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Abstract 

Variation in temperature is known to influence mortality patterns in ectotherms. Even though a few 

experimental studies on model organisms have reported a positive relationship between 

temperature and actuarial senescence (i.e., the increase in mortality risk with age), how variation 

in climate influences senescence rate across the range of a species is still poorly understood in free-

ranging animals. We filled this knowledge gap by investigating the relationships linking senescence 

rate, adult lifespan, and climatic conditions using long-term, capture-recapture data from multiple 

amphibian populations. We considered two pairs of related anuran species from the Ranidae (Rana 

luteiventris, Rana temporaria) and Bufonidae (Anaxyrus boreas, Bufo bufo) families, which 

diverged more than 100 mya and are broadly distributed in North America and Europe. Senescence 

rates were positively associated with mean annual temperature in all species. In addition, lifespan 

was negatively correlated with mean annual temperature in all species except A. boreas. In both R. 

luteiventris and A. boreas, mean annual precipitation and human environmental footprint both had 

negligible effects on senescence rates or lifespans. Overall, our findings demonstrate the critical 

influence of thermal conditions on mortality patterns across anuran species from temperate regions. 

In the current context of further global temperature increase predicted by IPCC scenarios, a 

widespread acceleration of aging in amphibians is expected to occur in the decades to come, which 

might threaten even more seriously the viability of populations and exacerbate global decline. 

 

Significance statement 

Using long-term demographic studies, we showed that warmer temperatures are associated with 

increased senescence rates and decreased lifespans in four amphibian species that are widely 

distributed across two continents. Our study highlights the role of changing climatic conditions in 

the aging of ectotherms in the context of global warming. 
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Main Text 
 
Introduction 

 

Studies of age-specific changes in mortality have emphasized that actuarial senescence (i.e., the 

increase in mortality with age; called ‘senescence’ hereafter) patterns are extremely diverse in the 

wild (1–3). To date, most studies have been conducted in birds and mammals, and have 

demonstrated that the age at the onset of senescence (4, 5), the rate of senescence (1, 6), and the 

overall shape of mortality patterns (7, 8) all vary across species. Variation in senescence patterns 

across species is broadly explained by phylogeny (6), body size (1), and the pace of life (4). 

Although the genetic and physiological mechanisms modulating among-species variation in 

senescence are still poorly understood (9), empirical evidence accumulated so far shows that 

senescence is a ubiquitous phenomenon whose form and intensity vary considerably across the tree 

of life. 

 In contrast, much less research has focused on variation in senescence patterns across 

populations within a given species (3). This requires intensive long-term monitoring of multiple 

populations across a species’ range, which is uncommon. Studies comparing captive and wild 

populations have shown that controlled environments in zoos slow down the senescence process in 

mammals (10), with deceleration more pronounced in short-lived than in long-lived species (11) . 

Variation in age-dependent mortality patterns between populations of a given species has also been 

reported in the wild, suggesting that local environmental conditions (e.g., anthropogenic 

disturbance, habitat quality) may affect senescence patterns (12–14). However, the influence of 

environmental variation on the intensity of senescence is still poorly understood in most animal 

clades (3).  

 Climatic conditions might be a key factor driving intraspecific variation in senescence (15, 

16), especially in ectotherms, because their metabolism, activity patterns, and lifespan all strongly 

depend on temperature (17, 18). Studies of both natural and experimental populations of 

invertebrates and ectothermic vertebrates have so far revealed that lifespan decreases with 

increasing ambient temperature (15, 16). In short-lived model organisms, the decrease in lifespan 

at high temperature is associated with accelerated senescence under laboratory conditions 

(Caenorhabditis elegans, (19); Drosophila melanogaster, (20); Nothobranchius furzeri, (21)). 

However, lifespan is a trait only partially correlated to senescence rate (e.g., R² < 0.50 in mammals, 

(22)), which does not reliably reflect age-specific mortality patterns (9). To date, a link between 

senescence and climate has not been demonstrated in the wild, which limits our ability to assess 
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the universality of this relationship and prevents reliable predictions about the influence of climate 

change on senescence. 

 Amphibians are excellent biological models to investigate the influence of climatic 

conditions on senescence patterns in nature. Previous studies have shown that as temperatures 

decrease along altitudinal and latitudinal gradients, the pace of life of amphibians slows down, 

involving delayed sexual maturity, less frequent egg deposition by females, and increased lifespan 

(23, 24); this slow pace of life is expected given the ecological effects of altitude in most taxa (25). 

At higher altitudes and latitudes, individuals maximize survival in cold conditions by reducing their 

activity period and placing themselves into an hypometabolic state that minimizes their energy 

expenditure (26, 27). At lower altitudes and latitudes, the activity period is longer (23), overall 

metabolic activity increases, and warm conditions both diminish mitochondrial efficiency and 

accelerate the accumulation of oxidative damages (28), possibly leading to an earlier or faster 

senescence. This effect may be amplified by evaporative water loss that reduces the capacity of 

cutaneous respiration (29) and body temperature regulation (30) when individuals experience hot 

temperatures and low precipitation. These phenomena could have synergistic effects on age-

dependent mortality, resulting in an acceleration of senescence with increasing temperature and 

decreasing precipitation. 

 To assess the relationship between age-specific mortality patterns and climatic conditions, 

we measured the influence of temperature and precipitation on among-population variation in 

senescence rate and adult lifespan in two pairs of frog and toad species from the Ranidae and 

Bufonidae families, which diverged more than 100 mya (31). We focused on four species widely 

distributed in North America (Columbia spotted frog, Rana luteiventris, and Boreal toad, Anaxyrus 

boreas; Fig.1) and Europe (Common frog, Rana temporaria, and Common toad, Bufo bufo; Fig.1). 

To perform these analyses, we took advantage of long-term capture-recapture (CR) data collected 

in 16 populations of R. luteiventris and A. boreas (eight per species) distributed along a broad 

climatic gradient in the western USA (Fig.1; Supplementary material, Tables S1) and in four 

populations of R. temporaria and B. bufo (two per species) experiencing contrasted temperature 

conditions in Europe (Fig.1; Supplementary material, Tables S1). More specifically, we tested 

whether warmer mean annual temperature was associated with higher senescence rate and shorter 

adult lifespan, and similarly, if higher mean annual precipitation was correlated with lower 

senescence rate and longer adult lifespan. As human activities may also influence local mortality 

patterns in amphibians (13, 32), we took into account the intensity of human footprint by including 

a quantitative, empirically-based measure of ecological integrity in our models ((33); more details 
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about this metric is given in Supplementary material, Supplementary analysis 1). Furthermore, 

as sexes may differ in terms of mortality patterns (6, 34) and physiological response to thermal 

stress, we tested whether the association among senescence, lifespan, and climatic conditions 

differed between males and females. 

 

Results 

 

 Senescence rate, adult lifespan and their covariation  

 

We performed Bayesian survival trajectory analyses and obtained estimates of sex-specific 

senescence rates from models that appropriately converged (see model estimates in 

Supplementary material, Tables S11-28) for R. luteiventris (eight populations, Fig. 2A-G), A. 

boreas (eight populations, Fig. 2H-O), R. temporaria (two populations, Fig. 4A-B), and B. bufo 

(two populations, Fig. 4C-D). For populations LOTA and KETA of A. boreas, we removed sex as 

a variable from the model to reach model convergence and therefore obtained a senescence rate 

estimate for the sexes combined.  

Senescence rates varied widely among populations within the same species. In R. 

luteiventris, senescence rates ranged from 0.05 (95% CRI: 0.01-0.12; population BICR) to 2.09 

(95% CRI: 1.87-2.31; population DRCR) in males and from 0.07 (95% CRI: 0.004-0.21; population 

POCR) to 1.34 (95% CRI: 1.21-1.49; population DRCR) in females. In A. boreas, senescence rates 

ranged from 0.05 (95% CRI: 0.001-0.15; population SPRU) to 1.66 (95% CRI: 1.44-1.88; 

population LUBJ) in males and from 0.06 (95% CRI: 0.002-0.19; population SPRU) to 1.27 (95% 

CRI: 0.88-1.69; population JOHN) in females. Although the number of populations studied was 

smaller in R. temporaria and B. bufo, senescence rates displayed a relatively similar range of 

variation in these species (Fig. 4E-F), suggesting that senescence rates are highly variable within 

species among ranid and bufonid populations on both continents. 

We then examined whether senescence rate was associated with lifespan in R. luteiventris 

and A. boreas, the two species for which the number of populations monitored was large enough 

to address this question. Linear models indicated that senescence rate was negatively related to 

lifespan in both R. luteiventris (slope of -0.26±0.06; LR test: 𝜒ଶ = 9.78, p = 0.002) and A. boreas 

(slope of -0.39±0.14; LR test: 𝜒ଶ = 7.53, p = 0.001), but variation in adult lifespan only accounted 

for a limited proportion of the variation in senescence rate ሺ𝑅ଶ= 0.52 and 0.36 in R. luteiventris 

and A. boreas, respectively).  
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Relationships among senescence rates, adult lifespan, and climatic conditions  

 

Temperature was a strong predictor of variation in senescence rate in the four species studied (Figs. 

3C and 3D for R. luteiventris and A. boreas, respectively, and Figs. 4A and 4B for R. temporaria 

and B. bufo, respectively). The regression model [log(bଵ) ~ Temp_30yrMean + Precip_30yrMean 

+ Human_footprint + Species + Sex] built for R. luteiventris and A. boreas (model adjusted R² = 

0.43) indicated that senescence rate increased with mean annual temperature (slope of 0.92±0.29; 

LR test: 𝜒ଶ = 10.35, p = 0.001) whereas mean annual precipitation and human footprint did not 

influence senescence rate (Supplemental material, Table S4). Commonality analysis, which 

decomposes regression R² into its unique (i.e., variance accounted by a single predictor) and 

common (i.e., variance accounted by a set of predictors) contributions, also supported this 

interpretation (Table 1). Mean annual temperature had a unique contribution of 0.18 

(corresponding to 40.5% of the total variance explained by the model; Supplemental material, 

Table S5) whereas the unique contributions of mean annual precipitation and human footprint were 

close to zero. Mean annual temperature also had a common contribution of 0.25 (i.e., 57.3% of the 

total variance explained by the model) with the two other environmental predictors; by contrast, 

mean annual precipitation and human footprint had a negligible common contribution (0.003; 

Supplemental material, Table S5). Regression models performed on the two species separately 

(Figs. 3C and 3D; and Supplementary materials, Table S7) and models including a synthetic 

variable obtained from a Principal Component Analysis (Supplementary materials, 

Supplementary analysis 2) also showed that senescence rate increases with mean annual 

temperature. 

Our analyses also suggest that mean annual temperature may predict adult lifespan, 

although with an effect much less marked than for senescence rate. The regression model 

[log(lifespan) ~ Temp_30yrMean + Precip_30yrMean + Human_footprint + Species + Sex] (model 

adjusted R² = 0.15) indicated that mean annual temperature tended to have a weak negative effect 

(slope of -0.24±0.16; LR test: 𝜒ଶ = 2.65, p = 0.10) on adult lifespan when both R. luteiventris and 

A. boreas were included in the same model; by contrast, mean annual precipitation and human 

footprint did not influence lifespan (Supplemental material, Table S4). The effect of mean annual 

temperature was statistically significant (slope of -0.27±0.12; LR test: 𝜒ଶ = 4.25, p = 0.04) when 

mean annual precipitation was removed from the model, which was likely due to collinearity issues. 

Commonality analysis showed that the unique contributions of mean annual temperature and mean 
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annual precipitation were 0.04 (47% of the total variance explained by the model) and 0.004 (5.5%), 

respectively, and that their common contribution was 0.03 (44%; see Table 1 and Supplementary 

materials, Table S6). Importantly, regression analyses performed on the two species separately 

showed that the signal detected in the general model was driven mainly by R. luteiventris. Adult 

lifespan decreased with increasing mean annual temperature in R. luteiventris (slope of -0.28±0.06; 

LR test: 𝜒ଶ = 17.46, p = 2.939e-05) but not in A. boreas (Supplementary materials, Table S7). 

Overall, our analyses showed that adult lifespan decreases with increasing mean annual temperature 

with different intensity across species. 

The analyses performed on the four populations of R. temporaria and B. bufo in Europe 

supported our findings from North American species. Senescence rates were higher in the 

population experiencing warmer temperatures than in the one experiencing colder temperatures in 

both R. temporaria (Fig.3E) and B. bufo (Fig.3F). In addition, adult lifespan was also influenced 

by thermal conditions: in Rana temporaria, lifespan 80% was longer in the population experiencing 

colder temperatures (FINL: 12 and 12.5 years in females and males, respectively) than that 

experiencing warmer temperatures (SWED: 4 years in both females and males). Similarly, in the 

population of Bufo bufo experiencing colder temperatures (SWIT: 6 and 7 years in females and 

males, respectively), lifespan was longer than in the population experiencing warmer conditions 

(FRAN: 4.5 and 5.5 years in females and males, respectively). 

 

Associations among sex-related differences in senescence rate and adult lifespan and 

temperature  

 

We investigated sex-related differences in senescence rate and adult lifespan responses to thermal 

conditions in two ways. First, we examined the relationships between these two mortality metrics 

and mean annual temperature by quantifying the interactive effect of temperature and sex. We did 

not detect any interactive effect in either mortality metric (Supplementary material, Table S8). 

Then, we examined whether the magnitude of sex bias in senescence rate (measured as the [female 

senescence rate / male senescence rate] ratio) and adult lifespan ([female lifespan / male lifespan] 

ratio) was influenced by thermal conditions. The magnitude of sex bias in senescence rate was 

associated with mean annual temperature in R. luteiventris (slope of -0.21±0.07; LR test: 𝜒ଶ = 8.10, 

p = 0.004; 𝑅ଶ = 0.60), but not in A. boreas (Supplementary material, Table S9). Selected models 

indicated that R. luteiventris males experienced a higher senescence rate than females at high 

temperature (Fig.3C). In contrast, females experienced higher senescence rates than males at low 
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temperature. Furthermore, the magnitude of the sex bias in adult lifespan was not influenced by 

mean annual temperature in either of the two species (Supplementary material, Table S9). 

 

Discussion 

 

We used a unique set of long-term CR studies of four amphibian species from two divergent clades 

occurring on two continents to test whether population-specific mortality patterns were associated 

with temperature and precipitation along broad bioclimatic gradients. The four species exhibited 

wide among-population variation in senescence rates. In both R. luteiventris and A. boreas, we 

found climate-dependent clinal variation in senescence. The rate of senescence increased with mean 

annual temperature whereas the influence of mean annual precipitation was negligible. In R. 

luteiventris, senescence acceleration led to a reduced lifespan in warmer environments. We found 

similar patterns in Europe by considering populations exposed to contrasting thermal conditions: 

populations of B. bufo and R. temporaria from warmer environments had higher rates of senescence 

and shorter lifespan than populations exposed to colder conditions. 

 

 Large among-population variation in senescence rate occurs in anurans 

 

Using a multi-species, multi-population set of long-term CR data from ectothermic vertebrates, our 

study revealed large among-population variation in senescence rate. In both R. luteiventris and A. 

boreas, the magnitude of intraspecific variation in senescence rate was larger than that estimated 

using the same modeling approach across 140 mammalian populations (0.01-1.17, (6)). Our results 

support the conclusion of a previous analysis on the Yellow-bellied toad (Bombina variegata), a 

widely distributed temperate anuran in Europe, which showed that senescence patterns strongly 

differ among populations in response to local environmental conditions (13). Overall, the large 

among-population variation in senescence rate we report here suggests a small contribution of 

phylogeny on this mortality trait across anurans. 

 

 Senescence rate is strongly associated with temperature in anurans 

 

Climatic conditions could be a primary driver of aging in ectotherms in nature. Senescence rates 

were positively associated with temperature in R. luteiventris and A. boreas. This pattern was 

consistent with those observed in the two European species, R. temporaria and B. bufo, where 
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senescence rates were higher in warmer conditions. Accelerated senescence was associated with 

shorter lifespan in warmer environments in all species except A. boreas. Overall, the consistent 

patterns we report from two continents and from two families (i.e., Ranidae and Bufonidae), which 

diverged more than 100 My ago (31), indicate that senescence invariably accelerates with 

increasing temperature among anuran lineages. Although our approach is correlative, temperature 

is likely a key causative agent of senescence variation in the four studied species, in line with what 

has been proposed from experimental studies of ectothermic model organisms (C. elegans, (19); 

D. melanogaster, (20); N. furzeri, (21)). 

 Decelerated senescence with lower temperatures is likely caused by several behavioural, 

physiological, and genetic mechanisms. Long annual seasons of low temperature force amphibians 

to lengthen their annual overwintering period (up to 8-9 months in the four studied species). 

Temperatures in overwintering sites are typically low, ranging from 0 to -5.2° C (35, 36) in the 

terrestrial sites of A. boreas and from 1 to 3.7°C in the aquatic sites of R. luteiventris (27, 37). Such 

cold conditions drive individuals into a hypometabolic state (27), which likely causes an 

interruption of the overall aging process (like in insects and worms, (38, 39)). This probably leads 

to the negligible senescence rate (𝑏ଵ<0.05) observed in R. luteiventris, A. boreas, and R. temporaria 

populations experiencing a mean annual temperature lower than 4°C (Figs. 3 and 4). Moreover, 

temperature-dependent senescence may not only be a by-product of general thermodynamic 

changes but could also have a genetic basis. A study of three Asian bufonid and ranid species 

identified molecular signals of adaptation to altitude in a series of orthologous genes involved in 

the regulation of lifespan and lipid metabolism (40), the main source of energy during anuran 

overwintering (27). 

 Our analyses revealed that the amount of variation in senescence rate explained by mean 

annual precipitation alone (i.e., its unique contribution) was negligible, whereas its common 

contribution with mean annual temperature was substantial (29% of the total variance explained by 

the model; see Supplemental Material, Table S5). Although this pattern may be due to 

collinearity issues, higher mean annual temperature and frequent precipitation deficits at warmer 

sites might have a synergistic effect on the acceleration of senescence. Dehydration caused by 

summer drought leads to decreased capacity of anurans to increase their aerobic metabolism (41, 

42), contract their muscles (43), and thermoregulate (44, 45). In R. luteiventris, periods of extended 

drought have also been associated with decreased adult survival in semi-arid environments (46). 

 

 Temperature may affect sex-related variation in senescence rate 
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Temperature modulated between-sex differences in senescence rate in R. luteiventris. Females 

senesced faster than males at lower temperatures, whereas the opposite pattern occurred in 

populations exposed to warmer temperatures. Due to the XY sex chromosome system of the North 

American ranids (47), heterogametic males (i.e., XY) might experience faster senescence than 

homogametic females (i.e., XX) (48). In R. luteiventris, male-biased senescence rates occurred 

when mean annual temperature was at or above 6°C (Fig. 3C). In contrast, females senesced faster 

than males at a temperature lower than 3°C. This sex difference might be due to a shift in energy 

allocation in females towards reproduction at the expense of somatic maintenance in populations 

experiencing long hibernation periods (in ranids, see (49)). In R. luteiventris, reproduction takes 

place shortly after the end of overwintering, often when snow is still present, which limits the ability 

of females to forage before spawning and may reinforce the evolutionary trade-off between 

reproduction and actuarial senescence (50).  

In contrast, we did not find evidence that climatic conditions influenced between-sex 

variation in senescence rates of A. boreas. This contrasting result between species (that often co-

occur in breeding wetlands) could be due to interspecific variation in traits that affect the magnitude 

of sex difference in aging rate, such as the sex determination system (XY in R. luteiventris and 

likely ZW in A. boreas like many bufonids), mating behavior (51), and female breeding frequency 

(52). Overall, our study highlights that the environmental impact on sex-specific variation in 

senescence differs among species experiencing relatively similar climatic conditions.  

 

Conclusions 

 

Improving our understanding of the influence of climatic conditions on lifespan and actuarial 

senescence patterns is critical to predicting how climate change will impact population dynamics 

of ectotherms in the next decades. For many years, knowledge about the effect of climate-related 

variables (e.g., temperature) on senescence was restricted to laboratory studies performed on model 

organisms (19–21). Our study provides the evidence of a tight link between temperature and 

actuarial senescence in free-ranging populations of ectothermic vertebrates (anurans) living in 

boreal and temperate environments. Although senescence rates varied broadly among populations 

within a species’ range, they consistently accelerated in response to higher ambient temperature. 

Further, this relationship was consistent among lineages that diverged millions of years ago. Taken 

together, our correlative study of amphibian populations in the wild and previous experiments 
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based on laboratory models indicate that temperature-dependent acceleration of senescence is likely 

to be pervasive in ectotherms. Alas, further global temperature increase predicted by updated IPCC 

scenarios (2021) might lead to a widespread acceleration of aging in ectotherms in the decades to 

come. The resulting increase in mortality, especially late in life when female reproductive output 

is often the highest, might exacerbate the decline of many ectotherm populations that already face 

multiple environmental stressors. 

 

Material and methods 

 

Data collection 

 

  Ranid and bufonid populations in North America 

We collected CR data from 16 populations or metapopulations (lato sensu) across a large part of 

the distribution range of R. luteiventris and A. boreas in the western United States (Fig. 1). The 

duration of the monitoring varied among populations, ranging from 15 to 19 years and from 11 to 

29 years for R. luteiventris and A. boreas, respectively (see detailed information in Supplementary 

material, Table S10). The studied populations were generally spread over multiple waterbodies 

used for breeding were large enough to conduct CR studies, and were typically conveniently located 

for researchers and workers. 

We focused on adult frogs (more than 45 mm snout-vent length) and toads (more than 50 

mm) captured during annual visual encounter surveys at the study sites. We conducted surveys 

usually between June and early August for R. luteiventris and between May and June for A. boreas. 

At each site, 1-8 workers searched for animals along the shoreline of deeper water bodies or the 

entire surface area of wadable water bodies. Most sites were surveyed 2-4 times a year to increase 

capture rates. Toads were surveyed at night using headlamps, whereas frogs were surveyed during 

the day when air temperatures were above 10° C. Surveys ended either when the entire area was 

thoroughly searched or about 30 min after the last individual was captured.  

All captured individuals were checked for a mark. Unmarked individuals were injected 

with a passive integrated transponder (PIT) tag into the dorsal subcutaneous tissue (or marked with 

a unique toe clip pattern, LIRO only through 2012). We recorded the PIT tag number of all newly 

marked animals as well as all recaptured individuals. After handling, frogs and toads were released 

close to the location where they were captured or at least within the same water body. 
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Climatic data were compiled from the 800-m Parameter-elevation Relationships on 

Independent Slopes Model [PRISM] Climate Group, Oregon State University, 

http://prism.oregonstate.edu, accessed 5 October 2020). For the 30-year period 1990 – 2019, we 

calculated the mean annual temperature and mean annual cumulative precipitation at each site. 

Because sites often represented complexes of multiple water bodies spread over sometimes large 

areas (e.g., lakes within mountain basins or several km of stream), we used the coordinates of the 

area of highest individual abundance for our modeled climatic data. Furthermore, for each 

population, we extracted a quantitative, empirically-based measure of human footprint (i.e., 

ecological integrity index) suitable for landscape-level assessments in the USA (33); for details 

about the method used, see Supplementary material, Supplementary analysis 1. 

 

 Ranid and bufonid populations in Europe 

We took advantage of CR data collected in four populations of R. temporaria (SWED and FINL) 

and B. bufo (FRAN and SWIT) with contrasting mean annual temperature, to examine whether 

temperature had a similar effect on senescence rates in other ranid and bufonid species in another 

continent. Mean annual temperature differed greatly between the four study sites: R. temporaria, 

SWED: 2.7°C., FINL: -2.1°C.; B. bufo, FRAN: 11.2°C., SWIT: 5.9°C. (Fig.1. and Supplementary 

material, Table S10). Additional information about study duration, period, and sample size is 

available in Supplementary material, Table S10. The CR method used to monitor the four 

populations has been described in detail in previous studies (FRAN: (53); SWED: (54); FINL: (55); 

SWIT: (56)). Climate data for the four study sites were extracted from the worldclim database 

(https://worldclim.org). 

 

 Estimation of senescence rate and adult lifespan 

 

Senescence rate (i.e., the exponential rate of increase of mortality risk with increasing age, from 

the age of first reproduction and onwards) and adult lifespan (i.e., the age at which 80% of the 

individuals alive at the species-specific age of first reproduction were projected to be dead, see (6)) 

were estimated using Bayesian survival trajectory analyses implemented in the R package BaSTA 

(57, 58). Simulations by Colchero & Clark (57) showed that BaSTA models are robust to 

uncertainty in birth and death dates when estimating mortality rate (defined as the probability of an 

individual of age x to die before reaching age x+1) or hazard rate (defined as the risk of death for 

an individual of a given age). BaSTA allowed us to account for imperfect detection, left-truncated 
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(i.e., unknown birth date (age)) and right-censored (i.e., unknown death date) CR data in our 

analysis. We specified a year-dependent recapture probability for all populations. We ran four 

MCMC chains with 50,000 iterations and a burn-in period of 5,000. Chains were thinned by a factor 

of 50. Model convergence was evaluated using the diagnostic analyses implemented in BaSTA, 

which calculates the potential scale reduction for each parameter to assess convergence.  

Following Lemaître et al. (6), we fitted a Siler model (59) to model age-specific mortality 

in every population of each species to obtain comparable metrics. Sex was introduced in each 

population-specific model as an explanatory variable. The five-parameter Siler model is given by: 

µሺ𝑥ሻ ൌ 𝑎଴ expሺെ𝑎ଵ𝑥ሻ ൅ 𝑐 ൅ 𝑏଴exp ሺ𝑏ଵ𝑥ሻ 

where 𝑎଴, 𝑎ଵ, 𝑏଴, 𝑏ଵ and c ≥ 0 are the parameters of the mortality function, µ the mortality rate, and 

x the age in years. The first exponential function with parameters a describes mortality in early 

adult stage, whereas c gives the lower limit of mortality during the adult stage. The second 

exponential function with b parameters corresponds to the mortality increase during the senescent 

stage. The parameter 𝑏ଵ of the Siler model measures the exponential increase in mortality rate with 

age during the senescence stage, and it is therefore commonly used to measure senescence rate in 

vertebrates (6). Furthermore, we used the life tables produced in BaSTA to estimate sex-specific 

adult lifespan (in years).  

  

Assessing the associations among senescence rate, adult lifespan, and climatic conditions 

 

In R. luteiventris and A. boreas, we assessed the associations among senescence rates and mean 

annual temperature, mean annual precipitation, and human footprint index using multiple 

regression models. We first performed a general analysis where we evaluated these associations by 

including them in the same model. Mean annual temperature, mean annual precipitation, and 

human footprint were not strongly correlated across the 16 study sites (Supplementary material, 

Table S3); Pearson’s correlation coefficient was lower than 0.7, the threshold value recommended 

by Dormann et al. (60) to avoid multicollinearity issues. Hence, the three variables (centered and 

reduced) were included in the following model [log(bଵ) ~ Temp_30yrMean + Precip_30yrMean + 

Human_footprint + Species +  Sex], where the additive effects of species and sex were also 

incorporated. We used Likelihood-Ratio (LR) tests to examine whether the effect of the predictors 

on senescence rates was statistically significant (p < 0.05); a similar approach was used in all 

regression analyses. Then we performed a commonality analysis, a robust approach to examine 

multicollinearity among predictors (61), and measured unique (i.e., the part of variance uniquely 
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accounted for by a single predictor) and common (i.e., the part of variance accounted for by set of 

predictors) contributions of the three environmental variables to senescence rate variation. 

Furthermore, an additional modelling approach including a synthetic variable from a Principal 

Component Analysis (PCA) was used to support the inferences obtained through multiple 

regression and commonality analyses (see Supplementary material, Supplementary analysis 2). 

Next, we performed partial regression models in which R. luteiventris and A. boreas were examined 

separately to assess the contribution of the two species to the senescence-temperature relationship 

detected in the general analysis. As the unique contribution of Precip_30yrMean and 

Human_footprint was negligible (see Table 1), these two variables were removed, leading to the 

retained model [log(bଵ) ~ Temp_30yrMean + Sex]. We conducted similar analyses to evaluate the 

influence of Temp_30yrMean, Precip_30yrMean, and Human_footprint on adult lifespan of R. 

luteiventris and A. boreas. Furthermore, in R. temporaria and B. bufo where a limited number of 

populations was available, we compared posterior distributions of the 𝑏ଵ parameter to evaluate 

whether senescence rate differed between pairs of populations experiencing warm and cold 

temperatures, respectively. 

 

Examining sex-related differences in senescence rate response to temperature 

 

We investigated sex-related differences in senescence response to temperature in two ways. First, 

we evaluated whether the relationship between senescence rate (or lifespan) and mean annual 

temperature differed between sexes using the model [log(𝑏ଵ) ~ Temp_30yrMean × Sex]. Second, 

we examined how the magnitude of the sex-bias in senescence rate (or lifespan) was influenced by 

thermal conditions. We built a linear model in which the [female senescence rate / male senescence 

rate] ratio, a common metric of sex-bias magnitude (6), was included as response variable and mean 

annual temperature as explanatory variable. 
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Figures and Tables 
 

 

Fig.1. Study system used to test the links among actuarial senescence rate, lifespan, and climatic 

conditions in four amphibian species from North America (Columbia spotted frog, Rana 

luteiventris, and Boreal toad, Anaxyrus boreas) and Europe (Common frog, Rana temporaria, and 

Common toad, Bufo bufo). (A) Calibrated phylogenetic tree (retrieved from timetree.org) 

presenting the phylogenetic relationships and divergence time among the four species; the African 

clawed frog (Xenopus laevis) was used as an outgroup. (B-C) Maps with background showing (A) 

mean annual temperature and (B) mean annual precipitation in the western USA (extracted from 

https://adaptwest.databasin.org). (D-E) Maps with background showing (D) mean annual 

temperature and (C) mean annual precipitation in Europe (extracted from 

https://www.worldclim.org/). 
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Fig. 2. Mortality curves for males (blue) and females (red) of 18 ranid (A) and bufonid (B) 

populations from North America and Europe. Two ranid species, Rana luteiventris (RANLUT) and 

Rana temporaria (RANTEMP), and two bufonid species, Anaxyrus boreas (ANABOR) and Bufo 

bufo (BUFBUF), were considered. The parameters 𝑎଴ and 𝑎ଵ extracted from the Siler model did 

not converge for one population of R. luteiventris (POCR); furthermore, for one population of A. 

boreas (LOTA), credible intervals of mortality rate early in life were very large. Senescence 

patterns are thus not displayed for these two populations but parameter estimates are available in 

Supplementary material (Tables S16 and S23). Age presented on the x-axis of mortality curves 

corresponds to the age from onset of adulthood. 
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Fig. 3. Senescence rates in males and females in 16 Rana luteiventris and Anaxyrus boreas 

populations exposed to a range of mean annual temperatures (averaged for a 30-year period, 1990 

– 2019) in North America. (A-B) Posterior distribution of senescence rates (parameter 𝑏ଵ) from 

Siler models built for each population. (C-D) Senescence rates (i.e., log(𝑏ଵ)) as a function of mean 

annual temperature (centered and reduced) in R. luteiventris (C) and A. boreas (D). The dashed line 

is extracted from the regression model [log(𝑏ଵ)~temperature] from which sex was removed because 

of its negligible effect on senescence rate (Supplementary material, Tables S7-S8).  
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Fig. 4. Senescence rates in males and females in four Rana temporaria and Bufo bufo populations 

exposed to contrasting mean annual temperatures (averaged for a 30-year period, 1970 – 2000) in 

Europe. We present posterior distribution of senescence rates (parameter 𝑏ଵ) from Siler models 

built for each population of R. temporaria (A) and B. bufo (B). 
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Table 1. Commonality analysis for senescence rate and adult lifespan in Anaxyrus boreas and Rana 

luteiventris. Unique contributions measure the part of variance that is uniquely accounted for by a 

single predictor (i.e., mean annual temperature, Temp_30yrMean; mean annual precipitation, 

Precip_30yrMean; and human footprint index, Human_footprint); by contrast, common 

contributions measure how much variance is common to a predictor set. 

 

Predictors Unique Common Total 

Senescence rate       

Temp_30yrMean 0.18 0.25 0.44 

Precip_30yrMean 0.01 0.26 0.27 

Human_footprint 0.00 0.13 0.13 

Adult lifespan       

Temp_30yrMean 0.04 0.01 0.04 

Precip_30yrMean 0.004 0.008 0.01 

Human_footprint 0.03 -0.03 0.003 

 
 


