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Electrical-STGCN: An Electrical
Spatio-Temporal Graph Convolutional Network
for Intelligent Predictive Maintenance

Abstract— With the rapid improvement of industrial In-
ternet of Things and artificial intelligence, predictive main-
tenance (PdM) has attracted concerns from both academia
and industry. While equipment is working, the electrical at-
tributes have intrinsic relations. Meanwhile, they are chang-
ing over the time. However, existing PdM models are often
limited by a lack consideration of both attribute interactions
and temporal dependency of the dynamic working system.
To address the problem, this paper proposes an Electrical
Spatio-Temporal Graph Convolutional Network (Electrical-
STGCN) for health estimation. It takes a sequence of elec-
trical records as input. Next, both attribute interactions and
temporal dependency are established to extract features.
Then, the extracted features are fed into a health predic-
tion component. Finally, the output of the Electrical-STGCN
(i.e., Remaining Useful Life) can help the workers decide
whether to carry out equipment maintenance. The effec-
tiveness of the proposed method is verified with real-world
cases. Our method achieves 85.2% Accuracy and 0.9 F1-
Score, which is the current state-of-the-art performances.

Index Terms—industrial Internet of Things, artificial in-
telligence, predictive maintenance, temporal dependency,
attribute interactions

[. INTRODUCTION

Predictive maintenance (PdM), a data-driven health predic-
tion strategy, is widely employed in various of fields such as
public transport [1], pharmaceutical systems [2], and semicon-
ductor manufacturing [3] on grounds of minimizing operation
costs, making reliable predictions, and improving equipment
conditions. Firstly, it can minimize operating costs by using
machine learning algorithms on enormous data streams to de-
termine when maintenance activities are necessary. Secondly,
it can make more reliable predictions by considering historical
data, engineering approaches, and statistical methods. Thirdly,
it can improve working conditions of the industrial equipment
because it can deal with faults detection before they happen.
Thus, research shows that PdM is the current state-of-the-art
choice for maintenance of industrial equipment.

In the context of Industry 4.0, physical and digital systems
are converging to provide novel PdM solutions. It is related
to a systemic adoption of Internet-of-Things (IoT), 5G/6G
technology, and artificial intelligence [4]. Ayvaz and Alpay
[5] develop an IoT-based PdM system in a manufacturing
system. By utilizing data collected from the IoT sensors, the
proposed system can predict potential failures with machine
learning algorithms. Cheng et al. [6] propose a data-driven
PdM planning framework for civil engineering based on IoT

technology and machine learning. The framework contains an
information layer and an application layer. Data collection
and integration are conducted in the information layer while
the application layer is applied for PAM. To improve data
transmission efficiency, keep data significance, and reduce
storage amounts in the wireless sensor networks, Chen et
al. [7] provide a spatiotemporal data compression approach
with low transmission cost and high data fidelity. Information
security is another crucial part in the IoT networks. Lin et al.
[8] propose a privacy-preserving multiobjective model in 6G
IoT environments. The latest research achievements on IoT
and data communication provide more solutions for PdM.

Existing PAM approaches can be grouped into statistical
approaches and artificial intelligence (AI) based approaches
[9]. The statistical approaches establish explicit mathemati-
cal models for operational capability degradation. Depending
on how to obtain the condition monitoring data, the sta-
tistical approaches can be classified into Direct approaches
and Indirect approaches [10]. The Direct approaches include
Bayesian models [11], regression-based models [12], Gamma
processed [13], and Markov-based models [14]. The Indirect
approaches include stochastic filtering-based models [15], co-
variated based hazard models [16], and Hidden Markov Mod-
els (HMM) [17]. Implementing statistical approaches requires
five generic steps, i.e., preliminary data analysis, health indi-
cators construction, degradation model establishment, health
prediction, and evaluation [18]. Although statistical models
perform well, it is difficult to establish detailed mathematical
model for complex working process. Additionally, statistical
models are complicated because they require professional
background such as mathematical and mechanical knowledge.
Moreover, the over-reliance on expertise is time-consuming
and unsuitable for huge amounts of sensor data streams.

The Al-based approaches monitor the manufacturing sys-
tems with smart sensors in real-time and estimate the health
condition with machine learning (ML) algorithms to provide
intelligent PAM service. With the improvement of industrial
Internet of Things (IIoT) and artificial intelligence, the Al-
based approaches outperform the statistical approaches in
terms of dealing with real-time environments, handling high-
dimensional data, and capturing valuable insights. Although
the Al-based PdM is the most effective for health prediction,
there exist some challenges that need to be overcome. Take
current and voltage of the working equipment for an example.
These electrical attributes have intrinsic relations, meanwhile,
they are changing over time. Thus, it is necessary to consider
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both attribute interactions and temporal dependency of the
monitored system for health estimation.

However, existing Al-based approaches lack consideration
of attribute interactions of industrial equipment, which affects
the performance of PAM model. While the equipment is work-
ing, there are potential interactions between each attribute.
ML algorithms employed in PdM focus more on extracting
features from the monitoring data whereas neglect the transfer
relationships between the physical attributes.

Other than that, most Al-based approaches lack the consid-
eration of temporal dependency of the manufacturing system,
which makes the detection less reliable. The health condition
depends on both real-time and historical data because current
health condition is affected by the previous. Hence, it cannot
always determine the health condition by a single record but
needs the inter-correlations of a relatively long sequence.

To solve these problems, we propose an Electrical Spatio-
Temporal Graph Convolutional Network (Electrical-STGCN)
for Remaining Useful Life (RUL) estimation. Three steps are
required to implement the model. Firstly, electrical data is con-
sistently collected as input. Secondly, attribute interactions and
temporal dependency of the working system are established
by a spacio-temporal graph convolutional network to extract
features. Thirdly, the features are fed into a health prediction
network for RUL estimation. The contributions of this paper
are listed as follows:

1) We propose an Electrical-STGCN for intelligent PAM of
the manufacturing system. Different from the existing
works, both attribute interactions and temporal depen-
dency are considered for current health estimation.

2) We introduce a novel kernel function to address over-
smoothing in the graph-based PdM application. It is
calculated by the eigenvector which has the lowest non-
zero eigenvalue of the symmetric-normalized Laplacian
matrix. We also provide a similarity kernel function to
model the attribute interactions.

3) The effectiveness of Electrical-STGCN is verified with
real-world cases. The results suggest that our approach
achieves the current state-of-the-art performance.

The rest of this paper is organized as follows. Section II
gives a literature review about commonly used ML algorithms
in PAM works. Section III describes the proposed method.
Experiments and analysis are presented in Section IV. Finally,
conclusion and future work are discussed in Section V.

Il. LITERATURE REVIEW

The Remaining Useful Life (RUL) refers to the remaining
service life of the system after a period of operation. Accurate
RUL estimation is of crucial importance in the manufac-
turing system where high reliability is required. With the
improvement of data analytics, various of ML algorithms are
employed in PAM works to improve the prediction results.
These algorithms can be grouped into four main categories,
i.e., Supporting Vector Machines (SVM), K-Means, Ensemble
Learning (EL), and Artificial Neural Network (ANN).

SVM is a well-known supervised algorithm for classification
and regression tasks because of its high precision [19]. Susto

et al. [20] exploit an SVM model to separate faulty and non-
faulty runs of the equipment in semiconductor manufacturing.
In this study, 3671 records are collected and analyzed. The pro-
posed model is trained through Monte Carlo cross-validation
(MCCV) and tested on a real production dataset. Li et al.
[21] propose an SVM model for faults detection in the rail
network to increase network velocity, avoid interruptions and
increase safety. In this work, huge volumes of historical data,
failure data, weather data and maintenance data are used to
predict truck performance alarms leading to failure. Despite
the promising results of SVM, there are some disadvantages.
Firstly, it lacks temporal dependency while making decision
on performing the maintenance activity or not. Secondly, it
is difficult to be optimized in a complex condition where the
cost of unexpected breaks is difficult to estimate.

K-Means is a popular unsupervised algorithm for clustering
tasks on grounds of good performance and easy-to-understand
[22]. It aims to find K clusters in which samples are “close”
to each other, so “far” samples can be regarded as anomalies.
Uhlmann et al. [23] propose a K-Means algorithm for faults
detection in a selective laser melting machine tool. In this
work, platform temperature, oxygen percentage, and process
chamber pressure are manually selected. The proposed model
can identify four target conditions. Although K-Means is easy
to implement, it has some drawbacks. Firstly, it is difficult
to determine the number of clusters. Secondly, it is order
sensitive, i.e., the data entry order will cause changes to the
final results. Thirdly, different data normalizing strategy will
also impact the final results.

EL algorithms generate many weak classifiers and aggregate
them together to form better results [24]. Two famous algo-
rithms of EL are Random Forests (RFs) and AdaBoost. Canizo
et al. [25] present a cloud-deployed Big Data architecture
using RFs algorithm to predict failures on wind turbines.
In this work, status and operational data are gathered and
only status data is selected. It has already been demonstrated
that one company’s productivity has increased 3% after em-
ploying this framework. Li et al. [26] propose a novel non-
convex archetypal one-class classification algorithm, which
combines the random projection and the AdaBoost algorithm
for anomaly detection in cyber-physical systems. In this study,
random projections are used to detect anomalies in arbitrary
dimension and the AdaBoost is used to adaptively select the
appropriate directions of the projections. The proposed method
is evaluated with both artificial and real world datasets and
the result is promising. To the best of our knowledge, EL is
one of the most used and compared ML algorithm in PdM.
However, it has some shortcomings, for instance, it is complex
in practice and time-consuming in computation.

ANN, inspired by the biological neurons, has been widely
used in PAM works on grounds of handling high-dimensional
data, extracting valuable features, and dealing with real-time
environments. Olgun and Seren [27] provide a Long Short-
Term Memory (LSTM) network, a type of Recurrent Neural
Network (RNN), on the Apache Spark framework for engine
anomaly prediction. In this work, 21 physical attributes are
gathered and 10 of them are manually selected as the input.
The accuracy indicates the reliability of the proposed model.
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Another variant of the RNN, known as Gated Recurrent Units
(GRU), is quite simpler to implement than LSTM as it has less
number of gates. Lu et al. [28] propose an Autoencoder Gated
Recurrent Units (AE-GRU) model for RUL prediction. In this
work, important features are extracted by the autoencoder, and
then fed into the GRU. The AE-GRU has good accuracy in
predicting RUL. Essien and Giannetti [29] propose a deep
convolutional LSTM (ConvLSTM) architecture for sequential
forecasting problems in the smart factories. In this work, the
internal speed data of a metal can bodymaker machine is
utilized as input and the sliding-window method is employed.
The effectiveness of ConvLSTM is demonstrated by real-
world data collected from a metal packaging plant. Wang et
al. [30] introduce a Temporal Convolutional Network (TCN)
for machinery prognostics. In this work, condition monitoring
data are directly used for RUL estimation. Zhang et al. [31]
and Wang et al. [32] propose the spatio-temporal graph neural
network (STGCNN) to estimate the RUL of aircraft engines.
They construct graph convolutional network on spatial learning
and temporal convolutional network on sequence learning. The
experimental results demonstrate that the established spatio-
temporal graph structure can model the system accurately as
well as improve the performance of RUL estimation. However,
the graph-based networks have the problem of over-smoothing.

To sum up, one common disadvantage of SVM, K-Means,
and EL is lacking temporal dependency of the working system.
Because current health condition is affected by the previous,
determining health condition by a single record is less reliable.
The RNNs focus more on extracting temporal features whereas
neglect the potential transfer relationship between different at-
tributes, leading to a loss of attribute dependency information.
Graph-based methods face the problem of over-smoothing. To
address these issues, we employ an Electrical-STGCN, which
considers both attribute interactions and temporal dependency
of the working system for RUL estimation. Besides, we design
a novel kernel function to address the over-smoothing problem.

[1l. THE PROPOSED ELECTRICAL-STGCN
A. Data acquisition

To support the PdM applications, we collected the data from
a horizontal machining center in a manufacturing corporation.
The three-phase circuit wiring diagram is shown in Fig. 1.

Circuit

Breaker ¢= Electrical Sensor

Horizontal
4= Machining
Center

Fig. 1. Equipment layout.

Raw electrical data is collected by the smart sensor attached
to the industrial equipment. After data pre-processing, current
health condition is estimated by the proposed algorithm to sup-
port the workers to carry out equipment maintenance. Within

the practical three-phase circuit, it is dangerous to measure the
high-current and the high-voltage directly. Thus, three mutual
inductors that responsible for A phase, B phase, and C phase
are utilized to transform high-current and high-voltage to low-
current and low-voltage respectively. Additionally, the function
of the circuit breaker is to prevent current and voltage overload
so as to ensure the safety of the workers and devices.

The dataset consists of ten maintenance cycles using run-to-
fail (R2F) policy while processing different work-pieces and
the sampling rate is 5S0Hz. In the first eight maintenance cycles,
anomalies occurred during the working process. In the last two
maintenance cycles, random anomalies were captured when
the equipment was in off-working condition. The details of
each maintenance cycle are presented in Table I.

TABLE |
DETAILS OF EACH MAINTENANCE CYCLE (MC).

MC 1 2 3 4 5 6 7 8 9 10
k' 1558 126 1714 1747 4415 2810 1063 3756 6289 10916

No.k*" is an anomaly observed in each MC. There is a total
of 34394 records and each record contains 15 attributes. Data
range, mean value, and standard deviation of each signal (i.e.,
attribute) are shown in Table II. Health condition (i.e., RUL) is
calculated according to these records. When the RUL reaches
a predefined alarm threshold &, it means that the system needs
maintenance [33].

TABLE Il

SPECIFICATIONS OF THE TOTAL 34394 RECORDS.
Attribute Variable Range Mean/Standard Deviation
A phase power factor cosy 4 0.40-1 0.84/0.17
B phase power factor cospp 0.27-1 0.82/0.20
C phase power factor cos ¢ 0.31-1 0.78/0.23
A phase reactive power Q) 4 1-133 W 25.21/25.11
B phase reactive power Qg 3-152 W 32.76/32.05
C phase reactive power Q¢ 1-137 W 30.79/33.02
A phase current Ia 0-34.8 A 6.58/7.05
B phase current Ip 0.4-40 A 8.03/8.69
C phase current Ic 0-38 A 7.11/7.83
A phase voltage Uy  2132-2299V 223.20/3.03
B phase voltage Up 217.6-231.7V 226.74/2.39
C phase voltage Uz  2179-2314 V 226.34/2.53
A phase frequency fa  49.96-50.03 Hz 49.99/0.02
B phase frequency fB  25.02-50.03 Hz 49.99/0.14
C phase frequency fc  49.96-50.03 Hz 49.99/0.02

B. Problem formulation and data transformation

Given an electrical data sequence X, = {X'" 7! . X'} ¢
R7*15 of 7 past time periods (i.e., window size 7), where X' =
(cospa’,cospp’,cospc’, QY, Qs Qe Iy, 15,15, U4, Uk,
Ub, fhs o &) € RV e {t — 7 +1,..., 1}, our target is
to estimate the current health condition RUL?.

To establish the potential interactions between attributes and
their temporal dependency in the dynamic working system, X,
should be organized into the spatio-temporal graph G, which
is a stack of spatial graphs {G*~7T1 ... G'} corresponding to
{X!=7+1 X"} at each time step. We take the X' — G? for
an example to explain how to organize X, into G..
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Fig. 2. Spatio-temporal graph representation of the X, for RUL
estimation.

As shown in Fig. 2, G! is defined as:

t t t t
G = (V,E" A", 1
t_f,t t t t t
where V' _{Upower factor’Upower’Ucurrent’vvoltage’Ufrequency}

is a set of vertices. B! is the set of edges expressed as
E' = {e},[Vj,k € V'} € RS, el = 1if j, k are connected,
el = 0 otherwise. A" € R>*% is the adjacency matrix.
We assign cos 4", cospp’, and cos oo’ 0 Vppuer factors
4> Qg and Q6 10 Upgep Iy, T, and I¢ 10 gy e U,
Ug, and U 0 vy p114005 fas fs and f& 10 v 0cn e, - Thus,
the matrix representation of V* in each G? is formulated as:

cosply  cosply  cospl,
Qy Qz Q¢
vi=| I 14 It | e R5*3, 2)
Uy Uz  Ug
fh 5 f&

It is worth noticing that the topology of G' keeps the
same while the attribute values are different when ¢ varies.
In addition, We let G* be full-connected (i.e. E* = 1) so as to
model the potential interactions between different vertices. In
order to model how strongly two vertices interact with each
other, we attach a value aék, which is computed by some
kernel functions for each e . The a}; s are organized into the
weighted adjacency matrix A’.

C. Kernel functions

. . . t t
.In this section, we design t.he Uim(5k) and U (k) Where
Vj,k € V! as kernel functions to compute the weighted
. . t t t :
adjac.engy .matrlces AS".” and A¢1.' Thc:z A, describes
the similarity between different vertices (i.e., v]tmwer Factors
vt vt vfmlmge, and ’U;requency) at time ¢ to model

power> “current’
potential interactions. The AZn is calculated by the eigenvector
which has the lowest non-zero eigenvalue of the symmetric-
normalized Laplacian matrix to reduce over-smoothing. We
combine them for message passing in each spatial graph G®.
A straightforward idea in designing the kernel function is to
use the distance measured by Lo norm. However, it is against
the intuition that vertices tend to be influenced more by the
closer ones. To solve this problem, we use the inverse of Lo
norm to measure the similarity between vertices defined as:

o _ [/ = vl [0S —vill, # 0,
0, otherwise.

3)

sim(j,k) =

The other problem is that in most graph neural networks
(GNNgs), vertex representations become over-smoothed after
several rounds of message passing (i.e. convolutions) as the
representations tend to be reach a mean equilibrium equivalent
to the stationary distribution of a random walk. To solve this
problem, we use the eigenvector ¢!, which has the lowest
non-zero eigenvalue of the symmetric-normalized Laplacian
matrix shown in Fig. 3.

Matrix Colormap
W max

Vertex Colormap
M max min

e -
2 |t _
é, Ve, =|a )= | L‘T L‘
%> "

Compute and sort the m
Compute Lmrm non-trivial eigenvectors

S manbe
~ 3
0

)

.

Compute the gradient

Fig. 3. Overview of the steps required to compute afb(j k)" Number
1 to 5 correspond to vertices power factor, power, current, voltage, and

frequency respectively.

First, we compute the symmetric-normalized Laplacian ma-

trix LY ., using E' and degree matrix D' formulated as:
Lhorm = (D)2 (D' —E)(D) "2 € RS, (4)

where both E* and D' are of size 5 x 5. Then, the eigenvectors

@' of the L!  are computed and sorted so that ¢! € R1*®

has the lowest non-zero eigenvalue and ¢!, € R'*® has the

m-th lowest. After that, we select ¢! and compute its gradient

(a matrix) formulated as:

{d)i(j) — Py, ek=1,
0, otherwise.

(&)

t _
A, (j.k) =

. . . . ‘
. The visual interpretation of Ugim (5 k) and a &, (k) A€ shown
in Fig. 4.

5 Similarity Aggregation
t t t At
G Usin = 2.V * &imqjy
j=1
s ¢1 Aggregation
t t
2lva |
A to_ =l ie Absolute Weighted Sum
h =5 i.e.
t Sum of the Absolute Weights
|Zlam1,n [
=

Final Aggregation Result
_ t t
U—}/'UA +(1_7)'Usim

1:Vertex receiving the messsage
2 to 5: Neighbor vertices
U :Feature at vertex j

Fig. 4. lllustration of how the proposed kernel functions work
at one vertex. The final aggregation result is the weighted average of
similarity aggregation and ¢, aggregation. ~ is a hyper parameter.

We also give theoretical support for the choice of afpl( k)
can address over-smoothing while using the K-walk distance to
measure the difficulty of message passing. Thus, we provide a
general way to solve the over-smoothing in graph-based PdM.

Definition 1 (K-walk distance). Suppose j and k are two
vertices distributed on a graph. K-walk distance dg(j,k) is
the number of times that k is hit while starting from j and
randomly moving K steps.
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Definition 2 (Hitting time). Suppose starting from vertex j
and ending to vertex k on a graph. Hitting time Q(j, k) is the
expected number of steps in a random walk. The transition
probability of each vertex is P = 3, where d is node degree.

Conjecture 1 (a, b, (k) CAN reduce expected hitting time).
Suppose that j, k are uniformly distributed random vertices
such that qSﬁ(j) < qSﬁ(k.). Let h be the vertex obtained from j
by taking one step, then the expected hitting time is decreased
proportionally to ()\tl)_l and E; 1[Q(h, k)] < E; £[Q(4, k)]

Proof: In [34], the hitting time Q(7j, k) is given by:

G(k,k)
dy d;

Q(]a k) = vol - ( )’ (6)

with \! and ¢’ being the m-th eigenvalue and eigenvector
of the symmetric-normalized Laplacian matrix L., vol the
sum of the degrees of all vertices, and G the Green’s function
for the graph formulated as:

5 -5 Iy t
=djd,* ) /\Tncbm(j@m(ky )

We use qbfn(j) < qﬁn(k) to simplify the argument without
having to consider the change in sign since the direction of the
eigenvector is not deterministic. Supposing \{ < A&, the first
term of equation (7) has much more weight than the following
terms. Since h is the vertex obtained from j by taking one step
in the direction of the gradient of ¢’, we have:

¢t1(h) - ¢t1(j) > 0. ®)

We want to show that the following inequality holds:
Ej k[Q(h, k)] < E;x[Q(: k). ©
It is equivalent to:

E; k[G(h, k)] > E; [G(j, k)]. (10)

V=

By t he hypothesm A < AL, we can approximate G(j, k) ~
d}dy* 3r el

(;Bl(k), so inequality (10) is equivalent to:

E;, k[dh K )\t ¢1(h ) > E;, k[ d* /\t ¢1 HPLlD

Removing all equal terms of inequality (11) from both sides,
it is equivalent to:
1 1
Ej ildj; @) > Ejkld} d1;)]- (12)
From inequality (8), we know that gb’i(h) > qbﬁ(j), and from
the choice of h being a step in the direction of qu’i, we believe
that E(d;,) > E(d;). Thus, we also believe that conjecture 1
should hold in general.
In conclusion, using the Afp reduces the influence between

different vertex from the random-walk hitting times so as to
reduce over-smoothing.

D. Electrical-STGCN realization

As shown in Fig. 5, the Electrical-STGCN consists of two
main components, i.e., the Spatio-temporal Graph Convolution
Network (STGCN) and the Health Prediction Network (HPN).
The STGCN conducts spatio-temporal convolution operations
on the graph representation of the electrical sequence to extract
feature V-, which involves attribute interactions and temporal
dependency of the observed records. The HPN takes the V.,
as input to estimate the RUL of the working system.

Overall, there are two main differences between the pro-
posed Electrical-STGCN and traditional Spatio-Temporal Con-
volution Neural Network [32]. Firstly, our proposed Electrical-
STGCN constructs the graph representation of electrical data
sequence in a totally different way with amm( ) and a b, (.k)
kernel functions. Secondly, beyond STGCN, the HPN is added
for health estimation. There are three steps that required to
implement the Electrical-STGCN.

1) Data normalization. The first step is to normalize Ag;,,,
Ay, € R7*5%5 computed by equation (3) and equation (5).
The Ag;,, is a stack of {At-_ﬂ'l, LAl

sim 91m} We Symmetrically
normalize each Azzm € R5%5 formulated as:

Al = (AL, )T3AL (AL )7

5
sim sim sim szm)

13)
where A’  is the diagonal Vertex degree matrix of the A’ .
Ay, is a stack of {A] 1T+1 1}. For each A 6, € R3*5,
we normalize each row by its L1 norm to assign larger weight
to the elements in the forward or backward message passing
direction with a total weight of 1, which is formulated as:

|Ag, ()]
At — 1

N SR
where n is row number, and € is an arbitrarily small positive
number used to avoid floating-point errors. In addition, we
normalize each V! € R®*3 and then stack them orderly into
VT c RTXSXS_

2) Spatio-temporal graph convolution. The second step is
to conduct the spatio-temporal graph convolution. It takes V.,
Asim. and Ay, as input. The output is feature V. € R7*5%3,
involving both attribute interactions and temporal dependency
of the observed electrical sequence. Firstly, we conduct the
attribute interaction in each G* of stack G, which is defined
as:

(14)

\& =7Atlvt+< VALV, (15)
where + is a hyper parameter; A_,,,, and A can be considered

as the prior knowledge about the potential 1nteracti0ns between
different gt_t\r_igutes at time ¢. Secondly, we stack each V! into
V, = {V&=7t1  V'} € R™5*3_ Thirdly, we feed the V,
into a temporal residual block shown in Fig. 6(a) to establish
the temporal dependency of the working system.

3) Health estimation. The third step is to estimate current
health condition using the HPN. The HPN receives V., as input
and treats the time dimension as feature channels. The output
is RULE. The network architecture is shown in Fig. 6(b).
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Electrical Sequence
XT z{xlfvrl,".’ X!}e RrxlS

Spatio-temporal Graph
G, ={G"",..,G'},G' =(v',E',A') Convolution Network (STGCN)

Spatio-temporal Graph

\/ 7x5x3
V. eR

Health Prediction
Network (HPN)

]

2 3wt coeeee ToiT Lime

—
Data Transformation

(b) Data Acquisition Equipment

Health Estimation

> \‘v .
x5x5
AgimiAzA eR

Data Normalization

Fig. 5. Working procedure of the Electrical-STGCN. Given T electrical records X, we first transform this sequence to the constructed spatio-
temporal graph G- = (V+, E+, A+). Then G is forwarded through the Spatio-Temporal Graph Convolution Network (STGCN) to create feature
V.-, which involves both attribute interactions and temporal dependency. After that, the V- is fed into the Health Prediction Network (HPN) for current
health estimation. (a) is the monitored industrial equipment. (b) is the power supply circuit of the electrical sensor: b1 is the leakage protector; b2

is the three phase fuse; b3 is the electrical sensor.

7 ———— ———
I BatcliNorm | Conv2d (3x3,1)
|
PREEY PReLU
Conv2d (3x3,7)
I BatchNorm |
| Convld (15x1,1)
Dropout l
A S—— il
(a) (b)

Fig. 6. (a) Overview of the 5-layer temporal residual block. Given
the V. € R7TX5X3 the output is V. € R7TX5%X3_(b) The HPN
architecture. The HPN is made up of a residual connection and a

convolution layer. Given the V- € R7™X5X3_the outputis RUL*.

E. Optimization

Training procedure of the Electrical-STGCN is summarized
in Algorithm 1. Adam optimizer, a stochastic gradient-based
optimization algorithm, is utilized to adjust the learning rate
dynamically. The Mean Square Error (MSE) of RUL is used
as loss function formulated as:

MSE = %ZL (RUL _ EU\L)Q, (16)

where N is batch size; m is the predicted values; and RU L
is the ground truth defined as:

RUL :Time to failure — Current time

17
Time to failure an

Therefore, the MSE over the training data is calculated and
back-propagated to update the parameters in each epoch until
model convergence.

IV. EXPERIMENTS AND ANALYSIS
A. Implementation details

In this paper, network parameters are randomly initialized
and hyper parameter 7 is set to 0.4. The Electrical-STGCN is
trained 60 epochs and the batch size is 64. The alarm threshold
¢ is empirically set to 0.3 in the working process. If both the

Algorithm 1 Pseudo-code of the training procedure
Input: Raw data and the maximum training epoch E,, ..
Output: Electrical-STGCN model

1: Initialize the parameters of the Electrical-STGCN

2: while e < E,,,, do

3: Transform X, to spatio-temporal graph G,

4: Compute A,;,, and Ay, using the kernel functions
5: Normalize the Ay, Ag,, and V.

6: Conduct attribute interactions by equation (15)

7: Conduct ter/nm)ral dependency (Fig. 6(a))

8: Calculate RU L using the HPN (Fig. 6(b))

9: Update the parameters of the Electrical-STGCN

10: if model convergence then

11: Return the Electrical-STGCN

12: end if

13: end while

ideal RUL and the estimation are below or above &, the health
condition is considered correct classified. Accuracy, Precision,
Recall and F1-Score based on the confusion matrix are used
as evaluation metrics. The performances of Electrical-STGCN
are achieved by ten-fold cross-validation (i.e., ten maintenance
cycles, nine of which are used for training and one for testing
in turn). The experiments are all implemented in Pytorch and
run on a work station with GeForce RTX 2080 Ti.

B. Exploration study

This section explores the influence of window size 7 (i.e.,
temporal dependency) and kernel functions (i.e., different ways
of potential attribute interactions) in detail.

1) Window size r: In order to explore the impact of window
size, we evaluate the performances of the Electrical-STGCN
with 7 chosen according to the sequence of the powers of 2,
to perceive the trend of evaluation metrics over time easily.

As shown in Fig. 7, the Accuracy, Recall, and F1-Score
show the similar trend. They reach the best when 7 = 8. After
that, they decrease from 7 = 8 to 7 = 16. Then they increase
again at 7 = 32. Finally, they fall at 7 = 64. The Precision
reaches the highest when 7 = 8 and falls from 7 = 16 to
T =64.
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Fig. 7. Evaluation metrics of the Electrical-STGCN at different
window size 7. The Electrical-STGCN performs the best when = = 8,
i.e., Accuracy= 85.20+0.21%, Precision—= 89.2010.41%, Recall=
90.514-0.25%, and F1-Score= 0.904-0.01.

The Electrical-STGCN performs the best when 7 = 8. We
analyze the reason is that 7 = 8 might cover the most relevant
condition monitoring data for the manufacturing system. Table
IIT shows the model performances on different ~.

TABLE IlI
ABLATION STUDY ON ~ WITH + = 8.
¥ Accuracy [%] Precision [%] Recall [%] F1-Score
0.2 75.77+£1.42 79.53+0.87 91.38+4.17 0.83+0.02
0.3 73.76+0.56 80.974+1.20 86.37+3.51 0.81+0.01
04 85.204+0.21 89.204-0.41 90.5140.25 0.90+0.01
0.5 76.98+0.94 79.89+0.71 92.67+3.08 0.844-0.01
0.6 76.14+1.30 81.6240.89 88.56+4.70 0.82+0.02

2) Kernel functions: To explore the impact of different ways
of attribute interactions, we evaluate the performances of the
Electrical-STGCN with different kernel functions.

The first candidate is the Lo norm function, which is used
to measure the distance between different vertices defined as:

az,m = 1v5 = vill,- (18)

The second candidate is Gaussian kernel function applied
in [31], which is defined as:

cap(— ||vj — vi,)

g

19)

Ceap(j ) =

The third candidate is that all diagonal values are set to 1
while the others are set to 0 [32]. It means no attribute in-
teractions, which is utilized as the baseline. The experimental
results are shown in Table IV.

Our proposed kernel function improves the Accuracy, Pre-
cision, Recall, and F1-Score of the baseline by 7.88%, 5.32%,
2.76%, and 0.07 respectively. Also, it might be more suitable
than the L, norm and Gaussian kernel function in terms
of modeling the electrical working system according to the
experimental results.

T
sim(ik) & % k)

3) Discussion: Fig. 8 is health predictions of the Electrical-
STGCN by ten-fold cross-validation. In the working condition
(i.e., MC-1 to MC-8), the Electrical-STGCN can successfully
warn the anomaly in advance. MC-1 is a bad case that deviates
from the ideal value as different workpieces lead to a different
distribution of working data. Besides, the RUL in each MC is
predicted in a cross-lifecycle manner.

In the off-working condition (i.e., MC-9 to MC-10), no need
to consider attribute interactions and temporal dependency, the
Electrical-STGCN performs well in MC-9. However, MC-10 is
a failure case, which left no time for maintenance. Therefore,
how to improve the performance in the off-working condition
to warn the anomaly in advance is an important point in our
future work. Another limitation of the Electrical-STGCN is the
number of the collected attributes. Because the model is graph-
based, it is more suitable for the case with enough attributes
since there are rich information interactions.

C. Comparison with other ML algorithms

SVM, K-Means, RFs, LSTM, GRU, ConvLSTM, and TCN
are compared with the Electrical-STGCN. Accuracy, Preci-
sion, Recall, and F1-Score based on the confusion matrix
are achieved through ten-fold cross-validation. Furthermore,
the Wilcoxon signed-rank test with significance level 0.05 is
utilized to compare the significant differences between the
Electrical-STGCN and other competitors.

In the experiment, Gaussian kernel is employed in the SVM;
the cluster number of the K-Means is set to 2; the number of
estimators in the RFs is set to 20; the dimension of hidden
state h; and window size 7 in the LSTM and GRU are set to
16 and 8, respectively; the kernel size of the ConvLSTM is
set to 3. Experimental results and Wilcoxon sign-ranked test
are shown in Table V.

TABLE V
COMPARISON WITH OTHER ML ALGORITHMS IN TERMS OF
WILCOXON SIGNED-RANK TEST.

Competitors Accuracy [%] Precision [%] Recall [%] F1-Score

SVM [20] 49.85+3.56(+) 74.92+15.79(=)32.42+9.93(+) 0.40+0.10(+)
K-Means [23]  63.69+4.28(+) 80.15+4.05(=) 67.47+3.87(+) 0.724+0.02(+)
RFs [25] 76.574+1.23(+) 85.15£1.19(=) 84.92+5.17(=)0.81+£0.02(+)
LSTM [27] 77.2542.02(=)88.48+1.70(=) 81.44+6.05(=)0.82+0.03(=)
GRU [28] 77.984+1.66(+) 87.81+1.41(=) 79.0645.59(=)0.81+£0.02(+)

ConvLSTM [29] 77.60+1.11(+) 83.73+1.66(=) 89.67+2.75(=)0.84+0.01(+)
TCN [30] 64.43£2.62(+) 82.991+2.65(=) 67.51£9.55(=)0.6940.04(+)

E-STGCN(ours)85.20+0.21  89.20-£0.41 90.51+£0.25  0.90+0.01

* means that Electrical-STGCN is significantly better than other competitors.
= means that there is no significant difference between Electrical-STGCN and
others based on Wilcoxon signed-test with the significance level of 0.05.
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Fig. 8. Health condition of each maintenance cycle (MC) predicted by the Electrical-STGCN. Horizontal axis is time (s), and vertical axis is
RUL. MC-1 to MC-8 are in the working condition while MC-9 to MC-10 are in the off-working condition where anomalies occur randomly. The black

line is the ideal RUL. Blue dots are predictions.
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Fig. 9. Comparison with different ML algorithms in terms of Accuracy, Precision, Recall, F1-Score, and Prediction time. We conduct the
ML algorithms on the testing data and calculate the average processing time for each record.

Generally, by considering temporal dependency of the work-
ing system, the RNN-based models (i.e., LSTM, GRU, and
ConvLSTM) perform better than the SVM, K-Means, and RFs.
Specifically, the RFs performs better than SVM and K-Means
because it generates 20 weak classifiers and aggregates them
together to form better results.

Considering both attribute interactions and temporal depen-
dency, the Electrical-STGCN performs the best. It dominates
the SVM and K-Means in terms of Accuracy, Precision, and
F1-Score. It also dominates RFs, GRU, TCN, and ConvLSTM
in terms of Accuracy and FI1-Score. However, there is no
significant difference with LSTM. The LSTM performs well in
short maintenance cycle while the Electrical-STGCN performs
better in long maintenance cycle. The reason is that Electrical-
STGCN considers attribute interactions in addition to temporal
dependency, which allows to model the working system better.

As shown in Fig. 9, it takes the Electrical-STGCN 1.68 ms
to estimate the current RUL. Although the Electrical-STGCN
can not outperform the other competitors in terms of prediction
time, it can run in real-time. The computational cost mainly
depends on conducting the adjacency matrices of the electrical
data sequence.

V. CONCLUSION AND FUTURE WORK

This paper proposes an Electrical-STGCN for intelligent
PdM of the manufacturing system. During the experiments,
we have seen how different window size and kernel functions
affect the performances in detail. The effectiveness of the
Electrical-STGCN is demonstrated by real-world cases.

From this work, we made some key observations. Firstly,
there exists the best window size that covers the most relevant
condition monitoring data of the working system. By utilizing
the best temporal dependency, we can establish reliable model
for the system. In addition, there are potential transfer relation-
ships between the collected attributes. It is crucial to establish
attribute dependencies to achieve better performances.

The future work will mainly concentrate on two aspects.
First, it might be interesting to employ graph attention mech-
anism in the Electrical-STGCN to assign higher weights to
the attributes that contribute the most to final results automat-
ically. That might be helpful to capture anomalies in different
working conditions. Second, it is worth to search for a method
to map the attributes to higher dimension. That might improve
the generality of the Electrical-STGCN.
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