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Abstract: Owing to the large chemical composition and bandgap tunability of both 25 

perovskite and organic semiconductors, perovskite/organic tandem solar cells are attractive 26 

for next-generation thin-film photovoltaics. However, their efficiency is limited by the open-27 

circuit voltage loss of wide-bandgap perovskite subcells and the non-ideal interconnecting 28 

layers. Here, we report that the passivation of nickel oxide hole-transporting layers with 29 

benzylphosphonic acid leads to the suppression of interfacial recombination, boosting the 30 

voltage up to 1.26 V in a 1.79 eV-bandgap perovskite subcell. Then, we develop an 31 

optimized interconnecting layer structure based on a four-nm-thick sputtered indium zinc 32 

oxide layer inserted between organic bathocuproine and molybdenum oxide with enhanced 33 

electrical properties and transmittance in the near-infrared region. Through these 34 

improvements, we achieve a maximum efficiency of 23.60% (22.95% certified) in the 35 

perovskite/organic tandem solar cell. In addition, the tandem device retained 90% initial 36 

efficiency after 500-h maximum power point tracking under continuous one-sun illumination. 37 

 38 

 39 

  40 
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The potential of exceeding the Shockley–Quisser limit has stimulated intense interest in 41 

developing tandem solar cells (TSCs).
1-4

 Perovskite materials have broad bandgap tunability 42 

(~1.17 eV–3.10 eV), which makes them an ideal choice as both front and bottom subcells in a 43 

TSC.
2,5,6

 Perovskite/Si TSCs have achieved the highest power conversion efficiency (PCE) of 44 

29.5% among perovskite-based TSCs,
7,8

 which mainly targets utility application. Meanwhile, 45 

thin-film based tandems (e.g. perovskite/perovskite TSCs, perovskite/copper indium gallium 46 

selenide (CIGS) and perovskite/organic thin-film TSCs) have great potential for high-47 

throughput and cost-effective production of flexible and lightweight TSCs and thus are 48 

promising for urban-integrated photovoltaic applications.
9
 49 

Perovskite/organic TSCs have received increasing interest due to the recent 50 

improvement in the performance of organic photovoltaics (OPV) with the extension of 51 

spectral response beyond 1000 nm using narrow bandgap non-fullerene acceptors.
10-13 

52 

Perovskite/organic TSCs have the advantage of using orthogonal solvents for the perovskite 53 

and organic absorbers, potentially reducing the large-area solution-processing challenges 54 

related to perovskite/perovskite TSCs.
14

 Compared to other bottom cell absorbers, organic 55 

materials have a larger chemical space and broader bandgap tunability, offering more bottom 56 

absorber options for perovskite-based TSCs.
10,15

 However, the performance of 57 

perovskite/organic TSCs
16

 still lags behind that of their thin-film tandem counterparts, such 58 

as perovskite/perovskite
17

 and perovskite/CIGS
18

 tandems.
 
 59 

There are two main reasons for the low efficiency of perovskite/organic TSCs. First, 60 

there are notable open circuit voltage (Voc) losses in wide-bandgap (WBG) perovskite top 61 

cells. These are mainly attributable to surface recombination at the perovskite-charge 62 

transport layer interfaces and phase segregation under illumination. Although various 63 

approaches, including interfacial passivation, composition optimisation, and surface 64 

treatments, have been reported to boost the Voc of 1.65–1.68 eV perovskite subcells,
19,20

 it is 65 

still challenging to suppress the Voc loss in 1.80 eV WBG perovskites.  66 

Another reason is the optical and electrical losses in the interconnecting layer (ICL). An 67 

ideal ICL must be chemically inert, electrically conductive, and optically transparent
21,22

 and 68 

provide enough recombination sites between the front and bottom subcells. In state-of-the-art 69 

perovskite/perovskite TSCs, the ICLs are commonly composed of ALD SnOx and evaporated 70 

thin metals or thick (typically 10-100 nm) conductive transparent oxides (TCOs).
23-27

 The 71 

ALD metal oxides and/or thick TCOs are critical for protecting the front perovskite cell from 72 

solvent damage in subsequent processing of bottom perovskites.
27-29

 In contrast, 73 

perovskite/organic TSCs typically use evaporated thin metals in combination with 74 

organic/inorganic charge transport layers as ICLs.
16,17,30-35

 However, the thin metal layer-75 

based ICLs likely result in a large optical loss,
36,37

 which limits the short circuit current 76 

density (Jsc) of the bottom cell and the efficiencies of TSCs. Thus, the optimisation of the 77 

design of a ICL to maintain efficient recombination while minimising optical losses remains 78 

a major challenge in fabricating perovskite/organic TSCs. 79 

Here, we simultaneously reduced the Voc loss in WBG perovskite subcells and optical 80 

and electrical losses of ICLs in perovskite/organic TSCs. By passivating the NiOx hole 81 

transport layer (HTL) surface with benzylphosphonic acid (BPA), we reduced the surface 82 

recombination losses and achieved a maximum PCE over 17% with a Voc of 1.26 V in a 1.79-83 

eV bandgap perovskite. We further demonstrated a high-performance ICL consisting of a 84 

sputtered 4-nm-thick indium zinc oxide (IZO) layer sandwiched between a bathocuproine 85 

(BCP) layer and a molybdenum oxide (MoOx) layer, resulting in a dramatic performance 86 

improvement compared to the ICL using ‘BCP/Ag/MoOx’. IZO-based ICLs show excellent 87 

near-infrared (NIR) transmittance, which minimises the current losses of the organic bottom 88 
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subcells. Moreover, the very thin IZO shows optimized surface coverage providing more 89 

recombination sites, which further allow effective charge recombination. The ICLs enable 90 

perovskite/organic TSCs with a Voc of 2.06 V, a Jsc of 14.87 mA/cm
2
 and an efficiency of 91 

23.60% (22.95% certified) for small-area devices (0.08 cm
2
) and 21.77% for large-area 92 

devices (1.05 cm
2
). This performance surpassed that of previous perovskite/organic TSCs and 93 

approach the record performances of perovskite/perovskite and perovskite/CIGS TSCs. These 94 

tandem devices also maintained 90% initial efficiency  after 500-h maximum power point 95 

tracking under continuous one-sun illumination. 96 

 97 

Reduced Voc loss of WBG perovskite by surface passivation 98 

We first used a surface passivation strategy to reduce the Voc losses of WBG perovskite 99 

front subcells. The surface chemistry of nickel oxide (NiOx) is complex. The surface defects, 100 

e.g. different oxidation states of Ni, the presence of hydrates and other secondary phases act 101 

as surface recombination centres, affecting both efficiency and stability of the device.
38

 102 

Among different possible passivating molecules, those containing phosphonic acid are 103 

particularly interesting since they can have a variety of binding configurations (mono-, bi- 104 

and tri-dentate bonding thanks to hydroxyl and phosphoryl groups).
39

 Here we employed 105 

benzylphosphonic acid (BPA) as the passivation molecule for the p-i-n WBG perovskite 106 

subcells (Fig. 1a). Previous reports have shown that the ideal bandgap of perovskite subcells 107 

is around 1.80 eV for perovskite/organic TSCs.
16,34

 We therefore selected and fabricated 1.79 108 

eV-bandgap perovskite, with a composition of Cs0.25FA0.75Pb(I0.6Br0.4)3, as the top subcells 109 

(see Method). From the absorption spectra (Supplementary Fig. 1), we observe that identical 110 

bandgaps (1.79 eV) were obtained for perovskite films deposited on NiOx with and without 111 

BPA passivation. Contact angle measurement shows a reduced wettability of the BPA 112 

passivated substrate to polar solvents (Supplementary Fig. 2a and 2b). Scanning electron 113 

microscopy (SEM) and atomic force microscopy (AFM) characteristics suggested that the 114 

NiOx surface passivation results in a smoother and more compact perovskite surface 115 

(Supplementary Fig. 2c-2f). The suppressed crystalline PbI2 was also observed from X-ray 116 

diffraction (XRD) (Supplementary Fig. 2g), which is in line with previous reports of 117 

growing perovskites on reduced wettability substrates.
40-42

 The cross-sectional scanning 118 

transmission electron microscopy (STEM) and energy dispersive X-ray (EDX) mapping of 119 

the BPA-passivated device show defined sharp interfaces, indicating the detailed thickness of 120 

each layer in the ICLs (Supplementary Fig. 3). X-ray photoelectron spectroscopy (XPS) also 121 

suggested that phosphonic acid is strongly bonded to the NiOx surface (Supplementary Fig. 122 

4). 123 

BPA passivation effectively increases the PCE of single-junction devices 124 

(Supplementary Fig. 5a). The maximum performance with BPA passivation is a PCE of 125 

17.80% with a Voc of 1.26 V, a Jsc of 17.90 mA/cm
2
 and a FF of 78.9% under reverse J-V 126 

scans (see Methods), with a negligible hysteresis effect (Fig. 1b and Table 1). The steady 127 

power output (SPO) at maximum power point bias and the external quantum efficiency (EQE) 128 

spectra are consistent with the results from J-V scans under the speed of 274 mV/sec 129 

(Supplementary Fig. 5b-c). When compared with previous studies, this BPA passivation 130 

strategy yielded the highest Voc for the 1.79-eV bandgap perovskites (Fig. 1e and 131 

Supplementary Table 1). To verify the accuracy of this result, these devices were certified 132 

at an authorised institute—SIMIT. The certified results are consistent with the results 133 

obtained in the lab (Supplementary Fig. 6). 134 
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To examine the effects of BPA interfacial passivation, we performed photoluminescence 135 

(PL) (Supplementary Fig. 7a) and time-resolved photoluminescence (TRPL) measurements 136 

(Fig. 1c and Supplementary Table 2). The PL results indicate that BPA passivation leads to 137 

a reduction in nonradiative interfacial recombination and, consequently, explains the 138 

observed increase in the Voc, consistent with previous reports of effective defect passivation 139 

using self-assembled monolayers as HTLs.
18,43,44

 The BPA passivation also improved the 140 

electroluminescence (EL) and EQEEL of the WBG perovskite devices (Supplementary Fig. 141 

7b-c). The EQEEL of the BPA passivated NiOx device reached ~1.6 % at one-sun equivalent 142 

current injection, consistent with the enhanced EL intensity, which suggests the effective 143 

passivation effect of BPA. In addition, the increase in the work function (WF) determined by 144 

photoelectron spectroscopy (UPS) (Supplementary Fig. 8) after BPA passivation allows 145 

better band alignment with the perovskite and thus more efficient charge collection. 146 

Moreover, based on both the I-V curves determined for hole-only devices (Supplementary 147 

Fig. 9) and Mott–Schottky plots (Fig. 1d and Supplementary Note 1), a reduction in the trap 148 

densities was observed along with high built-in potential for the passivated devices, 149 

consistent with the improved Voc. The passivation also resulted in improved shelf-life stability 150 

and operational stability (Supplementary Fig. 10) and improved stability under illumination 151 

for the perovskite films deposited on BPA-modified HTL (Supplementary Fig. 11), which is 152 

ascribed to the reduced interfacial trap density.
45

 153 

ICL design for perovskite/organic tandem solar cells 154 

Having demonstrated improved performance of the WBG perovskite subcell, we then 155 

considered the overall design of the perovskite/organic TSC. We selected the PM6 (also 156 

known as PBDB-T-2F):Y6 bulk heterojunction with the P71CBM ternary system as the 157 

absorber layer of the organic bottom subcell. This ternary system is based on a narrow 158 

bandgap of 1.36 eV
11

, which is a good tandem bottom cell partner for a 1.79-eV bandgap 159 

perovskite front cell.
12

 The detailed chemical structures of the organics and the absorption 160 

spectra of the bulk heterojunction layer are shown in Supplementary Fig. 12. We applied 161 

MoOx as the HTL for OPV, and after device optimisation a PCE of 16.75% with a high Jsc of 162 

26.80 mA/cm
2
 was achieved (Supplementary Fig. 13). 163 

Fig. 2a shows the architecture of the perovskite/organic TSC, where the C60/BCP/carrier 164 

recombination layer (CRL)/MoOx is the ICL. There are several CRLs reported in the 165 

literature for perovskite/organic TSCs. One commonly used CRL is thermally evaporated thin 166 

metal (1 nm Ag or Au).
14,16,31,34

 Another possible alternative is a transparent conductive oxide 167 

(TCO) layer, e.g. indium zinc oxide (IZO) or ITO (10–100 nm), which have been used as 168 

CRLs in perovskite-based TSCs.
21 

To examine these different CRLs in perovskite/organic 169 

TSCs, we integrated them into a tandem device and compared their performances 170 

(Supplementary Fig. 14). Fig. 2b clearly shows the TSCs without any CRL exhibited the 171 

lowest performance with an S-shape curve due to the Schottky barrier between BCP and 172 

MoOx, which hinder charge transport and consequently result in inefficient recombination. 173 

TSCs based on a 100-nm IZO CRL suffer from high leakage current, and also show low 174 

performances. While TSCs with 1-nm Ag CRL demonstrated a reasonable PCE of 18.59%, 175 

which is comparable to the previously reported perovskite/organic TSCs (Fig. 2b and 176 

Supplementary Table 3).
16,34

 As we further reduced the IZO thickness down to 20 nm, the 177 

FF and Voc increase accordingly, but it cannot catch up to the performance of the device using 178 

1-nm Ag ICL. Ideally, ICL needs to exhibit maximum ‘vertical conductivity’ (maximum 179 

carrier recombination), maximum ‘horizontal resistance’ (minimum the current leakage) and 180 

high NIR transmittance, which will combine high Jsc, Voc and FF in one device 181 

(Supplementary Fig. 15a). The ‘horizontal resistances’ (sheet resistance) of both 20-nm and 182 



 6 

100-nm thick IZO layers are much smaller than that of the 1-nm Ag (Supplementary Fig. 183 

15b), causing higher leakage current and low FF. 184 

Among these four commonly used ICLs, we found that the 1-nm Ag ICL has the lowest 185 

NIR transmittance (Fig. 2c). This optical loss further increases the current losses of the 186 

organic bottom cells and leads to the current mismatch in the perovskite/organic TSCs. 187 

According to these results, we summarised the advantages and disadvantages of these four 188 

ICLs (Supplementary Table 4) and unfortunately there was no ICL that combines excellent 189 

optical and electrical properties. 190 

Optical and electrical properties of thin IZO-based ICLs 191 

If the IZO thickness is reduced to a few nanometres, in principle the IZO-based ICL will 192 

combine the desired charge transport in both the vertical and horizontal directions. To 193 

investigate the impact of thickness on the performance of TSCs, we deposited thin IZO layers 194 

with a thickness variation from 2 nm to 6 nm. From the top view images of BCP, 4-nm IZO 195 

and 1-nm Ag (Supplementary Fig. 16), we can clearly see the sputtered 4-nm IZO on BCP 196 

shows large and homogeneous grains (~30–50 nm), enabling a large surface coverage of 197 

~96.2% on BCP (Fig. 3a). In contrast, the 1-nm Ag shows many ‘islands’ like clusters with a 198 

relatively low surface coverage of ~53.7% (Fig. 3b). Higher surface coverages in IZO ICLs 199 

contribute more recombination sites, shorter recombination lifetime, and thus more effective 200 

recombination. This is also in line with the J-V simulation results, in which the compact IZO 201 

thin film with high coverage exhibited a shorter recombination lifetime (1x10
-10

s) than Ag 202 

clusters (2x10
-9

s), and a better efficiency (Supplementary Fig. 17). 203 

As shown in Fig. 3c, the 4-nm IZO-based ICLs exhibited much higher NIR 204 

transmittance than that of 1 nm Ag-based ICLs. We further employed STEM and EDX 205 

mapping to examine in detail the perovskite/organic TSCs with 4-nm IZO-based ICLs. The 206 

sharp interfaces within the layer stacks can be observed in the STEM image of the tandem 207 

cell (Supplementary Fig. 18). EDX mapping of the tandem cell (Supplementary Fig. 19a) 208 

further confirmed each key element distribution. Furthermore, the high-resolution STEM and 209 

EDX mapping (Fig. 3d and Supplementary Fig. 19b) of the enlarged ICL region clearly 210 

showed a thin layer of IZO sandwiched between C60/BCP and MoOx layers. 211 

Fig. 3e shows the J-V characteristics of the perovskite/organic TSCs with the IZO 212 

thickness from 2 nm to 6 nm. The corresponding parameters are shown in Supplementary 213 

Table 5 and summarised in Supplementary Fig. 20. There were noticeable S-shaped J-V 214 

curves for the TSCs with an IZO thickness below 4 nm, which is mainly attributed to the 215 

inefficient carrier recombination in the ICLs. When the thickness is increased to 4 nm, the S-216 

shaped J-V curve disappeared. However, when IZO thickness is further increased to 6 nm, it 217 

starts to show a higher current leakage and reduced FF.  218 

To further explore the working mechanism of IZO ICLs, we measured the Hall effect of 219 

the IZOs with varied thicknesses (Supplementary Fig. 21). It was found that balanced 220 

vertical and horizontal transport appears at around 4 nm. The thicker, and thinner, IZOs lead 221 

to low shunt resistance, and high series resistance, respectively. The J-V characteristics of the 222 

diode devices further determine the vertical electrical conductivity of 4-nm IZO is slightly 223 

higher than that of 1-nm Ag (Fig. 3f). 224 

We also performed a UPS measurement to determine the band alignment at the 225 

BCP/IZO/MoOx interfaces (Supplementary Fig. 22a-c). The detailed energy diagrams after 226 

the Fermi level alignment are depicted in Supplementary Fig. 22d. We can see a strong 227 
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band bending at the BCP/MoOx interfaces due to the large work function differences. This is 228 

likely to cause a large Schottky barrier at these interfaces, leading to inefficient 229 

recombination within the ICL and consequently large S-shaped J-V curves of the tandem 230 

devices without any CRL. Inserting 4-nm IZO upshifts the energy level of BCP and 231 

dramatically reduces the barrier, allowing a quasi-ohmic contact between BCP and MoOx, 232 

resulting in barrier-free transport of electrons from the WBG perovskite front subcells into 233 

the IZO recombination centres, where holes and electrons are effectively recombined.
21

 234 

Fig. 3g shows a comparison of the J-V curves of the TSCs with IZO and Ag-based ICLs. 235 

Replacing Ag with thin IZO, the tandem devices showed a clear performance improvement 236 

from 19.50% to 22.90% (Supplementary Table 6). This is largely driven by the 237 

enhancement of Jsc. EQE measurements highlight the advantage of switching from a thin 238 

metal-based ICL to a thin IZO-based ICL. The reduction of optical  and consequent current 239 

loss in the 700- to 900-nm range, resulted in a clear Jsc increase of 1.46 mA/cm
2
 (Fig. 3h). 240 

The performance statistics of perovskite/organic TSCs with IZOs and Ag-based ICLs 241 

confirmed the advantages of the 4-nm IZO (Supplementary Fig. 23).  242 

Optimal performance of perovskite/organic tandem devices 243 

Fig. 4a presents the J–V curves of the champion perovskite/organic TSCs with 4-nm 244 

IZO-based ICLs. The corresponding photovoltaic parameters are summarised in Table 2. Our 245 

best small-area tandem device yielded a PCE of 23.60% from J-V scan, with a Voc of 2.06 V, 246 

a Jsc of 14.83 mA/cm
2
 and FF of 77.2% under reverse scan with almost no hysteresis. The 247 

device with IZO-based ICLs exhibited a stabilised SPO of 23.54% (Supplementary Fig. 24) 248 

and excellent current matching between the two subcells, as estimated from the integrated 249 

EQE (Fig. 4b). As summarised in Supplementary Table 7, our champion tandem cell 250 

showed a significant performance improvement compared to the previous studies.
14,16,46

 To 251 

confirm the reliability of our results, we also sent the tandem devices to the authorised 252 

institute SIMIT for certification, and a certified PCE of 22.94% was obtained under reverse 253 

scan, which aligns well with the values we measured in our lab (Supplementary Fig. 25). 254 

We also prepared perovskite/organic TSCs with a large area of 1.05 cm
2
, as shown in Fig. 4c. 255 

The champion device exhibited a PCE of 21.77%, with a similar Voc of 2.06 V but a slightly 256 

decreased Jsc and FF compared to the small-area device (Table 2). The device also showed a 257 

high stabilised power output of 21.58% and excellent current matching between the two 258 

subcells, as estimated from the EQE measurements (Supplementary Fig. 26). 259 

We evaluated the stability of the tandem devices with different ICLs. The TSCs with 260 

IZO ICLs exhibited improved shelf-life compared to devices with Ag ICLs when stored in 261 

the dark in an N2-filled glovebox, as shown in Supplementary Fig. 27. This is likely 262 

attributable to the thicker and more compact IZO layer, which provides better protection of 263 

the perovskite layer than the Ag clusters.
47

 More importantly, the IZO layers are more 264 

chemically stable than the Ag ones, as the metals are prone to react with the halide ions in the 265 

perovskite.
48,49

 266 

We also compared the thermal stability of the two TCSs under different aging 267 

temperatures and found that the TSCs experienced a relatively faster degradation at 85 
o
C but 268 

were relatively stable at 65 
o
C, which might be caused by the unstable MoOx 269 

(Supplementary Fig. 28).
50

 We further evaluated the MPP stability of the TSCs with IZO 270 

ICLs, as shown in Fig. 4d. After a fast burn-in loss, the TSC was stabilised and retained 271 

~90% of its initial efficiency after 500 h. The initial burn-in degradation was likely due to the 272 
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change of bulk-heterojunction morphology and the fast ion movements at the perovskite and 273 

organic interfaces.
51

 274 

Conclusions 275 

We demonstrated that the surface passivation of NiOx using BPA results in suppression 276 

of interfacial defects, which boosts the Voc and PCE of WBG perovskite solar cells. We also 277 

developed a sputtered 4-nm-thick IZO ICL that confers both excellent electrical and optical 278 

properties. These combined enhancements enabled a maximum PCE of 23.60% (22.94% 279 

certified) in perovskite/organic TSCs. Our approach demonstrates the effectiveness of the 280 

strategy of simultaneously reducing optical losses (by avoiding metal in ICLs) and Voc loss in 281 

WBG perovskite devices (by interfacial defect passivation). We experimentally and 282 

theoretically unveil the interplay of ICL surface coverage, lateral (vertical) transport, and 283 

recombination lifetime, which provides an important design guideline for ICLs in perovskite-284 

based TSCs. This work shows the great potential of perovskite/organic TSCs for catching up 285 

or even surpassing the performances of perovskite/perovskite TSCs and perovskite/CIGS 286 

TSCs. These findings will reduce the efficiency-stability-flexibility gap of perovskite solar 287 

cells in the future. Developing novel narrow bandgap organics, highly stable HTLs, and 288 

suppressing phase segregation in wide-bandgap perovskite will likely be essential for the 289 

future of perovskite/organic TSCs. 290 

 291 

Methods 292 

Materials. Anhydrous solvents including N,N-dimethylformamide (DMF), dimethyl 293 

sulfoxide (DMSO), methyl acetate (MeAc), and materials including nickel(II) nitrate 294 

hexahydrate (99.999 %), benzylphosphonic acid (BPA, 97%), cesium iodide (CsI, 99.999%) 295 

were purchased from Sigma-Aldrich. Cesium bromide (CsBr, 99.999%) was purchased from 296 

Alfa Aesar. Lead (II) iodide (PbI2) (Product number: L0279) and lead (II) bromide (PbBr2) 297 

(Product number: L0288) were purchased from TCI. Formamidinium bromide (FABr), 298 

formamidinium iodide (FAI) and phenethylammonium iodide (PEAI) were purchased from 299 

GreatCell Solar Ltd. PC71BM, C60 and BCP were obtained from Daeyeon Chemicals Co., Ltd. 300 

PM6, Y6 and PNDIT-F3N were obtained from Solarmer Materials Inc. All materials above 301 

were used as received.  302 

Synthesis of NiOx nanoparticles. The NiOx particles were prepared in lab, which is based on 303 

our previous recipe.
52

 Firstly, the nickel (II) nitrate hexahydrate (9 g) were fully dissolved in 304 

120 ml DI water, in which 120 ml sodium hydroxide (1 mol/ml) were added using dropping 305 

funnel (2-3 drop/second) under vigorous stirring at room temperature. The solution were 306 

stirred for another 5 min to complete the reaction, then green raw products (Ni(OH)2) were 307 

collected by centrifugation at 6000 rpm for 8 mins, followed by thorough washing with DI 308 

water. Above centrifugation and washing steps were repeated at least three times until the pH 309 

values of the supernatants were neutral. Then, the obtained raw products were thoroughly 310 

dried with freeze-drying equipment for at least 48 h. By using the freeze-drying, it is 311 

expected to obtain high quality NiOx nanoparticles with better crystallinity and smaller 312 

particle sizes than the thermal drying recipe. Finally, the powders were sintered at 275 -280 313 
o
C for 2 h with tube furnace instead of muffle one (ramping up rate: 2-3 

o
C/min; ramping 314 

down rate: 5 
o
C/min). Both freeze-drying and annealing in a tube furnace are critical steps in 315 

obtaining high quality NiOx. 316 

1.79 eV WBG perovskite front cells. The precursor solution was prepared by mixing FAI, 317 

FABr, CsI, CsBr, PbBr2 and PbI2 in DMF/DMSO (4/1) with 1 M concentration. The molar 318 
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ratio of FA
+
/Cs

+
 and I

-
/Br

-
 are kept at 75/25 and 6/4, respectively. 1 mol% excess of PbI2 is 319 

found beneficial for device performance. The precursor solution was stirred at 60 
o
C for 24 320 

hrs. After cooling to room temperature. The devices with p-i-n structure were fabricated 321 

following a configuration of ITO/NiOx/BPA/perovskite/C60/BCP/Ag. ITO glass was cleaned 322 

by sequentially washing with detergent, deionized water, acetone, and isopropanol. The 323 

substrates were dried with N2 and cleaned by UV ozone for 15 min. The homemade NiOx 324 

nanoparticles ink (20 mg/ml in DI water) were spin coated on the clean ITO substrates as 325 

hole transporting layers.
 
 After annealing for 15 min at 110 

o
C, NiOx coated ITO substrates 326 

were then transferred to N2 glovebox and the NiOx films were treated with BPA (1 mg/ml in 327 

anhydrous IPA) by spin-coating at 6000 rpm for 30s, and then annealing at 100 
o
C for 10 min. 328 

Avoid exposure to air when weighting the BPA powders and preparing solution. The BPA 329 

solution (150 µL) was loaded on NiOx, and waiting time before spin-coating was 10 s. The 330 

perovskite films were spin coated on HTLs substrates at 6000 rpm with accelerating speed of 331 

5000 for 35s, during spin coating, methyl acetate (200 μL) was slowly dropped at 15 s before 332 

ending. The films were then annealed at 100 
o
C for 15 min. After cooling down to room 333 

temperature, 100 µl PEAI solution (1 mg/ml in IPA) was quickly dropped on the perovskite 334 

and spin coated with 4000 rpm for 30 s and annealed at 100 
o
C for 10 min.

53
 The substrates 335 

were then transferred into high vacuum thermal evaporator where the ETLs C60 (25 nm), 336 

BCP (12 nm) and metal electrode (Ag (120 nm) were subsequently evaporated. The active 337 

area was defined with a shadow mask. 338 

Deposition of IZO layer. IZO films were deposited on substrates by RF sputtering technique 339 

(Dual Chamber Deposition, KYKY-500CK-500ZF).
54

 The 4 inch target material, 80% In2O3 340 

and 20% ZnO were used. Pure Argon is used as a process gas. The base pressure was kept 341 

1.88×10
-7

 Torr before the deposition to eliminate the contribution of the water during the 342 

processing. The deposition rate of the optimized IZO films was 20 Å/min at room 343 

temperature without any intentional heating. The work pressure was kept at 4-2.5 ×10-3
 Torr. 344 

The sputtering power is fixed to 50 W. The distance between sample holder and target is ~10 345 

cm. 346 

Perovskite/organic tandem solar cells. After deposition of C60 and BCP, the WBG 347 

perovskite subcells were transferred to sputter system, where the 4 nm IZO were sputtered on 348 

top as recombination layer, then 25 nm MoOx was thermally evaporated as an HTL for the 349 

organic subcells. The ternary organic solutions were prepared by weighting PM6, Y6 and 350 

PC71BM with weight ratio of 1:1.2:0.2, and dissolving in chloroform with concentration of 8 351 

mg/ml (referring to PM6) and with 0.5% 1-CN additive.
11

 Organic solution was stirred at 50 352 
o
C for 1.5 hrs. Organic films were deposited by drop cast at 3000 rpm for 45 s, and annealed 353 

at 90 
o
C for 5 min. After cooling down, PNDIT-F3N (0.5 mg/ml in methanol) was drop cast 354 

on top as a n-type interfacial layer.
55

 Finally 120 nm Ag was thermal evaporated as top 355 

electrode with metal shadow mask. The device area is 14.25 mm
2
. 356 

Solar cell characterization. J-V measurements were carried out using a Keithley 2400 357 

sourcemeter in ambient environment at ~23 ºC and ~45% RH. The devices were measured 358 

both in reverse scan and forward scan with 10 mV interval and 10 ms delay time. The steady 359 

state power output (SPO) curves were recorded by tracing the current density at bias (voltage 360 

at maximum power point) for at least 5 min after J-V measurements. Illumination was 361 

provided by an Oriel Sol3A solar simulator with AM1.5G spectrum and light intensity of 100 362 

mW/cm
2
, which was calibrated by a standard Si diode (a KG-5 reference cell was used for 363 

the measurements of WBG perovskite solar subcells). For perovskite/organic tandem solar 364 

cells, the solar simulator spectrum was finely tuned to ensure that spectral mismatch was 365 

within 3% for both subcells. During J-V measurement, optical aperture mask (8 mm
2
) was 366 

used to verify the accurate cell area. EQE measurements for devices were conducted with an 367 
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Enli-Tech (Taiwan) EQE measurement system. For EQE measurement of tandem cells, the 368 

WBG perovskite front subcells were measured while saturating the organic bottom subcells 369 

with continuous light from a halogen lamp with an 800 nm polarized optical filter, while the 370 

organic bottom subcells were measured while saturating the perovskite front subcells with 371 

continuous light from a halogen lamp with 500 nm polarized optical filter. The power for 372 

halogen lamp is ~250 W. No bias voltage was applied for the EQE measurement of both 373 

subcells. 374 

Device stability. For shelf-life and thermal stability measurements, the devices without 375 

encapsulation were kept room temperature or corresponding temperature under dark except 376 

during the J-V measurement, and the J-V curves were recorded in certain time intervals. For 377 

the maximum power point (MPP) tracking tests under illumination, the device was fixed at 378 

the Vmpp and the current density variation under ambient environment (~23.5 
o
C, ~34% RH) 379 

was recorded without controlling the device temperature. The devices were carefully 380 

encapsulated with desiccant coverage in the cell area and epoxy edge sealing following our 381 

previous encapsulation recipe.
56

  382 

SEM, STEM and EDX mapping. Top-view morphology was analyzed by TESCAN 383 

MIRA3. A FEI Helios Nanolab 600i dual beam focus ion beam/field emission gun-scanning 384 

electron microscope (FIB/FEGSEM) was used to prepare cross-section for STEM imaging 385 

and analysis. FEI Talos transmission electron microscope (TEM) with Super-X EDX was 386 

employed to acquire the STEM-EDX data with STEM-HAADF (high-angle annular dark 387 

field) mode. 388 

Theoretical stimulation. In modelling the J-V characteristics of the perovskite/organic 389 

tandem solar cell, the three-dimensional structure of the tandem device is reduced into a one-390 

dimensional model in the x-direction, under the condition that optical field, electron and hole 391 

fluxes in the y- and z- direction are negligible (main parameters used in our modelling were 392 

tabulated below.). The optical absorptions in both perovskite and organic layers are 393 

calculated in MATLAB with transfer matrix method.
57

 The optical generation profiles are 394 

then imported into COMSOL Multiphysics to be coupled with the drift-diffusion equations 395 

for perovskite top-cell,
58

 and organic bottom-cell
59

 in solving the transport of the charge 396 

carriers as well as the potential within the tandem device. Trap-assisted recombination 397 

mechanism is implemented to model the recombination junction in the device.
60

 Its 398 

recombination coefficient is calibrated with the experiment J-V curve of the tandem device 399 

through a non-linear curve-fitting algorithm in the least-square manner in MATLAB. Here, 400 

the direct solver MUMPs is selected as the nonlinear solver with a relative convergence 401 

tolerance of 10
-3

. The fluxes of the charge carriers are calculated with Lagrange multipliers 402 

with weak constraints for evaluating the output current. All the computational domains are 403 

solved with a mesh size of 1 nm while the boundaries with size of 0.1 nm.  404 

Other characteristics. The X-ray diffraction patterns were obtained using a BRUKER ECO 405 

D8 series. Absorption and transmittance spectra were measured with LAMBDA 750 406 

UV/Vis/NIR spectrophotometer. PL and time resolved PL spectra were measured using a 407 

Spectrofluorometer (FS5, Edinburgh instruments) and 405 nm pulsed laser was used as 408 

excitation source for the measurement. Sheet resistances for IZO films were measured with 409 

Keithley 4200A-SCS. UPS measurements were performed on an ESCALAB 250Xi, Thermo 410 

Fisher (by using Al Kα x-ray source) under high vacuum (10
−9

 mbar). Mott–Schottky 411 

characteristics were analyzed with a Zahner IM6e electrochemical station (Zahner, Germany) 412 

in ambient environment of 25 ºC and 38% RH. 413 

Data availability. All data generated or analysed during this study are included in the 414 

published article and its Supplementary Information and Source Data files. 415 
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Tables 445 

Table 1. Summary of the optimal WBG perovskite solar cell performances using different 446 

HTLs. 447 

Devices Scan direction Voc (V) Jsc (mA/cm
2
) FF (%) PCE (%) 

NiOx 
Reverse 1.18 17.12 76.9 15.53 

Forward 1.18 17.11 77.4 15.63 

NiOx/BPA 
Reverse 1.26 17.90 78.9 17. 80 

Forward 1.25 17.94 78.4 17.59 

 448 

 449 
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Table 2. Performance comparison of the champion perovskite/organic TSCs with 4 nm IZO 450 

CRL under reverse and forward scan. 451 

Champion devices Scan direction Voc
 

(V)
 

Jsc
 
(mA/cm

2
)
 

FF (%) PCE (%) 

4 nm IZO (0.08 cm
2
) 

reverse 2.063 14.83 77.2 23.60 

forward 2.061 14.84 77.1 23.57 

4 nm IZO (1.05 cm
2
) 

reverse 2.062 14.24 74.4 21.77 

forward 2.059 14.23 74.1 21.72 

 452 

 453 

Figure Legends/Captions (for main text figures) 454 

Fig. 1. Suppression of Voc loss of WBG perovskite solar cells using BPA passivation 455 
strategy. a) Schematic diagrams show the BPA passivation of NiOx HTLs. The passivation 456 

can substantially suppress the surface defects/trap sites. The NiOx HTL is denoted as the grey 457 

region. The blue, black, ashy, green and purple colors in the ball-and-stick models represent 458 

N, C, H, O and P atoms, respectively; b) J-V curves (forward and reverse scan) of the best 459 

WBG perovskite subcells with and without BPA passivation of NiOx HTLs under AM 1.5G 460 

illumination (100 mW/cm
2
); c) PL decay dynamics of the perovskite films deposited on NiOx 461 

HTLs with and without BPA passivation; d) Mott-Schottky (M-S) plot analysis from 462 

capacitance-voltage measurements for WBG perovskite subcells at 10 kHz under dark 463 

condition. Linear fitting is used to calculate the built-in potentials; e) The evolution of the 464 

achieved Voc and PCE as function of bandgap in the p-i-n WBG perovskite devices reported 465 

by previous literature (Ref. S(number) denotes references in the supplementary information. 466 

A more detailed summary can be found in Supplementary Table 1). The best efficiency 467 

obtained in this work is also shown for comparison. The S-Q limit (maximum theoretical 468 

value) is indicated for comparison.  469 

 470 

Fig. 2. Design of interconnection layers in perovskite/organic tandem solar cells. a) 471 

Schematic diagram showing the p-i-n perovskite-organic tandem solar cells. The dashed grey 472 

frame boxes the interconnecting layers (ICLs) region, which functions as a series connect for 473 

the front and bottom subcells. CRL: Carrier recombination layer. The design of ICLs with 474 

four types of CRLs are depicted in the frame; b) J-V curves (reverse scan) of the perovskite-475 

organic TSCs with different ICLs. The cells in each substrate were electrically isolated by 476 

mechanical scribing; c) Transmittance spectra of the perovskite subcells with four types of 477 

CRLs. The solid and dashed lines refer to transmittance and reflection, respectively, and the 478 

horizontal dashed black line serves as a guide for comparison. 479 

 480 

Fig. 3. Characteristics and working mechanism of the perovskite/organic tandems with 481 
thin IZO-based ICLs. a-b) TEM image of the 4 nm IZO (a) and 1 nm Ag (b) on BCP which 482 

was thermally deposited on copper mesh with ultra-thin carbon films; c) Transmittance 483 

spectra of the perovskite subcells with 4 nm IZO and 1 nm Ag-based ICLs. The solid and 484 

dashed lines refer to transmittance and reflection, respectively, and the horizontal dashed 485 

black line serves as a guide for comparison; d) High-resolution STEM of the 4 nm IZO-based 486 

ICLs region in the TSCs, and the EDX mapping showing the elemental distribution of Zn, 487 

Mo, O; e) J-V curves (reverse scan) of the perovskite/organic TSCs using IZO-based ICLs 488 
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with different thickness; f) J-V characteristics of the diode devices with the structure of 489 

ITO/BCP/IZO(Ag)/MoOx/Ag; g) J-V curves (reverse scan) of the perovskite/organic TSCs 490 

with IZO and Ag-based CRLs, note that the devices were from the same batch; h) External 491 

quantum efficiency (EQE) spectra of the TSCs with IZO and Ag-based ICLs. Reflection 492 

(denoted as 1-R) and sum (total EQE of individual subcells) curves are also presented. 493 

Dashed and solid light blue curves represent 1-R and sum for TSCs with Ag-based ICLs, and 494 

dashed and solid brown curves represent 1-R and sum for TSCs with IZO-based ICLs. The 495 

integrated Jsc of the organic bottom subcells with IZO-based ICLs demonstrate an 496 

improvement of 1.46 mA/cm
2
 (shaded area) compared to the Ag-based ICLs. 497 

 498 

Fig. 4. Optimal performance of the perovskite/organic tandems. a) J-V curves (reverse 499 

and forward scan) of the champion small area (0.08 cm
2
) perovskite/organic TSC with IZO-500 

based ICLs. For the champion device, the glass side of the substrate was coated with a 100 501 

nm thick lithium fluoride as an antireflection layer; b) EQE and reflection (denoted as 1-R) 502 

spectra for the champion device. The front perovskite and bottom organic subcells exhibit 503 

integrated Jsc values of 14.32 and 14.37 mA/cm
2
, respectively. The sum curve represents the 504 

total EQE of both front and rear subcells in the tandem; c) J-V curves (reverse and forward 505 

scan) of the champion large area perovskite/organic TSC with IZO-based ICLs with, inset 506 

shows a photograph of the large area tandem device; d) Operational stability evaluation of the 507 

encapsulated small area perovskite/organic TSC with IZO-based ICL using maximum power 508 

point (MPP) tracking method under N2 environments and without temperature control. 509 
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