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Abstract

Background: SARS-CoV-2 is an RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic.
Viruses exist in complex microbial environments, and recent studies have revealed both synergistic and antagonistic
effects of specific bacterial taxa on viral prevalence and infectivity. We set out to test whether specific bacterial
communities predict SARS-CoV-2 occurrence in a hospital setting.

Methods: We collected 972 samples from hospitalized patients with COVID-19, their health care providers, and
hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized
microbial communities using 16S rRNA gene amplicon sequencing, and used these bacterial profiles to classify
SARS-CoV-2 RNA detection with a random forest model.

Results: Sixteen percent of surfaces from COVID-19 patient rooms had detectable SARS-CoV-2 RNA, although
infectivity was not assessed. The highest prevalence was in floor samples next to patient beds (39%) and directly
outside their rooms (29%). Although bed rail samples more closely resembled the patient microbiome compared to
floor samples, SARS-CoV-2 RNA was detected less often in bed rail samples (11%). SARS-CoV-2 positive samples had
higher bacterial phylogenetic diversity in both human and surface samples and higher biomass in floor samples.
16S microbial community profiles enabled high classifier accuracy for SARS-CoV-2 status in not only nares, but also
forehead, stool, and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from
the genus Rothia strongly predicted SARS-CoV-2 presence across sample types, with greater prevalence in positive
surface and human samples, even when compared to samples from patients in other intensive care units prior to
the COVID-19 pandemic.
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Conclusions: These results contextualize the vast diversity of microbial niches where SARS-CoV-2 RNA is detected
and identify specific bacterial taxa that associate with the viral RNA prevalence both in the host and hospital
environment.
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Background
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the causative agent of a novel infectious dis-
ease, COVID-19, that has reached pandemic propor-
tions. This pandemic has been characterized by
sustained human to human transmission and has caused
more than 91 million cases and nearly 2 million deaths
worldwide (as of 15 January 2020, WHO report).
Viruses exist in complex microbial environments, and

specific virus-bacterium interactions have been increas-
ingly documented in host-associated contexts. In the
animal microbiome, the gastrointestinal tract contains
the greatest number and density of bacteria, and many
virus-bacterium interaction studies have therefore fo-
cused on enteric viruses. Gut bacteria have been shown
to directly modulate enteric virus infectivity via improv-
ing thermostability [1], increasing environmental stabil-
ity [2], and encouraging viral genetic diversity and
fitness [3]. Virus-bacterium interactions have also been
observed in upper-respiratory tract infections including
influenza A [4, 5] and oral human papillomavirus infec-
tion [6]. Most recently, prevalent bacteria in the human
microbiome have been demonstrated to alter the human
glycocalyx, thereby modulating the ability of SARS-CoV-
2 to bind host cells [7].
In addition to observed virus-bacterium interactions in

the host, existing evidence suggests that bacteria in in-
door spaces (the “built environment”) may also influence
viral stability or virulence. The risk of contracting SARS-
CoV-2 is higher indoors than outdoors, particularly in
poorly ventilated areas [8], and the built environment
has a distinct microbiome [9]. The built environment
microbiome is usually dominated by human-associated
microbes [10]. It is estimated that humans shed approxi-
mately 37 million bacterial genomes per hour into their
built environments [11]. In a study following the build-
ing of a new hospital, it was discovered that indoor
spaces were seeded with microbes from patients and
health care workers [12]. Bacterial load was found to
positively correlate with viral load across a variety of sur-
face types and humidity conditions in the built environ-
ment [13]. Given the nature of known virus-bacterium
interactions, we hypothesized that associations between
specific bacteria and SARS-CoV-2 may also be detect-
able in the built environment.
Despite evidence that SARS-CoV-2 can persist on sur-

faces under controlled conditions for days [14], more

recent studies have demonstrated that fomite transmis-
sion is relatively low-risk in real world conditions [15–
17]. Nevertheless, SARS-CoV-2 RNA detection has been
widely reported across hospital surfaces [18–20]. To test
whether specific bacterial taxa in the host or built envir-
onment co-associate with SARS-CoV-2, we collected
samples from hospital surfaces, patients, and health care
workers in the intensive care unit (ICU) and medical-
surgical floor during the onset of the COVID-19 out-
break, screened for viral RNA presence, and sequenced
the bacterial community.

Results
SARS-CoV-2 RNA detection across surfaces and patient
samples
Sample collection for SARS-CoV-2 RNA screening is
typically performed using viral transport media contain-
ing fetal bovine serum and a cocktail of antibiotics,
which could negatively influence studies of bacteria and
other microbes [21, 22]. For this study, swab samples
were stored in 95% EtOH in order to inactivate the virus
for safe transportation [23] while stabilizing the micro-
bial community [24]. A total of 972 samples were col-
lected longitudinally from 16 patients with clinical
laboratory confirmed SARS-CoV-2 infection (118 sam-
ples), 10 health care workers assigned to these patients
(113 samples), and 734 hospital surfaces either inside or
immediately outside of the patients’ rooms over the span
of two months (Fig. 1A). The 16 patients (5 females and
11 males) enrolled in this study ranged from age 20 to
84, with a median age of 49.5 years (Fig S1). Approxi-
mately 50% of patients were Hispanic/Latino, 31% were
non-Hispanic/Latino White, 13% were Black, and 6%
were Pacific Islander. Of the patients for whom anti-
biotic treatment information was collected, the majority
had received at least one antibiotic. The number of days
spent in the hospital ranged from 1 to 25, with a median
stay of 9 days.
Each sample was screened for the presence of SARS-

CoV-2 RNA using three distinct primer/probe sets: the
U.S. Center for Disease Control N1 and N2 targets and
the World Health Organization E-gene target (see
methods). The US Food and Drug Administration has is-
sued Emergency Authorization for more than 150 RT-
qPCR assays for the detection of SARS-CoV-2, the ma-
jority of which define a positive result as amplification in
a single target [25]. Accordingly, we designated samples

Marotz et al. Microbiome           (2021) 9:132 Page 2 of 15



as positive if at least one out of three targets amplified
with a Ct value below 40.
Of the surfaces sampled, 13.1% contained detectable

SARS-CoV-2 RNA, including those touched primarily by

health care workers (keyboard, ventilator buttons, door
handles inside, and outside the rooms) and those directly
in contact with the patient (toilet seats and bed rails). A
small number of other surface samples were collected

Fig. 1 Summary of SARS-CoV-2 RNA detection in the dataset. A Schematic diagram of the experimental design highlighting the time frame for
sample collection across sample types. B Percent and number of SARS-CoV-2 positives for each sample type collected from rooms occupied or
not occupied by patients with COVID-19. Not occupied includes both post-cleaning rooms and rooms currently occupied by a patient negative
for COVID-19. C Number of samples and SARS-CoV-2 screening results for 3 gene targets (N1, N2, and E-gene). D Boxplot of time-incorporated
principal scores on viral copies per swab for different sample types. Each dot represents the functional principal component score for each viral
load trajectory over time, which was estimated from sparse functional principal components analysis on viral load over time; *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001, Wilcoxon signed-rank test. E Viral copies per swab relative to date of symptom onset across COVID-19 patient
sample types, where only sample types with both n positive> 10 and % positive> 10% are included. F Viral copies per swab relative to date of
room admission across hospital surface sample types, where samples from rooms occupied by a COVID-19 patient at the time of sampling are
included. Again, sample types with both n > 10 and % positive> 10% are included
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(room air intake filter, n = 13; tap water, n = 4; health
care worker shoes, n = 2; ultrasound buttons, n = 2; in-
side of veil box, n = 1), for which no SARS-CoV-2 RNA
was detected (Fig. 1B). Of the patients enrolled in the
study, we collected at least one positive sample from 15/
16 patients (nares, forehead, or stool) and from 14/15 as-
sociated hospital rooms. In rooms where patient samples
were not available, surfaces screened positive at least
once for 6/6 COVID-19 patient rooms and 4/5 non-
COVID-19 patient rooms. Floor samples had the highest
positivity rates (36% of samples collected from the floor
near the patients’ bed, i.e., “Inside Floor”, and 26% of
samples collected from the floor immediately outside of
the patient room, i.e., “Outside Floor”) (Fig. 1B, Fig. S2).
In some cases, SARS-CoV-2 RNA was detected on the
floors of rooms with non-COVID-19 patients and in
rooms that had been cleaned following COVID-19 pa-
tient occupancy (Fig. 1B, Fig. S3C).
For the purposes of this study, viral load was defined

as viral copies per swab extrapolated from Ct values of
serially diluted viral RNA amplicons included on each
plate (see methods). The surface area swabbed for built
environment samples was consistent within sample
types, and only three healthcare providers collected sam-
ples to reduce variation in swabbing technique. Most of
the positive surface samples amplified only one or two
out of the three SARS-CoV-2 targets (Fig. 1C) and had
significantly lower viral load over time compared to pa-
tient nares and stool samples (p < 0.003, non-parametric
test from sparse functional principal components ana-
lysis) [26], but similar viral load to patient forehead sam-
ples (Fig. 1D). SARS-CoV-2 viral load tended to
decrease slightly in patients over time (Fig. 1E) but was
detectable in patient’s nares up to 27 days after symptom
onset. For a COVID-19-positive patient’s stay, viral load
also tended to decrease slightly on associated hospital
surfaces including bed rails and floor samples but
remained detectable up to 16 days after patient admis-
sion (Fig. 1F). Due to high patient volume necessitating
immediate room turnover, rooms were not left un-
occupied long enough to collect repeated samples
after patient discharge and room cleaning. The overall
high Ct values on hospital surfaces suggest that the
detected SARS-CoV-2 viral RNA was likely not in
sufficient quantities to be infectious, consistent with
previous findings of hospital surfaces [18, 19]. Of 113
health care worker samples, only one stool sample
amplified for one of the three viral targets. No other
samples collected from this health care worker, and
no samples from any other health care worker treat-
ing patients with COVID-19 had any viral target amp-
lification. Moreover, no health care workers in this
study had detectable serum antibodies against SARS-
CoV-2 during routine employee screening.

Microbial context of SARS-CoV-2 RNA detection
To compare the built environment microbial communi-
ties in this study to that in prior studies, we performed
16S V4 rRNA gene amplicon (16S) sequencing on all
samples including both positive and negative controls to
exclude failed samples according to the KatharoSeq
protocol (see methods) [27]. A total of 589 out of the
972 samples passed quality filtering. Most of the sample
dropouts were low biomass samples from surfaces in the
built environment (49% of hospital surface samples com-
pared to 9% of human samples). Fewer samples that
failed 16S sequencing were SARS-CoV-2 positive (6.7%)
compared to samples that sequenced successfully
(23.9%). A meta-analysis with samples from the Earth
Microbiome Project [28], an intensive care unit micro-
biome project [29], and a hospital surface microbiome
study performed at another hospital [12] (a total of 19,
947 samples collected and processed using comparable
and standardized Earth Microbiome Project methods
[28, 30]) contextualized the microbial composition of
samples from this hospital study and the microbial di-
versity covered in this dataset (Fig. 2A). Using source-
tracking [31] on the meta-analysis dataset, we found that
floor samples, which clustered separately from the rest
of our dataset (Fig. 2C), were similar to built environ-
ment samples from previous studies (Fig. S4).
Beta diversity estimated using unweighted UniFrac dis-

tances [32] in this study showed that floor samples, stool
samples, and nares/forehead samples formed three dis-
tinct clusters with other surfaces falling between the hu-
man skin and floor samples (Fig. 2B-C). SARS-CoV-2
viral load was weakly correlated with unweighted Uni-
Frac beta diversity (PERMANOVA R2 < 0.01, p value =
0.043, Fig. S5).
We compared beta diversity between human samples

and paired built environment samples from the patients’
respective hospital rooms. As expected, microbial com-
position of high-touch surfaces routinely used by health-
care workers, such as keyboards and floor samples, were
significantly more similar to health care worker samples,
whereas samples from bed rails that are frequently
touched by patients were significantly more similar to
the patient samples (Fig. 2D), reflecting likely inputs of
microbes to these communities. Notably, the percent of
SARS-CoV-2 positive bed rail samples was lower than
floor (11% vs. 39%) despite the high similarity of bed rail
microbiomes to the corresponding patient microbiomes.

Microbial diversity and biomass positively associated with
SARS-CoV-2
Next, we tested whether bacterial alpha diversity is asso-
ciated with SARS-CoV-2 RNA detection. Overall, Faith’s
phylogenetic alpha diversity was significantly higher
among surface samples than patient or health care
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worker samples (Fig. 3A). Faith’s phylogenetic diversity
was significantly higher for SARS-CoV-2 positive sam-
ples in forehead, inside floor, and outside floor samples
(Fig. 3B).
The high alpha diversity of floor samples and signifi-

cant association with SARS-CoV-2 RNA detection led us
to examine potential differences in biomass across floor
samples. 16S read count and human RNAse P Ct values
are indirect measures of total bacterial and human bio-
mass, respectively, and were significantly correlated
(Pearson R2 = − 0.40, p < 0.0001). 16S read count was
significantly higher in floor samples with detected SARS-
CoV-2 RNA, but did not correlate with the number of
viral copies detected per swab (Fig. S6A). The

abundance of human RNAse P was also significantly
higher in floor samples with SARS-CoV-2 RNA, and
positively correlated with viral load (Pearson R2 = −
0.31, p value = 0.011) (Fig. S6B); this correlation was not
observed for the other sample types examined (nares,
forehead, stool, bed rail). These results suggest that in-
creased detection of SARS-CoV-2 RNA on floors could
be related to the relatively high load of total microbial
and human biomass compared to other surfaces.
To determine the relationship between abundance of

SARS-CoV-2 RNA and bacterial composition in the built
environment, we performed forward stepwise redun-
dancy analysis [33] on unweighted UniFrac [34] princi-
pal components from floor samples (n = 215). We chose

Fig. 2 Microbial diversity of SARS-CoV-2 patients, health care workers, and the built environment in COVID-19 units. A Principal coordinates
analysis (PCoA) of unweighted UniFrac distances comparing the Earth Microbiome Project meta-analysis (n = 19,497, small dots) and this study (n
= 591, large dots). B PCoA of unweighted UniFrac distances in this study. C Heatmap of unweighted UniFrac distance among surface and patient
sample types. Diagonal lines represent median distances within individual sample types. D Pairwise unweighted UniFrac distance between the
human surface (i.e., forehead and nares) and their paired surface samples. Statistics represent bootstrapped Kruskal-Wallis; *p < 0.05, **p < 0.01,
***p < 0.001
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floor samples for this analysis since floor samples had
the largest number and highest biomass of all surfaces
sampled (Fig. S7). Three non-redundant variables had a
significant effect size, explaining a total of 21.7% vari-
ation in the data (Fig. S6C). The variable with the stron-
gest effect size was patient identity (17.5%, p value =
0.0002), which aligns with previous work demonstrating
that the built environment microbiome is contributed
from the humans inhabiting that space [12]. Whether
the sample was an inside floor sample (next to patient
bed) or outside floor sample (hallway directly in front of
patient room) also had a small, yet significant effect size
(0.8%, p value = 0.04). Importantly, SARS-CoV-2 detec-
tion status also significantly contributed to microbial
variation (3.4%, p value = 0.0004).

Unique microbial signatures predict SARS-CoV-2 across
patient sample types
To identify microbial features associated with SARS-
CoV-2 positive samples, we independently trained ran-
dom forest (RF) classifiers on nares (N = 76), stool (N =
44), and forehead samples (n = 79) from patients with
COVID-19 and health care workers. Based on 16S rRNA
gene amplicon sequencing microbial profiles, the RF
models predicted SARS-CoV-2 status (positive vs. not
detected) with 0.89 area under the receiver operating
characteristic curve (AUROC) in unseen nares samples
(Fig. 4A). Strikingly, skin (AUROC = 0.79) and stool
(AUROC = 0.82) also showed high classifier accuracy.
As the SARS-CoV-2-negative samples were

overrepresented in the data, we also employed the area
under the precision recall curves (AUPRC) to evaluate
the prediction performance of each classifier, which were
0.76, 0.72, and 0.7 for nares, stool, and forehead, respect-
ively (Fig. 4B). A RF model built from bacterial profiles
on the inside floor also showed a moderate prediction
accuracy for discriminating SARS-CoV-2 status
(AUROC = 0.71; AUPRC = 0.6, Fig. 4A and B). RF clas-
sifiers trained on outside floor and bed rail samples did
not perform well, especially in the precision-recall curves
(Fig. S8).
The phylogenetic relationship of the top 100 ranked

amplicon sequence variants (ASV) from the RF models
were visualized with EMPress [35] (Fig. 4C). Stool and
inside floor samples each had distinct sets of taxa driving
the RF model compared to nares and forehead samples,
which were more similar to one another. Many of the
highly ranked ASVs in the stool samples are from the
class Clostridiales, a polyphyletic group of obligate an-
aerobes that were also identified as predictive of SARS-
CoV-2 status in a wastewater study [36].
ASVs from the genera Actinomyces, Anaerococcus,

Dialister, Gemella, and Schaalia were in the top 40
ranked predictive features of both forehead and nares
samples (Table S2); these taxa are normally found in an-
terior nares samples [37–39], but are not commonly de-
scribed in forehead microbiome samples. Interestingly,
from Fig. 2C, we observed that the unweighted UniFrac
distance between samples from the same individual’s
nares and forehead were more similar in rooms with

Fig. 3 Alpha diversity is higher in SARS-CoV-2 positive samples of each type. A Faith’s phylogenetic diversity (rarefied to 4000 reads per sample) of
human and surface samples over time, fitted with locally estimated scatterplot smoothing (LOESS) curves. B Faith’s phylogenetic diversity of humans
and their surface samples grouped by SARS-CoV-2 screening results. Statistics resulted from Wilcoxon signed rank tests; *p < 0.05, **p < 0.01
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SARS-CoV-2 positive surfaces, suggesting that patients who
shed virus into their environment could be cross-
contaminating bacteria between nares and forehead (Fig. S9).
One ASV with an exact match to Rothia dentocariosa

(GenBank ID CP054018.1) was highly ranked as predict-
ive across all four disparate sample types: nares, fore-
head, stool, and inside floor (Fig. 4C). There were a total
of 36 ASVs aligning to the genus Rothia, of which only 7
ASVs were present in > 2% of samples. Of these, the
only ASV found to associate with viral presence was the
Rothia ASV presented here. Further investigation shows
this ASV is more prevalent in SARS-CoV-2 positive
samples across all sample types examined. To exclude

the possibility that this Rothia ASV was associated with
sick patients generally, we examined the prevalence of
this ASV in an intensive care unit microbiome study that
was performed in 2016 [29] and found that high preva-
lence of this Rothia ASV is specific to SARS-CoV-2 posi-
tive patient samples (Fig. 4D). We also found that
patients with cardiovascular disease comorbidities
tended to have higher prevalence of the Rothia ASV as-
sociated with SARS-CoV-2, compared to patients with-
out pre-existing cardiovascular disease (45% versus 26%,
respectively). Rothia dentocariosa can cause endocarditis,
particularly in patients with a history of cardiovascular
disease [40, 41]. Using data from the American Gut

Fig. 4 Bacterial composition is predictive of SARS-CoV-2 status in nares, forehead, stool, and inside floor samples. The prediction performance of
random forest classifiers on SARS-CoV-2 status for each sample type was assessed using AUROC (A) and AUPRC (B) for nares (n = 76), forehead (n
= 79), stool (n = 44), and inside floor (n = 107), in a 100-fold cross-validation approach (see methods). C EMPress plot of the 100 features most
predictive of SARS-CoV-2 status in nares, forehead, stool, and inside floor samples, where a single ASV with 100% alignment to Rothia
dentocariosa was identified across all sample types. D Proportion of samples containing the highly predictive Rothia dentocariosa ASV in SARS-
CoV-2 positive and negative samples from the current study and from [29] (ICU 2016 pre-COVID19)
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Project [42], we tested for the presence of this Rothia
ASV in samples from those self-reporting a medical
diagnosis of a cardiovascular disease and those self-
reporting not having a cardiovascular disease. We ob-
served a significantly higher prevalence of the Rothia
ASV in samples with a reporting of cardiovascular dis-
ease (Fisher’s exact test, p = 0.041) than those without,
suggesting that the Rothia ASV could be associated with
cardiovascular disease outside of the context of SARS-
CoV-2.

Discussion
The COVID-19 pandemic continues unabated as out-
breaks ebb and flow around the globe. Because evidence
for the synergistic effects of host-associated bacteria on
multiple viral pathogens continues to emerge, we set out
to identify possible correlations between host- or
surface-associated bacteria and SARS-CoV-2 RNA pres-
ence and abundance in the hospital built environment.
At the onset of sampling, no hospital rooms or health
care workers enrolled in the study had known exposure
to SARS-CoV-2. Although both patient samples and sur-
face samples from patient rooms tested positive
throughout the study, all samples collected from health
care workers providing direct patient care to patients
with COVID-19 were negative by both clinical RT-qPCR
and antibody tests (data not shown). This includes the 3
health care workers who collected samples for the study.
Aside from one stool sample where one of three viral
targets amplified in our screening, all health care worker
samples in this study (n = 113) were negative for SARS-
CoV-2, similar to findings from previous studies of ex-
posed health care workers using airborne, contact, and
droplet protective PPE [43–45]. This contrasts with early
reports of high SARS-CoV-2 transmission levels among
health care workers before the implementation of gen-
eral hospital-wide masking of healthcare workers and
patients and of eye protection when interacting with
unmasked patients [46, 47]. Our findings are thus con-
sistent with other work directly testing the importance
of providing healthcare workers with appropriate PPE
and rigorous training in donning and doffing procedures
to minimize self-contamination.
The demographics of participants in this study

reflected global trends demonstrating that race and eth-
nicity, as well as sex, influence susceptibility to SARS-
CoV-2 as well as clinical outcomes. The majority of sub-
jects enrolled were men, who are generally more at risk
for worse outcomes when infected by COVID-19 [48].
Compared with the demographics of San Diego, the dis-
tribution of patient ethnicities is in line with the CDC
reporting that Black and Hispanic people are more likely
to be hospitalized with COVID-19 compared to non-
Hispanic White people [49]. Due to sample size

constraints, analyses of the influence of these demo-
graphics on SARS-CoV-2 prevalence and microbial asso-
ciations with SARS-CoV-2 were not possible.
In this study, approximately 16% (83/529) of surface

samples from hospital rooms occupied by patients with
COVID-19 and 6% (13/205) of surface samples from
hospital rooms not currently occupied by patients with
COVID-19 had detectable levels of SARS-CoV-2 RNA.
Of the various surfaces sampled in this study, floor sam-
ples had the highest prevalence of SARS-CoV-2 RNA
detection. The intense and frequent oropharyngeal, re-
spiratory, skin, and bowel care provided to these critic-
ally ill patients is expected to produce shedding and
contamination of the environment in close proximity to
the patient, including the floors. Our findings replicate
previous studies where floors had the highest prevalence
of SARS-CoV-2 RNA of all hospital room surfaces tested
[20, 50]. Previous studies of environmental contamin-
ation reported higher surface prevalence of SARS-CoV-2
in hospital settings, ranging from 25% to over 50% [18,
50–52]. The lower SARS-CoV-2 prevalence rates in this
study could be due to differences in sampling strategy
(e.g., area sampled, storage and extraction methods),
more careful environmental cleaning of high touch areas
around the patient, or due to physiological differences
since different surface types differentially influence viral
RNA persistence [53]. Furthermore, contamination of
hospital room surfaces with SARS-CoV-2 tends to be
highest during the first 5 days after symptom onset [50].
All patients enrolled in our study had symptoms for at
least 6 days before admission to the hospital and enroll-
ment in this study.
While SARS-CoV-2 RNA was identified via RT-qPCR

for both patient and hospital room samples, it is import-
ant to note that this study did not determine whether
the detected viral RNA was viable or infectious. Two
studies assaying infectivity of surface and air samples
using RT-qPCR in parallel showed that samples with Ct
values over 30 were not infectious [18, 19]. In our study,
only 2 out of 79 positive surface samples amplified at
least one SARS-CoV-2 target under 30 cycles. Both of
these samples were from the floor directly next to the
patient bed in rooms that hosted patients who were
mechanically ventilated during their stay.
It should be acknowledged that transportation of sam-

ples in ethanol (to ensure the safety of those handling
samples, as well as to enable microbiome analysis) in-
stead of using viral transport media may have resulted in
overall lower viral RNA yield. Despite these potential
sources of variation, we found that the microbiomes
found on bed rails and corresponding patient micro-
biomes were highly similar to one another before clean-
ing, but this similarity disappeared after environmental
cleaning was performed. Microbial community
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composition was also more similar between humans and
the surfaces they touched (including between health care
workers and keyboards, as well as patients and bed rails),
supporting the robustness of our microbial sample col-
lection and processing protocols.
It is both a strength and a limitation of this study that

standard of care environmental cleaning was performed
and was not influenced or altered by the study team.
The daily cleaning regimen can vary depending on staff
and other factors (hospital room surface types and disin-
fection protocols are summarized in Table S1) which is
representative of hospital environmental practices world-
wide. To limit additional burden on hospital staff, spe-
cific cleaning events were not tracked, except for
cleaning after patient discharge. SARS-CoV-2 RNA was
amplified from floor samples, albeit at a relatively low
abundance based on Ct values, even in rooms with non-
COVID-19 patients and after patient discharge cleaning.
Although transmission risk from the floor is likely negli-
gible as discussed above, resuspension of particles from
the floor in highly transited areas cannot be ruled out.
In this study, the relatively high positivity rate for floor
samples allowed us to use them as a proxy to study how
microbial communities are interrelated with shed virus.
In the built environment, microbial load, human bio-

mass, and alpha diversity were higher in floor samples
positive for SARS-CoV-2. More controlled sampling
procedures are required to determine if the increased
alpha diversity associated with SARS-CoV-2 positive
samples is due to increased biomass or if it is more spe-
cifically correlated with SARS-CoV-2 RNA presence.
Floor samples had the highest biomass of all the surface
samples tested, including high-touch surfaces (e.g., bed
rail, keyboard, door handles). This may help explain the
higher prevalence of positive floor samples in COVID-19
patient rooms (39%) versus bed rail samples (11%), des-
pite their distance from the patient. This is in agreement
with previous research showing that bacterial and viral
load are positively correlated in built environment sam-
ples [13]. The relatively low prevalence of SARS-CoV-2
contamination on bed rail samples may also be because
many of the patients were deeply sedated and were not
actively moving in bed, including touching the bed rails,
or because high touch areas in close proximity to the pa-
tient are cleaned by nurses at each shift, and/or due to
differences in material (vinyl versus plastic).
Using random forest models to classify microbes asso-

ciated with SARS-CoV-2 RNA detection, we found 16S
microbial profiles had high predictive accuracy of SARS-
CoV-2 RNA presence in nares, stool, forehead, and in-
side floor samples. Despite these sample types having
distinct microbiomes covering a broad range of micro-
bial diversity (Fig. 2), we identified a single Rothia ASV
that was highly ranked in the random forest classifier

across all four sample types. This ASV was also more
prevalent in SARS-CoV-2 positive samples across all hu-
man sample types and floor and bed rail samples in our
dataset. By comparing the prevalence of this ASV across
our dataset and a 2016 study from an intensive care unit
[29], we found that this signal is specific to SARS-CoV-2
positive samples, and not other factors associated with
an ICU admission such as antibiotic use. This finding
supports previous work reporting Rothia to be enriched
in SARS-CoV-2 positive stool [54] and bronchoalveolar
lavage fluid [55] and further suggests a role in nares,
forehead, and surfaces. These results further suggest that
there may be species- or strain-level specificity to these
dynamics.
While the mechanism remains unclear, the consistent

Rothia ASV prevalence trend across both patient and
surface sample types suggests an association of this bac-
teria with SARS-CoV-2. Although this study was carried
out at a single hospital, and built environment micro-
biomes tend to vary based on location and occupancy
[56], previous research into the clinical relevance of
Rothia species indicates that this association warrants
further investigation. Species from the genus Rothia are
common to the human oral microbiome [57], but have
also been identified as opportunistic pathogens [40].
Oral microbes have been found to colonize the gastro-
intestinal tract, especially in disease states [58]. This,
along with our finding of the predictive nature of the
Rothia ASV in stool, may suggest a possible increased
oral-fecal transmission triggered under viral infection
that manifests as a hallmark of COVID-19. Furthermore,
the specific Rothia ASV identified in this study appears
to associate with cardiovascular disease even in people
without SARS-CoV-2 infection, indicating that Rothia
may be a marker for individuals at increased risk from
COVID-19. Cardiovascular disease can predispose indi-
viduals to worse outcomes with COVID-19, and SARS-
CoV-2 infection has been associated with cardiovascular
complications [59]. Further studies are required to deter-
mine the mechanism underlying the association between
Rothia and SARS-CoV-2, the role of co-morbidities, and
how this knowledge may be translated into effective
methods for reducing SARS-CoV-2 virulence.
To better understand how virus-bacteria interactions

influence pathogen infection, transmission, and health
outcomes, studies using animal models could be useful
and ultimately lead to the development of effective clin-
ical interventions. In built environments, the findings
from our study highlight the need to better understand
viral distribution patterns and how bacterial distribution
and abundance influence the persistence and viability of
viruses, especially in the context of human health. Hos-
pitals are promising study sites for these investigations,
as they contain patients harboring known diseases,
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environmental factors are kept fairly consistent and
regularly monitored, and standard of care consistency
across facilities may allow for some extrapolation beyond
each specific building investigated. These future studies
could illuminate the development of viral pathogen miti-
gation strategies in both patients and the built
environment.

Conclusions
This large-scale study is the first to examine the micro-
bial context of SARS-CoV-2 in a hospital setting. We de-
tected SARS-CoV-2 RNA contamination across a variety
of surfaces in the ICU and the general medical-surgical
unit, including rooms that were not currently used to
treat patients with COVID-19 infection. RT-qPCR re-
sults are not indicative of infectious virus; nevertheless,
we were able to identify bacterial signatures predictive of
SARS-CoV-2 RNA detection using a random forest
model. Across a remarkable diversity of microbiomes
(floor, nares, stool, skin), we identified a single bacterial
ASV, Rothia dentocariosa, that was highly predictive of
and co-identified with SARS-CoV-2 RNA. Our discovery
of bacterial associations with SARS-CoV-2 both in
humans and the built environment suggests that
bacteria-virus synergy likely plays a role in the COVID-
19 pandemic.

Materials and methods
Study design
Patients admitted to the UCSD Medical Center - Hill-
crest who were either confirmed patients with COVID-
19 or Persons Under Investigation (PUI: have symptoms
and undergoing testing) were approached for informed
consent upon admission. Patients whose clinical test was
negative were included in the study as controls for sur-
face sampling. Health care workers providing direct care
for PUIs and patients with COVID-19 were included in
the study. Following hospital policy, all underwent daily
symptomatic screening and wore the following PPE dur-
ing treatment of PUI and patients with COVID-19: gog-
gles or face-shield, N95 mask, gown, gloves; hair and
shoe coverings were not part of the required PPE but
were available and inconsistently used. All participants
were consented under UCSD Human Research Protec-
tions Program protocol 200613.
We followed the excretion pattern of the virus from

the skin, respiratory tract, and gastrointestinal tract.
From patients and health care workers, specimen sam-
ples were obtained from the forehead, nares, and stool.
Additional throat swabs and/or tracheal aspirate samples
were collected for a subset of patients and health care
workers: “oral” samples. Patient samples were collected
by gloved health care workers via dual-tipped synthetic
swabs (BD BBL CultureSwabs #220145) which were

immediately transferred to tubes containing 95% etha-
nol. Stool was collected from patient bed pans or from
collection bags that were connected to a rectal tube.
Health care workers self-collected swabs over a time
series of 4 days. A chronological series was also
employed for patient samples, with the target sampling
schemes as follows: samples collected within the first 12
h of hospital admission with sequential samples obtained
once daily for the first 4 days of hospitalization and a
subset of samples collected regularly until the patient va-
cated the room (Fig. 1A). Actual sample collection tim-
ing varied by patient availability and duration in the
hospital (Fig. S3).
Dual-tipped synthetic swabs (BD BBL CultureSwabs

#220145) were pre-moistened by dipping for 5 seconds
into 95% spectrophotometric-grade ethanol solution
(Sigma-Aldrich #493511), and then used to vigorously
swab surfaces that are frequently in contact with health
care workers or patients. Surfaces were swabbed for 10–
15 s with moderate pressure on a defined surface area,
and swabs were returned to the collection container.
Outside of patient rooms, prior to entering the room,
the floor (1 square foot outside the entrance) and out-
side door handle were swabbed. Inside patient rooms,
the inside door handle, floor (1 square foot near the pa-
tient’s bed on side closest to door), bedrail (side closest
to door), and keyboard were swabbed. Depending on the
patient room, if an air filter was present, the intake was
swabbed. For a subset of samples, patient care equip-
ment such as portable ultrasound and ventilator screen
were also swabbed, as well as the toilet seat. After sam-
ple collection, dual-tipped swabs were returned to the
swab container. Surface samples were collected at the
same time as patient sample collection, as well as prior
to patient admission and following patient discharge and
room cleaning, when possible.

Nucleic acid extraction
Sample plating and extractions of all clinical and envir-
onmental specimens were carried out in a biosafety cabi-
net Class II in a BSL2+ facility. Sample swabs were
plated into a bead plate from the 96 MagMAX™ Micro-
biome Ultra Nucleic Acid Isolation Kit (A42357 Thermo
Fisher Scientific, USA). Following the KatharoSeq low
biomass protocol [27], each sample processing plate in-
cluded eight positive controls consisting of 10-fold serial
dilutions of the ZymoBIOMICS™ Microbial Community
Standard (D6300 Zymo, USA) ranging from 5 to 50 mil-
lion cells per extraction. Each plate also contained a
minimum of 8 negative controls (sample-free lysis buf-
fer). Nucleic acids purification was performed on the
KingFisher FlexTM robots (Thermo Fisher Scientific,
USA) using the MagMAXTM Microbiome Ultra Nucleic
Acid Isolation Kit (Applied BiosystemsTM), as instructed
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by the manufacturer. Briefly, 800 μL of lysis buffer was
added to each well on the sample processing plate and
briefly centrifuged to bring all beads to the bottom of
the plate. Sample swab heads were added to the lysis
buffer and firmly sealed first with MicroAmp™ clear ad-
hesive film (Thermo Fisher Scientific, UK) using a seal
roller, and the sealing process repeated twice using foil
seals. The plate was beaten in a TissueLyser II (Qiagen,
Germany) at 30 Hz for 2 min and subsequently centri-
fuged at 3700×g for 5 min. Lysates (450 μL/well) were
transferred into a Deep Well Plate (96 well, Thermo
Fisher Scientific, USA) containing 520 μL of MagMaxTM

binding bead solution and transferred to the KingFisher
FlexTM for nucleic acid purification using the Mag-
MaxTM protocol. Nucleic acids were eluted in 100 μL
nuclease free water and used for downstream SARS-
CoV-2 real time RT-qPCR.

SARS-CoV-2 RT-qPCR and viral load quantification
The Center for Disease Control (CDC) 2019-Novel Cor-
onavirus Real-Time RT-PCR Diagnostic Panel [60] and
the E-gene primer/probe from the World Health
Organization [61] were used to assess SARS-CoV-2 sta-
tus via reverse transcription, quantitative polymerase
chain reaction (RT-qPCR). Accordingly, each plate of ex-
tracted nucleic acid (96-well plate) was aliquoted into a
384-well plate with four separate reactions per sample;
two reactions targeted the SARS-CoV-2 nucleocapsid
gene (CDC N1 and N2), one reaction targeted the
SARS-CoV-2 virporin forming E-gene (WHO E-gene),
and one reaction targeted the human RNAse P gene as a
positive control for sample collection and nucleic acid
extraction (CDC RP).
Each reaction contained 3 μL of TaqPathTM 1-Step

RT-qPCR Master Mix (Thermo Fisher Scientific, USA),
400 nm forward and reverse primers and 200 nm FAM-
probes (IDT, USA—table with sequences below), 4 μL
RNA template, and H2O to a final volume of 10 μL.
Master mix and sample plating were performed using an
EpMotion automated liquid handler (Eppendorf,
Germany). Each plate contained both positive and nega-
tive controls. The positive control was vRNA and eight
serial dilutions of viral amplicons for viral load quantifi-
cation (details below). Six extraction blanks and one RT-
qPCR blank (nuclease-free H2O) were included per plate
as negative controls. RT-qPCR was performed on the
CFX384 Real-Time System (BIO-RAD). Cycling condi-
tions were reverse transcription at 50 °C for 15 min, en-
zyme activation at 95 °C for 2 min, followed by 45 cycles
of PCR amplification (denaturing at 95 °C for 10 s; an-
nealing/extending at 55 °C for 30 s). Cycle threshold (Ct)
values were generated using the CFX384 Real-Time Sys-
tem (BIO-RAD) software.

Viral load quantification was performed using a standard
ladder comprising serially diluted target amplicons which
was included in the RT-qPCR of each extraction plate, in
place of the KatharoSeq control samples. SARS-CoV-2 viral
RNA was reverse transcribed into cDNA using the Super-
script IV enzyme (Thermo Fisher, USA) and PCR amplified
with KAPA SYBR® FAST qPCR Master Mix (KAPA Biosys-
tems, USA) using the N1, N2, and E gene primers in dupli-
cate 20 μL reactions with cycling parameters as detailed
above. Each amplicon reaction was run across a 1.5% agar-
ose gel and the resulting bands were excised and purified
into 100 μL nuclease-free water with the MinElute Gel Ex-
traction Kit (Qiagen, Germany). Amplicons were quantified
with in duplicate with the Qubit™ dsDNA HS Assay Kit
(Thermo Fisher, USA) and copies per μL were calculated
based on predicted amplicon length (N1 72 bp, N2 67 bp,
and E gene 113 bp). Eight, 10-fold serial dilutions were
added to the RT-qPCR for final estimated copy input per
reaction ranging from 10 million to one. The limit of detec-
tion was between 10 and 100 vRNA copies per reaction,
and the Ct values were highly consistent across extraction
plates. Viral load per swab head was calculated by first
using the slope and intercept from the N1 amplicon ladder
linear regression per plate to determine the number of viral
copies per reaction, and then multiplying this number by
25 since 4 μL out of a total 100 μL extracted nucleic acid
was used as input to the RT-qPCR.

Primer/
probe

Sequence (5′ -> 3′)

2019-nCoV_
N1-F

GAC CCC AAA ATC AGC GAA AT

2019-nCoV_
N1-R

TCT GGT TAC TGC CAG TTG AAT CTG

2019-nCoV_
N1-P

FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1

2019-nCoV_
N2-F

TTA CAA ACA TTG GCC GCA AA

2019-nCoV_
N2-R

GCG CGA CAT TCC GAA GAA

2019-nCoV_
N2-P

FAM-ACA ATT TGC CCC CAG CGC TTC AG-BHQ1

RP_F AGA TTT GGA CCT GCG AGC G

RP_R GAG CGG CTG TCT CCA CAA GT

RP_P FAM – TTC TGA CCT GAA GGC TCT GCG CG – BHQ-1

E_Sarbeco_F1 ACAGGTACGTTAATAGTTAATAGCGT

E_Sarbeco_R2 ATATTGCAGCAGTACGCACACA

E_Sarbeco_P1 56-FAM/AC ACT AAG C/ZEN/C ATC CTT ACT GCG CTT
CG/3IABkFQ/

16S rRNA gene amplicon sequencing
16S rRNA gene amplification was performed according
to the Earth Microbiome Project protocol [28]. Briefly,

Marotz et al. Microbiome           (2021) 9:132 Page 11 of 15



Illumina primers with unique reverse primer barcodes
[62] were used to amplify the V4 region of the 16S
rRNA gene (515f-806rB, [63]). Amplification was
performed in a miniaturized volume [64], with single
reactions per sample [65]. Equal volumes of each
amplicon were pooled, and the library was sequenced on
the Illumina MiSeq sequencing platform with a MiSeq
Reagent Kit v2 and paired-end 150 bp cycles.

Statistical analysis
Data pre-processing
Raw 16S rRNA gene amplicon sequencing data was
demultiplexed, quality filtered, and denoised with deblur
[66] through Qiita [67] under study ID 13092.
Downstream data processing was performed using
Qiime2 [68]. Eight negative controls (blanks) and eight
positive controls (serially diluted mock communities)
were included in each 96-well extraction plate (see the
“Nucleic acid extraction” section). The serially diluted
mock communities included in each extraction plate
were used to identify the read count threshold at which
80% of sequencing reads aligned to the positive control
according to the KatharoSeq protocol [27] (code avail-
able at https://github.com/lisa55asil/KatharoSeq_ipynb),
and all samples falling below the threshold set for each
independent sequencing run were removed from down-
stream analysis. The KatharoSeq-filtered feature tables
were merged, and features present in less than three
samples were removed from downstream analysis, with
the final feature table containing 589 samples and 9461
features.

Beta diversity analyses
To verify that study samples of particular types
clustered with similar types from other microbial
studies, we estimated the UniFrac phylogenetic
distance between samples and visualized the distance
of variation of our current project in reference to
samples from the Earth Microbiome Project. For
significance testing based on distances from
sequencing data, a permutation test was used. This
was chosen since univariate statistical tests often
assume that observations are independently and
identically distributed, which is not the case with
distance calculations. Similar to PERMANOVA, the
group labels were shuffled, and a Kruskal-Wallis test
was applied. P values were calculated by (#(K > Kp)
+ 1)/(number of permutations + 1) where K is the
Kruskal-Wallis statistic on the original statistic and
Kp is the Kruskal-Wallis statistic computed from the
permuted grouping. One thousand permutations were
used for the permutation test.

Longitudinal data analysis
We used Bayesian Sparse Functional Principal
Components Analysis (SFPCA) [69] methodology to
model temporal variations and sample type differences
in viral load. To quantify the contribution of potential
source environments (i.e., patient microbiome) to the
hospital surface microbiome (as a sink), SourceTracker2
[31] was used.

Random forest analysis
We performed machine learning analysis of bacterial
profiles derived from 16S rRNA gene amplicon
sequencing from multiple sample types (nares, skin,
stool, inside floor, outside floor, and bed rail) to predict
the samples’ SARS-CoV-2 status according to RT-qPCR
results (i.e., “positive” or ”not detected”). For each sam-
ple type, a random forest sample classifier was trained
based on the ASV-level bacterial profiles with tuned
hyperparameters as 20-time repeated, stratified 5-fold
cross-validation using the R caret package [70]. The
dataset of each sample type was repeatedly split into five
groups with similar class distributions, and we trained
the classifier on 80% of the data and made predictions
on the remaining 20% of the data in each fold iteration.
We evaluated each classifier using both area under the
receiver operating characteristic curve (AUROC) and
area under the precision-recall curve (AUPRC) based on
the samples’ predictions in the holdout test set using the
R PRROC package [71]. For all six sample types, our
data had an imbalanced representation of SARS-CoV-2
status, and “not detected” was consistently the majority
class (nares: 45 not detected vs. 31 positives; forehead
skin: 63 not detected vs. 16 positives; stool: 33 not de-
tected vs. 11 positives; inside floor: 67 not detected vs.
40 positive; outside floor: 81 not detected vs. 27 posi-
tives; bed rail: 38 not detected vs. 8 positives). To assess
how well a classifier can predict the SARS-CoV-2 posi-
tive samples (the minority class) using microbiome data,
the AUPRC was calculated by assigning “positive” as the
positive class. Next, the importance of each ASV for the
prediction performance of the four classifiers with
AUROC ≥ 0.7 and AUPRC ≥ 0.6 (for nares, forehead
skin, stool, and inside floor) was estimated by the built-
in random forest scores in the 100-fold cross-validation.
For each body site or environmental site, we finally
ranked all ASVs by their average ranking of importance
scores in the 100 classification models. The code for
generating the multi-dataset machine learning analysis is
available at https://github.com/shihuang047/crossRanger
and is based on random forest implementation from R
ranger package [72].
To identify the ASVs consistently important to the

prediction of SARS-CoV-2 across the four well-
performing classifiers of four different sample types, we
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visualized the top 100 ranked important ASV’s and their
phylogenetic relationship for each sample type using
EMPress [35].

Redundancy analysis
To quantify the effect size of different metadata variables
on our 16S rRNA gene amplicon sequencing dataset, we
applied redundancy analysis on the robust Aitchison
principal coordinates analysis biplot [73] as described
previously [33]. Briefly, RDA employs the varpart
function in R which uses linear constrained ordination
to estimate the independent and shared contributions of
multiple covariates on microbiome composition
variation.
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Additional file 1: Figure S1. Patient (n = 16) demographics (A),
antibiotics intake (B), comorbidities (C).

Additional file 2: Figure S2. Ili’ spatial mapping of standard hospital
(non-ICU) room and intensive care unit (ICU) room. Heatmap depicts the
percent of samples collected at each site that were positive for SARS-
CoV-2.

Additional file 3: Figure S3. Snapshot of variability in longitudinal
sample collection and SARS-CoV-2 viral RNA load per swab between pa-
tients and their hospital rooms, starting at patient admission time. For
samples where SARS-CoV-2 was detected (+), a darker color indicates a
higher viral load. White boxes represent samples with no detectable virus
(-). Patient A was admitted 12 days after symptom onset and was moved
to a general surgery unit room after 6 days in the ICU. Patient B was ad-
mitted 8 days after symptom onset and moved from general surgery to
the ICU, where they were intubated. Patient C was admitted to the ICU 9
days after symptom onset, and despite having symptoms consistent with
COVID-19 repeatedly tested negative by clinical nasopharyngeal swab;
their only clinical positive came from a tracheal aspirate sample mid-way
through their stay in the ICU.

Additional file 4: Figure S4. Source tracker on meta-analysis data. Floor
samples formed a distinct cluster in this dataset; source tracking [31] with
floor samples (n = 215) as the sink and meta-analysis samples (n = 1,990)
as the source reveals that these floor samples match other built environ-
ment samples. The other built environment samples included in this
meta-analysis were mostly floor (27.7%), faucet handles (19.6%), and
gloves (15%).

Additional file 5: Figure S5. Beta diversity has a statistically significant
but weak correlation with viral load. PCoA of unweighted UniFrac
distances between samples, with SARS-CoV-2 positive samples colored by
viral load across the whole dataset (A) and subset by each patient with at
least one surface positive (B). Statistical analysis performed with Adonis
(PERMANOVA) found a small (R2 < 0.01) but significant (p-value = 0.043)
association between beta diversity and viral load across all samples.

Additional file 6: Figure S6. Floor sample SARS-CoV-2 status is associ-
ated with higher biomass and with significantly different bacterial com-
munity composition. Two independent metrics were used to assess
biomass; 16S rRNA gene amplicon sequencing read count, which be-
cause of our equal volume sequencing library pooling approach corre-
lates with total bacterial load [27, 74], and the Ct value from the CDC’s
human RNAse P RT-qPCR target, which correlates with human biomass.
(A) Abundance of 16S rRNA gene amplicon sequencing read count in
SARS-CoV-2 positive floor samples showing no correlation with SARS-
CoV-2 viral load. (B) Ct value of human RNAse P in SARS-CoV-2 positive
floor samples showing significant correlation with SARS-CoV-2 viral load.
Statistical analysis of scatter plots represents Pearson correlation, and box

plots represents independent t-tests; *p < 0.05, **p < 0.01, ***p < 0.001.
The legend in panel B applies to panel A as well. (C) Effect size of signifi-
cant, non-redundant variables identified from Redundancy Analysis on
unweighted UniFrac PCoA of floor samples.

Additional file 7: Figure S7. Bacterial (16S rRNA gene amplicon
sequencing read count) and human biomass (RNAse P Ct) is higher in
floor samples than other surface sample types.

Additional file 8: Figure S8. Random Forest classifier performance with
100-fold cross validation in the outside floor (n = 108; 81 not detected vs.
27 positives) and bed rail samples (n = 46; 38 not detected vs. 8
positives).

Additional file 9: Figure S9. Unweighted UniFrac distance between
forehead and nares samples from the same host. ‘Shedder’ (n = 12) is a
patient who had detectable virus on the surface in their room and ‘non-
shedder’ (n = 4) did not. Bootstrapped Kruskal-Wallis p-value is 0.003.

Additional file 10: Table S1. Hospital surface materials and cleaning
practices.

Additional file 11: Table S2. Top 100 random forest importance ranks
and GreenGenes taxonomy from nares, forehead, stool, and inside floor
samples.
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