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MULTI-ATTRIBUTE NEGOTIATION MECHANISM FOR MANUFACTURING SERVICE ALLOCATION IN SMART MANUFACTURING

Abstract
[bookmark: OLE_LINK20][bookmark: OLE_LINK21]Smart manufacturing is undergoing rapid development along with many disruptive technologies, such as Internet of Things, cyber-physical system and cloud computing. A myriad of heterogeneous manufacturing services can be dynamically perceived, connected and interoperated to satisfy various customized demands. In smart manufacturing, the market equilibrium is variable over time due to changes in demand and supply. Thus, efficient manufacturing service allocation (MSA) is critical to implementation of smart manufacturing. This paper considers the MSA problem under market dynamics with maximization of utility of customers and service providers. Many conventional methods generally allocate manufacturing services to the customers by multi-objective optimization without considering the impact of interactions between customers and service providers. This paper presents a multi-attribute negotiation mechanism to address the MSA problem under time constraints relying on autonomous agents. The proposed negotiation mechanism is composed of two models: an atomic manufacturing service negotiation model and a composite manufacturing service coordination. The former model is based on automated negotiation to seek an atomic manufacturing service over multiple attributes for an individual subtask. The latter model incorporates the global distribution and surplus redistribution to coordinate and control multiple atomic manufacturing service negotiations for the whole manufacturing task. Numerical studies are employed to verify the effectiveness of the multi-attribute negotiation mechanism in solving the MSA problem. The results show that the proposed negotiation mechanism can address the MSA problem and surplus redistribution can effectively improve the success rate of negotiations.
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[bookmark: OLE_LINK1][bookmark: OLE_LINK8]Introduction
[bookmark: OLE_LINK9][bookmark: OLE_LINK28][bookmark: OLE_LINK10][bookmark: OLE_LINK11]The last few decades have witnessed the remarkable evolution of manufacturing paradigms. In the context of Industry 4.0, manufacturing systems are being upgraded and transformed to a smart level. Smart manufacturing takes the advantage of disruptive technologies, such as Internet of Things (IoT) (Atzori et al., 2010), cloud computing (Xu, 2012), cyber-physical systems (Lee et al., 2015) and digital twin (Tao et al., 2018), to adapt to a dynamic and global market. Characterized by flexibility, reconfigurability, agility and scalability, it aims to satisfy ever-changing customer demands and requirements in real-time across the enterprise and the supply chain (Zhong et al., 2017). Smart manufacturing not only boosts productivity and capacity but also empowers manufacturers to satisfy customized demands.
[bookmark: OLE_LINK12][bookmark: OLE_LINK13]In smart manufacturing, distributed resources and capabilities are virtualized and encapsulated into manufacturing services for efficient management and allocation on demand. As reported by (Zhang et al., 2017), manufacturing service allocation (MSA) is the key to the successful implementation of smart manufacturing. MSA refers to the problem of assigning available manufacturing services to related tasks and determining exchange relationships across a cloud-based platform that consists of customers, service providers and platform operators (Kang et al., 2020a). An efficient allocation of manufacturing services can share spare manufacturing resources to facilitate collaboration and improve resource utilization, and also trigger a quick response to varied requirements timely (Wang et al., 2021). The efficient allocation, however, is impeded by some characteristics of manufacturing services, such as large scale, heterogeneity, dynamic interconnection, and group collaboration (Laili et al., 2012).
MSA problem has attracted a great deal of attention. The conventional methods of solving the problem are to find an optimal solution of an MSA model by optimization algorithms (Cao et al., 2016, Zhang et al., 2017). Indeed, these methods can simply select service providers for customers to fulfill requirements. However, these methods are still facing several challenges. First, the MSA results could be infeasible due to neglect of customer constraints. In general, MSA models minimize cost and time based on proposals of service providers without considering proposals of customers. Such results might lead to a budget deficit or unsatisfactory manufacturing time on the customer side. Second, the negotiation process has been ignored in conventional methods. MSA is essentially a service trade process in which negotiation is needed to reach an agreement. Third, dynamic interaction between customers and service providers is underutilized. In smart manufacturing, all resources (e.g. men, machines, and materials) are closely interconnected to realize interaction via IoT technologies. It is significant and necessary to solve the MSA problem by considering dynamic interaction in smart manufacturing.
[bookmark: OLE_LINK30][bookmark: OLE_LINK31][bookmark: OLE_LINK2][bookmark: OLE_LINK3]A negotiation mechanism can overcome these challenges. Normally, it can be categorized into face-to-face and automated negotiations, or bilateral and multi-bilateral negotiations (Lafkihi et al., 2019). Compared to traditional face-to-face negotiation, automated negotiation has tremendous potential to address the MSA problem due to a higher level of process efficiency. Automated negotiation enables autonomous agents on behalf of human to interact in order to maximize their interests by considering their preferences (Faratin et al., 2002). Under a predefined negotiation mechanism, autonomous agents can dynamically interact with others to determine a contract under certain terms and conditions according to negotiation protocols (Faratin et al., 1998). In addition, MSA is a multi-bilateral negotiation process. Multiple negotiation sessions are conducted concurrently, since multiple service providers are selected at one time by one customer. Thus, automated negotiation can significantly assist customers in the MSA problem.
[bookmark: OLE_LINK14][bookmark: OLE_LINK15]This paper presents a multi-attribute negotiation mechanism to solve the MSA problem while advanced technologies are incorporated into the MSA process. Specifically, this paper aims to address some important research questions: (1) How advanced technologies such as IoT could be incorporated into negotiation mechanisms when allocating manufacturing services? (2) How values of multiple attributes can be measured to evaluate proposals from negotiation counterparts and generate counterproposals accordingly? (3) How agreements can be reached by autonomous agents to solve the MSA problem? And (4) How multiple heterogeneous manufacturing services can be composed to satisfy customer requirements through concurrently multi-bilateral negotiations, namely concurrent negotiations.
To answer the above questions, this paper proposes a negotiation framework that is integrated with IoT and agent technology, and devises a protocol to show the sequence of negotiation events. Under this framework, a weighted sum model is adopted to develop an aggregated utility function to measure multi-attribute values for proposal evaluation and generation. Then, an atomic manufacturing service negotiation model is formulated to automate the negotiation process by a time-dependent concession tactic for reaching an agreement. Finally, a composite manufacturing service coordination model is developed with global distribution and surplus redistribution to manage concurrent negotiations for the whole task.
The contribution of this paper is summarized as follows. First, a negotiation mechanism is developed to address the MSA problem in smart manufacturing. This contributes to establishing dynamic and short-term cooperation relationships considering the constraints of customers. Second, a negotiation framework is designed to take advantage of increasing machine autonomy driven by technological advancement. Under this framework, customers and service providers are allowed to perform negotiation over manufacturing services through their agents. Moreover, customers can simultaneously negotiate with multiple service providers for a composite manufacturing service. Third, a surplus distribution strategy is formulated to coordinate concurrent negotiations for a high success rate. The results also show that customers with a tight budget can employ the surplus distribution strategy to address the MSA problem, when the problem cannot be solved without this strategy.
The remainder of this paper is organized as follows. Section 2 reviews the relevant literature on manufacturing service allocation and applications of negotiation. Section 3 presents an overview of MSA in smart manufacturing and describes a negotiation framework for MSA. Section 4 shows the negotiation mechanism and Section 5 gives a case study. Section 6 draws some conclusions and shows future research directions. All abbreviations are listed in Appendix 1.
Literature review
This research is closely related to three streams, including smart manufacturing, manufacturing service allocation and negotiation mechanism.
Smart manufacturing
Smart manufacturing refers to a form of production mode integrating manufacturing assets with sensors, a computing platform, communication technology, control and so forth (Kusiak, 2018). Emerging technologies have a profound impact on manufacturing paradigms and modern business. IoT-enabled manufacturing converts manufacturing resources into smart manufacturing objects that can sense, interconnect and interact with each other to automatically execute manufacturing tasks (Zhong et al., 2013). Cloud manufacturing transforms manufacturing resources into services that can be widely shared and circulated on a pay-as-you-go basis (Xu, 2012) in order to improve resource utilization (Kang et al., 2017). Digital twin-driven manufacturing builds virtually connected production networks where manufacturing resources, people and services are integrated (Lu et al., 2020a). These paradigms promise a responsive manufacturing process and system automation at a competitive cost for the mass production of highly personalized products (Lu et al., 2020b). Undoubtedly, manufacturing resources are closely connected and required to be capable of autonomous interaction. Self-organization can be further realized in smart manufacturing to make collaborative decisions (Guo et al., 2021).
Manufacturing service allocation
Motivated by advanced manufacturing paradigms and technologies, the research on MSA has been broadly studied in recent years. Bouzary and Chen (2018) review existing research on MSA, which is discussed in terms of selection criteria, algorithms, optimization objectives, correlation consideration, mapping methods between subtasks and services, as well as dynamic composition. Various methods and algorithms are adapted for MSA with different objectives and constraints. For example, optimal allocation of manufacturing services is realized to match supply and demand based on complex networks and IoT (Cheng et al., 2018). MSA problem is also formulated as a bipartite matching problem and then solved by mechanism design methods, including deferred acceptance and top trading cycle (Thekinen and Panchal, 2017). Recently, multidisciplinary design optimization (MDO) methods, such as analytical target cascading (ATC) and augmented lagrangian coordination (ALC), have been adopted to allocate manufacturing services in order to maintain autonomous decision rights of service providers. ATC is firstly used to allocate manufacturing services, minimizing total manufacturing time, manufacturing cost and energy consumption (Zhang et al., 2017). A typical engine assembly case with three key parts is presented to verify the ATC model. ALC is extended to solve the MSA problem in a loose coupling and distributed manner for cost-effective production (Zhang et al., 2018) and sustainable manufacturing (Zhang et al., 2021). ALC is also leveraged to optimize the allocation of manufacturing services enabled by digital twin, considering the impact of credit evaluation (Wang et al., 2021). In addition, auction mechanisms have been applied to allocate manufacturing services based on supply and demand, in order to dynamically set their prices. Double auction is proposed to allocate manufacturing services in a bilateral market so as to improve the allocation efficiency (Kang et al., 2020a). Multi-unit Vickrey auction and one-sided Vickrey-Clarke-Groves auction are integrated to share and allocate manufacturing services while motivating participants to bid truthfully (Kang et al., 2020b, Kang et al., 2019).
Negotiation mechanism
Negotiation is a process by which a joint decision is made by two or more parties to resolve their opposing interests (Pruitt, 2013). Two related categories are briefly reviewed in this section. One is negotiation models and tactics. A negotiation model with a concession strategy is presented to generate initial offers, evaluate proposals and offer counterproposals for autonomous agents (Faratin et al., 1998). A trade-off strategy is subsequently proposed to reach agreements when multiple negotiation variables are balanced during a negotiation process (Faratin et al., 2002). The above two strategies are usually adopted to automate the negotiation. A negotiation meta strategy is presented by combining trade-off and concession strategies for one customer and one provider negotiation (Ros and Sierra, 2006). Subsequently, a concurrent multiple-issue negotiation protocol is designed to enable customers and providers to negotiate simultaneously, based on colored Petri nets (Dang and Huhns, 2006). A one-to-many concurrent negotiation approach is presented to address the problem of one customer trading with many providers over multiple distinct objects (Mansour and Kowalczyk, 2014). The other category is negotiation applications to solving various practical engineering problems. For example, negotiation models for grid resource allocation are elaborated and discussed to suggest potential research directions (Kwang Mong, 2010). Price and time slot are incorporated into the negotiation model for cloud computing reservation (Son and Sim, 2012). An adaptive trade-off strategy is developed to allocate cloud computing under varying cloud workloads (Son et al., 2016). This work shows that negotiation mechanisms can effectively avoid SLA violations and facilitate trade in computing services. Pareto-optimal service composition is obtained by a trade-off negotiation strategy with QoS constraints (Di Napoli and Rossi, 2021). Negotiation is also used to solve the multi-agent multi-mode resource investment problem (Fink and Gerhards, 2021).
[bookmark: OLE_LINK4][bookmark: OLE_LINK5]From the literature, several observations could be drawn. First, in smart manufacturing, dynamic interconnection and autonomous interaction are greatly facilitated by emerging technologies. There has been an increasing need to make collaborative decisions autonomously by coordination mechanisms. Second, existing research mainly uses optimization methods to allocate manufacturing services, regardless of the negotiation process. However, the essence of MSA is the trade between customers and providers. This implies negotiation is an indispensable process to allocate manufacturing services. Third, joint decisions could be made to reach agreements through negotiation and satisfy agents under certain constraints. Agents can avoid the failure of their transactions and maximize their utility by negotiation. Finally, negotiation mechanisms are scarcely adopted to solve MSA problems. Overall, to our best knowledge, there is a gap in the literature with regard to the negotiation model for MSA in smart manufacturing. Hence, this research integrates the negotiation mechanism into smart manufacturing to allocate manufacturing services.
Overview of MSA in smart manufacturing
An overview of MSA in smart manufacturing is provided to describe the status quo of MSA as well as a negotiation framework and its sequence diagram.
MSA in smart manufacturing
Three key stakeholders are involved in the MSA process, namely platform operators, customers and service providers. A customer is referred to as “she”, and a service provider as “he”. Platform operators are responsible for operations and management as well as setting up rules and mechanisms for MSA. The cloud-based platform serves as an intermediary to efficiently manage and operate manufacturing services. In the MSA process, the platform is also responsible for service discovery and information exchange. Customers submit their product requirements to the platform, and access on-demand heterogeneous manufacturing services, such as milling, turning, and grinding services. Manufacturing services refer to encapsulated manufacturing resources and capabilities that are supplied by service providers. A customer’s product requirements are represented by a manufacturing task with explicit objectives and constraints, and are fulfilled by a composite manufacturing service, defined as a logical collection of atomic manufacturing services. In this research, an atomic manufacturing service refers to a specific manufacturing resource and capability and is used to complete a subtask decomposed from the manufacturing task. Service providers register and publish their manufacturing services on the platform to fulfill specific manufacturing subtasks. Each service provider can supply more than one atomic manufacturing service according to his manufacturing resources and capabilities.
[bookmark: OLE_LINK6][bookmark: OLE_LINK7]The status quo of MSA in smart manufacturing is elaborated, as shown in Fig. 1. Firstly, a customer submits her product requirements including explicit manufacturing subtasks, and relevant objectives and constraints for multiple attributes via the platform. A manufacturing task for producing the product is generally decomposed into a set of dependent manufacturing subtasks according to its manufacturing process. Secondly, given these manufacturing subtasks, the platform automatically discovers and selects a group of service provider candidates to supply eligible atomic manufacturing services. These candidates with the same atomic manufacturing service are then grouped to form a manufacturing service pool. Each of them has his various objectives and constraints for MSA. In this step, the selected candidates need to meet customer’s non-negotiable, specified requirements and constraints, such as special qualification requirements. Thirdly, the platform employs the stated rules and mechanisms to find optimal MSA results. In this research, the MSA problem is addressed by negotiation mechanisms. According to the results, winning manufacturing service providers are selected from the manufacturing service pools, and corresponding manufacturing subtasks will be assigned accordingly. The customer’s requirements are thus fulfilled by the composition of the selected manufacturing services with optimal quality of services and utility.
[image: ]
Fig. 1. Status quo
Negotiation framework for MSA in smart manufacturing
A negotiation framework for MSA is presented in Fig. 2 to facilitate automated negotiation between a customer and service providers. In this framework, platform operators are not involved. Once the rules and mechanisms for MSA are set, negotiation can be conducted autonomously without any intervention. Thus, there are only one customer and many service providers in the MSA process. The customer and service providers are virtualized as negotiation agents to negotiate with each other for MSA. Negotiation agents are created when the customer specifies her manufacturing requirements or when service providers register by publishing some technical specifications of their manufacturing capabilities. On the customer side, a negotiator is created to distribute overall value ranges of attributes to negotiation agents of customers. Each of these agents selects one of the negotiation agents of service providers for a specific atomic manufacturing service by negotiation. On the service provider side, manufacturing resources are equipped with IoT technologies, such as sensors and communication channels, and thus are converted into manufacturing services. The provider negotiation agents can operate and monitor their manufacturing services on a real-time basis. The manufacturing services can also be connected to the cloud-based platform to participate in MSA, depending upon the workload. The provider agents (i.e. provider negotiation agents) carry out manufacturing tasks if they successfully reach agreements with customer agents (i.e. customer negotiation agents). On the customer side, concurrent negotiation sessions are created and organized to trade with corresponding service providers. Finally, MSA results are disseminated to agents.
[image: ]
Fig. 2. Negotiation framework for MSA
[bookmark: OLE_LINK27]Negotiation agents on both sides have six important components. For customers, the explorer can discover eligible service providers as candidates according to their manufacturing requirements. For service providers, the explorer can search eligible manufacturing tasks according to their manufacturing capabilities. The parameter setter is responsible for configuring negotiation parameters. For example, different agents can set different weights for multiple attributes to show their opinions on the importance of each attribute, so as to influence the MSA results. The utility calculator is utilized to compute the utility of a proposal for agents according to their preferences, based on a utility function. The proposal generator generates a proposal that satisfies the negotiation strategy for negotiation counterparts under the negotiation protocol. The proposal evaluator can assess the counterproposals from negotiation counterparts and the proposed proposals based on the utility value computed by the utility calculator, and decide whether agents accept or reject the proposals. The negotiation protocol stipulates how negotiation agents communicate with each other to make MSA agreements, which is based on the alternating offers protocol (Rubinstein, 1982).
[image: ]
[bookmark: OLE_LINK18]Fig. 3. Sequence diagram of the negotiation for MSA
The negotiation for MSA is shown in Fig. 3, which is divided into two phases. The first phase is service discovery which includes the first six procedures. The second is negotiation and execution which includes the last eight procedures.
0) The cloud-based platform starts the negotiation for MSA with service discovery.
1) A customer submits her manufacturing tasks with specific requirements through her agent.
2) The customer agent informs the cloud-based platform of the customer’s request for manufacturing services.
3) The cloud-based platform disseminates requests to service providers.
4) Service providers having available manufacturing services submit the related information to the cloud-based platform through their agents.
5) The cloud-based platform conducts the eligibility screening to ensure the eligibility criteria of service providers.
6) The cloud-based platform starts negotiation to allocate manufacturing services.
7) Negotiator distributes reservation values of attributes to customer agents for buying manufacturing services.
8) The customer agents generate proposals for all service provider agents. Then, each service provider agent generates his counterproposal for the customer agent. The bargaining process lasts many rounds, which depends on rules and mechanisms set by the cloud-based platform.
9) Once negotiation terminates, there are two results. The first is that negotiation breaks down as negotiation agents fail to reach the agreement. The other is that negotiation agents succeed in making the agreement.
10) The outcome of the negotiation is sent to the customer and service providers.
11) Once the customer confirms the agreement, the final agreement is sent to the winning service providers.
12) Winning service providers can execute the assigned tasks to provide their manufacturing services.
13) The customer pays winning service providers for their manufacturing services according to the agreement.
14) Negotiation ends.
Negotiation mechanism
Under the presented framework, the negotiation mechanism is proposed to automate the MSA process. This section describes the model, and then introduces the atomic manufacturing service negotiation model and composite manufacturing service coordination model in the negotiation mechanism.
Model description
The decision-making model is formulated to concurrently allocate multiple manufacturing services to a customer, using the negotiation mechanism. To formulate the model, a four-dimensional tuple  is defined as follows:

[bookmark: OLE_LINK22][bookmark: OLE_LINK19]Let  denote the set of manufacturing services that a customer wants to buy, . Let  denote the set of customer agents, .  refers to a customer agent who is on behalf of the customer to negotiate with service providers for the  manufacturing service, where . Let  denote the set of service pools, . Note that  is the set of service provider agents in the  service pool, .  represents the  service provider agent selling his manufacturing service in the  service pool, where . Let  denote the joint space of attributes for the  manufacturing service, , where  is the set of attributes that describe the requirements of customers and manufacturing services of providers. Attribute , where , may have a set of discrete values (such as the reliability and quality), . Attribute  may also be an interval of real values (such as the price, lead time and penalty cost), . Each attribute ranges between the most preferred value (initial value) and the least preferred value (reservation value). The attributes of price, manufacturing time and energy consumption are considered to allocate manufacturing services in this research.
[bookmark: OLE_LINK16][bookmark: OLE_LINK17]In the model, the values of attributes are assumed to be private information for other negotiation agents. As the agents are autonomous, the factors influencing the negotiation process are assumed to be unavailable to other negotiation agents. Consequently, agents are completely unaware of the utility and negotiation strategy of other negotiation agents. Each agent is assumed to be a self-interested player who aims to maximize her/his own utility. Negotiation times are assumed to be finite, which forces customer and service provider agents into reaching agreements under time pressure. The negotiation time constraint can effectively avoid non-agreements. For simplicity, attributes in this research are assumed to have an interval of real values.
Atomic manufacturing service negotiation model
The atomic manufacturing service negotiation model is to automate the negotiation of each atomic manufacturing service over multiple attributes. In this model, customer agent  negotiates with a group of service provider agents  in the  service pool for atomic service . Two parties evaluate the proposals with various attribute values and offer the counterproposals during the negotiation. Eventually, customer agent  selects the best service provider  based on the negotiation results.
Utility function
The utility function is employed to evaluate a proposal and generate a counterproposal. It includes the individual utility function and the aggregated utility functions, and is mainly used by the utility calculator and proposal evaluator in the negotiation framework (see Fig. 2)
For a single attribute , a utility function , as an individual utility function, is a scalar-valued function that measures the satisfaction an agent derives from the proposal with attribute value . If , the proposal with an attribute value  is better than the proposal with an attribute value , which implies an agent prefers the former proposal. A utility function can be formulated in various forms. For simplicity, the utility function  is linearly monotonic and its value is in the interval  in this research. The value 0 represents the least satisfaction for the proposal with the least preferred attribute value, and the value 1 represents the most satisfaction for the proposal with the most preferred attribute value. The utility function is defined as follows:

In addition, different parties usually have different utility functions according to the attribute characteristics. For example, consider the price as an attribute is negotiated in the MSA problem. From the customer’s perspective, the lower price, the more benefits the customer can gain. This indicates  and . Conversely, from the perspective of service providers, the higher price, the more benefits service providers can derive. This means  and . On the other hand, consider the reliability as an attribute, which leads to the contrary results. For the customer, the higher reliability, the better for final products, which indicates means  and . However, for service providers, the lower reliability, the better for their profit, which means  and . For the case where  and , the utility function is monotonically increasing. For the case where  and , the utility function is monotonically decreasing. Thus, the utility function  for attribute  is modeled as follows.

For multiple attributes, a utility function , as an aggregated utility function, is developed to evaluate a proposal based on the utility value of each attribute. The weighted sum model (Triantaphyllou, 2000) is leveraged to compute the total utility of a proposal. For each attribute , an agent can assign a preference weight  to represent its relative importance in a proposal. Thus, the utility function  is defined as:

where .  is modeled as a linear additive utility function for simplicity and ranges from 0 to 1. Note that  also can be formulated as a nonlinear utility function, and is another method to evaluate a proposal without affecting the overall negotiation.
Negotiation thread
The negotiation thread describes the interaction between the customer agent and service provider agents. The negotiation process can be initiated, once the customer and service providers set up the utility function . Their agents alternatively generate proposals for negotiation counterparts. The negotiation continues until a proposal or a counterproposal is accepted by any agent or any side terminates it due to the time limit. For example, customer agent  and service provider agent  in the service pool  offer proposals and counterproposals  and  respectively at discrete time  and , where  and , and . Let  denote the value of attribute  at a discrete time  from agent  to agent . The sequence of proposals exchanged between agent  and agent  until time  is referred to as a negotiation thread (Richter et al., 2012). It is denoted as

where , and  is the deadline of the negotiation.
In this negotiation thread, the agents decide what actions will be taken given the proposals of the negotiation counterparts. Negotiation starts at time  with the first proposal from any agent. When receiving a proposal  from agent  at time , agent  uses its utility function  to evaluate the proposal. If  where  is the counterproposal to be sent to agent  at time , then agent  accepts. Otherwise, the counterproposal  is sent to agent . All agents quit the negotiation when no agreement can be reached at the end of the negotiation thread. Based on the utility function , the set of agent ’s actions  is expressed as:

Negotiation tactic
Along with the negotiation thread, the customer agent and service provider agents make proposals in turns within finite time, as designed in Fig. 3. The proposal generator uses predefined negotiation tactics to generate proposals for agents. The newly generated counterproposals are expected to increase the utility of negotiation counterparts in order to reach an agreement. How to effectively generate counterproposals is crucial to the success of the negotiation. Currently, the concession tactic is widely adopted in the negotiation process. The concession tactic is to calculate the value of each attribute by considering some factors that greatly influence the negotiation process, such as time, resources and historical behaviors of the negotiation agents (Faratin et al., 1998).
The time-dependent concession tactic is an effective approach to seeking proposals within the acceptance range. In this tactic, time is the primary factor to generate proposals. The proposal generator depends on the remaining negotiation time to the value of each attribute. For the single attribute , this tactic is modeled as follows:

where  is a coefficient that varies with time. There are two functions used to compute : polynomial (Equation (8)) and exponential (Equation (9)) functions,


where  influences the concession behavior of the tactic with ; and  determines the first offer at  respectively with . Both  and  can vary from attribute to attribute for agents. There are two properties related to both polynomial and exponential functions.
[bookmark: OLE_LINK25]Observation 1.  increases as  increases in both polynomial and exponential functions. More specifically,
1) When ,  grows slowly at the beginning but then grows exponentially as  increases. The larger  is, the earlier  starts to grow exponentially. Especially, the polynomial function is linear when .
2) When ,  grows exponentially at the beginning but then grows slowly as  increases. The larger  is, the earlier  starts to grow slowly.
Observation 1 implies how an agent controls its concession behavior. If agents are eager for an important manufacturing service, they could let  be a value greater than 1; otherwise, let  be a value less than 1. The level of eagerness depends on the value of .
Observation 2 (Faratin et al., 1998).  and  in both polynomial and exponential functions.
Observation 2 indicates that when  is increasing, the value of attribute  ranges from  to  in the proposal of agent ; otherwise, the value of attribute  ranges from  to . After calculating the value of each attribute, agent  can generate a new proposal, , which is provided for the negotiation counterparts.
[bookmark: OLE_LINK23]Composite manufacturing service coordination model
The composite service coordination model is to distribute joint spaces of attributes to each customer agent (called global distribution), and redistribute the surplus to other negotiations in progress after one reaches an agreement (called surplus redistribution).
Global distribution
To allocate manufacturing services, the customer firstly needs to specify the range of each attribute for a manufacturing task, which constructs an overall joint space of attributes; that is, an overall value range is set for each attribute of the manufacturing task. The reservation values are the constraints for customer agents and are the least favorable points at which the customer will accept a negotiated agreement. The reservation values are generally fixed during negotiation. For example, if a manufacturing task is budgeted at $150 and is expected to be completed within 15 days, the amount of $150 is a global reservation value of price and the number of 15 days is a global reservation value of manufacturing time. This indicates that the total cost of all manufacturing subtasks should be less than $150, and the total time of manufacturing subtasks on the critical path should be no more than 15 days. In addition, there are initial values that are the most favorable points where the customer prefers to reach an agreement. Both initial and reservation values form the overall value ranges.
With the decomposition of the manufacturing task, the overall value ranges are simultaneously decomposed into multiple smaller local value ranges to perform the atomic manufacturing service model. As a result, an overall joint space of attributes is divided into several joint spaces, according to the number of manufacturing subtasks. In the composite manufacturing service coordination model, the negotiator takes responsibility to decompose the overall joint space of attributes. Given the overall join space of attributes for a specific manufacturing task, a joint space of attribute  is distributed to customer agent . According to the joint space , the customer agent  can subsequently negotiate with her corresponding service provider agents for the  manufacturing service.
To distribute the overall joint space of attributes, the customer assigns weight  to attribute  of atomic manufacturing service , where  and  for any attribute . The overall value range of attribute , , is between  and  and can be decomposed into several local value ranges. For each manufacturing service , the local value range  is between  and :

With each individual value range , the joint space of manufacturing service  is formed for the atomic manufacturing service negotiation.
Surplus redistribution
In the MSA problem, multiple negotiations are carried out concurrently for all atomic manufacturing services. The time taken to reach an agreement might vary with negotiations. In order to increase the chance of reaching an overall agreement over the manufacturing task, the surplus from successful negotiations can be redistributed to other negotiations still in progress. The surplus refers to the difference between the accepted value and the reservation value of an attribute. The surplus redistribution is performed by the negotiator. Clearly, if any customer agent fails to reach an agreement, the manufacturing task will fail to be completed because of a lack of requisite manufacturing services. The surplus redistribution therefore plays a critical role in the automated negotiation.
When an agreement on manufacturing service  is successfully reached at time , two parties finally accept the proposal  where the final trading value of attribute  is . From the perspective of customer agent , the surplus of each attribute is calculated by

The surplus from negotiation over manufacturing service  can be redistributed to other ongoing negotiations. The customer negotiator redistributes the surplus based on the weight assigned in the global distribution. For each agent still in negotiation, the redistribution proportion () of the surplus of attribute  is defined as follows:

where  represents customer agent  is removed from the set of customer agents, and . According to this redistribution proportion, the amount of each attribute surplus that can be redistributed to customer agent , , is . Thus, the reservation value of attribute  at time  is updated by

Observation 3. The surplus redistribution incurs a sudden and huge increment in the reservation value of each attribute.
Observation 3 implies that the utility of customer agent  could be decreased due to the surplus redistribution. As shown in Fig. 4, two cases are given to illustrate the negative impact of Observation 3 on the customer, based on Richter et al. (2012). In Fig. 4(a), price is taken as an example, and the utility function of price is increasing for the customer. At time , the customer agent obtains a redistributed surplus from other successful negotiations and immediately increases her reservation value of price by adding the surplus without smoothing function. After  round negotiation, she successfully reaches an agreement with a service provider agent at time  and the price is . However, if she uses the smoothing function to increase her reservation value of price, she can also reach an agreement with the service provider agent at time  at the price  that is less than . This demonstrates that smoothing the surplus can decrease the final trading price and further increase the utility obtained from the price. The cost saved by the customer agent is , and the increased utility is . In Fig. 4(b), reliability is taken as an example and its utility function is decreasing for the customer. Similarly, using the smoothing function can allow the customer agent to have a higher level of reliability, and increase the utility of the customer agent. Obviously, it is necessary to avoid the sudden and huge increment in the reservation value of each attribute.
To avoid the negative impact of Observation 3, the reservation value can be gradually increased or decreased by dividing the redistributed surplus into several pieces according to the remaining time. With the adoption of this strategy, Equation (13) can be revised as follows:

where  and  represents the remaining time of the negotiation. Equation (14) repeats until the negotiation terminates.
[image: ]
Fig. 4. Two cases of Observation 3
Observation 4. Growth trends can be smoothed by division of redistributed surplus, but the negotiation results are not influenced and customers could obtain more utility by this strategy.
Observation 4 indicates that an agreement can still be reached by smoothing the growth trend if it could be reached with the redistributed surplus. And customers could gain more benefits from this strategy due to the postponement of reaching the agreement.
Numerical study
This section aims to verify and analyze the effectiveness of the negotiation mechanism. The numerical study is based on case studies of an engine assembly task composed of six subtasks (Zhang et al., 2021, Wang et al., 2021). In Fig. 5, engine assembly usually includes six different components: valve, crankcase, connecting rod, oil pan, gear housing and exhaust gas recirculation (EGR) passage. The number of subtasks can be generalized into infinity according to product requirements. According to product requirements, the platform discovers and selects eligible service providers for negotiations. After both the customer and eligible service providers configure their negotiation agents, concurrent negotiations can be launched in the platform. Moreover, both of them are allowed to have their reservation value for each attribute in this bilateral market.
[image: ]
Fig. 5. Motivating case for the numerical study
The experiments of this numerical study were conducted on a machine running Windows 10 Enterprise 64-bit, Dell OptiPlex 7060 with Intel® Core™ i7-8700 CPU, 3.2 GHz and 16 GB of RAM. The programming was completed in MATLAB R2017b.
Mechanism verification
The product requirement is composed of six subtasks. Three attributes are considered in this case study, i.e. price, manufacturing time and energy consumption. The requirements are presented in Table 1. Taking price as an example, the customer requires the price ranges from 1415 to 1690 (unit of price) and weights of price for subtasks are 0.031, 0.261, 0.040, 0.451, 0.161 and 0.056 respectively. For each service, the customer assigns weights 0.35, 0.35 and 0.30 to the price, manufacturing time and energy consumption respectively. The information on subtasks and service provider candidates is listed in Table 2. A total of 19 service providers participate in the negotiation simultaneously. Each service provider has his value ranges of three attributes, and sets three preference weights to show the importance of three attributes for utility evaluation. Data in Tables 1 and 2 are modified from Zhang et al. (2018) and Zhang et al. (2021). In the negotiation, the customer and all service providers adopt the polynomial function (i.e. Equation (8)) with  and  for all attributes. The maximum negotiation time is 10. In addition, the smoothing function is employed in all experiments.
Table 1 Information on customer requirements
	Attribute
	Range
	Weight  for each attribute
	Weight  for each service 

	
	
	
	
	
	
	
	
	

	
	[1415,1690]
	0.35
	0.031
	0.261
	0.040
	0.451
	0.161
	0.056

	
	[113,238]
	0.35
	0.108
	0.256
	0.199
	0.137
	0.171
	0.128

	
	[421,573]
	0.30
	0.029
	0.040
	0.262
	0.443
	0.101
	0.126


Table 2 Information on subtasks and service provider candidates
	Subtask
	Service Information

	
	
	
	
	
	
	
	

	1
	
	[34,48]
	[16,20]
	[12,16]
	0.30
	0.30
	0.40

	
	
	[47,53]
	[10,14]
	[11,15]
	0.50
	0.35
	0.25

	
	
	[39,56]
	[20,27]
	[13,19]
	0.35
	0.35
	0.40

	2
	
	[389,430]
	[27,56]
	[17,27]
	0.33
	0.33
	0.34

	
	
	[406,456]
	[23,48]
	[13,19]
	0.42
	0.28
	0.30

	
	
	[355,423]
	[50,86]
	[19,21]
	0.36
	0.33
	0.31

	3
	
	[53,59]
	[21,35]
	[110,126]
	0.25
	0.25
	0.50

	
	
	[57,63]
	[16,23]
	[93,130]
	0.35
	0.35
	0.30

	
	
	[66,77]
	[11,17]
	[130,153]
	0.37
	0.30
	0.33

	
	
	[49,55]
	[42,55]
	[117,133]
	0.29
	0.41
	0.30

	
	
	[54,58]
	[20,30]
	[124,148]
	0.40
	0.25
	0.35

	4
	
	[600,700]
	[26,35]
	[215,285]
	0.36
	0.3
	0.34

	
	
	[735,852]
	[17,33]
	[187,223]
	0.40
	0.20
	0.40

	5
	
	[220,260]
	[20,35]
	[50,70]
	0.33
	0.37
	0.30

	
	
	[200,260]
	[30,40]
	[35,53]
	0.30
	0.35
	0.35

	
	
	[250,295]
	[25,40]
	[27,46]
	0.50
	0.25
	0.25

	6
	
	[90,118]
	[15,25]
	[55,75]
	0.30
	0.42
	0.28

	
	
	[75,100]
	[10,20]
	[40,53]
	0.31
	0.36
	0.33

	
	
	[65,92]
	[20,30]
	[60,80]
	0.28
	0.27
	0.45


The results of the negotiation are presented in Table 3. The results without and with surplus redistribution are broadly similar. However, several differences still exist. First, service provider 1  is selected to carry out subtask 4 without surplus redistribution, but with surplus redistribution, service provider  is chose. Second, due to surplus redistribution, negotiation over the  service terminates in advance at the time 7 instead of 9. Third, the total price increases from 1478.85 (without surplus distribution) to 1618.42 (with surplus distribution), while the total manufacturing time and energy consumption decrease from 175.75 to 169.11 and from 530.75 to 486.2 respectively. These differences show that the surplus redistribution influences the results, in terms of service provider selection, end of time and value of attributes.
Table 3 MSA results without and with surplus redistribution
	Subtask
	Without surplus redistribution
	
	With surplus redistribution

	
	
	
	
	
	
	
	
	
	
	
	

	1
	2
	6
	50.60
	12.40
	13.40
	
	2
	6
	50.60
	12.40
	13.40

	2
	1
	7
	404.34
	44.54
	19.81
	
	1
	7
	404.87
	46.12
	19.99

	3
	5
	4
	56.91
	27.28
	141.47
	
	5
	4
	56.91
	27.28
	141.47

	4
	1
	8
	640.80
	29.67
	243.56
	
	2
	8
	782.74
	23.53
	201.69

	5
	2
	6
	236.00
	36.00
	45.80
	
	2
	6
	236.00
	36.00
	45.80

	6
	3
	9
	90.20
	25.86
	66.68
	
	3
	7
	87.30
	23.78
	63.85

	Total
	
	
	1478.85
	175.75
	530.72
	
	
	
	1618.42
	169.11
	486.20


Comparison with optimization methods
To compare negotiation mechanisms with other methods, a multi-objective optimization model for MSA is formulated as follows using integer linear programming (ILP). This proposed model is based on Zhang et al. (2021) and Wang et al. (2021). Based on weights assigned to each objective, this multi-objective optimization model is converted into a single objective optimization model.
Objective function

Subject to









Equation (15) is to minimize price, manufacturing time and energy consumption, where , , , and  denote the highest price, the longest manufacturing time and the highest energy consumption respectively. In this case, ,  and . This indicates , , and  are not required to equal their least preferred values, and the customer can assign appropriate values to them according to her judgment on the market. Equations (16) – (18) are developed to calculate the total price, manufacturing time and energy consumption respectively. Constraints (19) – (21) ensure that the total price is less than the highest price, the total manufacturing time less than the longest manufacturing time, the total energy consumption less than the required energy consumption. Constraints (22) and (23) show that for each service  only one service provider is selected to complete the task, and  is a decision variable. Constraint (24) ensure the total price, manufacturing time and energy consumption are positive.
In this model, the customer and all service providers can only offer their proposals once. The allocation results are determined by this model. For simplicity without loss of generality, three approaches for offering proposals are provided for the customer and all service providers: proposals with the most preferred values for all attributes (called Plan I), proposals with the average values (i.e. for each attribute, the sum of the most preferred and least values divided by 2, and called Plan II), and proposals with the least preferred values (called Plan III). Taking price as an example, the customer can let price equal 1690, 1552.5 (i.e. ) or 1415, while service provider  can let price equal 48, 41 (i.e. ) or 34. Based on this setting, 9 basic scenarios are shown in Table 4.
Table 4 MSA results based on multi-objective optimization
	     Provider
Customer
	Plan I
	Plan II
	Plan III

	Plan I
	No feasible solution
	No feasible solution
	No feasible solution

	Plan II
	No feasible solution
	[bookmark: OLE_LINK29]Z=0.900 & (2;1;2;1;2;2)
	Z=0.776 & (2;2;2;2;1;2)

	Plan III
	Z=0.892 & (2;2;2;1;2;2)
	Z=0.764 & (2;1;2;1;1;2)
	Z=0.666 & (2;2;2;1;1;2)


The MSA results can be obtained by solving the ILP problem with proposals of the customer and service providers. In 4 of 9 scenarios, there is no feasible solution for the ILP problem. This implies there is an approximate 45% probability that the customer and service providers fail to make deals. The MSA results cannot be obtained with a higher success rate, which causes a detrimental impact on both customers and service providers.
For those scenarios with optimal solutions, it is observed that the optimal objective value is the smallest when both sides offer their proposals with the least preferred values for all attributes. To be specific, when both sides adopt Plan II, the optimal objective is 0.900 and service providers 2, 1, 2, 1, 2, 2 are selected to complete subtasks 1, 2, 3, 4, 5, and 6 respectively. When both sides adopt Plan III, the optimal objective is 0.666, and service providers 2, 2, 2, 1, 1, 2 are selected to complete subtasks 1, 2, 3, 4, 5, and 6 respectively. Thus, to improve the success rate, both sides need to choose Plan III. Under the circumstance, the customer can complete her task at the lowest price with the shortest manufacturing and the lowest energy consumption, if MSA succeeds. However, winning service providers can gain no utility from this MSA result, since in their proposals the least preferred values are the final trading price. This indicates this selection is unfair to service providers. Since all agents are self-interested, they may choose Plan I, leading to the failure of MSA. Clearly, MSA faces a dilemma when optimization methods are adopted.
Sensitivity analysis
Table 5 shows the impact of surplus redistribution when the customer decreases the reservation value of price from 1690 to 1500 and other things equal. The advantage of surplus redistribution is obvious. Without surplus redistribution, the customer requirements are not satisfied because the negotiation over the second service fails. With surplus redistribution, the MSA problem is successfully addressed with a total price of 1462.06, total manufacturing time of 193.92 and total energy consumption of 513.28. The negotiated value of attributes with surplus redistribution might be slightly larger than that without surplus redistribution. This is the cost of successfully reaching agreements.
Table 5 The impact of the surplus redistribution
	Subtask
	Without surplus redistribution
	
	With surplus redistribution

	
	
	
	
	
	
	
	
	
	
	
	

	1
	1
	7
	45.15
	18.79
	14.36
	
	1
	7
	45.16
	18.97
	14.45

	2
	-
	-
	-
	-
	-
	
	3
	8
	382.74
	64.69
	19.82

	3
	1
	4
	57.37
	31.19
	121.65
	
	1
	4
	57.37
	31.19
	121.65

	4
	1
	8
	640.80
	29.67
	243.56
	
	1
	8
	640.80
	29.67
	243.56

	5
	1
	9
	237.56
	34.54
	53.45
	
	2
	7
	234.57
	30.32
	50.65

	6
	3
	9
	82.63
	25.86
	66.68
	
	1
	8
	101.42
	19.08
	63.16

	Total
	
	
	-
	-
	-
	
	
	
	1462.06
	193.92
	513.28


Moreover, service provider 2  and service provider 1  are selected to provide the fifth and sixth services respectively instead of  and . It is also observed that all negotiations end before , which implies the negotiation time is reduced and the efficiency is improved. This experiment proves that employing surplus redistribution strategy facilitates solving MSA problems effectively and improves the success rate of negotiations. The rest of the experiments is conducted based on surplus redistribution to examine the impact of several key parameters.
Table 6 presents the impact of the length of negotiation time. With the length of negotiation time varying, the results of MSA change. Different service providers are selected in different settings. Reaching agreements are delayed due to the longer time for negotiation. Since the agreement about the third service is first reached under three different settings, its final trading price, manufacturing time and energy consumption remain nearly unchanged. The slight fluctuation of values is caused by Equation (8) due to the change in length of negotiation time. However, some final trading values could change greatly. The reason is that surplus distribution strategy changes the reservation values of all attributes and the customer subsequently could offer a counterproposal that significantly influences utility evaluation of both sides. The earlier agreements are reached, the smaller the influence is. With extending the negotiation time, the customer monotonously increases her utility () from 0.455 to 0.551. From the utility perspective, the customer can maximize her overall utility with a longer negotiation time.
Table 6 The impact of the length of negotiation time
	Subtask
	
	
	
	
	
	Total

	

	1
	2
	6
	50.60
	12.40
	13.40
	TP=1618.42
TT=169.11
TE=486.20
U=0.455

	2
	1
	7
	404.87
	46.12
	19.99
	

	3
	5
	4
	56.91
	27.28
	141.47
	

	4
	2
	8
	782.74
	23.53
	201.69
	

	5
	2
	6
	236.00
	36.00
	45.80
	

	6
	3
	7
	87.30
	23.78
	63.85
	

	

	1
	2
	8
	50.75
	12.50
	13.50
	TP=1623.13
TT=176.40
TE=468.06
U=0.464

	2
	1
	11
	410.62
	48.49
	20.54
	

	3
	1
	4
	57.61
	31.75
	122.29
	

	4
	2
	12
	778.26
	22.92
	200.31
	

	5
	2
	8
	237.55
	36.26
	46.26
	

	6
	3
	11
	88.34
	24.48
	64.16
	

	

	1
	2
	10
	50.83
	12.55
	13.55
	TP=1498.89
TT=169.61
TE=513.79
U=0.551

	2
	1
	14
	407.94
	40.40
	21.62
	

	3
	1
	6
	57.50
	31.50
	122.00
	

	4
	1
	14
	646.20
	30.16
	247.34
	

	5
	2
	12
	233.48
	35.38
	45.04
	

	6
	1
	14
	102.94
	19.62
	64.24
	


Table 7 demonstrates the impact of parameter  in Equation (8). The larger , the earlier agreements can be reached. When  the first agreement is reached at time  and the final agreement at time ; when , the first agreement at time  and the final agreement at time ; when the first agreement at time  and the final agreement at time . This result accords with Observation 1. Also, the utility of the customer increases monotonously from 0.455 to 0.671. Although agreements are reached at the early time of negotiation, values of attributes from proposals converge rapidly as  is large. It indicates that a larger  facilitates negotiations and enables the customer to gain more utility.
Table 7 the impact of parameter 
	Subtask
	
	
	
	
	
	Total

	

	1
	2
	6
	50.60
	12.40
	13.40
	TP=1618.42
TT=169.11
TE=486.20
U=0.455

	2
	1
	7
	404.87
	46.12
	19.99
	

	3
	5
	4
	56.91
	27.28
	141.47
	

	4
	2
	8
	782.74
	23.53
	201.69
	

	5
	2
	6
	236.00
	36.00
	45.80
	

	6
	3
	7
	87.30
	23.78
	63.85
	

	

	1
	2
	4
	50.36
	12.24
	13.24
	TP=1468.02
TT=177.02
TE=533.95
U=0.530

	2
	1
	5
	407.06
	46.78
	20.15
	

	3
	5
	2
	56.88
	27.20
	141.28
	

	4
	1
	6
	640.00
	29.60
	243.00
	

	5
	2
	4
	233.60
	35.60
	45.08
	

	6
	3
	4
	80.12
	25.60
	71.20
	

	

	1
	2
	2
	50.77
	12.51
	13.51
	TP=1498.81
TT=167.76
TE=456.03
U=0.671

	2
	1
	4
	407.10
	39.80
	21.41
	

	3
	1
	2
	56.77
	29.79
	120.04
	

	4
	1
	4
	644.15
	29.97
	199.94
	

	5
	2
	2
	237.66
	36.28
	46.30
	

	6
	1
	4
	102.36
	19.41
	63.83
	


Managerial discussions
According to the experimental results, some observations and findings are provided as follows.
The proposed negotiation framework and mechanism can address the MSA problem. Compared with traditional optimization methods, service customers and providers can establish a bilateral market and collaborate to allocate manufacturing services under this framework. The results show that when applying optimization methods, the allocation results are highly dependent on proposals of service providers, namely their preferences, and the MSA problem cannot be solved in 4 of 9 scenarios. This implies that service providers could manipulate the market. However, customers could also decrease their maximum budgets as a coping strategy, which further impedes the MSA. The markets could deteriorate and eventually collapse due to untruthful proposals. In contrast, when applying automated negotiation, both of them can negotiate with their counterparts from their most to least preferred value, which could induce truthful proposals to improve the fairness.
[bookmark: OLE_LINK32]It is necessary to adopt the surplus redistribution strategy for successfully solving the MSA problem, especially when the budget is limited. Although this strategy could decrease the utility of customers sometimes, it can guarantee agreements can be successfully reached. In numerical studies, the utility in Table 3 decreases from 0.526 to 0.455 when this strategy is employed. In Table 5, however, the utility increases from 0 to 0.398 when it is adopted under a price constraint. Thus, customers with sufficient budgets might not need this strategy, but those with a tight budget are suggested to use this strategy.
In addition, it is of great importance for customers to set up a longer negotiation time in order to obtain higher utility. In addition, it is better to configure a greater value of  such that overall benefits can be maximized. These two findings can be observed from Tables 6 and 7 respectively. Therefore, when customers call for MSA, they can maximize their utility by these two approaches. By contrast, service providers should set up a smaller value of  to maximize their utility. If they can decide on negotiation parameters, they can also reduce the negotiation time to increase their utility.
Conclusions
This paper develops a multi-attribute negotiation mechanism for MSA. This paper is among the first efforts that utilize automated negotiation in smart manufacturing for MSA. Smart manufacturing technologies are integrated into the negotiation framework to lay a foundation for solving the MSA problem. Based on this framework, a negotiation protocol is designed by extending the alternating offers protocol to allow multi-bilateral negotiations concurrently. The negotiation mechanism is presented including an atomic manufacturing service negotiation model and a composite manufacturing service coordination model. Finally, surplus redistribution is developed in the composite manufacturing service coordination model to improve the success rate of negotiations. The effectiveness is proven by this strategy. Moreover, the smoothing function is proposed to avoid the sudden surge in proposals, which secures the benefits of customers. The negotiation mechanism significantly facilitates resource sharing, promotes the sustainability of industrial enterprises, and further improves the ability of autonomous decision-making.
This work can be extended along several directions. First, as far as the proposed model is concerned, proposals and counterproposals are generated by a concession tactic. However, an agent can remain the current utility by only modifying each attribute value to increase the utility of its negotiation counterparts (Faratin et al., 2002). It is worth investigating a trade-off strategy in the MSA problem to enable both parties to gain higher utility. Second, digital interoperability plays a critical role in the negotiation mechanism established on a cloud-based platform. It refers to an ability to achieve quick, seamless, secure and reliable data and information exchange between computing devices, information systems or devices and systems for facilitating cooperation and coopetition (Pan et al., 2021). To form a composite manufacturing service for a manufacturing task, a standardized language needs to be designed for service discovery and proposals/counterproposals exchange processes in the negotiation framework (Cisneros-Cabrera et al., 2021). Thus, a group of agents can automatically perform multi-bilateral negotiations for MSA. Third, the smart contract is one of the most promising functions in blockchain technology (Macrinici et al., 2018). In a MSA market, smart contract has the great potential for trading according to predefined trading strategies and protocols (Tan et al., 2020). Following the previous research direction, smart contract of Blockchain serves as a supporting technology to enable digital interoperability. It is also desirable to investigate how blockchain can facilitate automated negotiation for MSA.

APPENDIX 1
	Abbreviation

	IoT
	Internet of Things

	MSA
	Manufacturing service allocation

	MDO
	Multidisciplinary design optimization

	ATC
	Analytical target cascading

	ALC
	Augmented lagrangian coordination

	QoS
	Quality of service

	REQ
	Requirement

	CAP
	Capability

	MS
	Manufacturing service

	ST
	Subtask

	Ag
	Agent
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