
Vol.:(0123456789)

TOP (2021) 29:781–798
https://doi.org/10.1007/s11750-021-00593-2

1 3

ORIGINAL PAPER

A column‑and‑constraint generation algorithm
for two‑stage stochastic programming problems

Denise D. Tönissen1  · Joachim J. Arts2  · Zuo‑Jun Max Shen3 

Received: 16 March 2020 / Accepted: 21 January 2021 / Published online: 16 February 2021
© The Author(s) 2021

Abstract
This paper presents a column-and-constraint generation algorithm for two-stage sto-
chastic programming problems. A distinctive feature of the algorithm is that it does
not assume fixed recourse and as a consequence the values and dimensions of the
recourse matrix can be uncertain. The proposed algorithm contains multi-cut (par-
tial) Benders decomposition and the deterministic equivalent model as special cases
and can be used to trade-off computational speed and memory requirements. The
algorithm outperforms multi-cut (partial) Benders decomposition in computational
time and the deterministic equivalent model in memory requirements for a main-
tenance location routing problem. In addition, for instances with a large number of
scenarios, the algorithm outperforms the deterministic equivalent model in both
computational time and memory requirements. Furthermore, we present an adap-
tive relative tolerance for instances for which the solution time of the master prob-
lem is the bottleneck and the slave problems can be solved relatively efficiently. The
adaptive relative tolerance is large in early iterations and converges to zero for the
final iteration(s) of the algorithm. The combination of this relative adaptive toler-
ance with the proposed algorithm decreases the computational time of our instances
even further.

Keywords  Stochastic programming · Column-and-constraint generation · Benders
decomposition · Facility location

Mathematics Subject Classification  90-08 · 90C15 · 90B80 · 49M27

 *	 Denise D. Tönissen
	 d.d.tonissen@vu.nl

Extended author information available on the last page of the article

https://orcid.org/0000-0003-0252-5540
https://orcid.org/0000-0002-3749-6965
https://orcid.org/0000-0003-4538-8312
http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-021-00593-2&domain=pdf

782	 D. D. Tönissen et al.

1 3

1  Introduction

Two-stage stochastic programming problems are often solved by Benders decom-
position (Benders 1962) (BD), also known as the L-shaped decomposition
method in the stochastic programming literature (van Slyke and Wets 1969). BD
is used in many different types of two-stage stochastic programming problems
such as supply chain planning (You and Grossmann 2013), production routing
(Adulyasak et al. 2015), and hub location (Contreras et al. 2011). Many variations
of BD exist, but the most relevant to this paper are multi-cut Benders decompo-
sition (MCBD) and partial Benders decomposition (PBD) (Crainic et al. 2020).
MCBD generates multiple cuts per iteration that approximate the second-stage
values for each scenario separately. Birge and Louveaux (1988) show that such
a framework can greatly increase the speed of convergence. PBD includes the
deterministic equivalent model (DEM) of a subset of the scenarios directly into
the master problem resulting in a stronger master problem that can lead to faster
convergence. Rahmaniani et al. (2017) give an overview of variants and accelera-
tion strategies of BD.

Recently, it was shown that column-and-constraint generation (C&CG) algo-
rithms (also called row-and-column or scenario generation) work very well for
two-stage robust optimization. Zeng and Zhao (2013) show that a C&CG proce-
dure performs an order of magnitude faster than BD for a two-stage robust location
transportation problem with demand levels in a polyhedral uncertainty set. Tönissen
et al. (2019) show that a C&CG algorithm outperforms BD and MCBD with two
orders of magnitude for a two-stage robust maintenance location routing problem
for rolling stock with discrete scenarios. Furthermore, C&CG procedures have been
applied to two-stage robust facility location (Chan et al. 2017; An et al. 2014), unit
commitment (An and Zeng 2015; Zhao and Zeng 2012), and distribution network
design (Lee et al. 2015).

In this paper, we demonstrate that a C&CG algorithm can be used for two-stage
stochastic programming problems. This C&CG algorithm is an iterative algorithm,
similar to BD, that decomposes the problem into a master problem and a second-
stage (slave) problem for each scenario. In each iteration, the constraints and vari-
ables of one or more scenarios from the DEM are added to the master problem and
the other scenarios are used to generate Benders optimality cuts. The C&CG algo-
rithm reduces to multi-cut partial Benders decomposition (MCPBD) when the mas-
ter problem contains a subset of the scenarios, and the iterative addition of scenarios
is stopped. Furthermore, the algorithm reduces to the DEM when all scenarios are
added to the master problem and to MCBD when no scenarios are added to the mas-
ter problem. From this it can be concluded that the proposed algorithm reaches opti-
mality in a finite number of iterations and should in principle perform equally well
or better than all algorithms that it contains as special cases.

The benefit of adding the scenarios iteratively is that second-stage information
can be used to find and add “important” scenarios to the master problem. Besides
the iterative addition of scenarios, an important difference between the PBD algo-
rithm of Crainic et al. (2020) and this paper is that Crainic et al. (2020) assume

783

1 3

A column‑and‑constraint generation algorithm for two‑stage…

fixed recourse. We do not assume fixed recourse and as a consequence the values
and dimensions of our recourse matrix can vary from one scenario to another. The
acceleration strategies (e.g., artificial scenarios) presented in Crainic et al. (2020)
do not apply to problems where the recourse matrix is not fixed. Thus our algorithm
applies to a broader class of two-stage stochastic programming problems. When the
recourse matrix of a problem does have a fixed size, the algorithm in this paper can
be applied in conjunction with the ideas of Crainic et al. (2020).

The models’ dimensions in the proposed algorithm are much smaller than those
of the full DEM. So, for instances with a large number of scenarios, the C&CG
algorithm outperforms the plain use of any state-of-the-art MIP solver in memory
requirements and computational time. We demonstrate this by performing compu-
tational experiments on a maintenance location routing problem. Furthermore, for
large problems where the solution time of the master problem is the bottleneck and
the second-stage (slave) problems can be solved relatively efficiently, we introduce
an adaptive relative tolerance for solving the master problem. The effectiveness of
the adoptive relative tolerance is also demonstrated by performing, computational
experiments on a maintenance location routing problem.

In Geoffrion and Graves (1974), it was already shown that BD can be used with
any feasible master problem solution. Consequently, changing the (relative) toler-
ance for the master problem in BD is not new. However, for our C&CG algorithm,
using an adaptive relative tolerance is important because it decreases the compu-
tational time by allowing the algorithm to add scenarios faster while spending less
time on closing the gap of the master problem. The proposed relative tolerance is
defined as UB-LB

LB
 . It is large (e.g., 0.25) when the gap between the lower bound (mas-

ter problem) and upper bound (incumbent solution) of the algorithm is large and
converges to zero for the final iteration(s) of the algorithm. Therefore, the C&CG
algorithm with adaptive relative tolerance solves problems to optimality.

The main contributions of the work are as follows:

•	 We develop a C&CG algorithm for two-stage stochastic programming problems.
•	 We show that an adaptive relative tolerance for the master problem can be used

to decrease the computation time.
•	 We showcase the algorithm on a maintenance location routing problem for roll-

ing stock. We show that this algorithm can be used to trade-off computational
speed and memory requirements and that it can perform better than MC(P)BD or
the DEM.

The paper starts with an explanation of the C&CG algorithm that can be used for
two-stage stochastic problems in general. In Sect. 3, we explain the maintenance
location routing problem for rolling stock and formulate it as two-stage optimiza-
tion problem. In Sect. 4, we present the C&CG algorithm for the maintenance loca-
tion routing problem. In Sect. 5, we present our experimental results of the C&CG
algorithm for our maintenance location routing problem and we end the paper with
a conclusion.

784	 D. D. Tönissen et al.

1 3

2 � A column‑and‑constraint generation algorithm

Consider a two-stage stochastic programming problem with a discrete set of sce-
narios D, where pd is the probability that scenario d ∈ D occurs. This set can either
be given or created using a sample average approximation for a distribution. Let
Fy ⊆ ℝ

n−p × ℤ
p and Fxd ⊆ ℝ

md be the feasible regions containing mixed integer and
linear variables, respectively. The first-stage decision is represented by y ∈ Fy and
the second-stage decisions by xd ∈ Fxd . Define the uncertain matrices Wd , Td , and
the vector hd that can be uncertain. The problem can be expressed as follows:

where

The relatively complete recourse assumption is used, i.e., the second-stage problem
is feasible for any y that is feasible for the first-stage problem.

This two-stage problem can be reformulated to the following DEM that contains
all scenarios:

This problem is computationally difficult to solve in terms of CPU and memory
requirements when there are many scenarios. Our proposed algorithm solves this
problem using the DEM for a few important scenarios and using MCBD for the
remaining scenarios. We split the scenario set D in two sets. The set D0 contains the
important scenarios for which the constraints and objective functions are directly
included in the master problem and the set D1 contains the other scenarios for which
we use Benders optimality cuts. Information from the second-stage problem is used
to move scenarios from D1 to D0.

The iteration counter is set at i = 0 and we let (ŷ, x̂) denote the incumbent solu-
tion. Furthermore, we define yi as the optimal solution of the master problem and xi
as the optimal solution for the slave (i.e., second-stage) problems for iteration i. The
lower bound (LB) is initially set at −∞ and the upper bound (UB) at ∞ . The algo-
rithm consists of the following steps:

1.	 Solve the master problem. The master problem is the DEM for the objective
function and constraints related to the y-variables (i.e., the first-stage submodel)
and the x-variables (i.e., the second-stage submodel) for the scenario set D0 , sup-
plemented by optimality cuts representing the input from the x-variables for the
scenario set D1 .

min
�
cTy +

∑
d∈D pdQ(y, d)�Ay ≤ b, y ∈ Fy

�
,

Q(y, d) = min
{
hT
d
xd|Wdy + Tdxd ≤ ed, xd ∈ Fxd

}
.

min cTy +
∑

d∈D pdh
T
d
xd

s.t. Ay ≤ b,

Wdy + Tdxd ≤ ed ∀d ∈ D,

xd ∈ Fxd ∀d ∈ D,

y ∈ Fy.

785

1 3

A column‑and‑constraint generation algorithm for two‑stage…

 The variable �d represents the second-stage cost for scenario d ∈ D1 . Con-
straints (3) are the optimality cuts that approximate �d ≥ Q(yi, d) ∀d ∈ D1 and
these cuts are only added to the master problem from iteration 1. The coeffi-
cients rd

i+1
 and vd

i+1
 are determined from the duals of the second-stage problem in

such a way that
∑

d∈D1
rd
i+1

yi + vd
i+1

=
∑

d∈D1
pdQ(y

i, d) . The details of the gen-
eration of rd

i+1
 and vd

i+1
 are explained in Step 5.

2.	 Calculate the objective value cTyi +
∑

d∈D pdQ(y
i, d) and get xi by solving the

second-stage problem Q(yi, d) for each scenario d ∈ D . If the objective value is
smaller than the upper bound UB, we update the UB with the new objective value
and set the incumbent solution at (ŷ, x̂) = (yi, xi).

3.	 Update sets D0 and D1 . For this step, there are a few options that can differ per
iteration i:

•	 Add arg maxd∈D1
Q(yi, d) to set D0 and remove it from D1.

•	 Pick more than one scenario per iteration. Possible choices are the worst, best,
middle scenario when the scenarios are sorted in ascending second-stage cost.

•	 Do nothing.

	  There are many other (problem dependent) possibilities. Note that new con-
straints are added to the master problem when a scenario is moved from set D1 to
D0 . Furthermore, all Benders optimality cuts for that scenario and the correspond-
ing �d variable are removed from the master problem.

4.	 If UB-LB
LB

 < 𝛿 , where 𝛿 > 0 is a pre-specified tolerance, the algorithm stops and
returns (ŷ, x̂) as a solution and the corresponding UB that has a relative optimality
gap of no more than � . Otherwise, the algorithm proceeds to Step 5.

5.	 Let �id be the dual variables for the constraints of the second-stage problem for
scenarios d ∈ D1 . The cut coefficients are

 and

(1)
LB =min cTy +

∑

d∈D0

pdh
T
d
xd +

∑

d∈D1

pd�d

s.t. Ay ≤ b,

(2)Wdy + Tdxd ≤ ed ∀d ∈ D0,

(3)
(
rd
k

)T
y + �d ≥ vd

k
k = 1,… , i, d ∈ D1,

(4)�d ≥ 0 ∀d ∈ D1,

(5)xd ≥ 0 ∀d ∈ D0,

(6)y ∈ Fy.

rd
i+1

=
(
�
d
i

)T
Wd

786	 D. D. Tönissen et al.

1 3

 Update i = i + 1 and go back to Step 1.
As mentioned in Sect. 1, MC(P)BD and the DEM are special cases of this algo-
rithm. The C&CG algorithm reduces to the DEM when the algorithm starts with
D0 = D and D1 = � . When for every iteration the “do nothing” action is chosen for
Step 3, we have MCBD when D0 = � and MCPBD when D0 ≠ ∅ . As a consequence,
the C&CG algorithm reaches optimality in a finite number of iterations and should
in principle perform equally well or better than the algorithms included as special
cases.

2.1 � Adaptive relative tolerance for the master problem

The master problem is a MIP that can become very large and has to be solved mul-
tiple times. Most of the solution time of MIP problems often lies in proving that a
solution is optimal rather than finding a feasible solution. As a consequence, it is fre-
quently observed that algorithms that have higher optimality tolerances find (close
to) optimal solutions of which the quality is yet unproven. It will suffice for our algo-
rithm if the master problem is not solved to optimality in each iteration of the algo-
rithm as long as it is solved to optimality in the final iteration. Therefore, it is com-
putationally beneficial (faster) to allow larger optimality tolerances in the solution of
the master problem initially. We propose that the master problem solution algorithm
terminates when a tolerance is reached and we allow this tolerance to adapt each
time that the master problem is solved. This tolerance should be large initially and
adapt to be small eventually. Our proposed tolerance for the master problem depends
on the LB and UB of each iteration of the algorithm. When the difference between
the LB and UB is large, the proposed adaptive tolerance should also be large. In
later iterations, when the gap between the LB and UB is almost closed, the proposed
adaptive tolerance is small.

The adaptive relative tolerance has two input parameters: the initial_tolerance
(which can be large, e.g., 0.25) and the end_tolerance (which approaches zero, e.g.,
10−4 ). The initial_tolerance represents the starting value of our adaptive tolerance,
while the end_tolerance represents the terminating tolerance. The proposed adaptive
relative tolerance is defined as follows:

This adaptive tolerance decreases quickly as the lower bound and incumbent solu-
tion become close. Yet this adaptive tolerance is larger initially such that the master
problem need not be solved to proven optimality initially.

vd
i+1

=
(
�
d
i

)T
ed.

(7)max
{
min

{
initial_tolerance, 0.5

UB-LB

LB

}
, end_tolerance

}
.

787

1 3

A column‑and‑constraint generation algorithm for two‑stage…

3 � Maintenance location routing for rolling stock

Our algorithm will be tested on the two-stage stochastic maintenance location
routing problem (SMLRP) that was introduced in Tönissen et al. (2019). The
C&CG algorithm does not consider the special structure of the SMLPR and the
reason for choosing this problem is that it is large scale with binary first-stage
decisions and continuous second-stage decisions. Consequently, this problem can
benefit from the structure of (MC)BD, but it has convergence problems, while the
DEM is quickly solved but runs out of memory for large instances. The C&CG
algorithm can be used to trade-off the computational time and memory require-
ments to provide a suitable algorithm for instances of most sizes.

The SMLRP is described concisely below to make this paper self-contained,
but we refer to Tönissen et al. (2019) for the details. Furthermore, in Sect. 4, we
specify the C&CG algorithm for the SMLRP to make our results easier to repro-
duce. The reader that is only interested in the general application of the C&CG
algorithm can skip ahead to Sect. 5.

The SMLRP is a facility location problem that has a set of candidate facilities
and costs to open these facilities. Different from most facility location problems,
our customers (train units) have to travel over a railway network to reach a facil-
ity. The transportation costs of these train units are more complicated than can
be modeled by fixed allocation costs. The routing costs of train units to main-
tenance facilities is calculated by the solution of the second stage maintenance
routing problem. The facility location problem and the maintenance routing prob-
lem cannot be solved separately because the difficulty with which a facility can
be reached depends on the railway infrastructure and the line plan which can vary
from one scenario to the next.

A line plan is a set of paths in the railway network that is operated by a roll-
ing stock type with a given frequency. Figure 1 gives an example of a railway
network and a line plan on that network. The nodes in the right-hand side are the
potential begin and end station of a line, called end stations. Train units can move
from one line to another when the lines have coinciding end stations. The example
line plan on the right hand-side of Fig. 1 has two train types. The first, denoted by
a, is an intercity train that skips the small stations, while train type b is a regional
train that stops at every station. When a train unit requires maintenance, it has

Fig. 1   The railway network on the left and a line plan on the right

788	 D. D. Tönissen et al.

1 3

to visit a maintenance facility. A train unit requires such maintenance approxi-
mately four times every year. It can visit the maintenance facility by deadheading
(driving without passengers) incurring deadheading costs or by interchanging the
destinations at the end stations of a line with other train units of the same rolling
stock type until the maintenance location is reached. For example, in the right-
hand side of Fig. 1, a train unit can interchange from line (Y, Z, b) to line (Z, V, b)
while an interchange from (Y, Z, b) to line (Z, W, a) is not possible because the
rolling stock types do not match.

The line plan is not always the same and changes over time to meet changing
travel demands. For example, it is possible to start an additional line for rolling stock
type b between node W and X. Such changes in the line plan are captured in discrete
scenarios.

The question is now where to locate maintenance facilities for the rolling stock.
This is a two-stage stochastic programming problem, with the facility locations
as binary first-stage decisions and the allocations and routing of train units to the
facilities as second-stage decisions. Formally, we are given a railway network
G = (NP,EP) , consisting of rails EP and stations NP . Furthermore, we are given a
set of discrete scenarios d ∈ D , in which each scenario defines a line plan: a set of
lines Ld ∀d ∈ D , with, for each line, the rolling stock type rolling stock, the annual
maintenance frequency, the coordination cost for each interchange, and the dead-
heading cost from each line to each facility. In addition, the line plan specifies the
end stations Sd ⊆ NP ∀d ∈ D , their location in the rail network, the possible inter-
changes, the maximum number of annual interchanges that can be performed at each
end station ( gd

s
∀s ∈ Sd, d ∈ D ), and the maximum number of interchanges that can

be performed on the railway network ( Gd d ∈ D).
The maintenance routing of train units can be formulated as a flow model that

uses a flow graph. This flow graph Gdy

F
= (N

dy

F
,A

dy

F
) is constructed as follows for

each scenario d ∈ D and first-stage decision y:

•	 A node is created for every line and the set with these nodes is denoted as
Nd
L
⊂ N

dy

F
.

•	 A source S is created that is connected with a directed arc to each node in Nd
L
.

•	 An directed arc with as cost the interchange coordination cost is created between
the line nodes where an interchange is possible. The set of these interchange arcs
is denoted by Ad

I
⊂ A

dy

F
.

•	 A node is created for every candidate facility and the set with these nodes is
denoted by NC . Each node in NC is connected with an arc to the sink T .

•	 For each node n ∈ Nd
L
 , an arc to node n ∈ NC is created. The cost of this arc is

the deadheading cost of the line to the facility that the nodes represents. The set
of these incoming facility arcs is denoted by Ad

C
⊂ A

dy

F
.

Figure 2 shows the application of this transformation. The left-hand side in Fig. 1
depicts a line plan for the railway graph, where a and b are the rolling stock types
and 0-9 are the line numbers. The right-hand side depicts the routing flow graph
G

dy

F
= (N

dy

F
,A

dy

F
) for the line plan on the left when in the given y , facilities {X,W, Z}

are opened and the others are closed.

789

1 3

A column‑and‑constraint generation algorithm for two‑stage…

The first-stage binary decision variables y ∈ {0, 1}|NC| equal 1 when a facility
is opened and 0 otherwise. The second-stage decisions are the flow through arcs
a ∈ A

dy

F
 denoted by z(a) ∈ ℝ

+
0
 and the cost are denoted by c(a). Let �d

in
(n) and �d

out
(n)

be the set of in-going and out-going arcs of node n for scenario d. The set of arcs
that represent the interchanges going through end station s for scenario d is denoted
by Ad

s
 . The weights wd ∀d ∈ D denote the expected fraction of time that a line plan

is used during the lifetime of the facilities.
The two-stage stochastic programming model can be formulated as

where

(8)

(SMLRP) min
∑

n∈NC

cnyn +
∑

d∈D

wdIMRP(y, d)

s.t.
∑

n∈NF

ynqn ≥ max
d∈D

∑

l∈Ld

md
l
,

(9)yn ∈ {0, 1} ∀n ∈ NC,

(10)

IMRP(y, d) = min
∑

a∈Ad
I
∪Ad

C

c(a)z(a)

s.t.
∑

a∈�d
in
(n)

z(a) ≤ ynqn ∀n ∈ NC,

Fig. 2   On the left, a possible line plan on the railway graph in Fig. 1. On the right, the resulting flow
graph ( Gdy

F
= (N

dy

F
,A

dy

F
) ). The arcs from and to the source S and sink T are dashed blue, the interchange

arcs ( AI ) solid red and the arcs to the facilities ( AO ) are dotted black

790	 D. D. Tönissen et al.

1 3

The objective is to optimize the annual facility cost in combination with the average
maintenance routing cost. Constraint (8) guarantees that the combined capacity for
the opened facilities is sufficient to handle all maintenance visits. This constraint
ensures relative complete recourse. Constraint (10) enforce the capacity of a main-
tenance facility. Constraint (11) is the flow conservation constraint, while Constraint
(12) guarantees that all maintenance visits are assigned to a facility. Constraints (13)
and (14) are the end station and budget interchange capacity constraints.

Note that there is a different Gdy

F
 for each combination of first-stage solution y

and scenario d. Consequently, the values and dimensions of the recourse matri-
ces are different for each scenario and the artificial scenario method proposed by
Crainic et al. (2020) does not apply here.

4 � A column‑and‑constraint generation algorithm for the SMLRP

The C&CG algorithm requires one large maintenance routing graph for all sce-
narios that are included in D0 ⊆ D . This graph GD0

M
= (N

D0

M
,A

D0

M
) can be built with

the following steps:

•	 A node is created for each scenario and for each line. The set with all line
nodes belonging to a scenario d ∈ D0 is denoted Nd

L
.

•	 A source S is created that is shared for all scenarios. The source is connected
with an arc to each node in

⋃
d∈D0

Nd
L
.

•	 An arc is created between every line where an interchange is possible where
the cost is the interchange coordination cost. The set with all interchanges is
denoted AD0

I
.

•	 A node is created for every candidate facility and each of these nodes is con-
nected with an arc to the sink T  . The set of candidate facility nodes is denoted
by NC.

(11)
∑

a∈�d
in
(n)

z(a) =
∑

a∈�d
out
(n)

z(a) ∀n ∈ N
dy

F
⧵{S, T},

(12)z(a) = md
l

∀l ∈ Ld, a ∈ �d
in
(nd

l
)⧵AI ,

(13)
∑

a∈Ad
s

z(a) ≤ gd
s

∀s ∈ Sd,

(14)
∑

a∈Ad
I

z(a) ≤ Gd,

(15)z(a) ≥ 0 ∀a ∈ A
dy

F
.

791

1 3

A column‑and‑constraint generation algorithm for two‑stage…

•	 An arc is created from each node n ∈
⋃

d∈D0
Nd
L
 to each facility. The cost of

this arc is the deadheading cost of the line to the facility.

The C&CG algorithm for the SMLRP from Sect. 3 can now be expressed as
follows:

1.	 Construct the graph GD0

M
= (N

D0

M
,A

D0

M
) for all scenarios in D0 and solve the master

problem. The master problem is the IMIP for all scenarios in D0 and the first-stage
problem for all scenarios in D1 with optimality cuts representing input from the
second stage.

 subject to

LB = min
y,�

∑

n∈NC

cnyn +
∑

d∈D0

wd

∑

a∈Ad
I
∪Ad

C

c(a)z(a) +
∑

d∈D1

wd�d

(16)
∑

a∈�d
in
(n)

z(a) ≤ ynqn ∀d ∈ D0, ∀n ∈ NC,

(17)
∑

a∈�in(n)

z(a) =
∑

a∈�out(n)

z(a) ∀n ∈ N
D0

M
⧵{S, T},

(18)z(a) = md
l

∀d ∈ D0, ∀l ∈ Ld, a ∈ �d
in
(nd

l
)⧵A

D0

I
,

(19)
∑

a∈Ad
s

z(a) ≤ gd
s

∀d ∈ D0, ∀s ∈ Sd,

(20)
∑

a∈Ad
I

z(a) ≤ Gd ∀d ∈ D0,

(21)
∑

n∈NC

ynqn ≥ max
d∈D

∑

l∈Ld

md
l
,

(22)�d ≥
∑

n∈NC

ad
kn
yn + bd

k
k = 1,… , i, d ∈ D1,

(23)�d ≥ 0 ∀d ∈ D1,

(24)z(a) ≥ 0 ∀a ∈ A
D0

F
,

(25)yn ∈ {0, 1} ∀n ∈ NC.

792	 D. D. Tönissen et al.

1 3

 Constraints (16) to (19) are equal to the DEM of the SMLRP for the scenarios
in D0 . The cost of the scenarios in D1 are approximated by MCBD. Constraint
(21) guarantees that the opened facilities have sufficient capacity. The variable
�d represents the maintenance routing costs for scenario d ∈ D1 , and Constraint
(22) approximates the constraints � ≥

∑
d∈D1

wdIMRP(y, d) . Optimality Con-
straint (22) is only added to the master problem from iteration 1 and are ignored
the first time that it is solved. The coefficients ai+1,n and bi+1 are determined from
the duals of IMRP(y, d) in such a way that ∑

d∈D1

�∑
n∈NC

ad
kn
yi + bd

k

�
=
∑

d∈D1
wdIMRP(y, d) . The generation of the varia-

bles ad
i+1,n

 and bd
i+1

 will be explained in Step 5.
2.	 Calculate the objective value SMLRP(yi) = cTyi +

∑
d∈D wdIMRP(y, d) and get xi .

If SMLRP(yi) is smaller than the upper bound, we update the upper bound with
the new objective value and set the incumbent solution at (ŷ, x̂) = (yi, xi).

3.	 For this step there are a few options:

•	 Add arg maxd∈DIMRP(y, d) to set D0 and remove it from D1.
•	 Pick more than one scenario per iteration. Possible choices are the worst, best,

middle scenario when the scenarios are sorted in ascending second-stage cost.
•	 Do nothing.

	  Note that the transfer of a scenario from D1 to D0 both removes and creates
constraints. When the scenario is removed from D1 , Constraints (22) and (23)
associated with that scenario are removed, while the addition to D0 creates new
constraints ((16)–(20), (24)).

4.	 If UB-LB
LB

 < 𝛿 , where 𝛿 > 0 is a pre-specified tolerance, the algorithm stops and
returns (ŷ, x̂) as the optimal solution and UB as the optimal objective value. Oth-
erwise the algorithm proceeds to Step 5.

5.	 Let �d
in
, �d

inl
,�d

il
,�d

is
 and �d

i
 be the dual variables for IMRP(yi, d) . The cut coef-

ficients are

 and

 Update i = i + 1 and go back to Step 1.

5 � Experimental results

Java with CPLEX library version 12.6.3 on a laptop with an Intel Core i7-4710MQ
Quad Core 2.5 GHz processor with 32 GB of RAM is used for the computational
experiments. As stopping criterion ( � ) a relative tolerance ( UB-LB

LB
 ) of 10−4 is used.

For Step 3 of our algorithm, we tested the first two addition policies and found that

ad
i+1,n

= �d
in
qd
n

∀n ∈ NF, ∀d ∈ D1

bd
i+1

=
∑

l∈Ld

�d
il
md

l
+
∑

s∈Sd

�d
is
gd
s
+ �d

i
Gd ∀d ∈ D1.

793

1 3

A column‑and‑constraint generation algorithm for two‑stage…

the best addition method is to always add the scenario with the highest second-stage
cost. We also tested strategies such as adding a scenario every 3, 5, or 10 iterations
and found that adding a scenario each iteration is the best strategy for the SMLRP.
These experiments indicated that the C&CG algorithm finds a good UB early and
that the scenarios added to the master problem guide the first-stage problem to the
optimal solution. Consequently, C&CG makes the use of some acceleration tech-
niques commonly used in BD such as a trust region and a good upper bound less
important. Furthermore, it is known from Tönissen et al. (2019), that cut strengthen-
ing does not decrease the computational time for the SMLRP. Because of these rea-
sons, we decided to keep our experiments and results simple by not combining our
algorithm with accelerating techniques for BD.

5.1 � Matrix size versus computational speed

For these experiments, we used the computational SMLRP instances from Tönis-
sen et al. (2019). This set consists of 15 instances that have 10, 25, and 50 candidate
facilities for each 2x scenarios, where x is varied between 0 and 15. We first compare
different variations of the C&CG algorithm on 15 instances, with 25 facilities and
128 scenarios. We show these results in Table 1. C&CG x% is the C&CG algorithm
where we start with x% of the scenarios in D0 and in each iteration the scenario
with the highest second-stage cost from the set D1 is moved to D0 . MCPBD x% is
MCPBD, where we start with x% of the scenarios in D0 , but no scenarios are added
afterwards. We add the scenarios with the highest weights to D0 and select scenarios
randomly when they have equal weight. We denote the average number of iterations
the algorithm takes, the average number of constraints and columns in the last itera-
tion, the master problem matrix size (the number of constraints times the number
of columns) in millions, the average number of scenarios in set D0 after termination
of the algorithm, and the average solution time in seconds. The matrix size gives
an indication of the size and the memory requirements of the problem, although a
sparse representation is used by CPLEX.

Table 1   C&CG and MC(P)BD results for the SMLRP for instances with 25 candidate facilities and 128
scenarios

Strategy Iterations Constraints Columns Size ( ×106) Scens Time (s)

DEM 1 12,097 120,199 1454 128 34
C&CG 50% 4 6693 63,915 428 68 98
C&CG 25% 9 4652 37,898 176 41 125
C&CG 10% 14 4075 26,048 106 27 152
C&CG 0% 19 4331 20,813 90 20 178
MCPBD 50% 9 6527 59,552 389 64 216
MCPBD 25% 36 6274 28,801 181 32 300
MCPBD 10% 53 7213 12,297 89 13 523
MCBD 95 12,134 153 1.9 0 1095

794	 D. D. Tönissen et al.

1 3

All C&CG strategies perform computationally better than the MCPBD strategies,
while the used number of scenarios and matrix size is only slightly higher. The fast-
est strategy is DEM, but the size of the matrix is extremely large compared to the
other strategies. The fastest C&CG strategy is C&CG 50%, but the size of the matrix
is still large, while computationally it is less than two times faster than C&CG 0%.
C&CG 0% uses more than three times fewer scenarios in the master problem, less
memory, and is computationally faster than MCPBD 50%. The C&CG strategies
have a nice trade-off between the matrix size and the solution speed. The slowest
strategy is MCBD, but the size of the problem is the smallest with only 1.9 million
possible entries in the matrix. Even when we include all kinds of accelerations (see
Table 6, page 29 in Tönissen et al. 2019) to the MCBD strategy, C&CG performs
better. In addition, MCBD performs much better than regular BD (Tönissen et al.
2019).

Table 2 shows the results when we decrease or increase the number of facili-
ties to 10 and 50 facilities, respectively. In addition, it again shows a trade-off
between computational speed and time. The C&CG strategies are slower, but the
matrix size is significantly reduced compared to the DEM. Furthermore, based on
Tables 1 and 2, it can be concluded that C&CG outperforms MC(P)BD. Unfortu-
nately, not all instances with 50 facilities could be solved within 18,000 s (5 h).

5.2 � The influence of the number of scenarios

In this section, we test the influence of the number of scenarios. The experi-
ments are only done with the instances with ten candidate facility locations due
to time constraints. Some of the instances with only 1 scenario cannot be solved
by MCBD within an hour and almost none of the instances with 512 scenarios
can be solved within an hour. MCBD is, therefore omitted from further results.

Table 2   C&CG and MC(P)BD results for the SMLRP for instances with 10, 25, and 50 candidate facili-
ties and 128 scenarios

Strategy 10 Facilities 25 Facilities 50 Facilities

Size ( × 10

6) Time (s) Size ( × 10

6) Time (s) Size ( × 10

6) Time (s) Fails

DEM 162 1 1454 34 7267 743 0
C&CG 50% 44 1 428 98 2901 4525 1
C&CG 25% 14 1 176 125 2114 7014 4
C&CG 10% 5 1 106 152 2048 7971 4
C&CG 0% 2 1 90 178 2249 8400 4
MCPBD 50% 42 1 389 216 2147 8411 4
MCPBD 25% 13 1 181 300 957 13,350 10
MCPBD 10% 4 2 89 523 – > 18,000 > 10
MCBD 0.2 2 2 1095 – > 18,000 > 10

795

1 3

A column‑and‑constraint generation algorithm for two‑stage…

Furthermore, because it was shown in Sect. 5.1 that C&CG outperforms MCPBD,
we also exclude MCPBD.

Figures 3 and 4 show the average computational time and matrix size for 15
instances with ten facilities for a different number of scenarios. These figures
do not show the results of C&CG 10%, 20%, and 50% because they are always
exactly in between the lines of the DEM and the C&CG 0% strategy. According
to the Wilcoxon signed rank test (p value = 6.338 × 10−8 ), the C&CG 0% strategy
is computationally faster than the DEM for instances with 512 or more scenarios.

Figure 4 clearly shows that the results of the matrix size and indirectly the
memory requirements are highly in favor of the C&CG 0% strategy.

Fig. 3   Behavior of the computational time for the C&CG 0% strategy and DEM for different number of
scenarios at different scales

Fig. 4   Behavior of the C&CG 0% strategy and DEM for different number of scenarios at a logarithmic
scale

796	 D. D. Tönissen et al.

1 3

5.3 � Adaptive relative tolerance

In our experiments we use an initial_tolerance of 0.25 and an end_toler-
ance of 10−4 . Consequently, the adaptive tolerance is defined as follows:
max{min{0.25, 0.5

UB-LB

LB
}, 10−4} . We combined this tolerance with the C&CG 0%

and the C&CG 50% strategies and tested it on the instances sets with 128 scenarios
and 10, 25, and 50 facilities, respectively. The results are shown in Table 3, where an
A behind the strategy name indicates that the proposed adaptive tolerance has been
used. It can be seen that using the proposed adaptive relative tolerance decreases
the computational time. As expected, the more facilities (binary decision variables)
the instance has, the larger the decrease in computational time due to the adaptive
tolerance. However, the adaptive relative tolerance also slightly increases the matrix
size for most instances, most likely because of weaker cuts and consequently more
iterations.

6 � Conclusion

We presented an algorithm to solve large-scale two-stage stochastic programs that
finds a middle ground between the DEM and BD. The algorithm can add scenarios
to the master problem in any iteration to find a balance between computational speed
and memory requirements. We showcased the approach on instances of the SMLRP
and found that our algorithm can solve instances that MC(P)BD cannot solve within
reasonable time. Furthermore, our algorithm outperforms DEM in memory require-
ments and, when the number of scenarios is large enough, also in computational
speed. Finally, the adaptive relative tolerance can be used to further trade-off com-
putational time and memory requirements. Using an adaptive relative tolerance can
be useful for instances with many binary variables for which the master problem is
the bottleneck.

Acknowledgements  The study was funded by Nedtrain. Furthermore, the authors thank Geert-Jan van
Houtum and Nicole Perez-Becker for giving valuable input.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Table 3   C&CG results with adaptive relative tolerance for the SMLRP for instances with 10, 25, and 50
candidate facilities and 128 scenarios

 strategy 10 facilities 25 facilities 50 facilities

Size ( ×106) Time (s) Size ( ×106) Time (s) Size ( ×106) Time (s) Fails

C&CG 0% 2 1 90 178 2249 8820 4
C&CG 0% A 3 1 107 157 2762 6877 4
C&CG 50% 44 1 428 98 2901 4525 1
C&CG A 50% 47 1 440 97 2487 3092 1

797

1 3

A column‑and‑constraint generation algorithm for two‑stage…

Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/
licen​ses/by/4.0/.

References

Adulyasak Y, Cordeau J-F, Jans R (2015) Benders decomposition for production routing under demand
uncertainty. Oper Res 63(4):851–867

An Y, Zeng B (2015) Exploring the modeling capacity of two-stage robust optimization: variants of
robust unit commitment model. IEEE Trans Power Syst 30(1):109–122

An Y, Zeng B, Zhang Y, Zhao L (2014) Reliable p-median facility location problem: two-stage robust
models and algorithms. Transp Res Part B Methodol 64:54–72

Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numer
Math 4(1):238–252

Birge J, Louveaux F (1988) A multicut algorithm for two-stage stochastic linear programs. Eur J Oper
Res 34(3):384–392

Chan TC, Shen Z-JM, Siddiq A (2017) Robust defibrillator deployment under cardiac arrest location
uncertainty via row-and-column generation. Oper Res 66:358–379

Contreras I, Cordeau J-F, Laporte G (2011) Stochastic uncapacitated hub location. Eur J Oper Res
212(3):518–528

Crainic TG, Hewitt M, Maggioni F, Rei W (2020) Partial benders decomposition: general methodology
and application to stochastic network design. Transp Sci

Geoffrion AM, Graves GW (1974) Multicommodity distribution system design by Benders decomposi-
tion. Manage Sci 20(5):822–844

Lee C, Liu C, Mehrotra S, Bie Z (2015) Robust distribution network reconfiguration. IEEE Trans Smart
Grid 6(2):836–842

Rahmaniani R, Crainic TG, Gendreau M, Rei W (2017) The Benders decomposition algorithm: a litera-
ture review. Eur J Oper Res 259(3):801–817

Tönissen DD, Arts JJ, Shen Z-J (2019) Maintenance location routing for rolling stock under line and fleet
planning uncertainty. Transp Sci 53(5):1252–1270

van Slyke RM, Wets R (1969) L-shaped linear programs with applications to optimal control and stochas-
tic programming. SIAM J Appl Math 17(4):638–663

You F, Grossmann IE (2013) Multicut Benders decomposition algorithm for process supply chain plan-
ning under uncertainty. Ann Oper Res 210(1):191–211

Zeng B, Zhao L (2013) Solving two-stage robust optimization problems using a column-and-constraint
generation method. Oper Res Lett 41(5):457–461

Zhao L, Zeng B (2012) Robust unit commitment problem with demand response and wind energy. In:
2012 IEEE power and energy society general meeting. IEEE, pp 1–8

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

798	 D. D. Tönissen et al.

1 3

Authors and Affiliations

Denise D. Tönissen1  · Joachim J. Arts2  · Zuo‑Jun Max Shen3 

	 Joachim J. Arts
	 joachim.arts@uni.lu

	 Zuo‑Jun Max Shen
	 maxshen@berkeley.edu

1	 Department of Operations Analytics, School of Business and Economics, Vrije Universiteit
Amsterdam, Amsterdam, The Netherlands

2	 Centre for Logistics and Supply Chain Management, University of Luxembourg, Luxembourg,
Luxembourg

3	 Department of Industrial Engineering and Operations Research, University of California,
Berkeley, CA 94720, USA

https://orcid.org/0000-0003-0252-5540
https://orcid.org/0000-0002-3749-6965
https://orcid.org/0000-0003-4538-8312

	A column-and-constraint generation algorithm for two-stage stochastic programming problems
	Abstract
	1 Introduction
	2 A column-and-constraint generation algorithm
	2.1 Adaptive relative tolerance for the master problem

	3 Maintenance location routing for rolling stock
	4 A column-and-constraint generation algorithm for the SMLRP
	5 Experimental results
	5.1 Matrix size versus computational speed
	5.2 The influence of the number of scenarios
	5.3 Adaptive relative tolerance

	6 Conclusion
	Acknowledgements
	References

