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Orthogonal programming of heterogeneous
micro-mechano-environments and geometries
in three-dimensional bio-stereolithography
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Engineering heterogeneous micro-mechano-microenvironments of extracellular matrix is of

great interest in tissue engineering, but spatial control over mechanical heterogeneity in three

dimensions is still challenging given the fact that geometry and stiffness are inherently

intertwined in fabrication. Here, we develop a layer-by-layer three-dimensional (3D) printing

paradigm which achieves orthogonal control of stiffness and geometry by capitalizing on the

conventionally adverse effect of oxygen inhibition on free-radical polymerization. Controlled

oxygen permeation and inhibition result in photo-cured hydrogel layers with thicknesses only

weakly dependent to the ultraviolet exposure dosage. The dosage is instead leveraged to

program the crosslink density and stiffness of the cured structures. The programmable

stiffness spans nearly an order of magnitude (E ~ 2–15 kPa) within the physiologically relevant

range. We further demonstrate that extracellular matrices with programmed micro-

mechano-environments can dictate 3D cellular organization, enabling in vitro tissue

reconstruction.
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Precise spatial organization of tissue mechanics creates het-
erogeneous micro-mechano-environments optimal for
diverse functions such as morphogenesis1 and regenera-

tion2. Mechanical heterogeneity is also closely associated with
development of cardiovascular disease3, and breast tumorigen-
esis4. Engineering an extracellular microenvironment that pro-
vides the level of mechanical, structural, and biochemical
heterogeneity found in native tissues is of great interest for tissue
and organ replacement, drug screening, and disease modeling.
Photo-liable reactions have been widely exploited to spatially
soften or stiffen hydrogel structures but have been limited to two-
dimensional (2D) geometries and multi-stage polymerization
processes5–8. Before optical saturation, geometry and stiffness are,
however, inherently intertwined in three-dimensional (3D) pho-
topolymerization because of the different extents of light scat-
tering and outgrowth of photopolymerization at different levels of
exposures9, making it fundamentally challenging to prepare
complex 3D structures with independently defined heterogeneous
micro-mechano-environments and geometries10–14.

Oxygen inhibition had been regarded as a major hurdle to free-
radical polymerization (FRP) because it causes incomplete curing
and tacky surfaces15. In contrast, well-controlled oxygen inhibi-
tion has recently shown great potential for high-throughput
photo-polymerizations16. Continuous liquid interface production
(CLIP) has been recently demonstrated by leveraging an inhibi-
tion layer introduced on top of an oxygen-permeable window17.
Utilizing a similar concept, a high-resolution micro-CLIP has
enabled 3D printing of bioresorbable vascular devices with micro-
scale resolution18,19. Controlled oxygen permeation can also be
an asset for engineering mechanical properties in multi-stage
photo-polymerizations20.

Here, we develop a layer-by-layer 3D printing paradigm where
we purposely introduce an oxygen inhibition layer between a
cured polymer structure and an oxygen-permeable window to
physically limit the curing thickness during the layer-by-layer
construction process in stereolithography. The thickness of the
cured layer under controlled oxygen inhibition becomes nearly
insensitive to the exposure dosage, which instead modulates the
local crosslink density and, therefore, stiffness. This new techni-
que allows us to print 3D structures with orthogonally patterned
geometry and stiffness. To demonstrate the utility of this system,
the vascular smooth muscle cells are seeded on 3D-printed
extracellular matrix to investigate how the programmed micro-
mechano-environments dictate 3D cellular organization and
in vitro tissue reconstraction.

Results
The oxygen inhibition-assisted 3D printing paradigm. To
demonstrate the oxygen inhibition enabled stiffness control, we
use layer-by-layer stereolithography, shown schematically in
Fig. 1a. Continuous and layerless stereolithography can also be
similarly implemented for a higher throughput17,21. A 3D model
of a complex object is first sliced into multiple layers of even
thicknesses. These layers are then sequentially printed by pro-
jecting corresponding gray-scale images into the hydrogel pre-
cursor solution with a dynamic micro-mirror device (DMD). The
curing zone between the oxygen inhibition layer and the cured
region is physically limited (Fig. 1b), resulting in uniform curing
thickness across each individual layer when the UV exposure
dosage is above the threshold. The gray-scale intensity of the
projected image is then leveraged to dictate spatial crosslink
density and stiffness. A motorized stage is used to pull the cured
structure out of the image plane where UV light is focused.
Complex 3D models can, therefore, be printed efficiently. Fig-
ure 1a inset shows an example of an arbitrary 3D structure, which

was printed within 10 min. Poly(ethylene glycol)dimethacrylate
(PEGDMA, Mw 750) was used as an exemplary free-radical, UV-
curable hydrogel material, which is broadly used in biomedical
applications for its excellent biocompatibility, antifouling nature,
and well-controlled mechanical properties22. The photoinitiator,
lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), was
also used for its high water solubility and exceptional photo-
initiating efficiency, essential for fast polymerization and con-
tinuous printing23.

A 10-μm-thick oxygen-permeable polydimethylsiloxane
(PDMS) film was coated on a glass substrate underneath the
hydrogel precursor solution (Fig. 1b). Oxygen from surrounding
air freely diffuses through the porous walls of PDMS and inhibits
FRP of PEGDMA by reacting with radical species to form chain-
terminating peroxide molecules15. The double bond conversion
rate of PEGDMA is a function of both the UV irradiation dosage
and the depth into the solution, given a constant oxygen
concentration of 0.35 mol m−3 in PDMS film and oxygen
diffusion rate of 2.84✕ 10−11 m2 s−1 in crosslinked PEGDMA24.
As shown in Fig. 1c, when exposure dosage is below a threshold
~20 mJ cm−2, the presence of oxygen prevents the FRP and no
double bond conversion is observed. An oxygen inhibition layer is
observed on top of the PDMS at high exposure dosages. The
thickness of the inhibition layer is reduced slightly with
increasing dosages; however, it is nearly constant when dosage
is high. In stark contrast to the weakly changing thickness, the
double bond conversion rate rapidly increases with exposure
dosages in the curing zone. The drastically different behaviors of
the curing thickness and the double bond conversion rate in
response to increasing exposure dosage enable unique orthogonal
control over the 3D geometry and stiffness in oxygen inhibition
assisted stereolithography. Projection of “grayscale” intensity
maps of the sliced images results in spatially varying stiffness in
the cured structures, while the threshold defines the boundary
and geometry of the printed structures.

To demonstrate that the 3D printing method can control
stiffness and geometry independently due to the oxygen
inhibition layer, a buffalo logo was printed (Fig. 1d) with a
binary exposure scheme. Features of the logo were exposed with a
UV dosage of 72 mJ cm−2 while regions in the background were
exposed with 44 mJ cm−2. Five identical exposures were used to
form a uniform thickness of ~350 μm. Variation of feature height
between the two regions is < 1% (as measured by profilometer in
Fig. 1e), suggesting even thickness control during the printing.
However, sharp optical contrast is observed (Fig. 1d), indicating a
strong difference in crosslink density6. The difference in optical
contrast is further quantified by a line profile of intensity in the
bright-field image (Fig. 1e). Altogether, we demonstrate that the
binary dosage scheme results in uncorrelated patterning of
stiffness and geometry (cured thickness).

Quantitative analysis of programmed stiffness and geometry.
The mechanical properties of cured polymer are highly sensitive to
the crosslink density. We measured the stiffness (Young’s modulus
E) and the surface morphology of the printed structures in
phosphate-buffered saline (PBS) solution using atomic force
microscopy (AFM). All stiffness measurements were performed
after overnight ( > 12 h) swelling post-printing to ensure that the
polymerization of remaining free radicals as well as hydrogel
swelling were complete. Multiple binary exposures (a total thickness
of ~ 500 μm) were used to ensure the accuracy of Hertz-model-
based stiffness measurement by AFM25. Line features (width:
10 μm; length: 1 mm) were exposed with UV dosage of 72mJ cm−2

while regions in the background are exposed with 44mJ cm−2.
Notably, the sharp optical contrast in bright-field microscope image
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(Fig. 2a) correlates well with stiffness patterns observed in AFM
stiffness mapping, where E ~ 11 kPa for line features and E ~ 5 kPa
for background regions (Fig. 2b). In contrast, limited topographic
variation ( < 600 nm) between the stiff lines and soft background
regions is revealed by AFM topography mapping (Fig. 2c). The
results affirm that the stiffness and geometry can be independently
controlled with our approach. A range of 0.1–17 kPa matrix stiff-
ness encompasses the stiffness of most physiological soft tissues26.
In Fig. 2d, we show the stiffness and feature height of crosslinked
PEGDMA as function of the exposure dosage. The stiffness can be
tuned over an order of magnitude (E ~ 2–15 kPa) within a
physiological-relevant range (solid, black circles in Fig. 2d). The
stiffness can be expanded to a wider range using a higher power UV
source; however, the detrimental effects of higher levels of UV
dosage and free radicals on living cells need to be taken into account
when printing hydrogel structures for living cell encapsulation27.
In contrast, the geometry variation is limited to within 2% for a
~500 μm high structure (open, blue circles in Fig. 2d). With this
limited difference in feature height, we observe the trend that stiffer
regions have a slightly larger feature height as the results of miti-
gated oxygen inhibition (reduced oxygen inhibition layer thickness)
under stronger UV exposures (Fig. 1c)17,28. Further examination of
the crosslink density in polymerized PEGDMA hydrogels by
swelling ratio measurement and Flory-Rehner theory29 demon-
strates the increasing effective crosslink density with increasing UV
dosages (Supplementary Methods and Supplementary Fig. 1), which
is in consistent with the AFM stiffness measurement. Moreover,

oxygen diffusion and inhibition also affect the minimal feature sizes
that could be achieved30. A higher dosage exposure not only results
in a stiffer structure but also allows printing a smaller feature. We
have achieved approximately 20 μm well-defined rod structures at a
dosage of 84mJ cm−2 (Supplementary Fig. 2).

Programming stiffness and geometry in 3D-printed overhang
structures. Figure 3 shows several simple 3D-printed structures
demonstrating orthogonal control over the geometry and stiff-
ness. In Fig. 3a–c, each structure consists of two supporting rods
holding a top beam. The supporting rods were printed with the
same geometry (diameter: 80 μm; height: 900 μm) but pro-
grammed into three different stiffness combinations: stiff/stiff,
soft/stiff, and soft/soft. There was no visual difference among
printed structures when first observed in PBS solution and
ethanol due to buoyancy. As shown in Fig. 3a–c, however, only
the stiff rods were strong enough to avoid collapsing when
removed from solution and dried in air, while the soft rods col-
lapsed. The beam leaned toward the soft rod in the soft/stiff
structure (Fig. 3b) and fell over in the soft/soft structure (Fig. 3c).
We further demonstrate the orthogonal control of geometry and
stiffness in an exemplary 3D structure, a warrior model with a
stiff body but a soft heart inside (Fig. 3d–f). SEM image reveals
well-defined topography (Fig. 3e) while the apparent optical
contrast in dark-field image reflects the differences between the
stiff body (bright) and soft heart (dark) (Fig. 3f). In addition, to
show our capability of programming multiple stiffness domains
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simultaneously, four rods with similar geometries were printed
with spatially varied UV exposure dosages and, therefore, dif-
ferent stiffness (Supplementary Fig. 3). When released from
solution and dried in air, different degrees of bending were
observed as the results of spatially varying stiffness. It is also
worth noting that no print-through effects31 were observed in the
3D-printed structures, which benefited from fine control of cur-
ing depth enabled by addition of 0.15% UV absorber TINUVIN
234 in the hydrogel precursor solution17.

Cellular organization depends on mechanical heterogeneity. A
well-defined synthetic extracellular matrix with spatial control of

matrix mechanical properties may regulate cellular organization,
which is critical for reconstituting functional tissues for in vitro
modeling as well as implantation for tissue engineering32,33. The
bovine pulmonary artery smooth muscle cells (bPASMCs), typi-
cally involved in the reconstitution of normal or hypertensive
diseased vascular tissues34, are used here as an exemplary system.
We first examine the cellular attachment and morphology
influenced by programed 2D micro-mechano-environments
(Fig. 4a–e). Alternating soft (crosslinked at 44 mJ cm−2 with E
~ 5 kPa) and stiff (crosslinked at 72 mJ cm−2 with E ~ 11 kPa)
strips of PEGDMA hydrogel structures with a line width ~100 μm
(Fig. 4a) were printed with the aforementioned approach and the
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surfaces were functionalized with the extracellular matrix protein
fibronectin. The bPASMCs were then seeded and cultured for
1 day prior to evaluation. Fluorescent images (Fig. 4b) clearly
show the preferential attachment of muscle cells on stiff regions,
and the quantitative analysis of cell density over a broader area
confirms this observation (Fig. 4c). In addition, the attached cells
were considerably more elongated with higher aspect ratios
(Fig. 4d) and favorably aligned along the strips (Fig. 4e). The
effects on cell elongation and alignment are apparent when the
strip width is narrow and comparable to cell size while they
disappear for a large strip width (e.g. 200 μm). These findings
suggest that patterned stiffness provides a strong directional cue
to control cellular attachment and morphology on hydrogel
surfaces, which is in agreement with the recent observation of
selective stem cell7, and endothelial cell8 attachment on stiffness
controlled surfaces.

The move towards well-defined synthetic 3D systems, however,
requires precise control of cell migrations in a more physiological
3D environments35 and is far more challenging with conventional
approaches. The 3D spatial heterogeneous micro-mechano-
environment may not only impact cell attachment but also lead
to preferential cell migrations in response to the different stiffness
profiles. Enabled by our unique oxygen inhibition assisted
printing process, Fig. 4f shows schematics of two simple 3D
vascular-tube-like structures, which allow demonstration of
preferred cell migrations along the stiff 3D structures. The entire
structure shown in the upper panel of Fig. 4g is uniformly stiff,
which is printed with a dosage of 72 mJ cm−2 and an expected
modulus of E ~ 11 kPa. The control, shown in the lower panel of
Fig. 4g is half soft and half stiff with the soft region printed with a
dosage of 44 mJ cm−2 and an expected modulus of E ~ 5 kPa. The
bPASMCs were seeded at a high density, and the cells initially
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formed a layer at the base of the tubes as well as the substrates.
Over the course of the 3-day culture, the cells migrated up along
the walls of the tubes. As shown in the upper panels of Fig. 4h, i,
the bPASMCs migrated up along the wall uniformly and formed
3D cell layers surrounding both the outer and inner walls of the
stiff tube, creating a 3D vascular-tube-like tissue structure.
Intriguingly, for the control of soft-stiff tube, cells almost
exclusively migrated up the stiff regions of the wall, producing
a 3D half vascular-tube-like tissue structure (lower panels in
Fig 4h, i). The controlled 3D stiffness profiles clearly allow
precision in directing cell migration and subsequent cellular
organization. Although many other factors including growth-
factors, micro-chemical environments, and even matrix degrada-
tions in such a complex synthetic 3D micro-mechano-
environment need to be further regulated to create true 3D
in vitro tissue models, the technique demonstrates here the
guiding of the heterogeneous 3D tissue reconstruction simply by
spatial registration of micromechanical cues. In addition, the
observed spatial cellular organization may be also ascribed to
spatial variation of free methacrylate groups and their cytotoxic
effects36. To evaluate the potential cytotoxic effects, we examined
the cell viability by fluorescence-based live/dead staining using
cell-permeable Calcein-AM in combination with a plasma
membrane-impermeable DNA-binding dye propidium iodide37.
We found most of cells are alive ( > 90%) after encapsulating cells
inside soft PEGDMA hydrogels and culturing for 1 day, which is
in agreement with previous findings23,38. However, a more
thorough examination of the cytotoxicity is necessary.

Discussion
In this study, we report an oxygen inhibition assisted 3D ste-
reolithography technique that creates arbitrary micro-mechano-
environments with orthogonally defined stiffness and geometries.
This was achieved by facile patterning of the crosslink density,
and in particular assisted by purposely introducing oxygen
inhibition in photo-curable hydrogels. The programmed micro-
mechano-environments allow tunable stiffness across an order of
magnitude within the physiologically relevant range. The method
also demonstrates the controlled 3D cellular organization through
preferential cell attachment and directed cell migration, opening a
new avenue towards 3D in vitro tissue fabrication.

Methods
Hydrogel precursor solution preparation. The hydrogel precursor solution was
prepared by dissolving 0.15% (w/v) TINUVIN 234 UV absorber (Sigma-Aldrich,
St. Louis, MO) into 80% (w/v) poly (ethylene glycol) dimethacrylate (PEGDMA,
MW 750; Sigma-Aldrich) at 37 ℃ for 1 h, and subsequently add 20% (w/v)
deionized water for 1 h and 0.2% (w/v) lithium phenyl-2,4,6-trimethylbenzoyl-
phosphinate (LAP, TCI America, Portland, OR) photoinitiator for 2 h.

Digital projection stereolithographic 3D printing. Three-dimensional structures
were modeled and sliced into multiple cross-sectional gray-scale images with even
thickness using CAD software. The prepared hydrogel precursor solution was
sandwiched between an impermeable PDMS-coated glass slide and 3-(trimethox-
ysilyl)propyl methacrylate-treated glass cover, i.e. build stage as shown in Fig. 1a.
The multiple gray-scale images were sequentially projected into the hydrogel
precursor solution through a dynamic micro-mirror device (DMD). Each layer was
cured by projected UV light and then pulled out of the image plane by a motorized
stage. Thereafter, the following layers of structure were sequentially cured and a 3D
structure could be formed. The spatial stiffness control is achieved by varying local
gray-scale value of the cross-sectional image. The projection of gray-scale images
and the motorized stage were computer controlled.

Characterization of 3D-printed hydrogel structures. Young’s modulus (stiff-
ness) was measured by an atomic force microscope (AFM, 5420 Scanning Probe
Microscope, Agilent Technologies). Briefly, force spectroscopy (force-volume
mapping) was typically conducted on a square grid (32 by 32) over a 100 μm× 100
μm area. The AFM probe was a Novascan silicon (Si) cantilever with a polystyrene
particle (diameter 10 μm) as the tip and has a spring constant of 0.09 N/m. The
Hertz contact model was used to derive the Young’s modulus by assuming a

Poisson’s ratio of the hydrogel υ= 0.5. All AFM measurements were performed
under a phosphate-buffered saline solution.

The feature height, i.e., curing thickness of printed hydrogel structures
(hydrated) was measured by profilometer (Dektak 3030, Veeco, Santa Barbara,
CA). The morphology of printed hydrogel structures was observed by a scanning
electron microscope (SEM, SU 3500, Hitachi). After fabrication, structures were
soaked into 100% ethanol solution for 12 h to remove unpolymerized resin and
then air dried for half an hour in a fume hood. Dried structures were prepared for
SEM imaging with a thin layer of gold.

Cell culture. Primary bovine pulmonary arterial smooth muscle cells (bPASMCs;
gift from Dr. Kurt Stenmark Lab) were cultured in DMEM (15-018-CV, Corning)
supplemented with 10% bovine calf serum (BCS; 100–506, GemCell), 4 mM L-
glutamine, 100 IU/mL penicillin, 100 μg/mL streptomycin, and 1% non-essential
amino acid in an incubator at 37 °C and 5% CO2. Cells were used at passages of 3–5
for all the experiments.

Prior to cell seeding, the surface of 3D-printed hydrogel structures were
activated with sulfo-SANPAH and subsequently functionalized with fibronectin.
bPASMCs were seeded at a density of 1 × 104 (for line structures) or 2.5 × 104

(for tube structures) cells cm−2 in serum-free media, rinsed with PBS after 2 h
incubation at 37 °C, and cultured for 1 or 3 days in a growth media with 10% BCS
(refreshed on day 2). Cells were fixed in 4% formalin for 15 min, permeabilized
with 0.1% Triton X-100 for 15 min, stained for F-actin (FITC-phalloidin, Life
Technologies) and nuclei (DAPI, Life Technologies) for 45 min, and imaged by a
Yokogawa CSU-X1 spinning disk confocal mounted on a Nikon Ti-E inverted
microscope (Nikon Instruments). Cell counts per mm2, cell aspect ratio, i.e., major
axis/minor axis of the cells, and cell alignment angle, i.e., the angle between major
axis of cells and axis of the line pattern, were measured by ImageJ (10 ×
magnification).

Statistical analysis. Statistical differences between compared groups were deter-
mined using unpaired t-tests using Excel software with a p-value <0.05 indicating
significance. Samples size is indicated within corresponding figure legends. All data
are presented as a mean ± standard deviation (s.d.).

Data availability
Data supporting the findings of this study are available within the article and its sup-
plementary information files and from the corresponding authors upon request.
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