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A B S T R A C T

Eucalyptus spp. and Acacia mearnsii are common exotic tree species in eastern Africa that have shown (strong)
invasive behavior in some regions. Acacia mearnsii is considered a highly invasive species that is replacing native
species and Eucalyptus spp. are known to consume high amounts of groundwater with suspected effects on native
flora. Mapping the occurrence of these species in the Taita Hills, Kenya (part of the Eastern Arc Mountains
Biodiversity Hotspot) is important as there is lack of knowledge on their occurrence and ecological impact in the
area. Mapping methods that require a lot of fieldwork are impractical in areas like the Taita Hills, where the
terrain is rugged and the infrastructure is poor. Our aim was hence to map the occurrence of these tree species in
a 100 km2 area using airborne imaging spectroscopy and laser scanning. We used a one class biased support
vector machine (BSVM) classifier as it needs labeled training data only for the positive classes (A. mearnsii and
Eucalyptus spp.), which potentially reduces the amount of required fieldwork. We also introduce a new approach
for parameterizing and setting the threshold level simultaneously for the BSVM classifier. The second aim was to
link the occurrence of these species to selected environmental variables. The results showed that the BSVM
classifier is suitable for mapping Acacia mearnsii and Eucalyptus spp., holding the potential to improve the ef-
ficiency of field data collection. The introduced parametrization/threshold selection method performed better
than other commonly used approaches. The crown level F1-score was 0.76 for Eucalyptus spp. and 0.78 for A.
mearnsii. We show that Eucalyptus spp. and A. mearnsii trees cover 0.8% and 1.6% of the study area, respectively.
Both species are particularly located on steeper slopes and higher altitudes. Both species have significant oc-
currences in areas close to the biggest remaining native forest patch (Ngangao) in the study area. Nonetheless,
follow-up studies are needed to evaluate their impact on the native flora and fauna, as well as their impact on the
water resources. The maps created in this study in combination with such follow-up studies could serve as base
data to generate guidelines that authorities can use to take action in handling the problems these species are
causing.

1. Introduction

A plant species is considered non-native or exotic if it is found in an
ecosystem where it did not evolve. On the other hand, invasive plant
species are defined as non-native plants that produce reproductive
offspring in large numbers and at considerable distances from parent
plants (Richardson et al., 2000). Woody plants, in general, were not

widely recognized as invasive species until fairly recently (Richardson
and Rejmánek, 2011). In contrast, nowadays invasive trees and shrubs
are considered in some cases among the most conspicuous and dama-
ging life-forms, threatening local flora and fauna. In Africa, some alien
tree species serving as backbone of the local plantation forestry have
high economic significance, but at the same time decimate land and
water resources (Chenje and Mohamed-Katerere, 2006).
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One of the most invasive alien tree species in Africa is Acacia
mearnsii, featured also in the list of ‘100 of the World's Worst Invaders’
(Lowe et al., 2000). This species, native in Australia, has been shown to
compete with native species, to reduce native biodiversity, and to re-
duce water availability in riparian zones (Boudiaf et al., 2013;
Richardson and Rejmánek, 2011). For instance, in South-Africa A.
mearnsii was originally planted on 107,000 ha, but is estimated now to
have spread to a total area of 2,500,000 ha (Nyoka, 2003). Another
genus of trees known to cause environmental problems in sub-Saharan
Africa and also considered invasive in some areas is Eucalyptus
(Richardson and Rejmánek, 2011). For instance, conversion of grass-
land by afforestation with alien Eucalyptus spp. affects negatively the
catchment runoff (Turpie et al., 2008). In some cases Eucalyptus spp.
plantations have even completely dried up rivers (Rodriguez-Suarez
et al., 2011). The leaf litter of Eucalyptus spp. (including Eucalyptus
saligna) also contain phytotoxic compounds, that inhibit germination
and initial growth of certain grassland species, and possible allelopathic
effects (Silva et al., 2017).

While the adverse impacts of Eucalyptus spp. and A. mearnsii are well
understood in South Africa (Nyoka, 2003; Turpie et al., 2008), fewer
assessments have been conducted elsewhere in Africa. For instance, in
Kenya, detailed maps of the current occurrences of these invasive
species are still missing. In this study, we address this research gap by
developing an efficient approach for assessing the occurrence of A.
mearnsii and Eucalyptus spp. in the Taita Hills, Kenya, with limited field
data.

The Taita Hills are part of the Eastern Arc Mountains biodiversity
hotspot, which is known to host many endemic species (Burgess et al.,
2007). However, according to a recent study, only 0.8% of the Taita
Hills region are still covered with the native indigenous cloud forests
which contain a large share of the endemic species and biodiversity of
the area (Thijs et al., 2015). Many exotic tree species have been in-
troduced to produce lumber (Eucalyptus spp., Grevillea robusta), tannin
(A. mearnsii) and food (Mangifera indica, Persea americana). Aside from
pure plantation forests, tree cover has increased on the croplands as
treeless fields have been converted to agroforestry systems (Pellikka
et al., 2018). These agroforestry systems often include exotic tree spe-
cies with some of them being considered invasive. Mapping the oc-
currence of these invasive species would hence be highly valuable as
the current spread and the impact of these species on the ecosystem in
the study area is not well known. One existing study on the occurrence
of tree species in the Taita Hills was based on field sampling (Thijs
et al., 2015), which is an accurate but time-consuming approach that is
not a practical solution for mapping the species at a broad scale and
with high spatial accuracy.

An alternative approach for inventorying tree species over the entire
region is provided by remote sensing (RS) techniques (Fassnacht et al.,
2016). Imaging spectroscopy (IS) and airborne laser scanning (ALS) are
the most common RS data sources used for the classification of tree
species in the research literature (Fassnacht et al., 2016). Using these
two data sources together (data fusion) has yielded the best results in
many cases (Fassnacht et al., 2016). The data fusion is often performed
at object level as it enables calculating smooth spectral features but also
features that depict the structure and shape of a tree. However, in the
tropics, the canopy structure is often complex and the automatic deli-
neation of tree crowns is challenging (Feret and Asner, 2013; Piiroinen
et al., 2017). Thus, pixel-based mapping approaches have also been
presented (Baldeck et al., 2015). Most of the studies utilizing IS and ALS
data for mapping tree species have been conducted in temperate forests,
while fewer studies have been located in tropical or sub-tropical areas,
and those mainly in Central America, South America and southern
Africa (Baldeck and Asner, 2015; Baldeck et al., 2015; Cho et al., 2012;
Fassnacht et al., 2016; Graves et al., 2016). Only one recent study was
conducted in Kenya (Piiroinen et al., 2017).

Tree species classification and mapping studies typically use su-
pervised classification approaches, where the classifier is trained using

field measurements of all the tree species that are present in the study
area. This approach is sometimes impractical. This particularly applies
for tropical regions where a single study site may have dozens or
hundreds of different tree species, which makes collecting re-
presentative training and validation data very laborious, particularly in
areas with limited infrastructure. Furthermore, only a few species might
be relevant for the application or research question. If the latter applies,
the use of a one class classification (OCC) approach, where labeled data
is needed only for the positive class (that is, a single tree species) might
be an efficient alternative (Mũnoz-Marí et al., 2010).

In RS studies, OCCs have been used, for example, to detect focal tree
species in tropical rainforests (Baldeck et al., 2015), Natura 2000 ha-
bitats and high nature value grassland habitats (Stenzel et al., 2014,
2017), for invasive species detection (Skowronek et al., 2017a, 2017b),
and detecting savanna tree species in Africa (Baldeck and Asner, 2015).
From the plethora of available OCC algorithms, particularly one class
support vector machine (OCSVM), biased support vector machine
(BSVM) and Maxent have been frequently used (Mack and Waske,
2017). OCSVM (Scholkopf et al., 1999) uses only data from the class of
interest to train the classifier, while BSVM is a semi-supervised classi-
fication algorithm that utilizes also unlabeled samples (Liu et al., 2003).
In a recent study conducted in Panama, very high classification ac-
curacies were achieved with BSVM for detecting non-flowering focal
tree species at the pixel level (Baldeck et al., 2015). Mack and Waske
(2017) showed in their comparison of different OCC algorithms that
BSVM had the highest discriminative potential followed by Maxent
(with parameter tuning), Maxent (with default parameters) and
OCSVM. Similarly, Stenzel et al. (2017) reported that BSVM out-
performed Maxent (with default parameters) and OCSVM in the clas-
sification of high nature value grassland areas. Stenzel et al. (2017)
concluded that the results could have been further improved by more
sophisticated parameter tuning.

One of the benefits of using OCCs in invasive species mapping is that
many governmental organizations in charge of nature conservation and
management keep record of the known locations of certain invasive
species and this information can be readily used to make initial maps.
For instance, Wakie et al. (2014) collected 143 observations of invasive
Prosopis juliflora in Ethiopia using targeted field sampling that was
based on the pre-existing knowledge of heavily infested sites that the
local communities and government employees had. Wakie et al. (2014)
then used MODIS data and Maxent to model the occurrence of P. juli-
flora. The same approach does not work in supervised classification
methods as information on all other species (the negative class) is often
missing.

The first aim of this study was to examine the potential of the OCC
approach and a BSVM classifier in combination with pixel-level data
fusion of IS and ALS data for mapping common invasive tree species,
namely Eucalyptus spp. and A. mearnsii, in the Taita Hills, Kenya. We
selected BSVM (Liu et al., 2003) based on its good performance in
previous studies (Mack and Waske, 2017; Stenzel et al., 2017). Fur-
thermore, Mack et al. (2014) suggested that better results can be
achieved for BSVM when the threshold (cut-off value) is selected
manually based on diagnostic plots in case the automatic procedures
fail. However, in practice, the manual tuning of the threshold might be
challenging. To respond to this challenge, we introduce a new approach
for selecting the model and tuning the threshold simultaneously.

The second aim was to map the occurrence of these species and
relate their occurrence with selected environmental variables. The goal
was to achieve a better understanding of the locations that are most
heavily affected by these species. The results can serve as a baseline for
studying the impacts of these species on the ecosystem, biodiversity and
water resources.
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2. Material and methods

2.1. Study site

The study area (10 km×10 km) is located in the elevation range of
1100–2200m a.s.l. in the Taita Hills (3° 25′ S, 38° 19′ E) in southeast
Kenya (Fig. 1). The Taita Hills are known for its exceptionally high
degree of endemism and conservation value (Aerts et al., 2011; Burgess
et al., 2007). The potential natural vegetation for the Taita Hills is moist
Afromontane forest or cloud forest (Aerts et al., 2011). However, most
of the forested areas have been cleared for agricultural use already>
100 years ago (Clark and Pellikka, 2009; Pellikka et al., 2013). The
largest patches of remaining forest and the highest levels of above-
ground biomass are located on hilltops and steep slopes which have
been too steep to clear for agriculture (Adhikari et al., 2017). Currently,
only around 4.2 km2 of montane forests persist in 12 forest relicts
(Pellikka et al., 2009).

During the field campaign, Eucalyptus spp. (mostly Eucalyptus sal-
igna) individuals were found especially in plantation forests (Fig. 2)
which were often located on steep slopes. Eucalyptus spp. were origin-
ally brought to the area for producing lumber. It is suspected that Eu-
calyptus spp. individuals have been spreading from the original plan-
tation sites, but no accurate information on their current occurrence is
available prior to this study. Eucalyptuses can grow up to 40m of
height and the plantations are significant carbon stocks in the area
(Pellikka et al., 2018). A. mearnsii trees (Fig. 2) have originally been
brought to the area to produce tannins for leather production. Pre-
sently, the leather production has only small economic importance and
many consider the species as a weed and cut it for use as firewood.

2.2. Field data

There were two campaigns for collecting tree level measurements
and two campaigns for collecting plot level measurements from the
native forests.

The first tree level campaign was organized between 17 January
and 8 February 2013. The 100 km2 study area was divided into 16 tiles
(each covering 2.5 km×2.5 km), which were each sampled by one

100 ha cluster selected randomly. Each cluster had ten circular 0.1 ha
study plots (17.84 m radius). Ten clusters were selected for detailed tree
sampling, and as one plot was treeless, this resulted in 99 study plots.
From each study plot, every tree that had a diameter at breast
height> 10 cm was measured. The central point of each study plot was
measured with GNSS (Trimble GeoExplorer GeoXH 6000, Trimble Inc.,
Sunnyvale, CA, USA). Measuring tape and compass were used to mea-
sure the relative position of each tree from the plot center. To enable
the differential correction of the data, a GNSS base station (Trimble Pro
6H receiver, Trimble Inc., Sunnyvale, CA, USA) was logging in a known
position during the field measurements. The data from 2013 contained
531 trees.

The second tree level campaign was organized during 1–30 October
2015. This time, the study area was divided into 1 km×1 km tiles and
30 tiles were randomly selected. Each tile was further divided into
rectangular 1 ha study plots and one study plot was selected at random
within each tile, with the exception of one tile that had two study plots.
In total, there were 31 study plots. Within each study plot, nine sam-
pling points with 33.3m intervals were established. At each sampling
point, two trees were selected using the T-square plotless sampling
method (Engeman et al., 1994; Thijs et al., 2015). The same GNSS re-
ceiver and base station were used as in 2013 but each tree was mea-
sured directly with GNSS. A tree was defined as any woody plant taller
than five meters. The data from 2015 contained 538 trees. From these,
we excluded 98 trees that were either located under higher trees (not
visible from the air) or that had GNSS positional accuracy<4m, which
resulted in 440 crowns. In total, there were 971 tree level measure-
ments (data from years 2013 and 2015 combined) from 64 different
tree species. A total of 65 of the trees were A. mearnsii and 62 were
Eucalyptus spp.

The two forest plot measurements were collected in January and
February of 2013 and 2014. The number of different tree species in the
circular 0.1 ha-sized field plots was recorded, but the exact position of
each tree was not recorded. Schäfer et al. (2016) have described this
dataset in detail (Schäfer et al., 2016). The plot level measurements
were used for validating the model in the closed-canopy native forests.
The forest plots did not include any Eucalyptus spp. or A. mearnsii trees.
The forest plots had 58 different species. In total there were 97 different

Fig. 1. Location of the study area in the Coast Province of Kenya. Locations of field measurements are shown on top of a digital terrain model with a hillshade overlay
(50% transparency) produced from the laser scanning data.
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tree species in all datasets (tree level measurements and forest plots)
combined.

2.3. Remote sensing data

The airborne remote sensing data acquisition campaign was con-
ducted during the dry season in 2013 (3–8 February). Two sensors were
used for collecting the IS and ALS data from a mean flying height of
750m above ground. The IS data were acquired with an AisaEAGLE
(Spectral Imaging Ltd., Oulu, Finland) sensor, a pushbroom scanner
with an instantaneous field of view of 0.648 mrad and field of view of
36.04°. The sensor was used with four times spectral binning mode that
produced output images with 129 bands and a full width at half max-
imum of 4.5–5.0 nm in the spectral range of 400–1000 nm. The output
pixel size was one meter. ALS data was collected with an Optech ALTM
3100 sensor (Teledyne Optech, Vaughan, Ontario, Canada). The ALTM
3100 is an oscillating mirror laser scanner capable of recording up to
four echoes (returns). The sensor was operated at a pulse rate of
100 kHz and a scan rate of 36 Hz. Scan angle was±16°.

ALS data were preprocessed by the data vendor (Topscan Gmbh,
Rheine, Germany) and delivered as a georeferenced point cloud in
UTM37S/WGS84 coordinate system with ellipsoidal heights. Buildings
and power lines were excluded and some erroneous measurements from
steep slopes were removed using TerraScan software (Terrasolid Ltd.,
Helsinki, Finland). The point cloud was then used to create a rasterized
canopy height model (CHM).

The raw IS data were radiometrically corrected and orthorectified
with CaliGeoPro 2.2 (Spectral Imaging Ltd. Oulu, Finland).

Atmospheric correction was applied using ATCOR-4 (ReSe Applications
Schläpfer, Wil, Switzerland), (Richter and Schläpfer, 2002). After the
orthorectification, it was noted that there were geometric mismatches
between IS and ALS data. As the LiDAR sensor system had a higher
quality inertial measurement unit and the IS data had obvious distor-
tions, we co-registered the ALS and IS data using control points col-
lected manually from the CHM. The processed IS scanning lines were
clipped so that the side overlap was minimized to reduce the distortions
on the sides of the flight lines. In total, 50–100 control points were
collected for each flight line and first order polynomial transformation
was applied to co-register the images. After the co-registration, RMSE at
ground level was 1.06m.

As we were only interested in trees, we generated masks to remove
non-tree pixels from the IS data. First, we delineated manually the areas
that were most heavily shadowed by clouds. Next, we masked all pixels
with NIR (836 nm) reflectance< 20% and NDVI (Rouse et al.,
1973)< 0.5 to remove non-vegetation pixels and remaining shadows.
This process removed the majority of shadows resulting from the
varying sun zenith angle as well as shadows resulting from the clouds.
We then masked all pixels with heights< 3m (based on CHM) to re-
move remaining non-tree pixels. Cloud masking was not required as the
aircraft was flying at a low altitude, below potential clouds.

As there were 129 highly correlated bands in our hyperspectral
dataset, we used minimum noise fraction (MNF) transformation (Green
et al., 1988) to reduce noise and to pack the coherent information in a
smaller set of features. The MNF algorithm was implemented in ENVI
software (version 5.0, Research Systems Inc., Boulder, CO, USA) (RSI,
2004). The MNF transformation was applied to the reflectance data

Fig. 2. A) Acacia mearnsii by a roadside, B) Agricultural landscape with Eucaluptus ssp., Acacia mearnsii, Grevillea robusta among fruit trees, C) Eucaluptus ssp.
plantation behind terraced agricultural fields. Photos: P. Pellikka, 2018.
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where all the non-tree pixels were first masked out (Fig. 3).

2.4. Samples and features

First, we plotted all tree level measurements (n=971) on top of the
IS data and manually delineated the tree crowns (Fig. 3c). If we could
not match the field measurement to a visible tree crown, the tree was
omitted. If many field measurements from the same species were close
to each other and only one tree crown could be identified, we seg-
mented only one crown covering all these field measurements. The
forest plots did not need manual segmentation as they covered 0.1 ha-
sized circular area around the center of the plot. We then extracted
features from the MNF (Fig. 3a) and CHM (Fig. 3b) data for each
manually segmented tree crown and forest plot. We included the MNF
components 1–10 in the classification model and omitted the rest based
on their low eigenvalues and noisiness in visual interpretation
(Fassnacht et al., 2014; Piiroinen et al., 2015). From CHM we derived
the height of each pixel, and focal mean and variance (Table 1). Some
of the tree crowns contained only pixels that were masked away
(shadow, height and NDVI) and were omitted. In the end, 707 tree
crowns from 65 different tree species were available for the classifica-
tion.

2.5. Classification

For the classification, we used BSVM (Liu et al., 2003) which is an
adaptation of the binary SVM (Mountrakis et al., 2011; Vapnik, 1998).

SVMs construct hyperplanes that maximize the margin between two
classes. In supervised binary SVM, training data from two classes with
available samples (i.e. positive and negative) are used to train the al-
gorithm. The basic principle of BSVM is the same as in binary SVM as it
finds an optimal separation between two classes. The main difference is
that in BSVM the negative (absence) class is replaced by an unlabeled
class (random samples). As the unlabeled class contains samples also
from the positive class, two cost terms are used for the positive (C+)
and unlabeled classes (CU) (Lee and Liu, 2003; Mack and Waske, 2017).
The sample size of the unlabeled data should be large enough to hold a
significant amount of positive samples. Then, the misclassification on
the unlabeled training samples can be penalized less strongly (Liu et al.,
2003; Mack et al., 2014).

Gaussian radial basis function was applied as kernel to create a non-
linear classifier by fitting the separating hyperplane in a transformed
feature space (Mack et al., 2014). The inverse kernel width σ was tuned
in addition to C+ and CU using a grid search during a 10-fold cross-
validation (378 different parameter combinations in total). The tested
values were in the range of σ 0.05–0.55, CU 0.1–1.9, C+ 1–25 (exact
values: Supplementary Fig. 1). We used the implementation of BSVM
from the R package “oneClass” (Mack, 2015) during the classification
process as it is openly available and open source.

The classification (Fig. 4) was conducted separately for Eucalyptus
spp. and A. mearnsii. First, all labeled samples (PN-data) (Table 2) were
divided into training (2/3 of samples) and testing datasets (1/3 of
samples) (Fig. 4). The negative samples included in the training data
were omitted from the classification. The data was divided at tree
crown level to prevent samples (pixels) from the same tree crown being
included in the training and test datasets. The positive samples are here
on after referred to as P-data and negative samples as N-data. Ad-
ditionally, we took a random sample of 20,000 unlabeled tree pixels to
serve as the unlabeled data (U-data). We used only positive and un-
labeled data (PU-data) during the model training and selection. The PN-
test data was used only to validate the selected model to verify the
results.

Fig. 3. a) MNF components 1, 2 and 3 (white areas have been masked with the shadow/tree mask). b) An example of the forest plots on top of the canopy height
model and c) an example of manually segmented tree crowns on top of true color reflectance data.

Table 1
List of the features (17 in total) used in the classification process.

Data source Feature names

Hyperspectral MNF components 1–10
Canopy height model Pixel height, focal mean and variance with window sizes

5× 5 and 25×25
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2.6. Model and threshold selection

The true positive rate (TPR) also known as recall or producer's ac-
curacy is a standard measure in the evaluation of classification results.
It estimates the probability that a positive sample is classified correctly.
In supervised classifications we could also use precision (user's accu-
racy) which depicts the probability that a sample classified as positive
truly belongs to this class. In OCC classification, we cannot calculate
precision as we do not know for certain which samples are negative. In
our case, we have this information available, but it was not used during
model selection so that we do not violate the OCC principles. Instead of
precision, we use the probability of a positive prediction (PPP) that
estimates the probability that a sample is classified as positive in rela-
tion to all samples (positive and unlabeled). For instance, if the TPR is 1
then we know that we have identified all the positive samples correctly
(e.g. all eucalyptuses have been classified as eucalyptus). Now, let's
assume that we have a model that yields a TPR of 1 and a PPP of 1. In
this case, the classifier has simply classified all the samples to the po-
sitive class and the result is useless. Thus, we can argue that if we have
two models with the same TPR but different PPP, the model with lower
PPP is more accurate, because TPR is the same but the false positive
rate (FPR) is necessarily lower.

BSVM gives continuous output values for each predicted sample.
These values can be either positive or negative. A discrimination
threshold is thus set to get a crisp (categorical) classification result that

discriminates the positive and negative predictions. The selection of an
appropriate threshold is a critical decision that also influences typical
model selection criteria. Commonly used model selection criteria for
BSVM include FPU (Lee and Liu, 2003; Liu et al., 2003) and AUCPU

(Phillips et al., 2006; Phillips and Dudík, 2008). FPU is calculated as
TPR2/PPP (Lee and Liu, 2003; Liu et al., 2003) and it aims to maximize
TPR and minimize PPP. It resembles the PN-metric F-score and is
thought to work similarly, as the F-score is high when recall and pre-
cision are high (Lee and Liu, 2003). One problem, when FPU is used, is
that it is often estimated at only one threshold level (commonly at
zero). Thus, a model could have a high discriminative power at a cer-
tain threshold, but it is ranked low because the default threshold of zero
is not suitable. Contrarily, AUCPU is calculated independently of the
threshold level. AUCPU resembles area under the receiver operator
characteristic curve (AUC) that is commonly used in supervised clas-
sification setting. The receiver operating characteristic (ROC) curve is
calculated by plotting TPR and FPR at different threshold levels
(Phillips et al., 2006), while the AUC is the surface area under the ROC
curve. In AUCPU the negative samples used to calculate the FPR are
replaced by unlabeled random samples. Thus, AUCPU can be interpreted
as the probability that a randomly chosen presence sample is ranked
above a random background sample (Phillips et al., 2006; Phillips and
Dudík, 2008). As AUCPU (like AUC) is calculated independent of the
threshold level and using randomly sampled observations, it is in-
sensitive to class imbalance (Fawcett, 2006). However, the AUCPU (like
AUC) also considers thresholds that are most likely unsuitable and
which may result in a misleading interpretation of the results (Lobo
et al., 2008).

Adjusting the threshold manually after selecting the model based on
FPU or AUCPU can lead to better results (Mack et al., 2014), but this
process requires an experienced user with knowledge of the classifica-
tion task at hand. Thus, the procedure is impractical for people that are
not experienced with OCC methods and the corresponding workflow.
To address this challenge, we introduce a new, automated method for
simultaneous parameterization and threshold selection for BSVM and
compare the results with the models selected based on FPU and AUCPU.

The introduced method is based on the idea of finding Pareto op-
timal solutions introduced by Persello and Bruzzone (2009). We apply
the same idea to the OCC classification problem and include simulta-
neous threshold selection in the workflow. We first identify the models
that produce so called non-dominated solutions at a given threshold
level for PPP and TPR. A given model+threshold (M+T) combination
is considered non-dominated if TPR cannot be increased without in-
creasing PPP and the identical PPP+TPR values have been removed
(Persello and Bruzzone, 2009). The non-dominated M+T combina-
tions are considered as the Pareto front. The concept is clarified in
Fig. 5.

We calculated TPR and PPP for each model at 50 different threshold
levels. Thus, we had 18,900 (378 models× 50 thresholds)
model+ threshold (M+T) combinations. Next, we assessed if the
M+T combinations were dominated or non-dominated. Then, we find
the M+T combination that produces TPR and PPP that are located as
close as possible to the upper left corner of the introduced diagnostic
plot (upper left corner is the point where TPR is 1 and PPP 0). Similar
min. dist. approach has been used earlier to determine cut-off
(threshold) value in ROC analysis in a supervised setting earlier by
Habibzadeh et al. (2016). From here on after, this M+T combination is

Fig. 4. The classification, validation and prediction setup. P= positive,
N=negative and U=unlabeled sample.

Table 2
Training and validation samples.

Positive tree
species

Positive training
samples (pixels)

Positive tree
crowns in training

Unlabeled
training pixels

Positive test
samples (pixels)

Positive tree
crowns in testing

Negative test
samples (pixels)

Negative tree
crowns in testing

Forest plots

Eucalyptus spp. 512 40 20,000 194 22 2120 212 23
Acacia mearnsii 252 42 20,000 167 23 2087 213 23
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referred to as “min. dist”. Selecting this min. dist. M+T combination
that produced TPR and PPP located at the Pareto front, and as close as
possible to TPR=1 and PPP=0, gives us a model that is maximizing
TPR and PPP without favoring either, thus leading to a balanced clas-
sification result.

2.7. Validation

The selected M+T combinations were validated with PN-data. We
used precision (user's accuracy), recall (producer's accuracy) and F-
score to evaluate the performance of the models at the selected
threshold levels. First, we used only the tree level measurements. The
validation was repeated 25 times by taking a random sample (70% of
test samples) during each validation round (means reported at tree
crown level). If> 50% of the pixels of each crown were classified
correctly we considered that crown correctly classified. Next, we used
the forest plots to check for false positives (percentage of pixels inside
the forest plots misclassified as Eucalyptus spp. or A. mearnsii) inside the
closed forest. Including the forest plots into the same validation scheme
would have skewed the distribution of the test data in favor of the
negative class and the validation results would have been biased.

2.8. Analysis of the species occurrence in relation to environmental
variables

The selected M+T combination was used to predict species oc-
currence over the full study area. The prediction results were then ag-
gregated to a grid with a cell size of 30×30m for visualization. First,
we calculated the cover of Eucalyptus spp. and A. mearnsii within these
grid cells (positives/all pixels). Next, we calculated the cover of
Eucalyptus spp. and A. mearnsii for the same grid cells in relation to tree
pixels (positives/tree pixels). The results were aggregated on a grid as
the pixel level results (1 m resolution) are not easy to interpret in-
tuitively on a study area of this size (10×10 km). The aggregated re-
sults also highlight the areas that are most heavily impacted by these
species and are hence under the most severe environmental threat.

The occurrence patterns of the two species were then studied to-
gether with four environmental variables, which we suspected to in-
fluence the occurrence patterns. These variables included slope, aspect,

elevation and proximity to main rivers. First, a digital terrain model
(DTM) was generated from the ALS point cloud at one meter resolution.
This DTM was then resampled to 30m spatial resolution. Next, slope
and aspect were calculated from the 30m DTM using Horn's algorithm
(Horn, 1981) included in the “raster” package (Hijmans, 2016) in R. We
used 30m spatial resolution as we were interested in how the forest
level topographic conditions affected the occurrence patterns. Using
higher spatial resolution DTM would have introduced micro level noise
in the data that would not have helped the interpretation of the general
occurrence patterns of these species. The river networks were extracted
in SAGA GIS (v. 2.1.2) using the “channel network” module. Adhikari
et al. (2017) have described this process in detail. The resulting river
network was then edited manually and only the main rivers were kept.
The distance to the main rivers were then calculated by converting the
river network into a raster surface and by calculating the Euclidian
distances from each raster cell to the closest river at 30m spatial re-
solution.

The relationship of the species and the environmental variables
were studied by taking a random sample of the pixels classified as
Eucalyptus spp. or A. mearnsii and calculating the kernel density esti-
mates in relation to the selected environmental variables. The results
were compared to the distribution of all tree pixels in the study area and
a random sample covering the whole study area (also non-tree targets).
An unpaired Wilcoxon test was used to test if the differences in the
distributions are statistically significant. This test was not conducted for
aspect as it is not suitable for the distribution of aspect values.

3. Results

3.1. Pareto optimal OCC model and threshold selection

Recall that our aim was to select a model and threshold combination
that has a high TPR rate and at the same time low PPP. The Fig. 6 shows
how the PPP is increasing as the TPR increases. For Eucalyptus spp. the
PPP starts to increase faster around TPR 0.9, and for A. mearnsii around
TPR 0.8. The Pareto fronts (blue) are seen as M+T combinations that
have the lowest PPP for the given TPR. The threshold zero solutions for
both species move away from the Pareto front at higher TPR. The
models that had the highest FPU at threshold zero or the highest AUCPU

yielded lower TPR than the models selected based on min. dist. The
min. dist. models are located at the Pareto front. The min. dist. model
for A. mearnsii has higher TPR than any of the models at threshold zero.
The min. dist. model for Eucalyptus spp. has the same TPR than the best
threshold zero solution, but with lower PPP. The min. dist. M+T
combinations for both species have TPR and PPP that are very close to
the M+T combinations that produced the highest F-score on the PN
test data. There were three models that produced exactly the same
highest F-score with test data for Eucalyptus spp. and two for A.
mearnsii. All of these were located close to the Pareto fronts and the
M+T combination selected based on min. dist.

There were 73 models (out of 378) for Eucalyptus spp. and 63 for A.
mearnsii that had a solution (at any of the 50 threshold levels) at the
Pareto front (Fig. 6). When only the Pareto optimal M+T combina-
tions were considered, the amount of possible M+T combinations
were reduced from 18,900 to 264 and 130, for A. mearnsii and Eu-
calyptus spp., correspondingly.

3.2. Validation with positive/negative test data

The models with the highest FPU and AUCPU had very high precision
and low recall at the threshold level zero (Table 3). The M+T com-
bination selected based on min. dist. had the highest recall and F-score
for both species and the lowest precision. No pixels inside the forest
plots were classified as A. mearnsii when FPU or AUCPU were used to
select the model (Table 4). The M+T combination selected based on
min. dist. misclassified 1.36 and 0.02% of the pixels inside the forest

Fig. 5. Example of Pareto-optimal solutions and dominated solutions in one-
class classification setting using TPR and PPP as the parameters, and the so-
lution with minimum distance to upper left corner of the diagnostic plot.
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plots as Eucalyptus spp. and A. mearnsii, correspondingly.

3.3. Occurrence of Acacia mearnsii and Eucalyptus spp.

Eucalyptus spp. and A. mearnsii cover 0.8% and 1.6% of the study
area, respectively. Both species occur especially in higher altitudes
(Figs. 7, 8 and 9). Eucalyptus spp. occurs especially on steep South-East
facing slopes, while fewer individuals are found on North-West facing
slopes. A. mearnsii can be found throughout the higher altitude areas
(Figs. 7a and 9) and is following the general trend of the occurrence of
trees in the area. Un-paired Wilcoxon test results showed that the oc-
currence of the predicted Eucalyptus spp. and A. mearnsii pixels differed
from the distribution of all tree pixels and random pixels with statistical
significance in all instances (p-value< 0.05). Both species have notable
occurrences close to the largest remaining native forest patch Ngangao

within the study area (Fig. 7d). A. mearnsii was dominant (over 50% of
the tree pixels classified as A. mearnsii) in many locations scattered
throughout the higher altitude areas (Fig. 8a). Eucalyptus spp. were
dominant in fewer areas and the dominant areas were often surrounded
by areas with low occurrence rates (Fig. 8b).

4. Discussion

In this study, we applied a one class classifier to map two potentially
invasive species in the Eastern Arc mountain biodiversity hotspot from
combined airborne hyperspectral and LiDAR data. In the following, we
will first discuss the advantages of the newly suggested model selection
approach. Then, we will discuss the identified occurrence patterns of
the two target species and draw some potential ecological implications.
Finally, we will discuss the suitability of our work-flow in an opera-
tional context.

4.1. OCC model optimization and classification

The introduced diagnostic plot (Fig. 6) helped to evaluate the per-
formance of the models. Considering each model at 50 threshold levels
revealed the model + threshold (M+T) combinations that had the
lowest possible PPP for a given TPR. When min. dist. based M+T se-
lection approach was used, the resulting F-scores (on test set) were
higher than for the models selected based on FPU or AUCPU (at threshold
zero).

The models selected based on the highest FPU and AUCPU had high
precision and low recall. Mack and Waske (2017) have shown earlier
that BSVM does not perform well with commonly used threshold se-
lection methods when only zero thresholds are considered. More ba-
lanced classification results using these metrics could be achieved by
tuning the thresholds manually as suggested by Mack et al. (2014).
However, this adds subjectivity to the model selection and requires
more in-depth knowledge of the OCC workflow from the person per-
forming the classification.

The introduced min. dist. based combined M+T selection provides
an alternative approach that does not require manual tuning of the
threshold to achieve balanced results. Also, considering only models
that are at the Pareto front reduces the amount of meaningful M+T
combinations to consider as possible solutions. Visualizing the Pareto

Fig. 6. True positive rate (TPR) and
probability of positive prediction
(PPP) for all models at 50 threshold
levels. The non-dominated models
(Pareto front), models at threshold 0,
models with the highest FPU, AUCPU

and minimum distance to the top left
corner (min. dist.) and the models
that produced the highest F-score
with the PN test data are indicated
separately. The PPP values extend to
1, but these are not shown in the
plots.

Table 3
Validation results with the independent test data at the tree crown level. The
values are means from 25 iterations with different subsamples of the test data.

Model selection Metric Eucalyptus spp. Acacia mearnsii

FPU precision 1.0 1.0
AUCPU precision 0.98 0.92
Min. dist precision 0.93 0.75
FPU recall 0.25 0.29
AUCPU recall 0.49 0.49
Min. dist recall 0.64 0.81
FPU F-score 0.39 0.44
AUCPU F-score 0.65 0.64
Min. dist F-score 0.76 0.78

Highest precision, recall and F-score values have been highlighted with bold.

Table 4
The percentage of pixels inside the forest plots that were falsely classified as
positives (Eucalyptus spp. or Acacia mearnsii).

Metric Native forest pixels classified as
Eucalyptus spp. (%)

Native forest pixels classified as
Acacia mearnsii (%)

FPU 0.04 0
AUCPU 0.38 0
Min. dist. 1.36 0.02
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front together with all the possible M+T combinations is a powerful
way to understand the potential performance of BSVM in solving clas-
sification problems.

As we focus on detecting potentially invasive and harmful tree
species to the environment, it may make more sense to minimize the
number of false negatives (pixels that are actually A. mearnsii or
Eucalyptus spp., but are classified as negatives). This would ensure that
most individuals of invasive species are detected and potential counter-
measures against further spreading can be efficiently implemented. On
the other hand, there is an obvious trade-off between identifying all
individuals of a potentially harmful species and unnecessary and costly
fieldwork (people checking false positives). The M+T combination
selected based on min. dist. produced balanced results for both species
(high F-score). For Eucalyptus spp. the precision was very high and the
recall was mediocre. For A. mearnsii the precision was lower than for
the models selected based on FPU or AUCPU, but the recall increased

substantially. This also means that there are more false positives for A.
mearnsii, which in part can explain the higher occurrence rate of this
species. If the negative dataset would not be available, these observa-
tions could not be analyzed without going into the field. In these cir-
cumstances, the M+T combination selected based on min. dist. is a
viable option as it does not favor high precision at the cost of low recall
like models selected based on FPU or AUCPU.

4.2. The occurrence and threat by Eucalyptus spp. and A. mearnsii

Eucalyptus spp. and A. mearnsii covered 0.8% and 1.6% of the study
area, respectively. This result should be interpreted with care as the
classification is based on very high one meter spatial resolution data.
For example, some pixels within a tree crown were misclassified even
though the whole crown was classified correctly (> 50% of pixels
classified correctly). On the other hand, there were random pixels that

Fig. 7. a) Map of A. mearnsii, b) Eucalyptus spp. and c) tree cover. The cover is, for example, pixels classified as A. mearnsii divided by all pixels in 30×30m grid. d)
Ngangao native forest fragment and pixels classified as A. mearnsii and Eucalyptus spp.
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Fig. 8. a) A. mearnsii and b) Eucalyptus spp. tree cover relative to total tree cover in 30× 30m grid cells (%).

Fig. 9. The occurrence (Kernel densities) of Eucalyptus spp., A. mearnsii, all trees and a random pixel set for selected environmental factors. Random pixels were
randomly sampled from the full study area covering all land cover types.
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were falsely classified as positives. To allow for a meaningful inter-
pretation of the occurrence patterns, we created percentage cover maps
from the binary occurrence datasets. These cover maps ease the inter-
pretation of the results, as they clearly show the areas with the highest
concentrations of the harmful species. Dense Eucalyptus spp. stands
were often found in proximity to known native forests. Some Eucalyptus
trees were found also inside the native forests. Although some of those
are false positives like in Ngangao forest.

The frequent proximity of Eucalyptus trees to native forest stands
can be considered problematic as the native forests of Eastern Arc
Mountains play a significant role in the provision of ecosystem services
(Fisher et al., 2011). For example, they provide habitat for endemic
animals and plants. The trees themselves also capture atmospheric
moisture through fog deposit (Räsänen et al., submitted), store water in
the foliage, epiphytes and trunk, and create infiltration favoring soil
type (Cardwell, 2017). They also have the highest density of above-
ground carbon stocks in the landscape (Pellikka et al., 2018). The
plantation forest with exotic tree species, on contrary, may lower the
biodiversity (Bremer and Farley, 2010) and the water table (Rodriguez-
Suarez et al., 2011). For instance, Eucalyptus spp. are blamed often by
local people to be the main reason for unavailability of water resources
in the Taita Hills (Hohenthal and Minoia, 2018). Kenya Forest Service
has also acknowledged that the Eucalyptus spp. plantations are harmful
and should be gradually replaced with native, or other less harmful
species (Hohenthal and Minoia, 2018).

A. mearnsii trees were found all over the higher altitude areas, which
could be explained by its high invasiveness (Lowe et al., 2000) which
enable the tree to quickly establish in remote areas where the man-
agement influence is low. In the Taita Hills, A. mearnsii is known to
spread easily on rocky and sandy areas, like on roadsides. However, our
mapping results would benefit from further validations as the A.
mearnsii classification had comparably low precision, and hence a
comparably high false positive rate. Similarly, as in the case of Eu-
calyptus spp., our results suggest that A. mearnsii can be frequently
found close to remaining native forest patches. As A. mearnsii infesta-
tions have been linked to decreasing biodiversity (Samways et al.,
1996) and to negative impacts on soil function and indigenous vege-
tation growth (Boudiaf et al., 2013), our results suggest a potential
ecological threat.

Being a biodiversity hotspot (Burgess et al., 2007), the native forests
need to be protected from invasive species and the frequent proximity
of both species to the few remaining forest patches may suggest a need
for management interventions. Another threat related to both Eu-
calyptus ssp. and A. mearnsii is the increased fire risk. Both exotic species
catch fire easily (Supplementary Fig. 2). A. mearnsii produces large
amounts of long-lived seeds that could be triggered after fire (Strydom
et al., 2017) helping them to spread to native forests. For Eucalyptus
spp. regenerative fire is an important factor that reduces competition
with other plant species (da Silva et al., 2016). Fire disturbance can also
accelerate the naturalization of Eucalyptus spp. around the plantation
forests of the Taita Hills, as observed in Portugal with E. globulus (Águas
et al., 2014) and suspected in Brazil (da Silva et al., 2016).

4.3. Operational invasive tree species mapping

We presented a framework to efficiently classify invasive tree spe-
cies with an OCC algorithm and limited field data. This approach holds
potential for operational use, as only limited fieldwork is required. In
accordance with our results, Baldeck and Asner (2015) used a OCC
approach in mapping savanna tree species in South Africa with good
classification accuracies (F-scores 0.4–0.72) comparable to our results.
Moreover, Baldeck et al. (2015) obtained very good classification re-
sults (recall 0.94–0.97 and precision 0.94–1.0) when applying BSVM for
mapping tropical tree species in Panama. However, there were notable
differences in the classification setup and the way the validation was
conducted compared to our setup. The achieved classification results

depend highly on the species that is classified, the tree species diversity
in the study area, and the amount of field data available (Alonzo et al.,
2013; Feret and Asner, 2013; Piiroinen et al., 2017). Overall, we aimed
to build an OCC classification workflow that can be implemented
without extensive experience in tree species classification and mapping
in the tropics. For instance, segmenting individual tree crowns (ITC)
could be done first, but it is known to be challenging in the tropics
(Feret and Asner, 2013; Piiroinen et al., 2017). Automatic delineation
of ITCs also adds complexity to the classification workflow, while very
good results have been achieved also with pixel-based classification
approaches (Baldeck et al., 2015) which are easier to implement, and
were hence applied here.

The newly introduced diagnostic plot for the OCC (Fig. 6) helps in
evaluating the potential performance of BSVM and the min. dist. based
M+T selection approach provides a straightforward way to select the
model and the threshold without the need to tune the threshold
manually to achieve sensible results. However, further research should
be conducted to test this approach with other datasets where PN-data is
available to draw more robust conclusions on the generalizability of our
findings. Nevertheless, our results suggest that this OCC classification
approach has potential in mapping tree species in high species diversity
systems when there is interest in only one or a few key species. The
mapping results could be used in the Taita Hills for managing protec-
tion measures for the benefit of native forests, while the same method
could be used elsewhere in East Africa and globally for invasive species
mapping.

In an operational setting, OCC results without N-data might serve
also as an initial map product for directing the fieldwork. The initial
classification could be generated with only a few observations of the
species of interest. The results could be used to locate areas with a high
occurrence probability of the species and hence increase the efficiency
in subsequent field campaigns to collect presence data. This process
could be iterated and adjusted to locate all species of interest.

A strong limitation of the approach, as presented in this study, is
that it relies on relatively expensive airborne RS data. Alternative op-
tions have recently been presented by, for example, Kganyago et al.
(2018) who mapped invasive tree species in KwaZulu-Natal, South-
Africa using Landsat and SPOT data and a supervised classification
approach. This indicates that certain invasive tree species could be
identified with satellite-based data. In another recent study, Ng et al.
(2017) presented promising results for mapping the invasive Prosopis
spp. and the indigenous Vachellia spp. trees in Baringo, Kenya using
Sentinel-2 data. In future studies, the introduced OCC approach should
be tested with these satellite-based data sources. Ideally, airborne IS-
based classification would be compared with the satellite-data based
classification in the same study to draw further conclusions on the
performances of these two data sources in invasive tree species map-
ping in tropics. Our occurrence maps could even serve as training data
for the Sentinel-2 based analysis. Another possible adaptation to the
suggested OCC approach in operational tree species mapping could be
to combine satellite data with data acquired from UAVs. The high
spatial resolution UAV imagery could be an efficient way to collect
presence data on species of interest through manual image interpreta-
tion. These data could then be used for training OCC algorithms applied
to Sentinel-2 data. Required fieldwork would be minimal and relatively
cheap as UAV data acquired with a normal RGB camera is likely to
suffice to reliably identify Eucalyptus spp. and A. mearnsii through
manual image interpretation.

5. Conclusions

This study showed how a BSVM classifier can be used to detect and
map common invasive tree species in the Taita Hills, Kenya. In areas
where tree species diversity is very high, the terrain is rugged and in-
frastructure is poor, the OCC approach is useful as labeled training data
is needed only for the positive class. The newly suggested diagnostic
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plot and the minimum distance to the upper left corner (of the diag-
nostic plot) based model+threshold selection approach makes it easier
for an unexperienced user to apply OCC in RS case studies. The amount
of manual work is reduced, compared to approaches that require
manual tuning of the threshold level to achieve good results or a very
large grid search of potential parameters that would increase the
computational costs.

A. mearnsii was found throughout the higher altitudes of the study
area, which suggests possibly invasive behavior in the Taita Hills,
Kenya. However, we did not have information about whether the trees
have been planted on purpose or not. Eucalyptus spp. were found
especially in the higher altitudes and steeper slopes, but it was not as
widely spread as A. mearnsii. Further assessments of its invasiveness and
impact on the local ecosystem is needed. Generally, the two species are
very common in the study area. They were found in large quantities
close to the biggest remaining native forest patch (Ngangao) in the
study area. This highlights the need to monitor the occurrence of these
two species as they might spread even more and endanger the last re-
maining native forest patches in the Taita Hills. Finally, this study
provides valuable information for officials to take action in controlling
these potentially harmful and invasive tree species, especially in sites
that hold great ecological value.
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