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Diurnal Changes in Leaf Photochemical Reflectance
Index in Two Evergreen Forest Canopies
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Caroline Nichol , Raimundo Cosme de Oliveira, Jr., and Natalia Restrepo-Coupe

Abstract—The spectral properties of plant leaves relate to
the state of their photosynthetic apparatus and the surrounding
environment. An example is the well known photosynthetic
downregulation, active on the time scale from minutes to hours,
caused by reversible changes in the xanthophyll cycle pigments.
These changes affect leaf spectral absorption and are frequently
quantified using the photochemical reflectance index (PRI). This
index can be used to remotely monitor the photosynthetic status
of vegetation, and allows for a global satellite-based measurement
of photosynthesis. Such earth observation satellites in near-polar
orbits usually cover the same geographical location at the same
local solar time at regular intervals. To facilitate the interpretation
of these instantaneous remote PRI measurements and upscale
them temporally, we measured the daily course of leaf PRI in two
evergreen biomes—a European boreal forest and an Amazon rain-
forest. The daily course of PRI was different for the two locations:
At the Amazonian forest, the PRI of Manilkara elata leaves was
correlated with the average photosynthetic photon flux density
(PPFD) (R2 = 0.59, p < 0.01) of the 40 minutes preceding the
leaf measurement. In the boreal location, the variations in Pinus
sylvestris needle PRI were only weakly (R2 = 0.27, p < 0.05)
correlated with mean PPFD of the preceding two hours; for Betula
pendula, the correlation was insignificant (p > 0.5) regardless of
the averaging period. The measured daily PRI curves were specific
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to species and/or environmental conditions. Hence, for a proper
interpretation of satellite-measured instantaneous photosynthesis,
the scaling of PRI measurements should be supported with
information on its correlation with PPFD.

Index Terms—Amazon rainforest, Betula pendula, boreal for-
est, light use efficiency, Manilkara elata, photochemical reflectance
index (PRI), Pinus sylvestris.

I. INTRODUCTION

THE spectral absorption characteristics of leaves undergo
subtle changes when the solar irradiance they experience

exceeds the photosynthetic capacity of the leaf under existing
environmental conditions. These changes are commonly quan-
tified using the photochemical reflectance index (PRI) [1] cal-
culated from leaf optical properties as

PRI =
R(531) − R(570)
R(531) + R(570)

(1)

where R(λ) is the spectral reflectance factor at the wavelength λ

given in nanometers. The 531 nm band is sensitive to the epox-
idation state of the xanthophyll cycle at both leaf and canopy
levels as demonstrated by Peñuelas et al. [2] while 570 nm serves
as a reference wavelength. If the excitation energy arriving as
photons to the antenna system in a green leaf becomes too large,
de-epoxidation of the xanthophyll cycle redirects it to pathways
which dissipate it safely as heat. This downregulation of pho-
tosynthesis is evident as a decrease in leaf PRI. The dissipated
energy is not available for photosynthesis, and thus, lowers the
light use efficiency (LUE) of the vegetation canopy defined as
the ratio of gross primary production to the photosynthetic pho-
ton flux density (PPFD) absorbed by (the green fraction of) the
vegetation [3].

LUE is commonly used in satellite-based remote measure-
ments of photosynthetic productivity [4], [5]. Also, alternative
future approaches using chlorophyll fluorescence, such as the
upcoming FLEX mission [6] by ESA, require knowledge of
the downregulation by the xanthophyll cycle for a correct in-
terpretation of the measured optical signal. During a successful
optical satellite image acquisition, the sky is clear and the re-
flectance signal is dominated by brightly sunlit leaves. It is thus
expected that the satellite would measure a vegetation canopy
during photosynthetic downregulation. The canopy PRI would
be largely determined in a complex manner by sunlit leaf PRI,
the fraction of visible foliage which is sunlit, and the spectral
composition of blue sky irradiance [7]. Only the PRI corrected
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Fig. 1. Photos taken from canopy access towers of the two test sites: (a) Hyytiälä, Finland; (b) Tapajós National Forest, Brazil.

for canopy structural and biochemical effects can potentially
be used to determine plant stress and photosynthetic produc-
tivity [8]. However, recent research has demonstrated that the
LUE–PRI dependence varies between types of vegetation and
more investigations on the variations of PRI and LUE at differ-
ent time scales (minutes to months) and in different vegetation
canopies are required to apply this remote sensing technique to
the measurement of photosynthesis [8], [9].

At the leaf level, the role of the xanthophyll cycle in photo-
synthetic downregulation and the ability of PRI to quantify this
downregulation are well established. There are indications that
PRI is also suitable for monitoring photosynthesis at the seasonal
scale, where PRI change is mostly driven by the change in the
ratio of chlorophyll to carotenoid content [10]–[12]. The natural
platform for performing the long-term measurements are earth
observation satellites. However, these satellites, commonly in
sun-synchronous orbits, measure vegetation reflectance at spe-
cific times of the day. To extrapolate these measurements to
other times of the day, some common assumptions must be
made on how LUE (or, the leaf PRI robustly linked to photosyn-
thetic downregulation) varies with the environmental variables.
A primary candidate for the proxy variable for extrapolating
downregulation is PPFD because the photosynthetic downregu-
lation involving PRI is biophysically driven by incident photons.
However, changes in the xanthophyll cycle are only one of the
mechanisms for plants to react to changes in the surrounding
environment. The amplitude of PRI variations is linked to the
status of other adaptations and, without prior knowledge, cannot
be assumed to be identical for different plant species or biomes.

The foci of this study are the near-instantaneous reactions
of PRI to light conditions known as facultative changes [13],
[14], also called reversible photoprotection changes, caused by
the interconversion of xanthophyll cycle pigments. Contrary to
the measurement of the variation in the constitutive component
in PRI, caused by total sizes of leaf pigment pools [8], which
changes slowly during the growing season, a representative
measure of the facultative component of PRI is much more
difficult to obtain. As the facultative component depends on
the light conditions of the leaf, it needs to be measured at
the exact location of the leaf simultaneously with the remote
sensing data acquisition. Further, determination of spectral

reflectance requires the measurement of both the radiation fields
incident on and reflected by the leaf [7]. Moving or shading
the leaf during measurement can easily alter the radiation field
and thus also the leaf PRI. Obtaining reliable leaf PRI values is
especially important for canopies with well expressed structure
such as forests. At the same time, in situ determination of leaf
PRI in tall forests is also challenging due to the inaccessibility
of the topmost sun-exposed canopy elements. A recent study
confirmed the link between diurnal temporal dynamics of in
situ measured needle PRI and shoot photosynthesis [15]. The
study also found that on the daily timescale, needle PRI was
largely uncoupled from incident PPFD, making extrapolation
of instantaneous LUE measurements to daily and longer time
scales difficult.

To test the power of PPFD as a predictor of daily photosyn-
thetic downregulation, we measured diurnal leaf PRI patterns
in two different evergreen biomes, European boreal forest and
Amazon rainforest, and assessed the contribution of solar radi-
ation to the PRI temporal variations. We measured the in situ
spectral properties of sun-exposed leaves in the two biomes us-
ing an identical spectral measurement protocol. We averaged
the top of canopy PPFD recorded at both sites over different
time periods preceding the PRI measurements and investigated
whether incident irradiance could be used for temporal scaling
of instantaneous PRI to determine the daily LUE.

II. MATERIALS AND METHODS

A. Sites and Species

The first study location was in a boreal forest around the
Station for Measuring Ecosystem Atmosphere Relationships
(SMEAR II) in Hyytiälä, Southern Finland [61.86°N, 24.30°E,
Fig. 1(a)]. The growing season in this area, determined as the
period for which mean temperature is above 5 °C, lasts between
late April and October [16]. The area is dominated by a small
number of overstory species, Scots pine (Pinus sylvestris), Nor-
way spruce (Picea abies), and birches (Betula pendula, Betula
pubescens).

The second study site was located in the Tapajós National For-
est, tower K67 (2.85°S; 54.97°W), in the state of Pará, Brazil
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[see Fig. 1(b)]. The site is a natural evergreen Amazon rainforest
with numerous broadleaf overstory species, mainly composed
of dense ombrophilous forest [17]. The local topography is rel-
atively flat with an altitude of 130 m a.s.l. The surrounding
canopy mean height is approximately 40–45 m, with emergent
trees reaching up to 55 m [18]. The average precipitation at the
site is approximately 2000 mm year−1 , with the dry season tak-
ing place between July and November [19]. The mean annual
temperature is approximately 26 °C [17].

B. Instrumentation and Sampling

The measurement system was built around the PP Systems
(Amesbury, Massachusetts, MA, USA) UNI501 Mini Leaf Clip
which is suitable for measurement of both needles and leaves.
An Ocean Optics (Dunedin, Florida, FL, USA) HL-2000 5 W
tungsten halogen lamp was used as the light source, and reflected
light was analyzed with an Ocean Optics USB4000-VIS-NIR
modular spectrometer with a spectral resolution of 1.5–2.3 nm
(full width half maximum). The usable range of the system was
approximately 400–900 nm. The PPFD on the measured leaf
area was approximately 600−700 µmol m−2 s−1 , correspond-
ing to two-thirds of that on randomly oriented sunlit leaf sur-
faces in Finland in midsummer. The system was completely
field portable and operated from battery power [20]. Down-
welling PPFD data were provided by the flux towers close
to the sampled trees. We assumed that during the measure-
ment campaigns, the diurnal cycle of environmental conditions
did not change on sunny days and leaf pigment content was
constant.

The instrumentation and sampling design is described in full
detail by Mõttus et al. [15]. The canopy was accessed using
walk-up towers at approximately 18 m above ground. The tower
with the downwelling PPFD sensor was within 30 m of the
canopy access tower. We sampled two mature (ca. 55 yr-old)
Scots pine trees. The exposed shoots, chosen from the topmost
part of the crowns, received full sunlight for the whole day.
We only included fully expanded previous-year needles in the
study. In addition, we measured the topmost, fully sun-exposed
leaves of a mature (ca. 55 year-old) silver birch (Betula pendula)
growing in the pine-dominated stand.

Four shoots (branches for birch) were selected for measure-
ment from each tree. A series of 20 needles were sampled per
shoot (leaves per branch) in order to reduce measurement un-
certainty to a level sufficient to study the daily variation. Needle
(leaf) reflectance was determined immediately after its rapid
insertion into the leaf clip using a previously validated proto-
col shown to have minimum effect on its PRI [20]. A white
uncalibrated Spectralon was measured after each five needle
(leaf) measurements, and at the beginning and end of each se-
ries. The reference measurements were averaged for each se-
ries. From the reflectance data, we calculated the mean PRI
value and its 90% confidence interval. We found no statistical
difference between the PRI values of the needles of the two
pine trees and pooled the data to obtain species-specific daily
courses. 35 series with 700 individual needle reflectance spectra
were obtained for pine and 28 series containing 560 individual

Fig. 2. Recorded PPFD time series in (a) Hyytiälä and (b) Tapajós National
Forest. Markers at the top of the figure indicate the times of leaf measurements.
For Hyytiälä, top row indicates birch leaf measurements, bottom row pine
needles. Fractional day of year (DOY) = 182.0 corresponds to the beginning
of 01 June in 2015; DOY = 223.0 is the beginning of 10 August in 2016.

leaf spectra for birch. All measurements were made between
01 and 08 July 2015. The weather conditions were favorable
and included days with mostly blue skies, which was excep-
tional for this geographic region [see Fig. 2(a)]. Light condi-
tions had been stable for at least 20 min preceding each leaf
measurement.

The same measurement protocol was used in Tapajós National
Forest. We used a walk-up tower to sample leaves of a 39-meter-
tall Manilkara elata tree attached to a branch which was exposed
to sunlight throughout the day. Measurements were carried out
during the dry season, between 10 and 12 August 2016. Top
of canopy PPFD was recorded at the same site. We obtained
41 series with 820 individual leaf reflectance spectra. Weather
conditions were not as favorable as in Finland with cumulus
clouds appearing before noon [see Fig. 2(b)]. Sometimes, a
cloud had passed just a few minutes before the beginning of a
measurement series. Unstable light conditions preceding a leaf
measurement were more likely under the highest cloud cover at
midday and early afternoon.

C. Correlation Between PRI and PPFD

We started the analysis by looking for a PPFD averaging
time which would produce the best correlation between PPFD
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Fig. 3. Daily curves of leaf PRI (mean value and its 90% confidence interval) for (a) Pinus sylvestris (Hyytiälä), (b) Betula pendula (Hyytiälä), and (c) Manilkara
elata (Tapajõs).

Fig. 4. Dependence of leaf PRI (mean value and its 90% confidence interval) on the average PPFD at the time of measurement for (a) Pinus sylvestris (Hyytiälä),
(b) Betula pendula (Hyytiälä), and (c) Manilkara elata (Tapajós).

and PRI. The time of each measurement series was determined
as the time stamp of the last recorded spectrum in the series. We
calculated the average PPFD value for periods of 5, 10, 15, etc.
minutes preceding each series. The longest averaging time was
180 minutes, chosen to be well beyond the documented time
scales characteristic of xanthophyll cycle interconversion [20],
[21]. Next, we analyzed the best correlation and determined the
linearity and consistency of the PPFD–PRI relationship. To re-
move the effect of unstable light conditions (broken clouds) on
the results from the Amazon, we tested different instantaneous
PPFD values as the upper limit for including a leaf PRI series
in the analysis. PPFD can be seen here as a proxy of the tempo-
ral distance from midday. We did not use time explicitly as an
independent variable as it would have added another variable in
our analyses. We determined an instantaneous PPFD (or, equiv-
alently, temporal) threshold that improved the correlation even
further. We assumed the threshold to characterize measurement
conditions and not the physiological processes. Finally, we ap-
plied this PPFD threshold, and re-analyzed the effect of different
PPFD averaging times on the PPFD–PRI relationship.

III. RESULTS

The measured species displayed large variation in individ-
ual needle measurements. Pinus sylvestris and Manilkara elata
showed daily variation in leaf PRI with Betula pendula being

more stable (see Fig. 3). All leaves started the day with a high
PRI value (no downregulation) with PRI decreasing during the
day. However, the exact dynamics of this change are different for
the two biomes. In the boreal forest, leaf PRI remained nearly
constant before noon with a dip in the afternoon [see Fig. 3(a)
and (b)] and full recovery visible in the Pinus sylvestris data
[see Fig. 3(a)]. This led to a weak correlation with PPFD [pine:
p = 0.024, R2 = 0.27, Fig. 4(a); birch: p = 0.65, R2 = 0.01,
Fig 4(b)]. Averaging PPFD values over different periods preced-
ing the leaf PRI measurement had little effect on the strength of
the correlation [see Fig. 5(a) and (b)]. For Pinus sylvestris, the
correlation was the strongest if the PPFD averaging time was
approximately 120 min (R2 = 0.30, p = 0.014) [see Figs. 5(b)
and 6(a)]. For Betula pendula, the correlation was insignificant
(p > 0.5) regardless of the PPFD averaging time.

In the Amazon, we detected high PRI values in the morning,
early afternoon, and evening [see Fig. 3(c)]. This led to an a
insignificant relationship between PPFD and PRI [R2 = 0.03,
p = 0.30, and Fig. 4(c)]. Regardless of the PPFD averaging time,
the coefficient of determination never exceeded 0.1 (data not
shown). The highest coefficient of determination

(
R2 = 0.10

)

and the lowest p-value (p = 0.07) were obtained at an averag-
ing time of approximately 40 minutes. An analysis of PRI ver-
sus PPFD at 40 min averaging time indicated a suitable PPFD
threshold of approximately 1600 µmol m−2 s−1 , corresponding
to a maximum in R2 and a minimum in p [see Fig. 6(b)].
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Fig. 5. Dependence of the strength of the correlation between PRI and temporally averaged PPFD on the averaging period as measured by the coefficient of
determination, R2 , and the level of significance, p. (a) Pinus sylvestris (Hyytiälä), (b) Betula pendula (Hyytiälä), and (c) Manilkara elata (Tapajós, PPFD <
1600 µmol m−2 s−1 ). Horizontal axis shows the length of the averaging period of PPFD which ended at the time of the PRI measurement.

Fig. 6. Correlation between PRI and PPFD averaged over a (a) 120-
minute period preceding the PRI measurement for Pinus sylvestris (Hyytiälä,
R2 = 0.27, p = 0.024), (b) 40-minute period preceding the PRI measure-
ment for Manilkara elata (Tapajós). Filled symbols correspond to instanta-
neous (i.e., the value measured concurrently with leaf spectrum) PPFD <
1600 µmol m−2 s−1 , empty symbols PPFD > 1600 µmol m−2 s−1 . The re-
gression line is calculated for PPFD < 1600 µmol m−2 s−1 (filled symbols,
R2 = 0.59, p < 0.001).

Applying this threshold excluded the high PRI values mea-
sured in the early afternoon, visible in Fig. 3(c). A re-analysis
of the thresholded data confirmed that the strongest correlation
with leaf PRI was achieved if PPFD was averaged for 40 min-
utes preceding the PRI measurement [see Figs. 5(c) and 6(b);
R2 = 0.59, p < 0.001].

IV. DISCUSSION

Radiation conditions were challenging at both sites as com-
pletely cloud-free days were very rare. In Hyytiälä, we avoided
the effects of cloud shadows by waiting for at least 20 minutes
after it had passed before continuing measurements. In Tapajós,
however, cumulus clouds were so frequent and unpredictable in
the afternoon that data from within 5 minutes of passing shadow
were included. Leaf PRI in the Amazon had a W-shaped daily
course [see Fig. 3(c)]. The exact cause of the midday increase
cannot be determined from the measurements, but coincides
with the period of rapidly changing shadows: At different time
scales, different physiological mechanisms have been reported
to link PRI change and downregulation [21]. Hence, the thresh-
old on the instantaneous PPFD at the time of leaf measure-
ment applied in the Amazon, PPFD < 1600 µmol m−2 s−1 , is
not a physiological one, but eliminates the cloud-affected mea-
surements between 12 and 14 local time. The PPFD variations
caused by passing cumulus clouds are difficult to utilize in re-
mote sensing as they are accompanied by rapid unquantified
changes in incident irradiance. Also, they may induce PRI vari-
ations not caused by the xanthophyll cycle interconversion [21].

The daily PRI curves described here have an important effect
on the interpretation of satellite-measured PRI as a predictor
of daily or seasonal LUE. Activation of the xanthophyll cycle
indicates short-term light stress in a healthy leaf. A lack of
change in downregulation by the xanthophyll cycle at full light
may indicate photosynthesis at full capacity—or completely
the opposite—continuous downregulation due to long-term
stress [14]. For a proper interpretation of satellite-measured
instantaneous photosynthesis, it is necessary to understand and
quantify the biome-specific daily relationship between PRI
and photosynthesis. In the Amazon, we found under steady
light conditions, a simple relationship between temporally
averaged PPFD and PRI for PPFD < 1600 µmol m−2 s−1 . The
correlation between the two variables [see Fig. 6(b)] indicates
that, as expected, excess light of sufficient duration caused
downregulation as indicated by PRI. Hence, our results support
the use of PPFD for extrapolating satellite-detected downregu-
lation to other times of day in environmental conditions similar
to those at the time of our measurements.
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In Hyytiälä, on the other hand, the studied needles and leaves
appeared to be capable of fully utilizing the incident PPFD (i.e.,
no downregulation) before noon with downregulation only tak-
ing place in the afternoon. Betula pendula leaves showed no
reaction to PPFD variations regardless of the averaging period
for PPFD [see Fig. 5(b)]. The PRI of Pinus sylvestris needles was
weakly correlated with the average PPFD of the previous two
hours [see Fig. 6(a)]. However, this time window is beyond the
PRI adaptation times reported in literature [20] and can possibly
be caused by the covariation of PPFD with other environmen-
tal variables (e.g., temperature, humidity). For both the boreal
species, an instantaneous lack of downregulation measured by
a remote sensing instrument in full sunlight does not prescribe
unconstrained photosynthesis for the rest of the day. This has
a direct effect on remote sensing of photosynthesis: Satellite-
detected downregulation cannot be extrapolated to other times
of the day using the daily course in PPFD. An empirical study
comparing the correlation between PRI and LUE in northern
forest ecosystems using morning and afternoon MODIS over-
passes has found a similar effect—the correlation was stronger
with the afternoon PRI [22]. The causes of the afternoon down-
regulation remain unclear and can be caused by environmental
factors other than PPFD (e.g., temperature, water vapor deficit),
or, alternatively, leaf internal factors (e.g., buildup of photosyn-
thesis products) [15].

The measurements described in this manuscript are laborious
and weather dependent. The lack of PRI measurements col-
lected from the top of the canopies in natural conditions has
also been stated previously [15]. The datasets are therefore not
representative of all possible environmental conditions and phe-
nological stages. On the seasonal scale, changes in leaf PRI are
dominated by its pigment pool composition [11], [23], hence
the reported relationships between PRI and PPFD are valid for
limited periods (days to weeks) around the measurement cam-
paigns. Leaf measurements in the Amazon were carried out dur-
ing the dry season, which is most favorable for remote sensing,
and the results cannot, without further validation, be transferred
to the wet season. Further, we only used the exposed leaf PRI
in this study. Naturally, the shaded leaves also contribute to the
satellite-measured signal. However, as they are several times
darker than sunlit leaves in any closed canopy, their contribu-
tion to the satellite-measured signal is smaller [12] and they
should not dominate the canopy PRI variation.

Leaf-level measurements of PRI time series help to improve
our understanding of the PRI-LUE relationship in different
biomes, which is still incomplete due to the numerous variables
affecting it [9]. Unfortunately, measurements in fully grown
forest canopies are technically complicated. Partly, they can be
replaced by investigations in a controlled environment (e.g.,
[24]), but the number of variable parameters is limited in a lab.
For example, the decoupling of leaf PRI from PPFD in a boreal
forest requires considering a large number of external (envi-
ronmental) and internal (within-leaf) parameters and deserves
further investigation. Inevitably, the empirical results presented
here are limited to the environmental situation at the time of the
measurement campaigns. Further research is needed to obtain
more general results on the PRI–PPFD relationship in the two

biomes studied here as well as other geographic locations. Ul-
timately, a leaf-level process model, capable of reproducing the
measurements, should be developed. Understanding the leaf-
level variations in leaf optical properties and their physiological
causes is required to achieve robust retrievals of photosynthesis
from satellite, airborne, or mast-borne remote sensing data.

V. CONCLUSION

All studied species, both in the Amazon and the boreal forest,
showed a clear daily course in leaf PRI. The leaves started the
day with a high PRI value (no downregulation) with the PRI de-
creasing during the day. In the Amazon, we found a significant
(p < 0.01) correlation between leaf PRI and the average PPFD
of the preceding 40 minutes for PPFD < 1600µmol m−2 s−1 .
In contrast, leaf PRI was not coupled to PPFD in the boreal for-
est. Hence, in the absence of any other physiological factors, our
results suggest that PPFD is the key variable for extrapolation
of satellite-detected downregulation to other times of the day
for Manilkara elata in the Amazon, but not for Pinus sylvestris
or Betula pendula in the boreal zone.
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and recent improvements of the photochemical reflectance index (PRI)
for remotely sensing foliar, canopy and ecosystemic radiation-use effi-
ciencies,” Remote Sens., vol. 8, no. 9, 2016, Art. no. 677.



2242 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 12, NO. 7, JULY 2019

[11] I. Filella, A. Porcar-Castell, S. Munné-Bosch, J. Bäck, M. F. Gar-
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