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Abstract

Ongoing efforts among cities to reinvigorate streets have encouraged innovations in using smart data to understand
pedestrian activities. Empowered by advanced algorithms and computation power, data from smartphone
applications, GPS devices, video cameras, and other forms of sensors can help better understand and promote street
life and pedestrian activities. Through adopting a pedestrian-oriented and place-based approach, this paper reviews
the major environmental components, pedestrian behavior, and sources of smart data in advancing this field of
computational urban science. Responding to the identified research gap, a case study that hybridizes different smart
data to understand pedestrian jaywalking as a reflection of urban spaces that need further improvement is presented.
Finally, some major research challenges and directions are also highlighted.
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1 Introduction
In an oil painting series crafted in early 1897, a French
painter Camille Pissarro recorded the urban life of boule-
vard Montmartre from February to April in which “car-
riages, omnibuses, people, between big trees and big
houses”1 were “surveyed” from his hotel window. The
painter carefully documented different views of the boule-
vard in various weather conditions at varying times of
the day. A hundred years after the debut of “The Boule-
vard Montmartre on a Winter Morning,” pervasive digital
technologies and the staggering amount of data enabled
researchers to repeat Pissarro’s survey at a much larger
scale. In the meantime, the mounting pressure to improve
pedestrian safety, enhance meaningful social interaction
in public spaces, and inform public health responses fur-
ther expanded interests in developing advanced compu-
tational methods to analyze the digital data, including
mobile phone data, video data, and hybrid sensor data
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collected either passively by observations or actively
through respondents’ direct participation.
In view of this deluge of urban information and efforts

in deciphering the underlying urban dynamics, several
papers have reviewed the use of various emerging datasets
in studying pedestrian-related behaviors. For instance,
Feng et al. (2021) covered a wide range of data collec-
tion methods for featuring pedestrian behaviors with a
traffic engineering hierarchical structure. Shi et al. (2018)
reviewed empirical data collection methods in studying
crowd movement complexity based on a vehicular traf-
fic framework. Lovreglio and Kinateder (2020) reviewed
the use of augmented reality for pedestrian evacua-
tion. Grantz et al. (2020) summarized the use of mobile
phone data in informing COVID-19 responses. How-
ever, a review based on the pedestrian experience is still
lacking. This paper contributes to the existing literature
on pedestrian experience through a systematic review of
the environment components, pedestrian behaviour, and
smart data in different parts of the world. The limita-
tions of using static environmental variables in analyzing
pedestrian-crossing behaviour at road junctions only have
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been overcome through a pedestrian jaywalking study
that integrates different sources of smart data, includ-
ing bus dashcam, GSV images, and crowd-sourced plat-
forms. Two explanatory models that incorporate traffic
conditions, design, and destinations have been developed
to study the spatio-temporal pattern of jaywalking. The
results help to inform pedestrian-friendly design and con-
tributes to the ultimate goal of walkable cities.
The remainder of the paper is organized as follows.

Section 2 introduces the people-oriented and place-based
rationale of using human behaviors and people’s appropri-
ation of public spaces to measure street life performance
and the pedestrian experience (Whyte and et al. 1980;
Jacobs 2016; Gehl 1971; Loo 2021). Section 3 summa-
rizes the existing literature. Section 4 presents a case
study corresponding to the identified research gap. Finally,
Section 5 concludes the findings and suggests future
research directions.

2 Literature background
Big data and advancements in algorithms that allow us
to capture many aspects of human activities are rela-
tively new. However, concepts such as “sidewalk ballet,”
livable street, walkability, and transit-oriented develop-
ment can be dated back to the 1970s (Gehl 1971; Jacobs
2016). In theory, the placed-based and people-oriented
thinking could be traced to planning theories advocat-
ing using human activities to measure the performance
of cities (Pushkarev 1975; Whyte and et al. 1980). With
the fundamental understanding of transport as an experi-
ence, pedestrians are concerned about the safety, comfort,
and convenience of dwelling in streets andmoving around
in cities (Loo 2021). On the one hand, the experience is
being determined by the interaction of people and envi-
ronment directly and through the activities that people
do. On the other hand, these activities are affected by the
environment. For instance, the existence of a bench on
the sidewalk invites people to sit and chat on the street
directly. Figure 1 shows the conceptual framework of this
paper.
Following Loo (2021), safety, comfort, and convenience

are three basic dimensions in capturing the pedes-
trian experience. Pedestrian safety is predominantly mea-
sured by the number of pedestrian-vehicle crashes, street
crimes, and fall hazards such as ill-maintained pavement
(Abley and Turner 2011; Brown et al. 2010; Forsyth 2015;
Loo and Lam 2012). The environmental components
determining pedestrian safety include pavement surface,
pedestrian guardrails, steps, lighting, land uses, pedes-
trian exposures, etc. Comfort is directly associated with
the physical conditions of urban design elements such as
the sidewalk width, shelter, availability of urban furniture,
street lights, parks, and vegetation (Loo 2021; Forsyth
2015). Lastly, convenience involves both accessibility and

mobility that facilitate pedestrian movement efficiently
and smoothly to reach destinations of relevance to them.
Clear signage, street network connectivity, continuity, and
distance between destinations will all impact the pedes-
trian’s experience of convenience.
In terms of the environment, Gehl (1971) primarily clas-

sified it into buildings and space between buildings. Alter-
natively, one may consider the pedestrian environment to
be comprised of private and public spaces. A finer division
is to consider the six components of the walking environ-
ment as pavements, pedestrian cross-facilities, roads (for
vehicular traffic), walkway/sidewalk design, pedestrian
perceptions, and destinations/places of activities within
reach (Loo 2021). Traditionally, most of these components
have been measured by static indicators, such as sidewalk
width and the presence/absence of street furniture. Some
notable walkability assessment studies include Abley and
Turner (2011); Blečić et al. (2020); Cain et al. (2014),
Clifton et al. (2007), Loo (2021), and Sarkar et al. (2015). In
smart cities, our knowledge regarding the effectiveness of
these elements can now be measured. For instance, side-
walk width can be considered in relation to the actual
pedestrian volume to detect pedestrian crowding. The
ways how pedestrians actually use the street in different
spatial and temporal contexts can now be captured with
the availability of the Internet of Things (IoT), such as
weather and pollution sensors, in cities (Loo and Tang
2019). All these geo-referenced digital data are generated
24/7 in cities and can allow researchers to experiment
with the “big data” approaches and use cities as “laborato-
ries” for urban interventions, such as the introduction of
“parklets (Von Schönfeld and Bertolini 2017).”
As to pedestrian activities or behavior, recent studies

in transport geography and urban planning explored data
generated by individuals while they engage in daily activi-
ties like walking, shopping, making a call, taking transit, or
sending amessage. Somemeasures of pedestrian activities
include pedestrian crossing behavior, travel speed, travel
time, travel distance, trajectory, trip purpose, pedestrian
count, physical activity level, street crime, and social inter-
action. In the past, pedestrian activities or behavior are
predominantly captured through field observations, travel
surveys, and interviews (Andrews et al. 2012; Forsyth
2015; Ramakreshnan et al. 2020; Wang and Yang 2019).
Nowadays, information about these dynamic activities
can be captured by location-based services (LBS) bounded
with smartphone applications (APP). The pings with GPS
coordinates generated by these Apps can be anonymized
and aggregated to produce population-level insights on
pedestrian mobility patterns (Grantz et al. 2020; Hunter et
al. 2021). In the meantime, infrastructure and amenities,
such as points of interest (POIs) in cities, while serving
for their own purpose, also generate useful information
like the number of visits or open comments that could be
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Fig. 1 The conceptual framework

used to infer about human activities on streets (Hidaka
and Yamamoto 2021). Videos from surveillance cameras
and dashcams include a timestamp for each frame (Daa-
men et al. 2016). These temporal data allow researchers to
analyze time-variant pedestrian activities to understand
the dynamics of urban life. Similarly, an analysis of Wi-Fi
signals received from individual smartphone devices have
proven to be a powerful tool for detecting people trav-
elling in groups (Huang et al. 2021; Traunmueller et al.
2018). Lastly, many researchers also develop opt-in smart-
phone APPs and recruit participants to record their daily
mobility activities that could be associated with activ-
ity locations and individual characteristics (Zhang et al.
2021b). In smart cities, the means of collecting infor-
mation about pedestrian behavior has flourished expo-
nentially, creating huge opportunities for researchers in
computational urban science to conduct innovative street
life and pedestrian research.

3 Advances in studying pedestrian experience
through smart data

To conduct a systematic review of the advances of
street life and pedestrian activity research in compu-
tational urban science, this study focuses on published
peer-reviewed academic papers held within Scopus and
the Web of Science. A set of keywords was used to
search through the database. Following our conceptual
framework (Fig. 1), space/environment, pedestrian expe-
rience, and pedestrian behavior are captured by a set of

keywords2. Then, we combine the data source keywords,
namely “video,” “GPS,” “Bluetooth,” and “Wi-Fi” with each
of the keywords to create search strings and interro-
gate each database. Using advanced search criteria, we
restricted the source type to English full-text confer-
ence papers, journal articles, and articles in press pub-
lished from 1 January 2017 to May 2021. Then, the titles,
abstracts, and keywords of the papers were screened
based on two criteria: 1) with a description of the data col-
lection and processing method; 2) report empirical find-
ings on pedestrian behavior. Pure advancement in com-
puter algorithms and tools are excluded from the selection
because they do not yet help evaluate the environment-
people interaction to yield insights about the pedestrian
experience (see Fig. 1). Using search strings, 549 and
917 potentially relevant studies were retrieved from the
Web of Science and Scopus, respectively. After identifying
duplicates, abstracts were checked for conformity with the
search criteria. After the evaluation, 42 papers, as shown
in Table 1 remain on the list.
In Table 1, we group the literature based on the pedes-

trian experience of safety, comfort, and convenience.
Next, we retrieve the key environmental components and
pedestrian behaviors measured in each study. Specifically,
the environmental components are categorized into six

2Keywords include: pedestrian crossing, pedestrian trajectory, route choice,
desired path, pedestrian safety, pedestrian perception, street crime,
wayfinding, pedestrian navigation, travel distance, physical activity level,
pedestrian interactions, pedestrian grouping
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Table 1 New advances in studying pedestrian experience through smart data

Pedestrian
Experience

No. Paper Environmental Component Pedestrian Behavior Smart Data

Safety 1 (Sheykhfard
and Haghighi
2020)

Crossing facilities, Vehicular road Gap acceptance, Crossing behav-
ior, Pedestrian groups, Pedestrian-
vehicle interaction

Camera - fixed & dashcam

2 (Avinash et al.
2019)

Vehicular road, Crossing facilities Crossing behavior, Speed profile Camera - fixed - by researcher

3 (Mukherjee and
Mitra 2019)

Crossing facilities, Vehicular road,
Perception

Crossing behavior, Pedestrian-
vehicle interaction, Pedestrian
count

Camera - fixed - by researcher

4 (Beitel et al.
2018)

Design, Vehicular road Travel trajectory, Pedestrian-bike
interaction, Pedestrian count

Camera - fixed - by researcher

5 (Kadali and
Vedagiri 2020)

Crossing facilities Speed profile, Pedestrian profiles Camera - fixed - by researcher

6 (Gitelman et al.
2019)

Crossing facilities Crossing behavior Camera - fixed - by researcher

7 (Zhao et al.
2019)

Crossing facilities, Vehicular road Gap Acceptance, Crossing behavior Camera - fixed - by researcher

8 (Liang et al.
2021)

Design, Vehicle Road Pedestrian-bike interaction Camera - fixed - by researcher

9 (Zhang et al.
2020)

Vehicular Road Crossing behavior Camera - fixed - by researcher

10 (Fu et al. 2019) Crossing facilities, Vehicular road Pedestrian-vehicle interaction Camera - fixed - by researcher

11 (Marisamynathan
and Vedagiri
2017)

Crossing facilities, Perception LOS, Speed profile Camera - fixed - by researcher

12 (Gorrini et al.
2018)

Vehicular Road, Design, Crossing
facilities, Pavement, Perception

Pedestrian-vehicle interaction, LOS,
speed profile, Crossing behavior,
Gap acceptance

Camera - fixed - by researcher

13 (Saleh et al.
2020)

Crossing facilities Crossing behavior Camera - fixed - by researcher

14 (Choi et al.
2019)

Crossing facilities, Perception Crossing behavior Camera - fixed - by researcher

15 (Arhin et al.
2021)

Crossing facilities Crossing behavior Camera - fixed - by researcher

16 (Stipancic et al.
2021)

Crossing facilities Travel trajectory, Crossing behavior,
Pedestrian-vehicle interaction

Camera - fixed - by researcher

17 (Noh et al. 2020) Crossing facilities, Destina-
tion/Activities

Travel trajectory Camera - fixed - CCTV

18 (Zuo et al. 2021) Destination/Activities Pedestrian count, Pedestrian
groups, Interaction

Camera - fixed - CCTV

19 (Zhu et al. 2021) Vehicular road Crossing behavior Camera -fixed - CCTV

20 (Zhang et al.
2021a)

Destination/Activities, Perception Street crime, Pedestrian visits GPS - passive - multi-app

Comfort 21 (Cheng et al.
2019)

Design Pedestrian groups Camera - fixed - CCTV

22 (Kaparias and
Wang 2020)

Vehicular road, Design, Perception LOS Camera - fixed - by researcher

23 (Zandieh et al.
2017)

Destination/Activities, Design Physical activity level GPS - apps

24 (Hidaka and
Yamamoto
2021)

Destination/Activities, Design Stay time, Travel time GPS - apps & Bluetooth

25 (Athey et al.
2020)

Destination/Activities Interaction, Stay time GPS - passive - multi-app
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Table 1 New advances in studying pedestrian experience through smart data (Continued)

Pedestrian
Experience

No. Paper Environmental
Component

Pedestrian Behavior Smart Data

26 (Li et al. 2019) Destination/Activities,
Design

Travel trajectory GPS - wearable

27 (James et al.
2017)

Design Physical activity level GPS - wearable

28 (Jansen et al.
2017)

Design Speed profile, Travel time GPS - wearable

Convenience 29 (Yoshimura et
al. 2017)

Destination/Activities Travel trajectory, Travel time Bluetooth sensor

30 (Hidayati et al.
2020)

Destination/Activities,
Design

Interaction Camera - movable - by researcher

31 (Prescott et al.
2021)

Pavement, Design Travel trajectory Camera - movable - fixed at partici-
pants’ head

32 (Yamamoto et
al. 2018)

Destination/Activities,
Design

Travel distance, Travel trajectory GPS - apps

33 (Remmers et al.
2019)

Destination/Activities,
Pavement

Physical activity level GPS - wearable

34 (Filomena and
Verstegen
2021)

Destination/Activities,
Design

Travel trajectory, Pedestrian count GPS from 3d party

35 (Fukuyama
2020)

Destination/Activities,
Design, Pavement,
Vehicular road

Travel trajectory, Stay time, Travel
time

GPS probe-person survey

36 (Traunmueller
et al. 2018)

Destination/Activities,
Design

Travel trajectory Wi-Fi probes

Convenience
& Comfort

37 (Salazar
Miranda et al.
2021)

Destination/Activities,
Design, Pavement

Travel trajectory, Travel distance,
Trip purpose

GPS - passive - multi-app

38 (Hunter et al.
2021)

Destination/Activities,
Design

Trip purpose, Travel distance GPS - passive - multi-app

39 (Mizzi et al.
2018)

Destination/Activities,
Design

Pedestrian count, Travel trajectory GPS - passive - multi-app

40 (Williams et al.
2018)

Destination/Activities,
Design, Pavement

Physical activity level GPS - wearable

41 (Lee 2020) Destination/Activities,
Design, Pavement

Physical activity level GPS - wearable

Comfort &
Safety

42 (Hahm et al.
2019)

Vehicular road, Design Travel time, Stay time GPS - apps

major types: design, destination and activities, crossing
facilities, vehicular road, pavement, and pedestrian per-
ception (Loo 2021). The types of pedestrian behaviormea-
sures are identified. Lastly, we highlight the type of smart
data used. So far, what observations can we make about
the recent advances in street life and pedestrian activi-
ties in smart cities? Here, we used a number of alluvial
diagrams to answer this question from the perspectives
of environmental components, pedestrian activities, and
sources of smart data.

3.1 Measure of pedestrian activities
In Fig. 2, we first summarize how the pedestrian experi-
ence (a) has been captured by different behavioral mea-
sures (b) and the type of smart data used (c). Under

the pedestrian behavioral measures, pedestrian crossing
behaviors and travel trajectories are the most the frequent
behavioral measures. The crossing behavior, predomi-
nantly measured from video data, is widely studied to
measure pedestrian safety. For example, Mukherjee and
Mitra (2019) captured the state of crossing - using an
electronic device or carrying loads - of each observed
pedestrian at 24 intersections in Kolkata city, India. Choi
et al. (2019) measured older pedestrians’ start-up delay,
the head-turns frequency at 30 pedestrian crossings in
Seoul, South Korea. Other crossing-relevant behaviors
such as waiting time before crossing and gap accep-
tance time are also frequently measured in these studies
(Sheykhfard and Haghighi 2020; Zhang et al. 2020; Zhao
et al. 2019).
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Fig. 2 Distribution of smart data, pedestrian behavior measures and pedestrian experience in the reviewed paper. a Pedestrian experience factors; b
Pedestrian behaviors measured in each paper; c Smart data used in each paper

Travel trajectories have been used to evaluate all three
aspects of the pedestrian experience. For example, Noh et
al. (2020) derived pedestrian trajectories at un-signalized
crosswalks through videos from road security cameras
and classified crosswalk locations by their safety levels.
Traunmueller et al. (2018) gathered devices scanned at
each Wi-Fi access point (AP), inferred the pedestrian
travel trajectories, and identified the most frequently used
street segments in Manhattan. Salazar Miranda et al.
(2021) and Hunter et al. (2021) used passive GPS data
to derive regional aggregated travel trajectories and dis-
cussed pedestrian’s route choice in relationship to the level
of convenience and comfort of the pedestrian network. In
addition, some researchers recruited participants to wear
GPS devices or install applications on their smartphones
to collect travel trajectories for specific groups of inter-
ests (Fukuyama 2020; Hahm et al. 2019; James et al. 2017;
Jansen et al. 2017; Li et al. 2019; Williams et al. 2018;
Yamamoto et al. 2018; Zandieh et al. 2017). Pedestrian
activity level is another frequently measured variable.
These studies mostly relied on distributing GPS devices
to participants and then gathering smart data about their
daily activity pattern and level of activities (Jansen et al.
2017; Remmers et al. 2019; Lee 2020).
Also, pedestrian grouping and social interaction are

two crucial variables that determine the quality of street
life. Hidayati et al. (2020) record social interaction
along streets within an informal settlement in Jakarta,

Indonesia. Sheykhfard and Haghighi (2020) studied
pedestrian group size and its influence on pedestrian
crossing behaviors. Related to social interaction, Athey et
al. (2020) used passive-GPS data to calculate census tract
level visitors’ racial segregation. However, these studies do
not directly observe the interaction. Instead, they assume
that people who share the same spatial units within a spe-
cific time range have the potential to interact with each
other. In addition, the recent pandemic of COVID-19 also
leads to a surge of studies using Bluetooth, Wi-Fi traces,
and smartphone applications to inferring individual-level
contact and social distancing (Berke et al. 2003; Faggian et
al. 2020). To conclude, these are limited studies focusing
on encouraging positive andmeaningful street-level social
interaction using the smart data, especially considering
the recent development in group detection algorithms
(Cheng et al. 2019; Zaki and Sayed 2018).
In contrast with the measures mentioned above, pedes-

trian profiles, such as gender, age, and income level, are
not directly accessible from most smart data. However,
some studies using video data hired trained observers to
annotate each pedestrian per frame (Arhin et al. 2021;
Kaparias and Wang 2020; Liang et al. 2021; Saleh et al.
2020; Zhu and Sze 2021). Fukuyama (2020) also asked
participants to fill in their profiles when they agreed to
participate in the study. For studies using passive GPS data
in the U. S., given the country is generally segregated in
terms of income and race, researchers would associate the
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inferred home census tract of each device and use the cen-
sus survey income level and race distribution to derive the
pedestrian profile (Hunter et al. 2021; Aleta et al. 2020).

3.2 Spatial-temporal resolution for capturing pedestrian
behavior

One of the key advantages of emerging big urban data
in smart cities is the fine-grained spatial-temporal reso-
lution and large sample size. Among all reviewed studies,
pedestrian activities have been captured at themacro level
of cities and regions, at the meso level of neighborhoods
and districts, and the micro-level of streets segments and
intersections. The time interval can range from a couple
of hours to several years. In Fig. 3, research papers listed
in Table 1 are analyzed by (a) the spatial scale, (b) data
sources, (c) and the temporal scale.
Several observations can be made. First, video data are

predominantly collected at the site level, and the observa-
tion time ranges from hours to days. Studies using such
data are capable of capturing individual characteristics
and fine-scale behavior such as head turns during cross-
ing (Choi et al. 2019), pedestrian-bike interactions (Beitel
et al. 2018; Liang et al. 2021), and load carrying (Mukher-
jee andMitra 2019). Second, recent developments in deep
learning algorithms have gradually enlarged the scope of
studies using video data. The observation time of studies
using video editing software or trained observers ranged
from two hours to three days. In contrast, Noh et al.
(2020) used the Mask R-CNN (He et al. 2018) algorithm
to detect pedestrian crossing behaviors with 400 days

of closed-circuit television videos. Similarly, Zuo et al.
(2021) applied Yolo (Redmon and Farhadi 2018) to videos
collected from 731 locations in New York City to iden-
tify pairs of pedestrians that violate the social distancing
regulation.
GPS data collected from researcher-designed APPs or

distributed GSP devices could cover a much larger spatial-
temporal range. However, the challenges of recruiting
participants often result in small sample sizes. Hence, they
predominantly focused on specific pedestrian groups such
as teenagers (Lee 2020; Williams et al. 2018) or older
people (Li et al. 2019; Zandieh et al. 2017). In addition,
Bluetooth and Wi-Fi-scanner have been installed at spe-
cific sites such as festival sites, historic neighborhoods,
and dedicated neighborhoods (Traunmueller et al. 2018;
Yoshimura et al. 2017; Zhang et al. 2020; Yoshimura et al.
2017) to capture the dynamics of street life. However, con-
sidering the high privacy concern, they are only applicable
at limited locations and for a limited period of time .
Passive-GPS data collected from mobile phones has

the advantage of yielding comprehensive spatial-temporal
coverage as well as a large sample size. Hunter et al.
(2021), and Athey et al. (2020) usedmobility data collected
from millions of unique devices from all over the U.S.
These studies provided general knowledge on aggregated
population-level pedestrian behavior. However, it is still
worth noticing the potential sample bias as smartphone
users are generally at a younger age. Demographic groups
such as seniors, children, and low-income populations are
usually under-represented.

Fig. 3 The spatial-temporal scales of reviewed studies using different data sources. a Spatial scales; b Smart data used in each study; c Temporal
Scales. Colors correspond to each type of main data source
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3.3 Evaluation of the pedestrian environment
Lastly, we turn to the urban environment components that
are shown to have an impact on the pedestrian experience.
Figure 4 shows (a) dimensions of pedestrian experience
with (b) the environmental factors, such as pavement,
vehicular road, crossing facilities, destinations/activities,
and design according to six components of the walking
environment described under our conceptual framework.
Regarding pedestrian safety, variables related to vehicle

roads and crossing facilities are most frequently stud-
ied. Notably, traffic volume, traffic speed, vehicular gap
size, and perceived distance of an approaching vehicle are
shown to be key factors influencing pedestrian’s crossing
decision, crossing speed, trajectory, gap acceptance time,
red-light running, interaction with bikes and cars, etc. (Fu
et al. 2019; Kadali and Vedagiri 2020; Zhang et al. 2020).
The crossing facilities variables include crosswalk mark-
ing, pedestrian signage, the existence of refugee island,
and crosswalk length, etc. (Noh et al. 2020; Saleh et al.
2020; Zhang et al. 2020). In addition, pavement and design
features such as sidewalk continuity, accessible ramp, and
the design of shared space for pedestrians and cyclists are
also discussed (Kaparias and Wang 2020; Gorrini et al.
2018; Liang et al. 2021).
Design, destination, and activity components are mostly

discussed in relation to pedestrian comfort. Destinations
such as parks, plazas, shops, restaurants, transit stations,
and schools are shown to influence pedestrian density,
trajectories, route choice, stay time, walking speed, phys-
ical activity level, and level of social mixing. Design vari-
ables include available urban furniture, sidewalk width,

sidewalk sinuosity, and greenness (James et al. 2017;
Salazar Miranda et al. 2021). Moreover, several studies
also discussed pedestrian activity and special events. For
example, Yoshimura et al. (2017) studied the pedestrian
path patterns concerning the sales events in Barcelona,
Spain. Mizzi et al. (2018) discussed the different mobil-
ity patterns between residents and foreigners during
tourist events in Venice. Hunter et al. (2021) showed
increased recreational walking during the COVID-19 in
ten metropolitan areas in the U.S.
Pedestrian convenience, directly associated with mobil-

ity and accessibility, was found to be closely related to
wayfinding, accessibility, network connectivity, and dis-
tance frommajor destinations. For example, Filomena and
Verstegen (2021) modeled the effects of landmarks on
pedestrian volumes and pedestrian route choice. Hidayati
et al. (2020) measured realized accessibility of an informal
settlement in Jakarta and shows the lack of a walkable path
to access education facilities. Distance between schools
and homes is associated with children’s physical activity
level (Lee 2020; Remmers et al. 2019).
It is worth mentioning that among all environmental

components, pedestrian perception is a crucial variable
frequently discussed in literature yet does not show con-
sistent ways of measurement in the studies reviewed.
Kaparias and Wang (2020) used Pedestrian Level of Ser-
vice (PLOS) to indicate pedestrian perception scores for
intersections, street segments, and links. Choi et al. (2019)
conducted surveys to collect pedestrian’s perception of
distance from the crosswalk to an approaching vehicle.
Gorrini et al. (2018) interviewed a group of the aged

Fig. 4 Distribution of measured environmental components and their associated pedestrian experience variables in the reviewed studies
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population regarding the perceived walkability of their
neighborhood. Besides, it is worth noting that the
advancement in deep learning algorithms and computer
vision methods allow researchers to predict human per-
ception based on street view images (Salesses et al. 2013;
Ordonez and Berg 2014; Helbich et al. 2019; Dubey et al.
2016). Zhang et al. (2021a) used the perception of safety
predicted from Google Street Views (GSV) to explore
street crimes events in Houston, U.S. Given the poten-
tial sample bias within the original training dataset, these
methods are not always transferable to other geographic
contexts.
To this end, by reviewing the selected paper from the

measure of pedestrian activities, spatial-temporal res-
olution, and the environmental components, we have
three overall observations. First, a great portion of stud-
ies have concentrated around pedestrian safety stud-
ies, indicating a common consensus that safety is still
one of the main concerns in planning practice and
research. Secondly, similar research questions tend to
cluster around a similar spatial and temporal resolution,
implying a necessity to further explore diverse sources
of dataset with various resolutions and spatial coverage
to compensate our current understanding of pedestrian
experience. Lastly, the built environment features are
mostly measured by their function and structure, with
limited discussion on the visual quality or perception,
which is a key components determining the pedestrian
experience.

4 Case study: safety, convenience, and comfort
on pedestrian crossing behavior

In response to these observations, we pick one of the
most frequently studied pedestrian measures, pedestrian
crossing, and conducted a pilot project in understand-
ing pedestrian jaywalking activities as an indicator to
improve urban planning and design. As the reviewed stud-
ies have primarily focused on pedestrian crossing at road
intersections, here we leverage a new data source - dash-
cam on buses, to capture pedestrian crossing behavior
dispersed over different spatial contexts. In addition, by
including derived visual features fromGSV, we also hinted
on the potential visual influence of urban environment
on pedestrians’ likelihood to cross at different locations.
Incorporating the concept of pedestrian-centered place
design, a hot spot for pedestrian jaywalking suggests a
fundamental need to change a vehicle-oriented design
that jeopardizes pedestrian safety rather than to pun-
ish the unsafe behavior of pedestrians by enforcement
only (Loo 2021). Here we train a Mask R-CNN model
to detect jaywalking behaviors, highlight the unexpected
jaywalking locations, and conclude with the environmen-
tal factors that are correlated with pedestrians’ jaywalking
behaviors.

4.1 Analysis framework
With reference to Fig. 5, we first measure three main types
of variables that are found to be contributing to pedestrian
jaywalking in the previous literature: traffic conditions,
design and destinations. The traffic condition variables
include the local pedestrian volume, traffic volume, trans-
portation mode complexity, traffic flow speed. The design
aspects measure the observed size of sidewalk and road.
Lastly, the destinations include retails, transit stations,
restaurants and work destinations.

4.2 Data andmethod
4.2.1 Study sites and data coverage at different time periods
A total of 208,171 m road segments is covered by a total
of 24-hour data distributed in the morning, noon, and
night time from eight major bus routes in Hong Kong.
All video data are first processed with an anonymizer
algorithm3 to blur individual faces for the sake of pri-
vacy protection. All derived parameters are aggregated
at the Basic Spatial Unit (BSU) level. A BSU is a road
segment of maximum 100-meter length that has been
used for crash hot zone identification (Loo 2009). Night
videos are not included due to the inadequate lighting.
The grey line profiles in Fig. 6 show the street seg-
ments covered by the dashcam during the morning and
at noon.

4.2.2 Jaywalking detection from dashcam videos
We train a Mask R-CNN model using pre-trained coco
weights4 with 200 manually labeled images that contains
8 classes (Fig. 7):

• Jaywalking: pedestrians walking on the vehicle road;
• Legal crossing: pedestrians walking on the zebra

crosswalk;
• Stand or walk along the sidewalk: pedestrians on the

sidewalk;
• Standing on Refugee Island: pedestrian walking or

standing on a refugee island;
• Motorcycling: person riding a motorcycle;
• Biking: person riding a bike;
• Pushing Cart: person pushing a cart;
• Sitting: sitting along sidewalk.

4.2.3 Environmental factors
Previous literature has identified that pedestrian jaywalk-
ing behavior is associated with factors including the des-
tination, traffic condition, and built environment features.
Here we obtained the variables to measure these features
as indicated in Table 2.
The traffic conditions are measured directly using the

same dashcam video. Number of traffic modes counts

3https://github.com/animikhaich/Real-Time-Face-Anonymizer
4http://cocodataset.org/

https://github.com/animikhaich/Real-Time-Face-Anonymizer
http://cocodataset.org/
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Fig. 5 Pedestrian Jaywalking Analysis Framework

Fig. 6 Spatial Distribution of Jaywalking Events and Detection Example. a, b, c Jaywalking detected from videos collected between 6 - 9 am. d, e, f
Jaywalking detected from videos collected between 12 - 3 pm
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Fig. 7Mask R-CNN results on the validation dataset, mask mAP at 0.5 IOU (58.6). The training and validation dataset contain both image frames
obtained directly from the dashcam video and images from the Internet. Mask R-CNN coco dataset mask mAP using ResNet-101-FPN backbone is
58.0, and with ResNeXt-101-FPN backbone is 60 (He et al. 2018)

the unique number of moving objects along the streets:
bicycles, cars, trucks, buses, motorcycles. Average speed
indicates the average moving speed of buses along each
street segment. It is derived by using the total length of
each segment divided by the time it takes for a bus tomove
through, excluding the bus stopping time. Gap time refers
to the average time each bus stops during its trip through
a street segment. Lastly, pedestrian volume measures the
hourly total pedestrian visit in one street segment. It is

derived using the Mask R-CNN model in combination
with Deepsort (Wojke and Bewley 2018).
Then, the design characteristics, including observable

sidewalk and road surfaces are extracted using GSV
images with an image segmentation algorithm that assigns
each pixel in an image to a given category (Zhu et al.
2020). These two factors are considered in the model
given that both road width and sidewalk spaces are found
to be correlated with pedestrian waiting time and crossing

Table 2 Summary Statistics

6 - 9 am 12 - 3 pm

mean sd min max mean sd min max

Jaywalking Dummy 0.381 0.486 0.000 1.000 0.326 0.469 0.000 1.000

Jaywalking (per Frame) 0.017 0.046 0.000 0.745 0.014 0.036 0.000 0.301

Segment Length 84.113 23.144 13.537 100.000 86.996 21.067 16.587 100.000

Traffic Condition

# Traffic Mode 3.176 0.832 0.000 5.000 2.986 0.878 0.000 5.000

car 1.910 1.579 0.000 8.852 1.749 1.530 0.000 8.689

Average Speed 5.277 3.109 0.131 14.545 6.570 4.806 0.118 20.985

Gap Time (min) 0.291 0.471 0.000 3.633 0.258 0.446 0.000 3.167

Ped. Vol.(h) 456.604 474.048 18.188 3860.058 485.210 574.420 14.813 5595.291

Design

Sidewalk Index 0.050 0.033 0.000 0.170 0.046 0.033 0.000 0.170

Road Index 0.298 0.050 0.146 0.444 0.295 0.054 0.125 0.444

Destinations

# Retails 0.624 1.891 0.000 15.000 0.563 1.773 0.000 15.000

# Food 2.740 9.183 0.000 87.000 2.544 8.154 0.000 81.000

# Transit 4.383 7.226 0.000 40.000 4.644 7.706 0.000 40.000

# Finance Inst. 0.323 0.943 0.000 7.000 0.335 0.955 0.000 7.000

Observations 535 579

Only BSUs longer than 10 meter, with at least 20 frames sampled are included. Segments do not have any observed pedestrians are dropped
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behavior in the reviewed studies. The GSV images were
collected via their Application Protocol Interface (API).
To collect the images, we first sampled points at 50m
intervals along the OSM street centerlines within study
areas. For each sampled point, we queried the google API,
which returns four images of size 400 x 400 pixels. Each
four-image set would constitute a street view panorama
captured at a single point in time. The image segmentation
model used in this study was trained using the ADE20K
dataset, which has a total of 150 categories available.5 All
the metrics constructed measure the share of pixels of
each type among the total pixels in each image. Then, for
each street segment, we aggregated the average observed
metrics from all sampled images.
Finally, the destination data are from OpenStreetMap 6

and OpenRice 7. Each destination POI was firstly linked
with a street segment by identifying their closest street
segment. Then we aggregate the number of destinations
by each street segment.

4.3 Method
Considering jaywalking events are usually rare in Hong
Kong, we specify twomeasures to estimate the level of jay-
walking. The first measure is a dummy variable to define
if a street segment has at least one jaywalking pedestrian
during the entire observation period. The second specifi-
cation measures the average number of jaywalking people
observed per frame8 per BSU. Only BSUs that are covered
by more than 20 frames of video data are included in the
study. Figure 6 plots the streets with observed jaywalking
people either between 6 - 9 am or 12 - 3 pm in the after-
noon. For the two measures, we developed two separate
models. For the dummy measure of jaywalking, we used
a logistic regression model (eq 1) to understand the con-
nection between the likelihood of pedestrian jaywalking
and environmental factors. For the continuous measure of
jaywalking pedestrian, we used a linear regression model
(eq 2) to estimate the relationship between the intensity of
jaywalking and environmental factors. Both models con-
trolled for street type fixed-effect, adjacent population,
and segment length.

Logitt(Y ) = θ1TrafficConditiont + θ2Design
+ θ3Destination + α + ε

(1)

Jaywalkingt(Y ) = β1TrafficConditiont + β2Design
+ β3Destination + α + ε

(2)

5According to the ResNet18 prediction model specification, our overall
pixel-wise accuracy was approximately 78.64%
6https://www.openstreetmap.org/
7https://www.openrice.com/en/hongkong
8The videos provided are sampled at 10 frame per second

In equation 1, Yt is the dummy indicating if a BSU has
seen at least one jaywalking event through the video sam-
ple series during time t. α is the combined estimation
of street type fixed-effect, adjacent residential population
and street segment length. In equation 2, Jaywalkingt(Y )

is the number of jaywalking detected per frame per BSU
during the time period t. Both models measure the effect
of parameters from the lens of traffic conditions, design,
and destinations.

4.4 Results
Tables 3 and 4 summarize the model results. Among
all traffic conditions factors, Table 3 columns 1 and 5
show that BSUs with a high pedestrian volume, slow road
segment average speed, and longer traffic gap time has
a higher likelihood of observing jaywalking pedestrians.
These effects are higher in the morning than at noon,
potentially since pedestrians in the morning are more
time-sensitive. Similarly, columns 1 and 5 in Table 4 indi-
cate a similar finding, except that the effect of gap time
diminishes. It implies that a longer gap time of traffic
increases the likelihood of jaywalking events but not nec-
essarily increases the number of jaywalking pedestrians.
Columns 2 and 6 in both tables show the effects of

design parameters on jaywalking. Consistently, BSUs with
larger observable sidewalks are more likely to see a higher
level of jaywalking pedestrians in the morning. This is
likely due to the fact that streets with observable side-
walks tend to have many destinations on both sides of the
streets. Again, this effect is more substantial in the morn-
ing. On the contrary, BSUs with more vehicular traffic are
less likely to see pedestrians jaywalking at noon.
Regarding the destination parameters, columns 3 and

7 in Table 3 show that during 6 - 10 am, streets with
more retails, transit stops, and financial institutions have a
higher log-ratio to observe people jaywalking. At the same
time, restaurants and other food-related places are more
likely to observe jaywalking behaviors at noon. Columns
3 and 7 in Table 4 indicate that BSUs with more food-
related services at noon are correlated with a higher level
of jaywalking behaviors. BSUs with a higher number of
transit stops see more intense jaywalking behaviors in the
morning.
Lastly, comparing columns 4 and 8 in both tables, we

find that when including all parameters together, the
pedestrian volume still positively correlates with the log
odds ratio of pedestrian jaywalking and the number of
jaywalking behaviors. Similarly, the speed of traffic has
a negative correlation with pedestrian jaywalking. The
effects of design factors and destination factors diminish
mainly due to the fact that streets with observable side-
walks and more destinations also have higher pedestrian
volume and slower traffic speed. However, food-related
services serve as a useful indicator of a higher number

https://www.openstreetmap.org/
https://www.openrice.com/en/hongkong
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Table 3 Main results: Jaywalking Behaviors (Dummy) and Environmental Factors

Jaywalking Dummy

6 - 10 am 12 - 3 pm

(1) (2) (3) (4) (5) (6) (7) (8)

Traffic Condition

# Traffic Mode 0.139 0.125 0.213 0.207

(0.159) (0.161) (0.131) (0.134)

Traffic Volume -0.112 -0.065 0.029 0.104

(0.236) (0.241) (0.219) (0.237)

Average Speed -0.110* -0.118* -0.116** -0.114**

(0.063) (0.063) (0.048) (0.049)

Gap Time (min) 1.223*** 1.169*** 0.656** 0.629*

(0.394) (0.395) (0.316) (0.322)

Log(Pedestrian Vol.) 0.933*** 0.814*** 0.685*** 0.597***

(0.142) (0.148) (0.123) (0.139)

Design

Log(Sidewalk (GSV)) 14.675*** 3.179 10.798** -0.191

(4.355) (5.324) (4.122) (5.122)

Log(Road (GSV)) 0.911 -2.893 -5.512* -2.014

(3.581) (4.234) (3.151) (3.583)

Destination

Log(# Retails) 0.540** 0.325 0.161 0.262

(0.255) (0.265) (0.261) (0.264)

Log(# Food) 0.170 -0.050 0.527*** 0.222

(0.134) (0.140) (0.141) (0.140)

Log(# Transit) 0.217** -0.014 0.056 -0.159

(0.092) (0.106) (0.090) (0.106)

Log(# Finance Inst.) 0.746** 0.316 0.362 0.057

(0.315) (0.295) (0.279) (0.299)

Observations 505 505 505 505 550 550 550 550

R-squared 0.244 0.051 0.098 0.255 0.210 0.089 0.122 0.225

BSU Length Controlled Yes Yes Yes Yes Yes Yes Yes Yes

Street Type Fixed-Effect Yes Yes Yes Yes Yes Yes Yes Yes

Logistic regression at BSU level. Standard errors in parentheses. # refers to count. *** denotes a coefficient significant at the 0.5% level, ** at the 5% level, and * at the 10% level

of jaywalking behaviors at noon. One percent increase in
food services is correlated with a 0.3 percent higher num-
ber of jaywalking pedestrians per frame. On the contrary,
larger vehicle-road is associated with a lower number of
jaywalking behavior at noon.

4.5 Jaywalking, safety and pedestrian-friendly design
Figure 8 shows different scenarios of jaywalking detected
in all video samples. We observe three main types of
detected jaywalking:

• Pedestrian jaywalk right in front of the bus when the
bus is stopped at bus station, intersection, or just
during congestion (Fig. 8a-d)

• Pedestrian jaywalk at places that they don’t agree
with the urban design intention (Fig. 8e-g)

• Pedestrians are crossing where the road crossing
facilities are different from traditional crossing marks
(Fig. 8h).

The first type of jaywalking agrees with the results
shown in Table 3 that pedestrians tend to jaywalk
when there is a traffic gap. The phenomenon may indi-
cate insufficient crossing facilities to various destinations
on both sides of the streets. Vehicle drivers who fre-
quent such street segments should pay more attention
to crossing pedestrians. The second type of jaywalking
reflects a mismatch between the design intention and
how pedestrians use the streets. For example, in Fig. 8a,
we found that in Hong Kong, traffic lights would indi-
cate green simultaneously in both directions for pedes-
trians to cross. Thus, it is expected that pedestrians
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Table 4 Main results: Jaywalking Behaviors (per Frame) and Environmental Factors

Jaywalking per Frame

6 - 10 am 12 - 3 pm

(1) (2) (3) (4) (5) (6) (7) (8)

Traffic Condition

# Traffic Mode 0.001 0.000 0.000 0.000

(0.002) (0.002) (0.002) (0.002)

Traffic Volume 0.001 0.000 0.001 0.002

(0.003) (0.003) (0.003) (0.003)

Average Speed 0.000 0.000 -0.001*** -0.001***

(0.001) (0.001) (0.000) (0.000)

Gap Time (min) 0.007 0.007 -0.002 -0.003

(0.007) (0.007) (0.004) (0.004)

Log(Pedestrian Vol.) 0.012*** 0.012*** 0.006*** 0.005***

(0.002) (0.003) (0.001) (0.002)

Design

Log(Sidewalk (GSV)) 0.159** -0.005 0.013 -0.084

(0.066) (0.059) (0.063) (0.070)

Log(Road (GSV)) 0.092 0.072 -0.153*** -0.099**

(0.078) (0.065) (0.050) (0.048)

Destination

Log(# Retails) -0.003 -0.004 -0.000 0.001

(0.004) (0.004) (0.005) (0.005)

Log(# Food) 0.003 0.001 0.010*** 0.007**

(0.003) (0.003) (0.003) (0.003)

Log(# Transit) 0.003* -0.000 -0.002 -0.003*

(0.001) (0.001) (0.001) (0.002)

Log(# Finance Inst.) 0.010 0.004 -0.002 -0.004

(0.006) (0.006) (0.005) (0.005)

Observations 535 535 535 535 579 579 579 579

R-squared 0.104 0.029 0.043 0.109 0.088 0.065 0.093 0.128

BSU Length Controlled Yes Yes Yes Yes Yes Yes Yes Yes

Street Type Fixed-Effect Yes Yes Yes Yes Yes Yes Yes Yes

OLS at BSU level. Standard errors in parentheses. # refers to count. *** denotes a coefficient significant at the 0.5% level, ** at the 5% level, and * at the 10% level

would directly walk towards the diagonal. In Fig. 8(b,
c), pedestrians could walk anywhere given that there is
no approaching vehicle. The last type of observed jay-
walking reveals the inconsistency of road signage design.
In Hong Kong, the very narrow road sometimes does
not have a painted zebra crossing. Occasionally, peo-
ple read the precautionary pedestrian crossing marks
which remind pedestrian to watch left or watch right
before crossing. These variations in crossing facilities are
legacy inherited from different periods of street network
design, which requires further policy interventions to
avoid confusion. And a clear policy that traffic must stop
for crossing pedestrians in these narrow streets must be
conveyed to drivers and enforced to ensure pedestrian
safety.

5 Conclusion and future research directions
Using street life to reflect a city’s quality is not new in
urban studies and transportation planning. However, sys-
tematically measuring spatial-temporal pedestrian activ-
ities has been challenging. Today, ubiquitous sensors
and mobile devices allow researchers to trace pedestrian
movement through the veins of the city at a human scale.
In this paper, we reviewed recent work using GPS data,
video footage, Wi-Fi, and Bluetooth sensors to measure
pedestrian activities from the lens of safety, comfort, and
convenience. We argue that these data open the door for
researchers to reimagine the public realm in a pedestrian-
oriented paradigm, uncover the pitfalls in the exist-
ing urban environment, and revisit traditional planning
theories.



Fan and Loo Computational Urban Science            (2021) 1:26 Page 15 of 17

Fig. 8 Detected jaywalking behaviors at different locations in the city

Opportunities coming along with the smart data are
three-folded. First of all, the availability of high compu-
tation power and advanced algorithms further enhances
researchers’ ability to streamline the data collection
and analysis process in quantifying fine-grained spatial-
temporal patterns. Video-based research, which largely
relies on manual tagging, is further empowered by com-
puter vision and deep learning algorithms. Secondly, data
vendors, such as Safegraph9, Cuebiq10 and Facebook’s
Data for Good group11, have released pre-processed
and anonymized data for researchers to use in research
directly. This largely reduces the technical barriers of data
collection and aggregation. Lastly, smart data provides
new collaborative opportunities for academic-industry-
government collaboration in testing out urban interven-
tion measures before implementation.
However, our review shows that leveraging these oppor-

tunities is not without challenges. First of all, although
the development in object detection, instance segmenta-
tion, and object tracking algorithms allow researchers to
extract pedestrian counts, walking speed, and trajecto-
ries from videos, important features such as pedestrian
age and gender still require intensive manual labeling.
The process of manual labeling is both costly and time-
consuming. The process may also introduce bias or errors.
Secondly, the analysis of pedestrian activities by advanced
computational science is still in its infancy. Algorithms
detecting pedestrian interaction and grouping from video,
Bluetooth, and Wi-Fi still deserve further improvement.

9https://www.safegraph.com/academics
10https://www.cuebiq.com
11https://dataforgood.facebook.com/dfg/covid-19

Moreover, there are challenges of relating the environ-
mental components to the type and intensity of pedestrian
interaction. Pedestrian perception, including traffic safety,
crime safety, and pleasantness, also lacks consistent mea-
sures and requires further study.
Additionally, several environmental component vari-

ables have been discussed in previous walkability stud-
ies. Yet, there is a lack of empirical studies using smart
data to support them. For example, pavement and design
elements such as effective sidewalk width, availability
of accessible ramp, and street furniture are crucial in
enhancing a pedestrian-centered street space. These vari-
ables are generally hard to measure across a large region.
Another potential challenge lies in using these smart

data for transforming the research findings to real-world
decision-making. For example, passively collected data
such as GPS data from smartphones and video data are
subject to sample bias either in which devices or where
the camera is installed. When researchers focus on devel-
oping projects based on finer spatial and temporal units,
these may be inherent demographic biases.
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