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Intertwining SU(N) symmetry and frustration on a honeycomb lattice
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Large symmetry groups in quantum many-body systems could strongly enhance quantum fluctuations and
thereby stabilize exotic quantum phases. Frustrated interactions were long known to have similar effects. Here
we intertwine the large SU(N) symmetry and the frustration in a J1-J2 SU(N) Heisenberg model on a honeycomb
lattice, where J1 is the nearest-neighbor coupling and J2 is the next-nearest-neighbor coupling. With a large-N
analysis, we obtain a rich phase diagram by varying both N and the ratio J2/J1. The ground states include Dirac
spin liquid, chiral spin liquid, valence cluster solids, flux ordered state, and stripe states. The physical properties
of each phase are discussed.
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I. INTRODUCTION

In quantum many-body systems with a large symmetry
group, the quantum fluctuations can be intensively enhanced
and thus prevent the formation of the conventional orders.
Therefore, the large symmetry group provides an interesting
direction to stabilize novel and exotic quantum states. This
scenario is fundamentally different from the common classical
limit with a large spin moment in most solid-state magnets
where a large local Hilbert space is also encountered. Over
there, the model Hamiltonian does not have nor is proximate
to a large symmetry group to access the large local Hilbert
space effectively to enhance the quantum fluctuations. There-
fore, having or being proximate to a large symmetry group can
be one important ingredient to realize exotic quantum phases.
In condensed matter physics, the large symmetry group is
often considered as a theoretical fantasy to access exotic quan-
tum phases and limits [1–3].

Now several realistic quantum many-body systems may
turn this theoretical fantasy into reality. As a representative,
the ultracold-atom system has been substantially developed
to achieve the large symmetry like the SU(N) symmetries
in the fermionic cold gases, especially alkaline-earth atoms
(AEAs) [4–8]. The past few years have witnessed the reports
of many nontrivial phenomena in this platform including Mott
crossover, antiferromagnetic spin correlation, bosonization of
the SU(N) fermions, Pomeranchuk effects, and pronounced
interaction effects [5,9–14]. Quite recently, the highly tunable
two-dimensional (2D) moiré materials have been proposed to
be a new candidate where the Hubbard models with SU(4)
and SU(8) symmetries can be realized through meticulously
designed stacking and twisting [15–17].

In this rapidly evolving field, the SU(N) Mott insula-
tors have attracted significant attention because they are a
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straightforward generalization of the conventional SU(2) one.
Tremendous efforts have been made on the theoretical side
to reveal their nature and it turns out that various inter-
esting ground states could emerge depending not only on
the lattice and the number N but also on the filling per
site [12,18–27]. Although the SU(N) symmetry seems to be
more like an idealization in the realistic solid-state materials
than the ultracold-atom systems, the Hubbard model with
emergent SU(4) symmetry has been proposed to capture the
effective physics of the spin-orbital compounds such as the
Kugel-Khomskii spin-orbital system Ba3CuSb2O9 [28] and
the spin-orbit-entangled system α-ZrCl3 [29,30], and even on
the moiré superlattice such as twisted bilayer graphene and
transition metal dichalcogenides [15–17].

In particular, the SU(N) spin physics on the honey-
comb lattice with only the nearest-neighbor antiferromagnetic
Heisenberg interactions has been extensively studied from

FIG. 1. Phase diagram for the SU(N) spins (4 � N � 9) with
J1-J2 Heisenberg interactions on the honeycomb lattice. The CSL
and inhomogeneous chiral spin liquid (ICSL) states have total flux
4π/N and 2π/N through the unit cell, respectively. The subscripts
for valence cluster solids (VCSs) represent the numbers of sites in
each cluster. The subscripts for stripe and flux ordered (FO) states
indicate the periods of the enlarged unit cells. In the gray regions, the
system is decoupled into two equivalent triangular subsystems.
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both theoretical and numerical perspectives. For the SU(2)
spins, the system is unfrustrated due to the bipartiteness of
the lattice and the ground state has an antiferromagnetic Néel
order. A valence bond state with the hexagonal plaquettes
is found for the SU(3) spins by tensor network simulations
and further confirmed by exact diagonalizations and varia-
tional Monte Carlo studies [31–33]. The SU(4) case is the
most attractive because it is believed to support a peculiar
spin liquid state known as the U(1) Dirac spin liquid (DSL)
[34]. In contrast, the N = 5 case is less studied. The ground
states of SU(N � 6) spins are inferred to be chiral spin liquid
(CSL) states [18,35,36] albeit the SU(6) case is still under
debate [37].

Another important but more well-known ingredient to sta-
bilize exotic quantum phases is the magnetic frustration [38].
For the honeycomb lattice that is discussed here, the intro-
duction of the next-nearest-neighbor Heisenberg interactions
would frustrate the antiferromagnetic Néel ground state of
the nearest-neighbor SU(2) Heisenberg interaction. Even at
the classical level, it has been shown that a spiral spin liq-
uid regime could emerge from the Néel-ordered state in the
large-S (classical) limit where quantum fluctuations are sup-
pressed [39,40]. For the spin-1/2 quantum case, the density
matrix renormalization group calculation suggests a decon-
fined quantum phase transition from the Néel order to the
plaquette order [41].

In this work, we plan to explore the interesting situation
where both the large symmetry group and frustration are
present in one system, and examine the consequences by
intertwining these two ingredients. The SU(N) honeycomb
lattice J1-J2 spin model is a manifestation of this intertwining.
Despite the existing results on the nearest-neighbor SU(N)
honeycomb lattice spin model, the role of the next-nearest-
neighbor interactions for general SU(N) spins with enhanced
quantum fluctuations is not yet clear except for N � 3
[42–45]. Moreover, the low-energy physics of the U(1) DSL
for the SU(4) spins is effectively captured by a compact QED3
theory with Nf = 8 Dirac fermions coupled to a dynamic
U(1) gauge field [46]. It is generally believed that the large
number of gapless matter could stabilize the U(1) DSL by
suppressing the space-time monopole events. It is, however,
still unclear about the lower bound for the critical number
of the gapless matter modes for this stabilization [47,48].
Since the U(1) DSL is expected to be the parent state of
many competing states in two dimensions by the spontaneous
generation of the Dirac masses [49], it would be interesting
to explore the nearby (descending) phases with the SU(N)
spin systems. Therefore, the fate of the U(1) DSL with further
interactions has triggered growing research interests [50–53].
We attempt to fill the gap at the mean-field level by investigat-
ing the SU(4 � N � 9) Heisenberg model on the honeycomb
lattice with both nearest-neighbor and next-nearest-neighbor
antiferromagnetic interactions. Given that the decoupled limit
where the system reduces to the triangular antiferromagnetic
model has been explored in our previous work [20], we fo-
cus on the finite next-nearest-neighbor interactions here and
construct the phase diagram in the large-N approximation.
The mean-field results are summarized in Fig. 1. Our re-
sults confirm the existence of the putative DSL state for
SU(4) spins and the CSL states for larger parameter N .

It is found that both of them have a uniform background
U(1) gauge flux 4π/N piercing the hexagonal plaquettes and
remain stable against the weak next-nearest-neighbor inter-
actions. When the next-nearest-neighbor interactions become
stronger but have not driven the system into the decoupled
regime, a plethora of intermediate quantum states emerge for
different parameter N , including the inhomogeneous chiral
spin liquids (ICSLs), valence cluster solids (VCSs), and stripe
and flux ordered (FO) states. All these intermediate quan-
tum states break various lattice translational symmetries. The
richness of the phase diagram reveals the intense competition
of the low-energy states due to the quantum fluctuation and
frustration.

The rest of the paper is organized as follows. The SU(N)
Hubbard model and the derivative SU(N) Heisenberg Hamil-
tonian in the strong-coupling limit are introduced in Sec. II.
With the representation of the constrained fermions, a mean-
field Hamiltonian is obtained in the large-N limit, whose
parameters are defined by the saddle-point equations. Then a
self-consistent minimization algorithm is employed to solve
the saddle-point equations and find the ground states of
the mean-field Hamiltonian strictly satisfying the local con-
straints. Specifically, the DSL and the descending tetramer
states for the SU(4) spins are discussed in Sec. III. The CSL
and other intermediate quantum phases for higher SU(N)
spins are described in Sec. IV. The paper is concluded in
Sec. V.

II. LARGE-N APPROXIMATION OF SU(N) HEISENBERG
MODEL

The SU(N) Hubbard model at 1/N filling (or equivalently
with one particle per site) can be reduced to the Heisen-
berg model of SU(N) spins in the strong-coupling limit up
to second order. The effective spin with an internal SU(N)
symmetry is naturally introduced at each lattice site and
can be expressed with the N-flavor Abrikosov fermions as
Sαβ (r) = f †

rα frβ , where α, β = 1, . . . , N . This fundamental
representation is accompanied by a local constraint on the
fermions f †

rα frα = 1 to reduce the enlarged Hilbert space.
Note that a summation over repeated flavor indices is sup-
posed hereafter unless otherwise specified. We consider such
an SU(N) Heisenberg model on the honeycomb lattice,

H = J1

∑
〈rr′〉

Sαβ (r)Sβα (r′) + J2

∑
〈〈rr′〉〉

Sαβ (r)Sβα (r′), (1)

where both the nearest-neighbor and next-nearest-neighbor
exchange interactions J1,2 are antiferromagnetic. It is apparent
that in the J2/J1 → ∞ limit, this model is equivalent to two
decoupled SU(N) Heisenberg models on triangular sublat-
tices that have been studied in our previous work and others
[20,54–56]. Here we still employ the large-N saddle-point
approximation to explore the nature in the moderate J2/J1

regime for different SU(N) spins. Distinct from a perturbative
expansion in the size of the interactions, this method has the
advantages of preserving the spin symmetry and controlling
systematic error by the higher-order correction in 1/N [3,19].
The partition function of the spin Hamiltonian in Eq. (1) can
be expressed in the form of an imaginary-time functional
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integral:

Z =
∫

Dχ†DχDμD f †D f e−S . (2)

The action is given as

S =
∫ β

0
dτ

{ ∑
r

f †
rα∂τ frα + μr( f †

rα frα − 1)

+
∑

〈rr′〉,〈〈rr′〉〉
(χrr′ f †

rα fr′α + H.c.) + N

Jrr′
|χrr′ |2

}
. (3)

A set of Lagrange multipliers μr has been introduced to
enforce the single occupation constraint on each lattice site.
There are also two types of auxiliary fields χrr′ for the
nearest-neighbor and next-nearest-neighbor bonds, to decou-
ple the fermion operators. For the sake of simplicity, we have
redefined the exchange couplings as J〈rr′〉 = NJ1 = 1 and
J〈〈rr′〉〉 = NJ2 = J2/J1. Taking the large-N limit on the action
S leads to the mean-field Hamiltonian for the noninteracting
fermionic spinons,

HMF =
∑

〈rr′〉,〈〈rr′〉〉

N

Jrr′
|χrr′ |2 + (χrr′ f †

rα fr′α + H.c.)

+
∑

r

μr(1 − f †
rα frα ), (4)

and the saddle-point equations

〈 f †
rα frα〉 = 1, (5)

χ〈rr′〉 = −〈 f †
r′α frα〉/N, (6)

χ〈〈r,r′〉〉 = −J2/J1〈 f †
r′α frα〉/N. (7)

In the following sections, we determine the ground-state
phase diagram of the spinon mean-field Hamiltonian in Eq. (4)
with 2 � N � 9 numerically by utilizing the self-consistent
minimization (SCM) algorithm developed in Refs. [18,19].
We extend this algorithm in order to involve the antiferromag-
netic next-nearest-neighbor interactions by treating the two
types of auxiliary fields χrr′ on the honeycomb lattice and
triangular sublattices synchronously and updating the chem-
ical potentials μr unitedly. The rest of the technical details are
briefly described in the Appendix. It should be emphasized
that, differing from the usual analytical method where the
local constraints are enforced only on average, the numeri-
cal SCM algorithm faithfully respects the single occupation
constraints on each lattice site [19]. Therefore, the obtained
results are very reliable at the mean-field level, especially
when the systematic correction beyond the mean-field results
becomes negligible with increasing the flavor number N .

III. MEAN-FIELD RESULTS FOR N � 4

The implementation of the SCM algorithm needs a priori
knowledge of the periodic structure of possible ground states.
The results after optimization are sometimes sensitive to the
chosen lattice geometry, especially for the cluster states that
have large unit cells and break the lattice symmetries. To
accommodate different candidate ground states as much as
possible, the two-site unit cell of the primitive honeycomb

FIG. 2. The VCS states for the SU(3) spins. (a) An ordered
hexagonal pattern form on the nearest-neighbor bonds coexisting
with (b, c) the three-site simplex VCS patterns on the next-nearest-
neighbor bonds. The expectation values χ〈rr′〉 decrease with the
increasing nearest-neighbor exchange interaction and eventually van-
ish at J2/J1 = 0.50.

lattice is enlarged along two directions of its lattice vectors by
factors �1 and �2, respectively. We then consider all enlarged
unit cells with the parallelogram geometries �1,2 � N with
periodic boundary conditions. In our calculation, the SCM
algorithm is not used to handle arbitrary fillings currently on
a certain unit cell geometry; the number of fermions per cell
is set to be an integer and equal to 2�1�2/N . Geometries that
do not meet this condition or have any unit width �1,2 = 1 are
excluded. Meanwhile the reduced Brillouin zone is discretized
into an L1 × L2 mesh with L1,2 = 50 for 2 � N � 6 and
L1,2 = 20 for 7 � N � 9. For a given J2/J1 and each allowed
geometry, the SCM algorithm is run at least 64 times with
different random seeds to reach the best optimized saddle-
point energy which is accepted as the global minimum. The
results are discussed in the following and the ground-state
phase diagram for 4 � N � 9 is presented in Fig. 1.

We first discuss the numerical results for the SU(2) and
SU(3) spins as a comparison. For N < 4, the parameter N
is not quite a large parameter yet. Therefore, the large-N
approximation may give incorrect ground states, and this is
what happened in our study of the triangular lattice where
the actual ground state of the SU(2) Heisenberg model is the
120◦ order [20]. This statement, however, strongly depends
on the underlying system. For the J1-J2 Heisenberg model
on the honeycomb lattice, we find the ground state for the
SU(2) spins is highly degenerate and is given by any dimer
covering state on the nearest-neighbor bonds in the range
0.0 � J2/J1 � 0.5, and the expectation values of the next-
nearest-neighbor bonds are exactly zero. When J2/J1 � 0.5,
the ground state is given by any dimer covering state on the
next-nearest-neighbor bonds, and the expectation values of
nearest-neighbor bonds are exactly zero. This is certainly a
significant deviation from the actual ground states. Neverthe-
less, the SCM algorithm reproduces the hexagonal plaquette
VCS state correctly for the SU(3) spins at J2/J1 = 0 as shown
in Fig. 2(a). It is found that the finite interaction J2 induces
nonvanishing bond expectations χ〈〈rr〉〉 that form the three-
site simplex VCS on two triangular sublattices illustrated in
Figs. 2(b) and 2(c). The hexagonal VCS order coexists with
the three-site simplex VCS order up to J2/J1 = 0.5 and then
the system smoothly enters into the decoupled limit where
χ〈rr′〉 = 0. It is worth noting that the three-site simplex VCS
state is still not the true ground state for the SU(3) spins on
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the decoupled triangular sublattice [57]. It is expected that
the mean-field ground states in the large-N approximation
become more reliable when the systematic error is suppressed
more for N > 3.

A. Dirac spin liquid and its instability to tetramerization

For the SU(2) antiferromagnetic Heisenberg model on the
honeycomb lattice, there could be a Dirac node of the spinon
bands without any flux at the mean-field level. Another DSL
state has also been proposed for the SU(4) spins where the
spinon filling is at 1/4 [34] and the mean-field theory is
characterized by

χ〈rr′〉 = |χ1|eıa〈rr′ 〉 , (8)∑
rr′∈hex

arr′ = π, (9)

μr = 0. (10)

All the nearest-neighbor bonds have a uniform expectation
value |χ1| but are modulated by a U(1) gauge field a〈rr′〉
such that the gauge flux is equal to π per hexagon. This is
confirmed by our calculation. It is further found that such a
π -flux DSL state is stable against the presence of the next-
nearest-neighbor interactions until J2/J1 ≈ 0.50. Specifically,
the mean-field saddle point gives a compatible gauge flux
pattern on the triangular sublattices as

χ〈〈rr′〉〉 = |χ2|eıa〈〈rr′ 〉〉 , (11)
∑

rr′∈tri

arr′ = 0 or π, (12)

where |χ2| is dependent on J2/J1 and different from |χ1|. The
gauge choice a〈〈rr′〉〉 on the two types of sublattices is not
independent once the one on the nearest-neighbor bonds is
fixed. In Figs. 3(a)–3(c), we illustrate the mean-field ansatz
refined from our numerical results. It turns out that there is
a staggered flux of zero and π on each sublattice, which is
nothing but the ansatz of the DSL state on the triangular lattice
[58]. Consequently, the Dirac nodes are intact as the J2/J1 = 0
case except for the energy shifts. In the reduced Brillouin zone
[see Fig. 3(d)], we plot the spinon band structure around the
center 	̄. The Dirac touchings occur at 	̄ and K̄ (K̄ ′) points
for the quarter and half fillings [see Fig. 3(e)].

With the increasing of the next-nearest-neighbor interac-
tions, a four-site VCS state prevails over the DSL state before
the decoupled limit at J2/J1 = 1.5. The spinons tetramer-
ize as an SU(4) singlet on four adjoining sites as sketched
in Fig. 4(a). Such a tetramerization was also obtained by
the variational Monte Carlo approach [59]. There are two
nonequivalent but symmetry-related tetramers within the
2 × 2 enlarged unit cell. At the same time, a three-site simplex
VCS forms on the next-nearest-neighbor bonds around each
center of the tetramers, leaving the center site dangling. In
the decoupled limit, the dangling site is also incorporated to
form the SU(4) singlet on the triangular sublattice. Here, the
four-site VCS state is accompanied by a large degeneracy in
the large-N limit, because any covering of the tetramers has
the same energy. Only one type of covering of the tetramers is
demonstrated here.

FIG. 3. The Dirac spin liquid for the SU(4) spins. The gauge
choice implements (a) π flux on each hexagonal plaquette formed by
the nearest-neighbor bonds and (b, c) staggered 0/π flux on the tri-
angular plaquettes formed by the next-nearest-neighbor bonds. The
hopping amplitudes are positive on the solid black bonds and nega-
tive on the dashed red bonds. The gray diamonds indicate the same
enlarged unit cell containing eight sites. (d) The original (outermost)
and reduced (blue hexagon) Brillouin zones and the high-symmetry
momenta. (e) The twofold-degenerate spinon spectrum within the
reduced Brillouin zone for the Dirac spin liquid here.

B. Fidelity susceptibility

To confirm the stability of the π -flux DSL state, we further
apply the exact diagonalization (ED) method [60] to differ-
ent geometries of the enlarged unit cell and calculate the
ground-state fidelity metric [61] as a function of the next-
nearest-neighbor interaction J2,

g = 2

Ns

1 − |〈ψ (J2)|ψ (J2 + δJ2)〉|
(δJ2)2

. (13)

As only one parameter is varied, this entry of fidelity met-
ric is known as fidelity susceptibility. Here the ground-state
wave function ψ is obtained by the ED method and Ns

is the number of sites within the supercell. The fidelity
|〈ψ (J2)|ψ (J2 + δJ2)〉| measures the orthogonality between

FIG. 4. (a) The ordered singlet tetramers (solid) for SU(4) spins
on the nearest-neighbor bonds and two types of three-site simplex
VCSs (dashed and colored) around the center of the tetramer on
the next-nearest-neighbor bonds. The gray diamond indicates the
enlarged unit cell. (b) The fidelity metric g as a function of J2/J1

for different supercells.
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two ground states that are infinitesimally close to each other
in the J2 space. The fidelity tends to vanish when there is a
symmetry-breaking or topological phase transition and thus
results in a visible peak for the quantity g. The latter has
been treated as a sensitive indicator of Mott transition for the
SU(N) Hubbard model [22].

As shown in Fig. 4(b), we implement the fidelity calcula-
tions on supercells with the geometries of 2 × 1, 2 × 2, and
2 × 3. The number of sites Ns = 4, 8, and 12 respectively. For
all geometries, there is a fairly consistent peak at J2/J1 ≈ 0.26
that becomes sharper with the increasing of system size. It
could be an evidence for the persistence of the DSL state,
although the critical value J2/J1 is about half of the mean-field
result. There seems to be another phase transition for larger
J2/J1 but no consistent results for geometries considered here.
In fact, the potential four-site VCS state is incompatible with
the lattice geometries that contain an odd width. The failure
implies that the finite-size effect is still prominent for the
stronger next-nearest-neighbor interactions.

IV. MEAN-FIELD RESULTS FOR 5 � N � 9

Going beyond N = 4, the expanding symmetry group
stimulates the quantum fluctuations effectively and favors
nonmagnetic states with a huge classical degeneracy. This
is believed to be present on any lattice for large enough N .
On the honeycomb lattice, the magnetic frustration is incor-
porated by the next-nearest-neighbor Heisenberg interactions
for the case of the SU(2) spins. The classical degeneracy may
be significantly augmented, resulting in novel quantum states.
Nevertheless, peculiar quantum-ordered states could also be
stabilized due to the competition between the geometric frus-
tration and the structure of the large SU(N) symmetry. The
synergism and antagonism of the two ingredients are further
explored for the large-N regime in this section.

A. Chiral spin liquid for 5 � N � 9

The putative CSL states for SU(N > 4) spins are confirmed
in our mean-field calculations and are quite stable against
the next-nearest-neighbor interactions especially for larger
N as shown in Fig. 1. The fall of the CSL states occurs
at J2/J1 ≈ 1.06, 0.20, 0.71, 1.27, and 1.59 for 5 � N � 9,
respectively. This CSL state preserves all lattice translational
symmetries but breaks the time-reversal and parity symme-
tries spontaneously through the following mean-field ansatz
on the nearest-neighbor bonds,

χ〈rr′〉 = |χ1|eıa〈rr′ 〉 , (14)
∑

rr′∈hex

arr′ = 4π

N
, (15)

μr = 0, (16)

and on the next-nearest-neighbor bonds,

χ〈〈rr′〉〉 = |χ2|eıa〈〈rr′ 〉〉 , (17)

∑
rr′∈A;tri

arr′ =
∑

rr′∈B;tri

arr′ = 4π

N
+ φ, (18)

FIG. 5. (a) The CSL states for 5 � N � 9 resemble the Haldane
model with a total flux 4π/N through the unit cell. The gauge fluxes
per hexagonal and triangular plaquettes are indicated by arrows
where φ is only dependent on J2. (b, c) The spinon spectra for
CSL states with N = 8 and 9 at J2/J1 = 0.5. The spinon bands are
grouped in colors according to their separations and labeled with
their total first Chern numbers. High-symmetry momenta with the
subscript � are defined in the reduced hexagonal Brillouin zones for
� × � enlarged unit cells.

where the U(1) gauge fields arr′ and the corresponding gauge
fluxes per hexagonal and triangular plaquettes are indicated
by arrows in Fig. 5(a). The letters A and B label two types
of triangular sublattices, and the U(1) flux difference φ is
dependent on J2 for a given N . It is obvious that such a
mean-field solution resembles the well-known Haldane model
[62] for the quantum anomalous Hall effect despite that the
total flux through the unit cell is quantized to 4π/N instead of
zero. For even parameters N (half-integer spins), the CSL state
has a spinon spectrum with N bands where only the lowest
one is fully occupied. On the other hand, there are 2N bands
for odd parameter N (integer spins) and the lowest two are
fully filled by the spinons. In Figs. 5(b) and 5(c), we plot
such spinon band structures or the CSL states with N = 8
and 9 in their reduced Brillouin zones. The corresponding unit
cells are enlarged by 2 × 2 and 3 × 3, respectively. Therefore,
the reduced Brillouin zones are still hexagons and the high-
symmetry momenta are defined similarly as in Fig. 3(d). For
simplicity, we distinguish them by the subscript � for an � × �

enlarged unit cell hereafter. For both even and odd parameters
N , there is a finite energy gap between occupied spinon bands
and others with higher energies due to the U(1) gauge pattern,
which means the absence of the spinon Fermi surface. Since
the spinon bands are not well separated from each other in
general, the associated first Chern number is generalized to

C1 = 1

2π

∫
BZ

dkTr[Fi j (k)], (19)

where the non-Abelian Berry curvature Fi j = ∂iA j − ∂ jAi −
ı[Ai,A j] is written in terms of the matrix-valued Berry con-
nection Ai that has the elements [Ai]nm = ı〈ψn|∂i|ψm〉 [63].
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FIG. 6. (a) The six-site VCS state for the SU(6) spins. (b) The
14-site VCS state for the SU(7) spins. The bond expectation values
|χ1| are colored with respect to their relative magnitudes in each case.
The shaded plaquettes enclose zero or π flux as indicated. J2/J1 is
taken to be 1.00.

Here (ki, k j ) is the momentum in the Brillouin zone and
∂i = ∂/∂ki . The trace is taken over the eigenstates denoted
as ψn(k) for the nth energy level. In Figs. 5(b) and 5(c), the
spinon bands are also grouped according to the separations
and labeled with their total first Chern numbers. It turns
out that the occupied spinon bands possess the first Chern
number C1 = ±1 (the sign is determined by the chirality of
the U(1) gauge flux). This is a universal result of the CSL
phase with different parameters N and interactions. There-
fore, this gapped system exhibits a nonzero Hall conductivity
σxy = N/2π after counting contributions from all N spin fla-
vors. By integrating the gapped spinon out, one can further
obtain a Chern-Simons term in the action

SCS = N

4π

∫
dtdrεμνλaμ∂νaλ, (20)

describing the dynamics of U(1) gauge field in 2 + 1 dimen-
sions and in the continuum limit. It is the Chern-Simons term
that determines the topological properties of the CSL state. In
fact, it endows the spinon with an attached flux 2π − 2π/N
and renders the fractional statistics to the excitations known
as anyons. For CSL states found here, the low-energy physics
of the U(1) gauge fluctuation can be captured by a topological
quantum field theory containing anyons with a statistical angle
π ± π/N . With open boundaries, there are also gapless chiral
modes with the spin degrees of freedom propagating along the
edges of the system, which are described by the chiral SU(N )1

Wess-Zumino-Witten (WZW) model.

B. Valence cluster solid and stripe states

In general, the formation of an SU(N) singlet requires
at least N spins. These multisite singlets may be rapidly
transformed into each other due to the SU(N) exchanges.
Nevertheless, as shown in Fig. 1, two stable VCS states are
identified for N = 6 and 7 in the regimes 0.20 � J2/J1 � 1.53
and 0.71 � J2/J1 � 1.63, respectively. In Fig. 6, we present
two such VCS states and color the nearest-neighbor bond ex-
pectation values |χ1| with respect to their relative magnitudes.
For SU(6) spins, the singlet contains six spins and manifests
as a hexagon plaquette with a uniform |χ1| and zero flux.
This is reminiscent of the same structure proposed for SU(3)
spins depicted in Fig. 2(a). The SU(7) case is more compli-

FIG. 7. Stripe state with (a) a 5 × 2 enlarged unit cell for SU(5)
spins and (b) a 3 × 2 enlarged unit cell for SU(6) spins. Dashed
quadrilaterals indicate the enlarged unit cell. The bond expectation
values |χ1| are colored with respect to their relative magnitudes in
each case. Some regions enclose zero or π flux as indicated. J2/J1 is
taken to be 1.60.

cated. A 14-site cluster is formed on the nearest-neighbor
bonds through two different expectation values and ordered
with long periods as shown in Fig. 6(b). Note that the center
hexagon with four weak bond magnitudes encloses π flux.

For the SU(5) and SU(6) spins, the intermediate quan-
tum states manifest as stripe orders in the regimes 1.07 �
J2/J1 � 1.70 and 1.53 � J2/J1 � 1.63, respectively. In Fig. 7
we illustrate these stripe states on the nearest-neighbor bonds
at J2/J1 = 1.60. It can be found that the inhomogeneous
expectation values on the nearest-neighbor bonds lead to a
enlarged unit cell containing 20 (12) sites for the N = 5 (N =
6) case. Both cases have a doubling to one of the primitive
honeycomb lattice vectors. Along this direction, the bond ex-
pectation values vanish alternatively and result in a noncontact
stripe pattern. This doubling is consistent with the adjacent
stripe state of SU(5) spins in the decoupled limit [20]. Along
the other direction, the enhanced periodicities are quintuple
(triple) for the N = 5 (N = 6) case. Some regions enclose
zero or π flux as indicated in Fig. 7, but the total flux within
the enlarged unit cell is still zero and thus the time-reversal
symmetry is preserved. The stripe states are also extensively
degenerate; several different distributions of bond expectation
values are found by the SCM algorithm and they have the ex-
act same stripe pattern including the flux ordering. Likewise,
the degeneracy is expected to be lifted upon incorporating
perturbative 1/N corrections.

C. Flux ordered state for N = 8

Apart from the VCS and stripe states, an intermediate
state breaking the lattice translational symmetries is found
for SU(8) spins in the range 1.27 � J2/J1 � 1.83. There is
a period doubling along both directions of the primitive hon-
eycomb lattice vectors. Within the 2 × 2 enlarged unit cell,
the U(1) gauge fluxes per hexagonal and triangular plaque-
ttes are always zero or π and ordered in a pattern shown in
Fig. 8(a). Thus, the lattice translation symmetry is explic-
itly broken. Hence we refer to it as the flux ordered state.
The time-reversal symmetry is preserved here, and the CSL
state does not apply here. The spinon band structure consists
of eight twofold-degenerate bands where the lowest one is
fully filled and all others are empty. To preserve the point
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FIG. 8. (a) The FO state with a 2 × 2 enlarged unit cell for N = 8
at J2/J1 = 1.50. The gauge fluxes are constantly fixed to zero or π .
(b) The ICSL state for N = 9 at J2/J1 = 1.70. This state also has a
2 × 2 enlarged unit cell. The total flux on four hexagonal plaquettes
is φ1 + 3φ2 = 2π/9. The two fluxes on triangular plaquettes within
the same hexagon satisfy the similar relationship as the CSL state.
The bond expectations are colored with respect to their relative
magnitudes in each case.

symmetries of the underlying honeycomb lattice, we take a
supercell with the 4 × 4 geometry and present the spinon band
structure in the reduced Brillouin zone as shown in Fig. 9(a).
Here, each band possesses a fourfold degeneracy due to the
extra unit cell doubling. Although the eight groups of spinon
bands are well separated from each other, their first Chern
number vanishes due to the time-reversal symmetry. As the
spinon in this flux ordered state is fully gapped, the spinon
deconfinement is unstable to the U(1) gauge fluctuation, and
the system will become confined. The system would behave
more like a confined valence cluster state.

D. Inhomogeneous chiral spin liquid for N = 9

Interestingly, there exists another type of CSL state for
the SU(9) spins in the narrow range 1.59 � J2/J1 � 1.75.

FIG. 9. (a) Spinon spectrum for the FO state at J2/J1 = 1.50.
There is a fourfold degeneracy for each band. (b) Spinon spectrum
for the ICSL state at J2/J1 = 1.70. The spinon bands are grouped in
colors according to their separations and labeled with their total first
Chern numbers. High-symmetry momenta with the subscript � are
defined in the reduced hexagonal Brillouin zones for � × � enlarged
unit cells.

This state further breaks the lattice translation symmetries
and hence differs from the CSL states discussed previously.
The inhomogeneous bond expectation values result in a 2 × 2
enlarged unit cell as shown in Fig. 8(b). There are two types
of gauge flux depending on J2/J1 through four hexagonal
plaquettes and the total flux within the enlarged unit cell is
φ2 + 3φ2 = 2π/9, half of that in the homogeneous CSL state.
A similar 2 × 2 inhomogeneous CSL state superimposed on
an average 2π/N flux per plaquette has also been reported
as the lowest competing state for the antiferromagnetic SU(5)
spins on the square lattice [18]. Moreover, within each hexag-
onal plaquette, the gauge fluxes piercing two types of the
triangular plaquettes satisfy the similar relationship of the
homogeneous counterpart described in Sec. IV A. Thus the
ICSL state is also a variant of the Haldane model. In Fig. 9(b),
the spinon band structure is plotted in the reduced Brillouin
zone corresponding to a 6 × 6 enlarged unit cell. It is clear
that the flux pattern results in a spinon band structure with
72 bands, where only the lowest eight are fully occupied,
and they are separated from the others by a gap. The asso-
ciated first Chern numbers for grouped bands are calculated
and marked in Fig. 9(b). In spite of the inhomogeneity, the
occupied spinon bands also possess the first Chern number
C1 = ±1, the same as the CSL states. Therefore, the ICSL
state exhibits a total Hall conductivity σxy = N/2π as well
and its effective action contains the same Chern-Simons term
as Eq. (20) in the continuum limit after integrating out the
gapped spinons. The obtained low-energy effective theory is a
topological quantum field theory with the chiral Abelian topo-
logical order and anyonic statistics. The spinon is converted
into anyons with a statistical angle π ± π/N in the analogous
manner of the homogeneous case. It is expected that gapless
chiral states carrying spin degrees of freedom are supported
by the ICSL as edge modes, and their effective theory is also
described by the SU(N )1 WZW model.

V. DISCUSSION

In this work, we perform a mean-field analysis on the
SU(N) Heisenberg model on the honeycomb lattice with both
nearest- and next-nearest-neighbor antiferromagnetic interac-
tions. In the large-N approximation, a variety of intermediate
ground states are identified subject to the strict local con-
straints. For the SU(4) spins, the DSL state with a gauge
flux π per hexagonal plaquette and its instability towards the
tetramerized spin singlets when the next-nearest-neighbor ex-
change interaction predominates are confirmed. The putative
CSL states at J2 = 0 for higher SU(N) are also obtained and
the associated gauge fluxes per hexagonal plaquette follow the
same form of 4π/N . The next-nearest-neighbor bond expec-
tations would develop in the presence of J2 and render the
ground state to a variant of the Haldane model with 4π/N total
flux through the unit cell. These CSL states preserve the lattice
translation and have a unity first Chern number for the occu-
pied spinon bands. A series of intermediate quantum phases
breaking various lattice translation symmetries would appear
when the next-nearest-neighbor interactions become stronger.
For the SU(8) and SU(9) spins, inhomogeneous states with
2 × 2 ordering pattern are found. While the former preserves
the time-reversal symmetry, the latter is identified as a new
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ICSL state. Apart from the VCS states containing 6 sites (or
14 sites) found for the SU(6) [or the SU(7)] spins, there are
two types of stripe ordered states manifesting themselves in
the form of a doubled period along one of the honeycomb
lattice vectors.

The SU(4) DSL state is supposed to be the ground state
of the spin-orbital SU(4) symmetric Kugel-Khomskii model
of Mott insulators on the honeycomb lattice. There might
be an intrinsic instability due to the monopole proliferation.
There is no definitive conclusion for the stability of the SU(4)
DSL state at this stage. Our mean-field results provide an
evidence for its stability against the antiferromagnetic next-
nearest-neighbor interaction. This is also supported by the
fidelity analysis using the ED method and consistent with
previous variational Monte Carlo study [59]. But all numerical
methods suffer the significant finite-size effect in the nearby
tetramerized state, resulting in an undetermined phase bound-
ary. The mean-field phase boundary obtained in this work is
overestimated and would be modified by the 1/N corrections.
More numerical tools such as tensor network algorithms are
needed to give a conclusive result. On the other hand, mul-
tispin interaction terms, e.g., the scalar spin chirality, could
destabilize the DSL state in principle. The consequence on
current results is an open question.
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APPENDIX: THE SCM ALGORITHM

The SCM algorithm is a nondeterministic optimization al-
gorithm starting from the randomly initialized auxiliary fields
χrr′ = |χrr′ |eıϕrr′ and unified chemical potentials μr on a given
geometry [19]. For convenience, both the amplitudes and
phases of the bond operators χrr′ are taken to be uniform
distributions, e.g., |χrr′ | ∈ [0.02, 0.20] and ϕrr′ ∈ [0, 2π ], re-
spectively. The default value of μr is chosen to be zero before
optimization. It is obvious that the random initial state violates
the desired single occupation in general and one can denote
the deviation of the local fermion density as

δnr = 1 − 〈 f †
rα frα〉, (A1)

where the expectation value of the local density operator is
obtained using the ground state of the mean-field Hamiltonian
HMF with initialized parameters at this stage. To correct the
density, one must adjust the chemical potential μr locally by
δμr. As we will show later, this adjustment will be imple-
mented iteratively to achieve the self-consistency; therefore,
it is sufficient to consider the lowest order at each step, which

can be expressed as

δμ = G−1δn. (A2)

Here δμ and δn are column vectors with elements δμr and
δnr, respectively. The response matrix G is nothing but the
inverse of the density-density correlation in real space and at
zero frequency. It is a real symmetric matrix by definition.
In principle, the correlation elements Grr′ can be calculated
from the noninteracting mean-field Hamiltonian HMF. So far,
all derivations are done within the framework of the stan-
dard linear response theory. However, there is a caveat that
the invertibility of the density-density correlation cannot be
guaranteed despite the fact that all its eigenvalues are real.
Actually, at least one eigenvalue of the matrix G must be ex-
actly zero because it is trivial to adjust the chemical potentials
uniformly at each site. The fermion density will remain intact
and result in a naive divergence of G−1. To remediate this
fatal flaw, Hermele and Gurarie proposed a modified diago-
nalization procedure in Ref. [19]. In particular, only nonzero
eigenvalues gi are focused on after diagonalizing

G = UgU −1. (A3)

We have assigned the index i to the diagonalized basis. In such
a basis, the linear transformation in Eq. (A2) formally reduces
to

U −1δμ = g−1U −1δn. (A4)

By mapping the vanishing eigenvalues to infinity, the adjust-
ment of the chemical potential δμ becomes well defined; that
is,

(U −1δμ)i =
{

g−1
i U −1δn, gi 
= 0

0, gi = 0.
(A5)

With the above relationship, a new mean-field Hamiltonian
HMF and related ground state can be generated by a simple
replacement, μr → μr + δμr. The local fermion density δnr

should be updated concurrently, resulting in a new deviation
δnr as Eq. (A1). Then, the problem returns to find the adjust-
ment of chemical potentials in the current ground state. These
processes complete the self-consistent procedure. The prob-
lem of searching for an appropriate set of chemical potential
deviation δμr can be solved by iterating the procedure until a
fixed point is reached. This is the core of the SCM algorithm
to strictly impose the local constraints nr = 〈 f †

rα frα〉 = 1.
After meeting the first saddle-point condition, Eq. (5), the

others about the bound operators still need to be satisfied.
With the modified chemical potentials calculated in the pre-
vious stage, an updated set of auxiliary fields χrr′ can be
determined via

χ〈rr′〉 → −〈 f †
r′α frα〉/N, (A6)

χ〈〈r,r′〉〉 → −J2/J1〈 f †
r′α frα〉/N. (A7)

Once again, the local constraints are violated if the system
has not yet converged to the true saddle point. The amended
auxiliary fields, together with the chemical potentials satis-
fying the single occupation condition in the previous stage,
can be treated as a new and better starting point. The two-
stage updating procedure is thus implemented iteratively until
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reaching a convergence in energy within a given numerical
error. It has been proved rigorously in Ref. [19] that within
each optimization process the energy of the final state must
be less than or equal to that of the initial state. Therefore,
the SCM algorithm ends at one of the local energy minima.

In order to best estimate the global minimum, the program
should be run with differently initialized fields, which can
be realized by varying the random number seeds. Finally, a
collection of local minima will be reaped and the lowest one
is accepted as the best result of the ground state.
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