SEM.

Ca2+ imaging
Chromaffin cells were loaded with Fluo-4AM (Invitrogen,

Australia, 5 mM) for 30 minutes at 37uC. Cells were stimulated

for 60 seconds in Krebs buffer containing 70 mM K+ as described.

Fluo-4 was excited using a Xenon light source (model LSLS-XL,

Sutter Instruments, USA) and the emitted light filtered using an

appropriate highpass filter. Images were obtained using a 106
water-immersion objective fitted to a CCD camera (Cascade II

512, Roper Photometrics, USA) on an upright microscope (Eclipse

50i, Nikon, Japan) at a 1 Hz rate. Analysis was performed with the

Imaging Workbench software (version 6.01; Indec Biosystems,

USA) for user-defined individual chromaffin cells.
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