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Abstract

Background: Rapid, real-time and label-free measurement of the cellular contents of biofuel molecules such as
triacylglycerol (TAG) in populations at single-cell resolution are important for bioprocess control and understanding
of the population heterogeneity. Raman microspectroscopy can directly detect the changes of metabolite profile in
a cell and thus can potentially serve these purposes.

Results: Single-cell Raman spectra (SCRS) of the unicellular oleaginous microalgae Nannochloropsis oceanica from
the cultures under nitrogen depletion (TAG-producing condition) and nitrogen repletion (non-TAG-producing condition)
were sampled at eight time points during the first 96 hours upon the onset of nitrogen depletion. Single N. oceanica
cells were captured by a 532-nm laser and the SCRS were acquired by the same laser within one second per cell. Using
chemometric methods, the SCRS were able to discriminate cells between nitrogen-replete and nitrogen-depleted
conditions at as early as 6 hours with >93.3% accuracy, and among the eight time points under nitrogen depletion
with >90.4% accuracy. Quantitative prediction of TAG content in single cells was achieved and validated via SCRS and
liquid chromatography-mass spectrometry (LC-MS) analysis at population level. SCRS revealed the dynamics of
heterogeneity in TAG production among cells in each isogenic population. A significant negative correlation between
TAG content and lipid unsaturation degree in individual microalgae cells was observed.

Conclusions: Our results show that SCRS can serve as a label-free and non-invasive proxy for quantitatively tracking
and screening cellular TAG content in real-time at single-cell level. Phenotypic comparison of single cells via SCRS
should also help investigating the mechanisms of functional heterogeneity within a cellular population.
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Background
Microalgae represent promising biomass feedstock for
fuels because of their ability to grow rapidly and synthesize
large amounts of storage chemical compounds from
sunlight and carbon dioxide. They can be cultivated in
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non-arable land, non-potable water, and waste streams
(such as flue gases and wastewaters), thus posing little
competition to food crops while providing environmental
benefits [1,2].
In response to environmental changes, microalgae ef-

ficiently modify lipid metabolism and result in a variety
of cellular lipid patterns, including neutral lipids, polar
lipids, wax esters, sterols and hydrocarbons [3]. Significant
accumulation of neutral lipids in microalgae cells (for
example 20 to 50% dry cell weight), mainly in the form of
triacylglycerol (TAG), was demonstrated under unfavor-
able environmental or stress conditions such as nutrition
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limitation. TAGs serve primarily as carbon and energy
storage in the form of dense lipid bodies in the cell and
are considered as one ideal source for biodiesel [4]. There-
fore, quantitative evaluation of the cell growth status and
the cellular TAG content is essential for bioprocess moni-
toring and engineering for efficient and scalable biofuel
production.
Sophisticated methodologies presently used for quantita-

tion of cellular metabolite changes during bioprocesses,
such as chromatography, mass spectrometry and nuclear
magnetic resonance (NMR), are not only time and labor
consuming, but also have mostly measured the stochastic
average of the population, leaving phenotypic variations
among individual cells masked [5-7]. However, functional
diversity and phenotypic heterogeneity of microbial cellular
behaviour have long been recognized among an isogenic
population, such as those in cell growth, stress resistance,
metabolites accumulation and other bioprocesses [8]. Such
cell-to-cell variations of phenotypes have been shown to be
crucial for the cells to adapt to fluctuating environments
[9]. The averaged phenotypes in different populations may
be similar, but their phenotypic distribution patterns at
single-cell level can be dramatically different, which have
significant impact on the populations’ functional stability
and response to sudden changes such as stress or nutrient
depletion [10,11]. Therefore, strategies for phenotypic
measurement at single-cell resolution are of significant
importance.
Raman microspectroscopy, which directly detects vi-

brations of biochemical bonds through the inelastic
scattering by a laser light [12], provides a solution for
rapid determination of metabolic fingerprint in real-time,
as well as considerable improvements in speed [13].
Single-cell Raman microspectroscopy, combined with op-
tical tweezers, enables the capture and subsequent acqui-
sition of single-cell Raman spectra (SCRS) of individual
live cells [14], thus serving as a biochemical fingerprint
of a cell [15,16]. This label-free and in situ measurement
property offers great advantages to the commonly used
fluorescence based methods for the illustration of cellu-
lar lipid (such as Nile red) [17]. Related applications include
confirmation of the existence of TAG in two algal species
Chlorella sorokiniana and Neochloris oleoabundans [18],
characterization of the structure and location of liquid
hydrocarbons within Botryococcus braunii cells [19], cal-
culation of total unsaturation and the number of double
bonds in the hydrocarbon chains of microalgal lipids [20],
as well as estimation of the total lipid abundance in Chlor-
ella vulgaris pastes [21]. However, these previous studies
have only focused on the general characteristics of cellular
lipids and were not able to determine the cellular content
of a particular lipid class of interest, either on single cells
[18-20] or on pastes [21]. Moreover, these studies have re-
quired minutes for Raman signal acquisition in each SCRS
measurement [18-20], which precluded many applications
where throughput of measurement is important (such as
temporal tracking of bioprocess). Quantitative assessment
of specific lipid class (like TAG) at single-cell resolution
with sufficient throughput is therefore yet to be achieved
for the monitoring of bioprocess dynamics.
Nannochloropsis spp. are a group of unicellular oleagin-

ous microalgae of particular industrial interests [22]. Here,
using nitrogen-depletion triggered oil production of
Nannochloropsis oceanica as a model, we sampled SCRS
from nitrogen depletion (Group N-) and nitrogen reple-
tion (Group N+) cultures at eight time points during the
first 96 hours upon the onset of TAG accumulation. We
show here that the SCRS, acquired within one second per
cell, are able to discriminate cells between the two nutri-
tion conditions at very early growth stage (6 h), and distin-
guish N-depleted cells among different time points with
high accuracy. We further demonstrate quantitative pre-
diction of TAG content in single cells via the SCRS, as
well as reveal the dynamics of phenotypic heterogeneity,
and the significant negative correlation between TAG con-
tent and lipid unsaturation degree among individual cells.

Results and discussion
Temporal tracking of triacylglycerol production in an
isogenic population of microalgal cells
Group N- cells showed a slower growth than Group N +
cells. The optical density at 750 nm (OD750) of N- Group
cultures at 96 hours (the early stationary phase) reached
7.66 ± 0.05, which were approximately two-thirds of that
of the Group N + cultures (OD750 = 12.09 ± 0.06). How-
ever, liquid chromatography-mass spectrometry (LC-MS)
measurement showed that Group N- cells accumulated a
significant amount of TAG, whereas little was observed
in the Group N + cells. At 96 hours, the TAG content
of Group N- cells reached 412.32 ± 13.13 mg g-1 dry
weight while that of the Group N + cells remained low
(1.73 ± 0.20 mg g−1 dry weight).
For SCRS acquisition, a single N. oceanica IMET1 cell

was optically trapped by a 532 nm laser and its Raman
spectrum was recorded by the same laser. The typical
acquisition time for a well−resolved spectrum of a microal-
gae cell was within one second. During the whole process,
no loss of cell activity was observed, thus our measurement
does not seem to have a significant negative impact on the
health state of the cell (Additional file 1). This is also sup-
ported by our previous study which demonstrated that
single bacterial cells were able to grow after trapping and
SCRS measurement by a 532 nm laser [23]. In accordance
with the difference in TAG production, both fingerprint
region (800 to 1800 cm−1) and hydrocarbon region (2600
to 3100 cm−1) of SCRS exhibited very distinct patterns
between Group N + and N− (Figure 1A and B). In the
Group N− cells, intensities of all major lipid bands showed



Figure 1 Tracking the microalgal oil production via SCRS. (A) Averaged SCRS of the 60 cells of Group N- at each time point as well as the
Raman spectrum of triolein, a typical TAG species. (B) Averaged SCRS of the 60 cells of Group N + at each time point. (C) PCA scores plot derived
from the fingerprint region. (D) PCA scores plot derived from the hydrocarbon region. Each symbol represents the average of twenty cells of a
triplicate; the error bars represents SD of the twenty cells. Green diamond: cells at 0 h. Red triangle: cells of Group N+. Blue square: cells of Group
N-. h: hours; PCA: principal component analysis; PC: principal component; SCRS: single-cell Raman spectra; SD: standard derivation;
TAG, triacylglycerol.
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apparent increase along the cultivation time, including the
bands representing chemical bonds attributed to chain
unsaturation (1264 and 1656 cm−1) and saturation (1302,
1441, 2851 and 2889 cm−1) [20], and the 1746 cm−1 Raman
band which indicates the ester specific chemical bond C=O
stretching vibration specifically derived from TAG [24].
Meanwhile, intensities of protein−relative bands (for
example 1005, 1200–1350, and 1600–1700 cm−1) [25]
decreased in the N- group cells (Table 1). Note that all
main peaks in the SCRS profiles of Group N- cells at the
later time points starting from 36 hours were consist-
ent with the profiles of triolein, a typical TAG species
(Figure 1A). In contrast, the Group N + cells showed no
change with these bands during the whole bioprocess
(Figure 1B). These findings suggested a continuous TAG
production by the cells, accompanied with a deficiency of
protein biosynthesis under a nitrogen-deficiency condition,
which was consistent with previous studies [26,27].



Table 1 List of major Raman bands discriminating
between different states of the cells

Raman
bands (cm−1)

Trend with time
in Group N- cells

Biological assignment/interpretation

1066 ↑ Lipid, Alkyl C—C gauche stretches

1080 ↑ Carbohydrate, Carbohydrate
C—O—H bending

1125 ↑ Carbohydrate, C—O—H deformation,
C—O and C—C stretches

1264 ↑ Lipid, Alkyl =C—H cis stretches

1302 ↑ Lipid, Alkyl C—H2 twist

1441 ↑ Lipid, Alkyl C—H2 bend

1656 ↑ Lipid, Alkyl C=C stretches

1746 ↑ Lipid, Ester C=O stretches

2851 ↑ Lipid, carbohydrate, C—H2, C—H3

asymmetric and symmetric stretches
2889 ↑

1003 ↓ Protein, Phenylalanine ring breath

1610 ↓ Protein Amide I

Up and down arrows indicate the Raman bands which increased or decreased
in intensity during the growth of Group N- cells respectively.

Figure 2 Comparison of variation of SCRS. (A) Variation of Raman
spectra of one Group N- cell at 48 hours for 20 continuous
measurements. (B) Variation of Raman spectra of 20 Group N- cells at
48 hours as an example. SD is shown in gray. SCRS: single-cell Raman
spectra; SD: standard derivation.
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The variation of Raman spectra between individual
cells were observed within a population. To verify the
reproducibility of the method, Raman profiles were
generated by 20 continuous measurements on one cell
of Group N- at 48 hours (Figure 2A), and compared to
the Raman profiles of each of the 20 cells of all Group
N- triplicates at the eight time points (Figure 2B). Vari-
ation was quantified using a standard deviation of the
mean (SDM) as described previously [28]. The SDM
values of the fingerprint region and hydrocarbon region
for 20 measurements of one cell were 0.070 and 0.014 re-
spectively, while those for 20 cells at eight time points
were 0.254 ± 0.070 and 0.101 ± 0.033 respectively, showing
that the variation of 20 measurements was much smaller
than those of 20 cells. These results demonstrate the high
reproducibility of SCRS measurement and reliable distinc-
tion of the biochemical property between the cells.
Principal component analysis (PCA) was a commonly

used approach for the evaluation of the ordination of
different observations. It is shown by PCA scores plots,
based either on the fingerprint region or the hydrocarbon
region, that while Group N + cells aggregated, Group
N- cells showed a clear differentiation according to
their growth time. The first principal component (PC1)
explained 77.3% and 75.8% of the total variance respect-
ively (Figure 1C and D). The trend of differentiation was
in accordance with the process of TAG accumulation, in-
dicating that it may be responsible for the distinguishing
of cells at different growth stages.
SCRS provides a sensitive biochemical ‘fingerprint’ to

measure cell-to-cell variability. In this study, we have
applied an optimized Raman microscope to obtain each
SCRS within one second. The improved Raman system
was equipped with a short Raman light path, low noise
and sensitive electron multiplying charge coupled device
(EMCCD) for the Raman signal detection, and an appro-
priate incident laser of 532 nm [29]. Its sensitivity and
throughput was over two orders of magnitude higher than
a recent study whereby 120 seconds of prerequisite photo-
bleaching and 10 seconds of the Raman signal acquisition
were required for each SCRS measurement [20], and thus
allows for screening of a large amount of cells in a short
time, which is critical for the continuous monitoring of
the entire bioprocess.

Discrimination of cells from different temporal phases
during the oleaginousness process
The significant change of Raman spectra of individual cells
enabled these cells to be further compared and discrimi-
nated. Linear discriminant analysis (LDA) in combination
with PCA achieved highly accurate classification between
cells under N- or N + condition at each time point. For
the analysis using the fingerprint region of the Raman
spectra, the misclassification rate was 6.7% at 6 h and
decreased to 3.3% at 12 h and 24 h (validation data). For
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cells at each time point since 36 h, all cells were classified
to N- or N + groups correctly. The spectra of the hydro-
carbon region also generated 100% correct classification at
each time point starting from 24 h, although the misclassi-
fication rates at the earlier time points were relatively
higher (16.7% at 6 h and 6.7% at 12 h, validation data)
(Table 2).
Principal component-linear discrimination analysis

(PC-LDA) was also performed to temporally discriminate
all Group N- cells between the seven different culture
stages (6, 12, 24, 36, 48, 72 and 96 hours) under nitrogen
depletion and the cells at starting time point (0 hours).
The first 20 principal components (PCs), which accounted
for more than 90% of the whole variance, were used in the
analyses. Using the fingerprint region of the Raman spec-
tra, low misclassification rates of 6.1% for calibration data
and 7.5% for validation data were achieved. In total, 31
out of 480 cells were classified incorrectly (assigned to a
different growth stage from the actual one). PC-LDA
using the hydrocarbon region of the Raman spectra gener-
ated similar results, with a misclassification rate of 10.0%
for calibration data and 7.5% for validation data (Table 3).
Dynamic monitoring of the nutrient status of microalgae

cells is important for manipulation of nutrient availability
in algal biofuel production in order to optimize yields
[30]. Single-cell Raman microspectroscopy was previously
employed to distinguish the eukaryotic chlorophyte alga
Dunaliella tertiolecta cells from N-replete and N-starved
conditions after four days adaptation based on chlorophyll
a and beta-carotene bands [31]. Here, we showed that
SCRS is able to distinguish between N-depleted and
N-replete conditions in oleaginous microalgae cells from
as early as six hours under nitrogen depletion, which
showed a significant improvement in sensitivity. Further-
more, we demonstrated for the first time the ability of
Table 2 Predictive modeling of nutrition condition of single c

Fingerprint

6 h 12 h

Number of PCs used in LDA 9 9

Variations explained by these PCs (%) 67.5 82.0

MCR of calibration data (%) 2.2 2.2

MCR of validation data (%) 6.7 3.3

Hydrocarbo

6 h 12 h

Number of PCs used in LDA 10 12

Variations explained by these PCs (%) 89.1 95.8

MCR of calibration data (%) 2.2 0

MCR of validation data (%) 16.7 6.7

*For both calculations, one outlier was excluded from the training set at 96 h.
PC-LDA results were shown for discriminating cells between Groups N- and N + at e
rate by leave-one-out cross validation (LOOCV); PC: principal component.
SCRS to temporally discriminate among the N-depleted
cells (6, 12, 24, 36, 48, 72 and 96 hour cultivations), which
is important for the continuous monitoring of the oleagi-
nousness process.

Quantitative dynamics of triacylglycerol content in
single cells
To further investigate the TAG accumulation in the cells,
we have developed a partial least square regression (PLSR)
model to quantify the TAG content in individual Group
N- cells at different time points. PLSR is a powerful tool in
the development of calibration models for determination
of particular parameters, with the advantage of dealing
with spectra-containing overlapping signals and noises [32].
It is also widely used in the quantification of specific
components in complicated chemical products [33] or
fermentation broth [34]. Spectra of the fingerprint region
were selected for modeling due to their better perform-
ance in PCA and LDA as described above.
For the 0 hour and Group N- cultures, the total TAG

content determined by LC-MS increased from 1.23 ±
0.27 mg g−1 dry weight at 0 hours to 412.32 ± 13.13 mg g−1

dry weight at 96 hours, a 335-fold increase in TAG. The
PLSR model was established and validated using the aver-
aged SCRS of all cells at 0 hours, and averaged SCRS of
each triplicate at 6, 12, 24, 48, 72 and 96 hours, as well
as the TAG content of the corresponding cultures by
LC-MS. The optimal number of partial least square
(PLS) components was set as seven. A highly reliable
regression model was generated, with a mean squared
error of calibration (MSEC) of 0.0854, with the correlation
coefficient value (R2) of 0.9997 for calibration dataset and
0.9465 for validation dataset. The overall correlation
coefficient value (R2) reached 0.9790 (Figure 3). The TAG
content of each Group N- cell at 6, 12, 24, 36, 48, 72 and
ells

region

24 h 36 h 48 h 72 h 96 h*

2 2 2 2 2

72.6 89.1 91.1 85.7 93.6

1.1 1.1 1.1 1.1 0

3.3 0 0 0 0

n region

24 h 36 h 48 h 72 h 96 h*

5 2 2 2 2

94.9 96.3 94.7 97.9 97.2

0 0 0 0 0

0 0 0 0 0

ach time point. h: hours; LDA: linear discriminant analysis; MCR: misclassification



Table 3 Predictive modeling of growth stage of single cells

Fingerprint region Hydrocarbon region

Calibration data Validation data Calibration data Validation data

Number of cells misclassified (MCR) Number of cells misclassified (MCR)

0 h 0 (0) 0 (0) 0 (0) 1 (6.7%)

6 h 0 (0) 1 (6.7%) 4 (8.9%) 2 (13.3%)

12 h 3 (6.7%) 1 (6.7%) 5 (11.1%) 1 (6.7%)

24 h 4 (8.9%) 1 (6.7%) 6 (13.3%) 1 (6.7%)

36 h 3 (6.7%) 2 (13.3%) 6 (13.3%) 1 (6.7%)

48 h 6 (13.3%) 1 (6.7%) 5 (11.1%) 0 (0)

72 h 1 (2.2%) 2 (13.3%) 6(13.3%) 2 (13.3%)

96 h 5 (11.1%) 1 (6.7%) 4 (8.9%) 1 (6.7%)

Total 22 (6.1%) 9 (7.5%) 36 (10.0%) 9 (7.5%)

PC-LDA results were shown for discriminating Group N- cells at different time points. h: hours; MCR: misclassification rate by leave-one-out cross validation (LOOCV).
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96 hours was then estimated through their Raman spectra
by the established model. Among all 420 cells at the seven
time points, the predicted TAG content of 22 cells were
lower than the measured TAG content value of the 0 hour
culture (1.23 mg g−1 dry weight), including nine cells at
6 hours, eight cells at 12 hours and five cells at 24 hours.
These cells were thus regarded as lower than the detection
threshold and were discarded in the following analysis.
The TAG content of individual cells also showed a con-
tinuous increase during cell growth (Figure 4A). The
mean value of predicted cellular TAG contents of each
triplicate showed significant correlation with the TAG
content of the corresponding cultures by LC-MS (Pearson
correlation, r = 0.9864, P < 0.01), suggesting that while
revealing varied TAG content of individual cells, SCRS
could also be an ideal representative for the overall feature
of the corresponding population.
Figure 3 Establishment and validation of the PLSR model for
TAG content prediction. The predicted TAG content of each
population by PLSR model was plotted versus the TAG content of
the corresponding culture measured by LC-MS methods. LC-MS:
liquid chromatography-mass spectrometry; PLSR: partial least square
regression; TAG: triacylglycerol.
Lipid unsaturation degree is also a key parameter in
the evaluation of biofuels. At the single-cell level, the
changes of lipid unsaturation degree accompanying the
TAG accumulation can be measured by I1656/I1441 of
the Raman spectra, as reported previously [20]. To valid-
ate this method, the mean value of lipid unsaturation de-
gree by SCRS of each of the 20 cells was calculated and
compared with the population level lipid unsaturation
degree calculated by LC-MS (Additional file 2). A signifi-
cant positive correlation was revealed (Pearson correlation,
r = 0.906, P < 0.01), supporting the ability of I1656/I1441 to
estimate the unsaturation degree of total cellular lipid in
the cell. Based on this method, we found that for individual
Group N- cells, the degree of lipid unsaturation decreased
sharply before 36 hours and stayed stable later on, showing
a significant change during the growth (analysis of variance
(ANOVA) test, P < 0.01). However for individual Group
N+ cells, lipid unsaturation was relatively constant during
0 to 48 and 72 to 96 hours respectively, but showed an
obvious decrease between 48 and 72 hours. The degree of
lipid unsaturation of Group N- cells was significantly lower
than Group N+ cells at each time point after 6 hours
(Student t test, P < 0.01) (Figure 4B).
The estimated TAG content of each cell in Group

N- showed a significant negative correlation with its lipid
unsaturation degree (Spearman’s rank correlation coeffi-
cient p = −0.800, P < 0.01; Additional file 3: Figure S1A),
which was consistent with the observation at the popu-
lation level (TAG content of each Group N- culture
versus its lipid unsaturation degree determined by LC-
MS, Spearman’s rank correlation coefficient p = −0.977,
P < 0.01, Additional file 3: Figure S1B). Thus individual
cells with a higher TAG content tend to possess more
saturated lipids. Since both TAG contents and lipid
unsaturation degree are key parameters in the evaluation
of biofuels, the SCRS measurements can be used to screen
for biofuel-producing feedstock or processes.



Figure 4 Quantitative analysis of TAG content and lipid unsaturation degree in single cells. (A) TAG content of individual cells as
predicted by PLSR. Each square represents one Group N- cell. (B) Lipid unsaturation degree as determined by I1656/I1441. Each triangle represents
one Group N + cell, and each square represents one Group N- cell. (C) Distribution of TAG content of Group N- cells at each time point. X axis is
the predicted TAG content (mg g−1 dry weight), Y axis is the percentage of cells. Since TAG content is increasing sharply, the range of X axis is
different between time points. (D) Distribution of lipid unsaturation degree of Group N- or Group N + cells at each time point. X axis is the lipid
unsaturation degree, Y axis is the percentage of cells. h: hours; PLSR: partial least square regression; TAG: triacylglycerol.
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Our findings further enabled modeling of the dynamics
of population heterogeneity in terms of particular traits
of interest. At each time point, both lipid unsaturation
degree and TAG content of individual cells showed an
approximate normal distribution, indicating the internal
heterogeneity on the population level (Figure 4C and D).
We have used the relative standard deviation (RSD) of
measurements of multiple cells at the same time point
to represent the population heterogeneity. During the
continuous increase of TAG contents in Group N- cells
over time, the heterogeneity of TAG content decreased
accordingly. On the other hand, while the heterogeneity of
lipid unsaturation in a population exhibited no monotonic
changes in Group N + up to 96 hours, that of Group
N- decreased continuously after 48 hours (Table 4). Both
suggested that nitrogen-depletion stress might be a strat-
egy for the homogenization of certain cell components in
an algal population (Figure 5).
Recently, researchers have used Raman spectra to non-

specifically quantify the total cellular lipids in microalgae
cell pastes (Chlorella sp.) using signal intensities of the
range 2845–3107 cm−1 [21]. Here, we have for the first



Table 4 Heterogeneity of TAG and lipid unsaturation degree as represented by RSD

RSD value 6 h 12 h 24 h 36 h 48 h 72 h 96 h

Predicted TAG content (Group N-) 0.602 0.748 0.643 0.485 0.305 0.249 0.211

Lipid unsaturation degree (Group N-) 0.140 0.166 0.144 0.158 0.100 0.097 0.102

Lipid unsaturation degree (Group N+) 0.168 0.150 0.122 0.104 0.141 0.182 0.162

RSD: relative standard deviation; TAG: triacylglycerol; h: hours.

Wang et al. Biotechnology for Biofuels 2014, 7:58 Page 8 of 12
http://www.biotechnologyforbiofuels.com/content/7/1/58
time demonstrated the quantification of a particular lipid
component of biotechnology interest in individual cells. In
both industry and laboratorial cultures, synchronous
growth is frequently desirable for optimum yield coeffi-
cients and yet can be difficult to sustain [8]. Moreover, the
degree of metabolic and phenotypic heterogeneity can be
different among cellular populations as it depends on
species-specific genetic traits, and physiological features
under particular microenvironment and culture conditions
[35]. The ability of our method to track the degree of
heterogeneity in the TAG level at single-cell resolution,
when coupled with techniques such as phased cultures,
tailor made biofilms and microfluidics devices [35,36], can
be used to identify the most efficient oil producers, separate
them from others and adapt them to favored conditions. It
should therefore be of value to bioprocess optimization and
control, as well as to the screening and engineering of ole-
aginous microalgae strains for enhanced oil productivity.
Moreover, recent studies have suggested that the cellular

heterogeneity has profound biological implications [37].
Tracking of phenotypic traits and gene expression patterns
at single-cell resolution can provide a deeper view of
the population heterogeneity and help to understand the
complicated behaviors of the populations and consortia
[10]. Several studies have coupled gene expression and
Figure 5 Comparison of TAG content and lipid unsaturation among G
and lipid unsaturation degree of Group N- cells at each time point were co
h: hours; RSD: relative standard deviation; TAG: triacylglycerol.
physiological parameters in individual cells. For example,
analyses of volume, cell cycle and gene expression of
individual yeast cells led to the identification of two
mechanisms that regulate cell-to-cell variation in pathway
capacity [38]. However, the connection between the
stochastic gene expression and the physiological diversity
within a population remains elusive [9]. Here, using the
oleaginous microalga N. oceanica as a model, we have
demonstrated rapid, label-free quantification of a particular
lipid component of biotechnological interest in individual
cells. For a given microalgae cell, the TAG concentration
can then be coupled with gene expression analysis via
Raman-activated cell sorting [29] and subsequent quanti-
tative PCR or mRNA sequencing methods [39]. The phe-
notypes and genotypes at the level of single cells can thus
be tested for correlations with each other and then
compared to those at the population level [40], so as to
elucidate the molecular mechanism underlying the pheno-
typic heterogeneity in an oleaginous cellular population.
Since SCRS offers real-time monitoring and bioprocess

diagnosis capabilities without prior knowledge of any
cellular component or metabolite as biomarker, and needs
no labeling to the cell, its application may not be limited
to the investigation of TAG accumulation, but also to
bio-prospecting of novel phenotypes in yet-to-be-culture
roup N- cells. Mean value and RSD value of predicted TAG content
mpared to show temporal patterns of population heterogeneity.
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or mutant cells. Further development in hardware and soft-
ware, such as microfluidics devices, and more statistical
tools should allow for improvement of the specificity,
sensitivity, spatial resolution and throughput of SCRS,
and establish it as a general approach for characterization,
screening, isolation and in-depth analysis of microbial
cells or live-cell-mediated processes for broad applica-
tions [11,41].

Conclusions
In this study, we demonstrated that SCRS for one individ-
ual microalgal cell acquired at sub-second level by 532 nm
Raman spectroscopy are able to provide sufficient pheno-
typic information for the quantitative evaluation of its TAG
content and the lipid unsaturation degree. In addition,
comparison of SCRS among cells revealed the phenotypic
heterogeneity of cells within an isogenic population.
Therefore, SCRS is able to serve as a proxy for rapidly,
quantitatively, and non-invasively tracking and screening
the dynamics of cellular TAG contents in real-time, at
single-cell level. It should also help with the investigation
of the mechanisms behind functional heterogeneity within
a cellular population.

Methods
Microalgal growth
N. oceanica IMET-1 cells were inoculated into a modified
f/2 liquid medium with 4 mM NO3

− under continuous
light (approximately 50 μmol photons m−2 s−1) at 25°C
and aerated by bubbling with a mixture of 1.5% CO2 in
air. Composition of the medium was as below: 200 g/L
KNO3, 25 g/L NaH2PO4 · 2H2O, 5 g/L FeCl3 · 6H2O, 4.5 g/L
EDTA and 1 mL of trace element solution (pH =
7.6). The trace element solution was comprised of
0.4 mg/L MnCl2 · 4H2O, 0.02 mg/L Na2MoO4 · 2H2O,
0.02 mg/L CoCl2 · 6H2O, 0.02 mg/L CuSO4 · 5H2O,
0.04 mg/L ZnSO4 · 7H2O, 1 μg/L vitamin B12, 1 μg/L bio-
tin and 200 μg/L thiamine · HCl. Cell density (OD750) was
determined in triplicate on a UV/Vis spectrophotometer
(Beijing Purkinje General Instrument Co., Ltd., Beijing,
China). Early-logarithmic phase algal cells were collected,
washed three times with axenic seawater and re-inoculated
with equal concentration in annular glass columns, either
under the same condition as above (nitrogen-replete, or
Group N+) or with no NO3

- supplemented (nitrogen-
depleted, or Group N-). Re-inoculation was performed
in triplicate.

Single-cell Raman microspectroscopy
Cell aliquots were collected right before re-inoculation
(at 0 hours), and from each triplicate of Group N + and
Group N- at seven time points afterward: 6, 12, 24, 36,
48, 72 and 96 hours. Each cell sample was washed and
re-suspended with ddH2O to avoid the high noise
introduced by the culture media, and was immediately
loaded into a capillary tube (50 mm length × 1 mm
width × 0.1 mm height, Camlab, Cambridge, UK) for
measurement [42]. The Raman spectra of individual cells
were acquired using a Raman Activated Cell Sorting
system (RACS, Wellsens Inc, Beijing, China), which was
equipped with a confocal microscope with a 50 × PL mag-
nifying dry objective (NA = 0.55, BX41, Olympus UK Ltd.,
Southall, UK) and a 532 nm Nd:YAG laser (Ventus, Laser
Quantum Ltd, Stockport, UK). The laser power out of the
objective was 50 mW. Individual microalgae in the capil-
lary tube was captured and measured by the same 532-nm
laser. The whole process, including a single-cell capture
and Raman measurement, was performed within one sec-
ond. The scattered photons were collected by a Newton
EMCCD (Andor, Belfast, UK) utilizing a 1600 × 200 array
of 16 μm pixels with thermoelectric cooling down to −70°C
for negligible dark current. Each Raman spectrum was
acquired between the range 3256 cm−1 and 273 cm−1,
with a spectral resolution of 2 cm−1 achieved by a 300
groove mm−1 grating in the spectrograph. Sixty individ-
ual cells were measured for the sample at 0 hours, and
twenty were measured in each of all other samples. For
each sample, a background spectrum was generated as the
average of five spectra acquired from the liquid around
the cell.
Pre-processing of raw spectra was performed with

LabSpec 5 (HORIBA Scientific, Orsay, France), including
background subtraction and the baseline correction by a
polynomial algorithm with a degree of seven. Two re-
gions of the spectra: the biochemical fingerprint region
(800 cm−1 to 1800 cm−1) and the hydrocarbon region
(2600 cm−1 to 3100 cm−1), were extracted for further ana-
lyses in order to extract useful information contained in
Raman bands from the useless noise [28,43]. For both re-
gions a spectrum was normalized via division by its area.
The lipid unsaturation degree in each cell was calculated
as the ratio of Raman intensity of the C=C stretch and
the intensity of CH2 bend, namely I1656/I1441, as described
previously [20].

Determination of cellular lipid content by LC-MS
LC-MS was performed on the same cell aliquots which
were sampled for SCRS, at 0 hours and each triplicate of
the six time points: 6, 12, 24, 48, 72 and 96 hours. A
quantitative LC-MS method was used to determine the
cellular content of molecular lipid species belonging to nine
major glycerolipid classes including TAG, monogalactosyl-
diacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG),
sulfoquinovosyldiacylglycerol (SQDG), diacylglycerol-O-(N,
N,N–trimethyl)-homoserine (DGTS), phosphatidylcholine
(PtdCho), phosphatidylethanolamine (PE), phosphatidyl-
glycerol (PG) and phosphatidylinositol (PI). These nine
main lipid classes, including 74 lipid species, constitute
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the majority of total lipids in Nannochloropsis cells [44,45].
Total lipids were extracted with chloroform:methanol (2:1,
w/w) and recovered in chloroform: methanol (1:1) be-
fore being loaded for quantification. An Agilent 6460 triple
quadruple electrospray ionization mass spectrometer
equipped with a 1260 high performance liquid chromatog-
raphy (Agilent Technologies, Santa Clara, CA, United
States) was used for LC-MS analysis. PtdCho, PE, DGTS,
TAG, MGDG and DGDG were detected at the positive
mode, with the mobile phases of methanol : acetonitrile:
H2O (19:19:2; A) and isopropanol (B) containing 0.1%
formic acid and 10 mM ammonium acetate. PI, PG and
SQDG were detected at the negative mode with the mo-
bile phases of 85% methanol (A) and isopropanol contain-
ing 0.025% NH4OH. The LC gradients for positive mode
were as follows: 0 minutes, 90% A and 10% B; 5 minutes
90% A and 10% B; 25 minutes, 60% A and 40% B; 60 mi-
nutes 45% A and 55% B; 66 minutes, 45% A and 55% B;
68 minutes 90% A and 10% B. For negative mode, the LC
gradients were as follows: 0 minutes, 95% A and 5% B;
15 minutes, 85% A and 15% B, 22 minutes 45% A and
55% B; 42 minutes, 45% A and 55% B; 44 minutes 95% A
and 5% B. The flow rate was 0.2 mL min−1. Nitrogen was
used as nebulizing gas (at 0.3 Bar) and a dry gas (4 L min−1

at 200°C). The spray capillary voltage was 3700 V for the
negative ion mode and 4200 V for the positive ion mode.
For quantification of lipid content, TAG 51:0 (17:0/17:0/
17:0), MGDG 36:0 (18:0/18:0), DGDG 36:0 (18:0/18:0), PE
31:1 (14:1/17:0) and PG 37:4 (17:0/20:4) were used as the
internal standard (ITSD) for TAG, MGDG, DGDG, PE
and PG respectively. PtdCho 37:4 (17:0/20:4) was used as
ITSD for both PtdCho and DGTS, and PI 37:4 (17:0/20:4)
for both PI and SQDG. TAG 48:3 (16:1/16:1/16:1), TAG
50:1 (16:0/18:1/16:0), TAG 52:2 (18:1/16:0/18:1) and TAG
54:3 (18:1/18:1/18:1) were used as calibration standards
for 48 carbon, 50 carbon, 52 carbon and 54 carbon
TAG quantifications, respectively. MGDG 34:6 (16:3/
18:3), DGDG 36:3 (18:3/18:3), PE 36:1 (18:0/18:1), PG 36:1
(18:0/18:1), PtdCho 36:2 (18:1/18:1) and DGTS 32:0 (16:0/
16:0) were used as calibration standards for their corre-
sponding lipid class.
The ratio of the number of C=C bonds and the num-

ber of CH2 bonds of each lipid species was calculated to
represent the unsaturation degree of this lipid species as
previously described [20]. The unsaturation degree of the
total cellular lipid of each culture was then calculated by
multiplying the unsaturation degree of each lipid species
by its relative abundance in the cellular extract (μmol/g
dry weight).

Chemometrics analyses
The normalized fingerprint and hydrocarbon regions of
spectra from each cell were used separately for PCA based
on Euclidean distances [46], followed by LDA based on
the principal components extracted by PCA. Both PCA
and LDA use linear combinations of the original variables
(wavenumbers of the spectra) as PCs to characterize the
ordination of samples or to discriminate two or more
classes of samples. The first few PCs were used for LDA
instead of the original variables in order to reduce the
dimensionality of the variation. For the LDA-discriminating
cells between N + and N- conditions at separate time
points, 15 out of 20 cells from each triplicate of the two
conditions were randomly selected and combined for the
construction of a training dataset (n = 90), and the rest of
the cells were used to form a test dataset (n = 30). For the
LDA-discriminating cells at 0 hours and Group N- cells at
different time points, 45 out of 60 cells at 0 hours and 15
out of 20 cells from each triplicate at the seven time points
afterwards, were randomly selected and combined for the
construction of a training dataset (n = 360), and the rest of
the cells were used to form a test dataset (n = 120). Leave-
one-out cross validation (LOOCV) was used to evaluate
the reliability of the LDA model based on the training
dataset, followed by challenging the model with the test
dataset. The misclassification rates of both the training
and test dataset were calculated to determine an optimal
number of PCs [47]. The test dataset was rotated into a
new dataset of PCs by the loadings of the PCA of the
training dataset as described previously, so as to convert
two datasets in the same spectral space [28].
SCRS data is used to construct a PLSR model together

with the TAG content of corresponding samples deter-
mined by LC-MS. By relating two datasets X (SCRS in
our study) and y (TAG content by LC-MS in our study)
by means of regression, PLSR performs a multivariate
calibration in order to establish a linear model which
enables the prediction of y from measured dataset X.
In the regression process, decomposition of X is per-
formed under the consideration of y in a simultaneous
analysis of the two datasets [48]. Specifically, the SCRS
of all 60 cells at 0 hours, and that of each of the 20 cells
from triplicates at 6, 12, 24, 48, 72, and 96 hours were
averaged separately, generating data of 19 combined
Raman spectra as a matrix (designated as X). Among
them, two of the triplicates at 6, 12, 24, 48, 72 and
96 hours were randomly selected and combined with
the 0 hour data to form a training dataset for the cali-
bration of the model (Xc, n = 13), and the rest were used
as a test dataset for validation (Xv, n = 6). Correspond-
ingly, TAG content of 0 hours culture and each triplicate
culture at 6, 12, 24, 48, 72, and 96 hours were measured
by LC-MS, generating data of another 19 values as a
vector (designated as y), also including the training
dataset (yc, n = 13) and the test dataset (yv, n = 6). Firstly,
the PLSR model was established using Xc and yc data.
Secondly, Xv data and the function of the established
model were used to predict the yv value. The predicted yv
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value was compared with the measured yv value. Reliabil-
ity of the model was assessed by the MSEC of the training
set by LOOCV, as well as the squared correlation coeffi-
cient (R2) between predicted and measured y values in
both the training set and the test set. Finally, the function
was utilized for the prediction of TAG content in single
Group N- cells (as y value) at each time point between 6
and 96 hours using individual SCRS (as X data). PCA,
LDA and PLSR were performed with Matlab R2010a
(Mathworks, Natick, Massachusetts, United States). Other
statistical analyses were performed with SPSS Statistics
17.0 (SPSS Inc, Chicago, Illinois, United States).

Additional files

Additional file 1: Impact of the laser power on microalgal cell. A
single N. oceanica IMET1 cell was optically trapped by a 532 nm laser and
its Raman spectrum was recorded in one second by the same laser. No
loss of cell activity was observed, our measurement thus does not seem
to have a significant negative impact on the health state of the cell.

Additional file 2: Cellular content of the 74 lipid species in cultures
under nitrogen depletion conditions. The cellular contents of each
species of the nine lipid classes (TAG, DGDG, MGDG, DGTS, SQDG, PI, PG,
PC and PE) along the time course were listed.

Additional file 3: Correlation between the TAG content and lipid
unsaturation degree at single-cell level and population level. (A)
Correlation between TAG content and lipid unsaturation degree at the
single-cell level as measured by SCRS. Each dot represents one cell in the
N- cultures. (B) Correlation between TAG content and lipid unsaturation
degree at the population level as measured by LC-MS. Each dot represents
one culture under the N- conditions (each triplicate at 6, 12, 24, 48, 72 and
96 hours).
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