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A cornerstone of quantum mechanics is the characterization of symmetries provided by Wigner’s theorem.
Wigner’s theorem establishes that every symmetry of the quantum state space must be either a unitary trans-
formation or an antiunitary transformation. Here we extend Wigner’s theorem from quantum states to quantum
evolutions, including both the deterministic evolution associated with the dynamics of closed systems and the
stochastic evolutions associated with the outcomes of quantum measurements. We prove that every symmetry of
the space of quantum evolutions can be decomposed into two state space symmetries that are either both unitary
or both antiunitary. Building on this result, we show that it is impossible to extend the time-reversal symmetry
of unitary quantum dynamics to a symmetry of the full set of quantum evolutions. Our no-go theorem implies
that any time-symmetric formulation of quantum theory must either restrict the set of the allowed evolutions
or modify the operational interpretation of quantum states and processes. Here we propose a time-symmetric
formulation of quantum theory where the allowed quantum evolutions are restricted to a suitable set, which
includes both unitary evolution and projective measurements but excludes the deterministic preparation of pure
states. The standard operational formulation of quantum theory can be retrieved from this time-symmetric
version by introducing an operation of conditioning on the outcomes of past experiments.
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I. INTRODUCTION

Symmetries play a central role in the modern approach to
quantum mechanics [1,2]. They provide powerful methods
for solving problems in atomic physics, condensed matter,
high-energy physics, and quantum information science [3–5].
In addition, they offer guidance to the construction of new
physical theories, such as Yang-Mills theories and other the-
ories of fundamental interactions [6]. The starting point of all
these investigations is Wigner’s theorem [2,7], which charac-
terizes the symmetries of the state space of any given quantum
system.

In general, a symmetry is a one-to-one transformation that
preserves a certain structure. For example, canonical transfor-
mations are symmetries in Hamiltonian mechanics, because
they preserve the form of the Hamilton’s equations. Wigner’s
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theorem refers to the symmetries of the set of quantum states
of a given quantum system. The structure of interest here is the
probabilistic structure of quantum theory: when a symmetry
is applied, the statistics of measurement outcomes should not
change.

The original formulation of Wigner’s theorem refers to
pure states. Wigner established that every symmetry of the
set of pure states can be represented by a transformation
that is either unitary or antiunitary. Wigner’s theorem can be
equivalently formulated in terms of mixed states, represented
by density matrices. In this formulation, the theorem states
that every symmetry of the set of density matrices is either
a unitary transformation, of the form ρ �→ UρU † for some
unitary operator U , or an antiunitary transformation, of the
form ρ �→ UρT U †, where U is still a unitary operator, and
ρT is the transpose of the density matrix ρ with respect to a
fixed but otherwise arbitrary basis.

In recent years, there has been a growing interest in
the extension of static notions, associated to the quantum
state space, to dynamical notions, associated to the space
of quantum evolutions. A series of works characterized the
possible transformations that map quantum evolutions into
quantum evolutions, known as quantum supermaps [8–12]. A
related notion was explored in Ref. [13], which characterized
the transformations of a certain set of completely positive
maps other than the set of quantum evolutions. Higher-order
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transformations were applied to the study of causality in
quantum theory [14–17], to analyze extensions of quantum
theory [13], quantum dynamical resource theories [18–27],
and a variety of quantum information processing tasks, such
as process tomography [28], cloning [29,30], learning [31,32],
and other conversions of quantum evolutions [33–35]. The
lifting from states to evolutions has also led to new dynamical
analogues of the notions of quantum entanglement [36,37]
and quantum coherence [27,38].

In this paper we characterize the dynamical symmetries of
quantum theory by extending Wigner’s theorem from quan-
tum states to quantum evolutions. The paper contains three
main contributions, highlighted in the next section. The first
contribution is a complete characterization of the symmetries
of the space of quantum evolutions. We provide a Wigner-like
theorem showing that every symmetry of quantum evolutions
can be decomposed into two symmetries of quantum states,
these two symmetries being either both unitary or both an-
tiunitary. The second contribution is a rigorous proof that
the set of all quantum evolutions admits no time-reversal
symmetry. The third contribution is a time-symmetric variant
of the quantum framework, obtained by restricting the set of
allowed quantum evolutions to a suitable subset that preserves
the maximally mixed state.

The paper is organized as follows. In Sec. II, we provide
an overview of the main results of the paper. In Sec. III, we
review Wigner’s theorem and provide its mixed state version.
In Sec. IV, we introduce the notion of symmetry of quantum
evolutions, and we derive a Wigner theorem for quantum
evolutions. In Sec. V, we show that the set of all quantum
operations is incompatible with time symmetry. A way around
this no-go result is provided in Sec. VI, where we propose
time-symmetric variant of quantum theory, obtained by re-
stricting the set of allowed quantum evolutions. Other ways
around the no go result are discussed in Sec. VII. Finally, the
conclusions are provided in Sec. VIII.

II. OVERVIEW OF THE MAIN RESULTS

A. Wigner’s theorem for quantum evolutions

Our first contribution is a complete characterization of the
symmetries of the space of quantum evolutions. The most
general evolutions allowed by quantum mechanics are the
so-called quantum operations [39,40], which include both the
deterministic evolution associated to the dynamics of closed
systems, and the stochastic evolutions associated to the out-
comes of quantum measurements. Mathematically, a quantum
operation is a linear, completely positive map Q transforming
density matrices on an input Hilbert space Hin into (generally
subnormalized) density matrices on an output Hilbert space
Hout. The map Q satisfies the trace-nonincreasing condition

Tr[Q(ρ)] � Tr[ρ], (1)

for every operator ρ acting on Hin. When ρ is a density matrix,
the trace Tr[Q(ρ)] is interpreted as the probability that the
quantum operation Q takes place on the state ρ in a suitable
experiment. If this probability is zero for every quantum state,
then we say that the operation Q is impossible.

A symmetry of the set of quantum operations is any one-to-
one transformation that preserves the probabilistic structure,

FIG. 1. Symmetry of quantum evolutions. The symmetry trans-
formation turns a given quantum evolution Q into a new quantum
evolution Q′, obtained by concatenating Q with two transformations
of quantum states (denoted by S1 and S2), which are either both
unitary or both antiunitary.

by (1) mapping random mixtures of quantum operations into
random mixtures with the same probabilities and (2) mapping
impossible operations into impossible operations.

We show that the symmetries of the full set of quantum
operations have a very rigid structure: every symmetry of
quantum operations can be broken down into two symmetries
of quantum states, one symmetry for the input system, and
one symmetry for the output system, as illustrated in Fig. 1.
The two symmetries must be either both unitary, or both
antiunitary, while all the other combinations are forbidden.

The Wigner theorem for quantum evolutions provides a
rigorous framework for studying the dynamical symmetries
in quantum theory. The theorem can be used to detect the
presence or absence of certain symmetries, and to guide the
formulation of new variants of quantum theory exhibiting
some desired symmetry features, such as, e.g., time symmetry.
The other contributions of our paper explore these two direc-
tions.

B. No-go theorem for time-reversal symmetry

Our second result is a proof that the set of all quantum
evolutions is incompatible with time-reversal symmetry.

Microscopic time reversal is a cornerstone of quantum
mechanics, and is inherited from the charge-time-parity sym-
metry of quantum field theory [41–43]. For closed quantum
systems, the evolution is time-symmetric, in the sense that
every unitary evolution U admits a time reversal (for example,
its inverse U † or its transpose U T ), which is also a valid
quantum evolution. A fundamental question is whether the
time-reversal symmetry of unitary quantum dynamics can be
extended to a symmetry of the set of all possible quantum
evolutions.

In physics, symmetries are often viewed as changes of
reference frame, and can be used to translate a description of
phenomena made by one observer to a description of the same
phenomena made of another observer [44]. Operationally, the
question of time reversal is whether it is possible to find
a “change of reference frame” that provides the description
of a generic quantum evolution from the point of view of
an observer whose time coordinate t is replaced by −t . Of
course, since most quantum evolutions are irreversible, the
time reversal of a given evolution should not be expected to
be a physical inversion. It could be an approximate inversion
[45], a quasi-inversion [46,47], or, more generally, any evo-
lution that is in one-to-one correspondence with the original
evolution via a suitable change of description.

In our study of time symmetry, we focus on the set of
quantum operations from a given quantum system to itself.
In this case, the set of quantum operations includes the set
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of all unitary transformations. While the set of all unitary
transformations is invariant under the standard time-reversal
transformation U �→ U †, we show that such time reversal
cannot be extended to the whole set of quantum operations.
The same conclusion applies for the transformation U �→ U T ,
which also cannot be extended to a transformation of the
whole set of quantum operations.

Our result goes beyond the mere observation that the defi-
nition of quantum operation (1) is time-asymmetric because it
makes a distinction between the input and the output. What
we show is that it is in principle impossible to map the
set of quantum operations into itself in a way that agrees
with the transformation U �→ U † (or with the transformation
U �→ U T ) for all unitary evolutions.

Our general no-go theorem highlights the time-asymmetric
nature of the set of general quantum evolutions, and provides
insights into the problem of time symmetry in quantum theory
[48–50], which has recently been the object of renewed inter-
est in quantum foundations [51–57]. Our contribution to the
debate is a rigorous definition of time symmetry of quantum
evolutions, and a proof that the set of all quantum operations
is incompatible with any notion of time symmetry that agrees
with the probabilistic structure of quantum theory.

C. A time-symmetric variant of quantum theory

The last contribution of this paper is a candidate for a
time-symmetric variant of quantum theory. We propose a
restricted set of quantum evolutions, named time-symmetric
quantum operations, which include unitary dynamics, and
also all projective measurements described by von Neumann’s
and Lüders’ update rules. Interestingly, our time-symmetric
quantum operations also include all the state transformations
allowed by the consistent history framework for closed quan-
tum systems [58].

Crucially, our time-symmetric variant restricts the set of
states that can be prepared deterministically: while it allows
to prepare every quantum state with nonzero probability, the
only state that can be prepared deterministically is the maxi-
mally mixed state.

The restriction to a single deterministic state is consistent
with general considerations about causality in quantum the-
ory. Quantum theory, in its standard operational formulation,
satisfies the causality axiom [59–62], stating that it is impos-
sible to send signals from the future to the past. In general,
a physical theory satisfies the causality axiom if and only
if, for every physical system described by the theory, there
exists one and only one deterministic process that discards that
system. The time reversal of the causality axiom, explored in
Ref. [54], is that the theory contains only one deterministic
state preparation for every system. It is natural to expect that
a time-symmetric version of quantum theory should possess
only a single deterministic preparation process and a single
deterministic discarding process for every system. In this re-
spect, our choice of time-symmetric quantum operations is a
natural way to satisfy both conditions.

The standard quantum framework and its time-symmetric
variant are different operational theories. In the standard
framework, an agent can deterministically prepare any pure
quantum state, while in the time-symmetric variant the agent

can generate pure states with probability at most 1/d , where d
is the system’s dimension. The difference affects which tasks
can be implemented efficiently according to one theory or the
other.

Despite the aforementioned difference, the standard oper-
ational framework of quantum theory can be retrieved from
the time-symmetric version by introducing an operation of
conditioning on state preparations. Operationally, the idea is
that an agent who operates in the forward time direction can
observe the preparation of a pure state, put the system aside,
and store it in a memory for later use. Using a previously
stored pure state, the agent can then implement any quantum
operation on a given system, by letting the system interact
with the memory via a suitable unitary dynamics. In this way,
the full set of evolutions allowed in standard quantum theory
is retrieved (see also the recent work by Hardy [57] for a
similar argument, albeit with a different interpretation).

The idea that the standard quantum framework emerges
from conditioning on state preparations is compatible with a
few empirical observations. First, state preparations are often
obtained by performing measurements, as in a Stern-Gerlach
experiment. In those setups, the role of conditioning in the
preparation of pure states (or more generally, nonmaximally
mixed states) is immediately evident. Second, even those pro-
cedures that appear to deterministically generate pure states
ultimately rely on some implicit form of conditioning on
the outcomes of experiments done in the past. For example,
the preparation of a ground state through successive cooling
operations requires the experimenter to have access to low
temperature reservoirs, corresponding to sets of particles in
nearly pure states. Producing such reservoirs from scratch
would require the ability to filter particles based on their
quantum state, which again comes down to conditioning on
the outcomes of certain quantum experiments. In this respect,
our time-symmetric version of quantum theory is closely re-
lated to the resource theory of purity [63–65], where every
deviation from the maximally mixed state is regarded as a
resource.

The above considerations suggest that one could regard
the time-symmetric variant as fundamental, and the standard
quantum framework as an effective theory, describing the
time-asymmetric abilities of a certain type of agents. This
idea agrees with similar considerations made in a series of
recent works [55–57], which reexamined the question of time
symmetry in quantum theory from an operational perspective.

III. SYMMETRIES OF QUANTUM STATES

Here we first review the classic formulation of Wigner’s
theorem, and then provide an equivalent formulation in terms
of mixed states.

A. Wigner’s theorem

The original formulation of Wigner’s theorem [2,7] is in
terms of pure states. The pure states of a system with Hilbert
space H are described by unit rays, that is, equivalence classes
of unit vectors that are equal up to a global phase. Specifically,
for a unit vector ψ ∈ H, the corresponding unit ray is the set
ψ := {eiγ ψ | γ ∈ R}.
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The outcome probabilities of basic quantum measure-
ments are computed through Born’s statistical formula. The
fundamental quantity appearing in Born’s formula is the ray
product

ψ · φ = |〈ψ |φ〉|, (2)

whose value is independent of the choice of unit vectors |ψ〉
and |φ〉 used to represent the sets ψ and φ, respectively.

A symmetry of the set of pure states is a one-to-one
transformation that preserves the outcome probabilities in all
possible experiments. Mathematically, the set of pure states is
the so-called ray space H, that is, the set of unit rays, equipped
with the ray product. A symmetry is is a transformation of the
ray space into itself, or, more generally, a transformation of a
ray space H into another ray space K.

Definition 1. A symmetry transformation from the ray
space H to the ray space K (a ray space symmetry, for short) is
a bijective function S : H → K that preserves the ray product,
namely

S(ψ ) · S(φ) = ψ · φ ∀ψ, φ ∈ H. (3)

We recall that a bijective function f from set A to set
B is a transformation that maps distinct elements of A into
distinct elements of B, in such a way that every element of B
is obtained by applying f to some element of A. Intuitively,
the property of being bijective is necessary for the two ray
spaces H and K to be regarded as different descriptions of the
same physical system.

Wigner’s theorem provides a complete characterization of
the ray space symmetries. Specifically, it shows that every
ray space symmetry is induced by a transformation on the
underlying Hilbert space:

Theorem 1 (Wigner’s theorem). For every ray space sym-
metry S : H → K there exists a Hilbert space transformation
S : H → K such that (1) S(ψ ) = S(ψ ) for every ψ ∈ H and
(2) the transformation S is either unitary or antiunitary.

We recall that a bijective transformation S : H → K is
unitary if 〈S(ψ )|S(φ)〉 = 〈ψ |φ〉 for every pair of vectors ψ

and φ in H, and antiunitary if 〈S(ψ )|S(φ)〉 = 〈φ|ψ〉.
The prototype of an antiunitary transformation is the trans-

formation S : ψ → ψ∗, where ψ∗ is the complex conjugate of
the vector ψ with respect to a fixed (but otherwise arbitrary)
orthonormal basis. In general, the action of a generic antiu-
nitary transformation S can be represented as S(ψ ) = Uψ∗,
where U : H → K is a unitary operator. A general treatment
of antiunitary transformations can be found in the recent work
by Uhlmann [66].

B. Density matrix formulation of Wigner’s theorem

Wigner’s theorem can be equivalently formulated as a
characterization of the symmetries of the full state space,
including mixed states described by density matrices. In this
case, the probabilistic interpretation of quantum states implies
the possibility of considering random mixtures of different
density matrices. Operationally, the randomization can be due
to ignorance about the state of the quantum system, or also to
an actual physical mechanism that lets the choice of state be
controlled by some random event, such as the result of coin
toss.

In the following, we will denote the set of all density
matrices on the Hilbert space H by

St(H) := {ρ ∈ L(H) | ρ � 0, Tr[ρ] = 1}, (4)

L(H) denoting the set of linear operators on H. A symmetry
of state spaces is then defined to be as a one-to-one transfor-
mation that preserves random mixtures:

Definition 2. A symmetry transformation from the state
space St(H) to the state space St(K) (a state space symmetry,
for short) is a bijective transformation S : St(H) → St(K)
that is consistent with randomizations, namely,

S (pρ + (1 − p)σ ) = pS (ρ) + (1 − p)S (σ ), (5)

for every pair of density matrices ρ and σ , and for every
probability p ∈ [0, 1].

Wigner’s original theorem is equivalent to the following
statement:

Theorem 2. (Density matrix formulation of Wigner’s the-
orem) Every state space symmetry S : St(H) → St(K) is
either a unitary transformation, of the form S (ρ) = UρU † for
some unitary operator U : H → K, or an antiunitary transfor-
mation, of the form S (ρ) = UρT U †, where ρT denotes the
transpose of ρ with respect to a fixed orthonormal basis.

Theorem 2 can be derived from the original Wigner’s theo-
rem, as shown in Appendix A. Conversely, it is also possible to
show that theorem 2 implies the original Wigner’s theorem, as
shown in Appendix B. In summary, theorem 2 is an equivalent
formulation of Wigner’s original result in the language of
density matrices.

IV. SYMMETRIES OF QUANTUM EVOLUTIONS

In this section, we derive a Wigner theorem for quan-
tum evolutions, showing that every symmetry of the set of
quantum operations can be broken down into two state space
symmetries, which are either both unitary or both antiunitary.

A. Quantum operations

Quantum operations [39,40] provide a unified framework
for treating all state evolutions in quantum mechanics. In
general, a quantum state change can be stochastic, meaning
that an initial state ρ is transformed into a final state ρ ′ with
some probability p, generally smaller than 1. The nonunit
probability of obtaining the output state can be accounted for
by considering subnormalized states, corresponding to non-
negative operators ρ with trace Tr[ρ] � 1. The trace Tr[ρ] is
then interpreted as the probability that the state is prepared
by some suitable stochastic process. When such probability is
nonzero, the state of the system conditional to the occurrence
of the process is the normalized state ρ/Tr[ρ].

Mathematically, a quantum operation is a completely posi-
tive, trace-nonincreasing linear map Q, transforming an initial
state ρ into a subnormalized state Q(ρ). The probability that
the state change takes place on the state ρ (in a stochastic
process including the quantum operation Q among its pos-
sible events) is the trace Tr[Q(ρ)]. When such a state change
occurs, the state of the system becomes ρ ′ = Q(ρ)/Tr[Q(ρ)].

Kraus’ theorem [39] shows that the action of a quantum
operation Q on a generic density matrix ρ can be expressed as
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Q(ρ) = ∑
i QiρQ†

i , where the operators (Qi ), called Kraus
operators, satisfy the condition

∑
i Q†

i Qi � Iin. When the
equality condition

∑
i Q†

i Qi = Iin is satisfied, the quantum
operation is called a quantum channel [67].

In the following, we will denote the set of all quantum
operations by Op(Hin,Hout ) and the subset of all quantum
channels by Chan(Hin,Hout ), where Hin and Hout are the
Hilbert spaces of the input and output system, assumed to be
finite dimensional for simplicity of presentation. We will call
Op(Hin,Hout ) and Chan(Hin,Hout ) the operation space and
the channel space, respectively.

Like the quantum state space, the quantum operation space
is convex, meaning that the random mixture of two quantum
operations is also a quantum operation. Several aspects of
the convex structure of the quantum operation space were
investigated in Ref. [68].

The quantum operation space also contains a special ele-
ment, namely the null quantum operation Q = 0, describing
the limit case of a stochastic evolution that has zero probabil-
ity to take place. Convexity and the presence of a null element
are the two key elements of the probabilistic structure of the
set of quantum operations.

B. Symmetries of the set of quantum operations

A symmetry of quantum operations is a reversible trans-
formation that it is consistent with randomizations and maps
impossible events into impossible events.

Definition 3. A symmetry transformation from the opera-
tion space Op(Hin,Hout ) to the operation space Op(Kin,Kout )
(an operation space symmetry, for short) is a bijective
transformation S : Op(Hin,Hout ) → Op(Kin,Kout ) that (1)
is consistent with randomizations, namely, S (pQ + (1 −
p)R) = pS (Q) + (1 − p)S (R), for every pair of quantum
operations Q and R, and for every probability p ∈ [0, 1], and
(2) transforms the null operation of Op(Hin,Hout ) into the
null operation of Op(Kin,Kout ).

It is not difficult to see that every symmetry of quantum
operations should map quantum channels into quantum chan-
nels.

Proposition 1. For every operation space sym-
metry S : Op(Hin,Hout ) → Op(Kin,Kout ), one has
S (Chan(Hin,Hout )) = Chan(Kin,Kout ).

This result, proved in Appendix C, is conceptually impor-
tant because it shows that every operation space symmetry
induces a channel space symmetry.

C. Wigner theorem for quantum operations

We now provide a complete characterization of the symme-
tries of quantum operations, in analogy to Wigner’s theorem
for quantum states. Our result shows that every operation
space symmetry can be decomposed into two state space
symmetries, of which one transforms the input, and the other
transforms the output.

Theorem 3. (Wigner’s theorem for quantum operations)
Every operation space symmetry S : Op(Hin,Hout ) →
Op(Kin,Kout ) is of the form S (Q) = S2 ◦ Q ◦ S1, where S1 :
St(Kin ) → St(Hin ) and S2 : St(Hout ) → St(Kout ) are state

space symmetries that are either both unitary or both antiu-
nitary.

The proof of Theorem 3 is provided in Appendix D, using
technical lemmas established in Appendices E, F, and G.
Like Wigner’s original theorem, our result establishes that the
possible symmetries are of two types. We call these two types
double unitary symmetries and double antiunitary symmetries.

Double unitary symmetries can be physically implemented
by inserting the input quantum operation between two re-
versible quantum processes. Such symmetries are compatible
with an active interpretation, in which an agent implements
the symmetry by engineering the system’s dynamics [8,9].

In contrast, double antiunitary transformations are not
compatible with an active interpretation, at least not in stan-
dard quantum mechanics, where antiunitary operations are
excluded from the set of allowed evolutions.

The prototype of a double antiunitary symmetry is the
“double transpose” transformation τin/out : Q �→ Q′ = τout ◦
Q ◦ τin, where τin (τout) is the transpose on the input (output)
system with respect to a fixed basis. In the Kraus repre-
sentation, the double transpose corresponds to the complex
conjugate of the Kraus operators, mapping a quantum opera-
tion with Kraus operators {Qi} into a new quantum operation
with Kraus operators {Q∗

i }. The double transpose transforma-
tion appeared in the seminal work by Holevo and Werner on
the capacity of bosonic Gaussian channels [69], where it was
used to show that entanglement-breaking channels have zero
quantum capacity. Approximate physical realizations of the
double transpose were studied in Refs. [33–35,70], which fo-
cused on approximating the complex conjugation of unknown
unitary dynamics.

In general, every double antiunitary transformation has
the form S (Q) = U ◦ τin/out (Q) ◦ V , where U : St(Kin ) →
St(Hin ) and V : St(Hout ) → St(Kout ) are unitary symmetries.
In other words, the double transpose is the seed of all possible
double antiunitary symmetries.

Further discussion on the differences between double uni-
tary and double antiunitary symmetries, in relation to the
notion of complete positivity, is provided in Appendix H.

V. NO TIME REVERSAL OF GENERAL QUANTUM
EVOLUTIONS

A. Time reversal symmetry of unitary evolutions
and bistochastic channels

The set of unitary evolutions exhibits an obvious time-
reversal symmetry: for every unitary evolution U , the inverse
matrix U † is also unitary and describes a valid quantum
evolution. At the level of quantum channels, the standard
time-reversal maps the unitary channel U : ρ �→ UρU † into
the inverse channel U† : ρ �→ U †ρU .

For certain irreversible quantum evolutions, it is still pos-
sible to define a meaningful notion of time reversal. Indeed,
the time-reversal symmetry of the set of unitary channels can
be uniquely extended to a larger set of quantum evolutions,
known as the set of bistochastic (or doubly stochastic) quan-
tum channels [71,72]. A bistochastic channel is a completely
positive trace-preserving map C : St(H) → St(H) with the
additional property that C(I ) = I .
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The set of bistochastic channels contains highly irre-
versible evolutions, such as the evolution that takes every
quantum state to the maximally mixed state. For such evolu-
tions, the time reversal is not the process that brings back the
system to the initial state, for such a process cannot be defined
without information about the environment with which the
system interacted. Instead, the time reversal of a bistochas-
tic channel describes how the same physical device would
respond to a preparation of states in the future, rather than a
preparation of states in the past [56]. To clarify this point, con-
sider the qubit channel C0 : ρ �→ C0(ρ) = I/2, which maps
every state to the maximally mixed state. This channel can
be realized as a uniform random mixture of four unitary chan-
nels, corresponding to the four Pauli matrices I, X, Y, and
Z . To be consistent with random mixtures, the time reversal
of channel C0 must be the uniform mixture of the inverses of
the four unitary channels, which again correspond to the four
Pauli matrices I, X, Y, and Z . In summary, the time reversal
of channel C0 is channel C0 itself: in this example, both an
ordinary agent and an agent with an inverted time arrow would
describe the overall input-output transformation as a channel
that maps every state into the maximally mixed state.

The standard time reversal of the bistochastic channel C
is the channel C† defined by C†(ρ) = ∑

i C†
i ρCi. Note that,

in general, the channel C† is not the inverse of the channel
C. In a sense, however, C† can be thought as an approximate
inversion, known as Petz’ recovery map [73], and has many
applications in quantum information [74–79]. At the structural
level, the transformation � : C �→ C† is a symmetry of the set
of bistochastic channels: it is a bijective transformation, and it
is compatible with randomizations.

The set of unitary evolutions also admits an alternative
time reversal, given by the map U �→ UT , where UT is the
transpose unitary channel, defined by UT (ρ) = U T ρU ∗ [56].
This alternative time reversal can also be extended uniquely
to the set of bistochastic channels, by mapping the channel
C into the channel CT defined by CT (ρ) = ∑

i CT
i ρC∗

i . The
alternative time reversal �′ : C �→ CT is also a symmetry of
the set of bistochastic channels: it is bijective and compatible
with randomizations.

The maps � and �′ can be characterized as the two canoni-
cal time reversals on the set of bistochastic channel [56]. More
information about their structure can be found in Appendix I,
where we characterize the action of � and �′ in terms of the
Choi representation [80] (see also Refs. [81] and [40]).

B. No-go theorem for time-reversal symmetry
of the set of quantum operations

A natural question is whether the time-reversal symmetries
of the set of bistochastic channels can be extended to symme-
tries of the whole set of quantum operations.

The obvious candidates of time reverals are the maps
� : Q �→ Q† and �′ := Q �→ QT , now defined on arbitrary
quantum operations Q. It is relatively easy to see, however,
that these two maps fail to be symmetries of the full set of
quantum operations. In principle, however, there could exist
other ways to extend the time reversal from the set of bis-
tochastic channels to the set of all quantum operations. This
possibility is ruled out by the following theorem.

Theorem 4. (No time reversal of arbitrary quantum op-
erations) No symmetry S of the set of quantum operations
satisfies the condition S (U ) = U† for every unitary channel
U , or the condition S (U ) = UT for every unitary channel U .

The proof can be found in Appendix J.
Theorem 4 shows that the structure of set of all quantum

evolutions is fundamentally incompatible with time-reversal
symmetry: informally, this means that it is impossible to
define a “change of reference frame” corresponding to the
transformation t �→ −t , and compatible with the probabilistic
interpretation of quantum evolutions.

It is worth noting that our no-go result applies to the whole
set of quantum operations. An interesting open question is
whether our no-go theorem remains valid for the subset of
quantum channels. A no-go theorem for time-reversal sym-
metries of quantum channels has been recently proven in
Ref. [56], under the additional assumption that time reversal
should reverse the order in which processes take place in any
time sequence. We conjecture that this assumption can be
lifted, and that the no-go theorem to time reversal applies also
to symmetries of the set of quantum channels. Such extension
of the no-go theorem, however, is beyond the scope of the
present paper, which focusses on the symmetries of the full
set of quantum evolutions.

Our no-go result on time reversal poses a strong con-
straint on any attempt to formulate quantum theory as a
time-symmetric operational theory. To better understand the
nature of this constraint, it is useful to consider possible relax-
ations of the theorem. In the following we discuss three such
relaxations: the first relaxation consists in restricting the set
of allowed quantum evolutions to a time-symmetric subset,
the other two relaxations consist in weakening the notion of
symmetry in a way that evades our no-go theorem.

VI. A TIME-SYMMETRIC VARIANT
OF QUANTUM THEORY

In this section, we provide a time-symmetric variant of
quantum theory wherein the allowed channels transform max-
imally mixed states into maximally mixed states. We show
that the standard formulation of quantum theory can be ob-
tained from the time-symmetric variant through a suitable
operation of conditioning. Then, we show that the time-
symmetric variant is maximal among the time-symmetric
quantum theories in which all unitary channels are regarded
as allowed dynamics.

A. Time-symmetric quantum operations

One way to circumvent our no-go theorem on time symme-
try is to restrict the attention to a subset of quantum evolutions
on which a time-reversal symmetry can be defined. Here we
propose the set of quantum operations satisfying the condi-
tions

Q†(Iout ) � Iin and Q
(

Iin

din

)
� IHout

dout
, (6)

where din and dout are the dimensions of the Hilbert spaces
Hin and Hout. We name the maps satisfying Equation (6) time-
symmetric quantum operations, and denote the corresponding
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set by TSOp(Hin,Hout ). When the inequalities in Eq. (6)
are satisfied with the equality sign, we call the maps time-
symmetric quantum channels, and denote the corresponding
set by TSChan(Hin,Hout ). Note that for din = dout, the set of
time-symmetric quantum channels coincides with the set of
bistochastic channels, and enjoys time symmetry as discussed
earlier in Sec. V A.

Like the full set of quantum operations, the set of time-
symmetric quantum operations is convex and contains the null
operation Q = 0. It is rather straightforward to see that the
linear map

� : Q �→ dout

din
Q† (7)

is a symmetry transformation from the set TSOp(Hin,Hout )
to the set TSOp(Hout,Hin ). Indeed, it is bijective, it maps
convex combinations into convex combinations with the same
probabilities, and it transforms null operations into null oper-
ations. Likewise, the map

�′ : Q �→ dout

din
QT (8)

is also a symmetry transformation from the set
TSOp(Hin,Hout ) to the set TSOp(Hout,Hin ).

Both maps � and �′ transform time-symmetric quantum
channels in TSChan(Hin,Hout ) into time-symmetric quan-
tum channels in TSChan(Hout,Hin ). For din = dout, the maps
� and �′ coincide with the standard time reversal U �→ U †

and with the alternative time reversal U �→ UT , respectively.

B. Time-symmetric quantum instruments

The set of time-symmetric quantum operations can be
used to define a time-symmetric variant of quantum theory.
In this variant, the allowed experiments are described by
time-symmetric quantum instruments, that is, collections of
time-symmetric quantum operations (Qn)N

n=1 with the prop-
erty that the sum

∑N
n=1 Qn is a time-symmetric quantum

channel, that is, a quantum channel satisfying Eq. (6) with the
equality sign. When an experiment is performed on a (possi-
bly subnormalized) state ρ, the probability of the outcome n is
given by the trace Tr[Qn(ρ)], as in standard quantum theory.

Interestingly, the time-symmetric variant still permits all
von Neumann measurements, whose stochastic evolutions
are described by quantum operations of the form Qn : ρ �→
|n〉〈n| 〈n|ρ|n〉, where (|n〉)d

n=1 are the vectors of an orthonor-
mal basis. More generally, the set of time-symmetric quantum
instruments contains also the set of Lüders measurements,
corresponding to quantum operations of the form Qn : ρ �→
PnρPn, where (Pn)N

n=1 is a complete set of orthogonal projec-
tors. In addition, it contains all quantum instruments resulting
from sequences of unitary dynamics interspersed with Lüders
measurements. These instruments describe the possible closed
system evolutions in the framework of consistent histories
[58].

The time-symmetric variant also permits all demoli-
tion measurements, corresponding to positive operator-valued
measures (POVMs) and represented by collections of posi-
tive operators (Pn)K

n=1 satisfying the condition
∑K

n=1 Pn = I .
Indeed, every quantum operation Qn defined by the relation

Qn(ρ) := Tr[Pnρ] is a valid time-symmetric operation with
one-dimensional output system, according to definition (6).

C. Relation between standard quantum theory
and its time-symmetric variant

A crucial difference between the time-symmetric variant
and standard quantum theory concerns the set of allowed
states. In the time-symmetric variant, the only state that can
be prepared with unit probability is the maximally mixed
state I/d . This is because the preparation of a d-dimensional
quantum system is a quantum operation with one-dimensional
input space and d-dimensional output space, and setting din =
1 and dout = d in Eq. (6) yields the conditions Tr[ρ] � 1 and
ρ � I/d . In other words, the possible stochastic preparations
of the system correspond to subnormalized density matrices
satisfying the inequality ρ � I/d . The only normalized state
is ρ = I/d , while all the other states can be prepared only
stochastically, with some probability less than one. For exam-
ple, a pure quantum state can be prepared with probability at
most 1/d .

The standard formulation of quantum theory can be
retrieved from the time-symmetric variant by introducing
an operation of conditioning, whereby probabilistic state
preparations are turned into deterministic ones. Mathe-
matically, conditioning amounts to the nonlinear mapping
ρ �→ ρ/Tr[ρ]. Operationally, it arises from the ability of an
agent to observe the outcome of a probabilistic state prepara-
tion, and to feed-forward the knowledge of the outcome into
future experiments.

Since conditioning enables the deterministic preparation of
arbitrary pure states, it also enables the deterministic realiza-
tion of arbitrary quantum operations. Indeed, every quantum
operation Q can be realized as

Q(ρ) = Traux′ [(Iout ⊗ P)U (ρ ⊗ Pψ0 )], (9)

where Pψ0 is a (normalized) pure state of an auxiliary sys-
tem aux, U is a joint unitary evolution, transforming states
on the Hilbert space Hin ⊗ Haux into states on the Hilbert
space Hout ⊗ Haux′ , for some output auxiliary system aux′,
and 0 � P � Iaux′ is a measurement operator, corresponding
to the outcome of a measurement on aux′. Since both the uni-
tary evolution U and the measurement operator P are allowed
in the time-symmetric variant, the addition of all possible
states preparations via conditioning yields back the full set of
quantum operations in the standard formulation of quantum
theory.

D. Maximality of the time-symmetric variant

We provided a candidate of time-symmetric variant of
quantum theory. A natural question is whether there exist
other candidates, and, in the affirmative case, how they would
look like. We start by observing that our time-symmetric vari-
ant is maximal among all time-symmetric variants of quantum
theory in which (1) for every pair of quantum systems A and
B, the set of allowed operations from system A to system B
is a convex subset of the set of quantum operations allowed
in quantum theory; (2) for every pair of systems A and B, the
time reversal of the set of operations from A to B is the set
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of operations from B to A, where A (B) is a suitable quantum
system of dimension equal to the dimension of A (B); and (3)
every unitary channel is an allowed evolution.

The first two requirements imply that every system has a
unique deterministic state.

Lemma 1. In a time-symmetric quantum theory satisfying
requirements (1) and (2), the set of subnormalized states of a
generic system B contains exactly one deterministic state, that
is one density matrix ωB with Tr[ωB] = 1.

Proof. Applying requirement 2 in the special case where
A is one-dimensional, we obtain that the time reversal of the
set of quantum states of system B is the set of measurement
operators of some other system B. By Proposition 1, this im-
plies that the set of deterministic states of system B coincides
with the time reversal of the set of deterministic measurement
operators on B. By requirement 1, the set of deterministic
measurement operators on B is a subset of the set of determin-
istic measurement operators in quantum theory. Since the only
deterministic measurement operator in quantum theory is the
identity, we conclude that system B has only one deterministic
state. �

An immediate consequence of the existence of a unique
deterministic state is the following characterization of the
allowed channels.

Lemma 2. In a time-symmetric quantum theory satisfying
requirements (1) and (2), the set of allowed channels with
generic input system A and a generic output system B contains
only quantum channels C satisfying the condition C(ωA) =
ωB, where ωA (ωB) is the unique deterministic state of system
A (B).

The proof is immediate from Lemma 1, which implies
that the subset of allowed channels should map the unique
deterministic state of system A into the unique deterministic
state of system B.

The last step of our argument is to use requirement 3,
namely that all unitary channels are allowed operations. Com-
bined with Lemma 2, requirement 3 implies that the unique
deterministic state of system A should satisfy the condition
U (ωA) = ωA for every unitary channel U acting on the system.
However, the only unitarily invariant state is the maximally
mixed state ωA = IA/dA . Hence, Lemma 2 implies that the
time-symmetric variant can only contain quantum channels
that map maximally mixed states into maximally mixed states.
The largest set of such channels is the set of time-symmetric
channels defined by Eq. (6).

Summarising, we obtained the following result.
Theorem 5. Every time-symmetric variant of quantum

theory satisfying requirements (1)–(3) is contained in the
time-symmetric theory defined in Secs. VI A and VI B.

In passing, we note that a generalization of our time-
symmetric theory can be obtained by lifting the requirement
that all unitary channels are allowed operations. In this case,
a time reversal of the allowed quantum operations can be
defined in terms of Petz’ recovery map [73,75]: for an allowed
quantum operation Q from system A to system B, the time
reversal is

�(Q) := ω
1/2
A Q†(ω−1/2

B ρ ω
−1/2
B

)
ω

1/2
A , (10)

where ωA (ωB) is the unique deterministic state of system A
(B), and ω

−1/2
B denotes the inverse of ωB on its support.

Alternatively, one could define the time reversal in terms
of the transpose map QT , as

�′(Q) := ω∗
A

1/2 QT
(
ω∗

B
−1/2

ρ ω∗
B

−1/2)
ω∗

A
1/2

, (11)

where ω∗
A and ω∗

B are the complex conjugates of ωA and ωB,
respectively.

The time-reversal symmetries considered earlier in Eqs. (7)
and (8) are a special case of the symmetries (10) and (11),
corresponding to the choice of maximally mixed states ωA =
Iin/in and ωB = Iout/dout as the unique deterministic states of
systems A and B.

VII. RELAXATIONS OF THE NOTION OF SYMMETRY

Here we briefly discuss two relaxations of the notion of
operation symmetry, and we show that the set of all quan-
tum operations admits a time symmetry in these two relaxed
senses.

A. Nonbijective symmetries

One way to evade Theorem 4 is to relax the idea that
a symmetry should be bijective. In particular, for finite
dimensional systems one could consider the transforma-
tion S : Op(Hin,Hout ) → Op(Hout,Hin ),Q �→ Q†/din. This
transformation S is maps quantum operations into quantum
operations, is compatible with randomization, and maps the
null operation into the null operation. It is injective, meaning
that it maps distinct quantum operations into distinct quantum
operations. However, it falls short of being surjective: there
exist quantum operations that are not of the form S (Q) for any
quantum operation Q. If the map S were used to describe time
reversal, then the set of evolutions observed by an agent with
inverted time arrow would be strictly smaller than the set of all
quantum evolutions. Basically, the time-reversed agent would
only observe a scaled down version of the set of all possible
quantum evolutions. Adopting the standard interpretation that
the trace of the output state corresponds to the probability that
a transformation occurs, this would mean that a time reversed
transformation S (Q) would take place with probability at
most 1/din.

Note that the symmetry transformation S is probabilis-
tically reversible: if applied twice, it returns the original
quantum operation Q, scaled down by a factor 1/d2

in. If this
factor is ignored, one may say that the set of quantum oper-
ations enjoys a symmetry under time reversal. We call such
symmetries weak symmetries, to stress that they only hold up
to an overall scaling factor. Most of the existing proposals of
time-symmetric formulations of quantum theory [48–50,52]
exhibit this type of weak symmetry. Physically, the relevance
of weak symmetry is argued based on post-selection: if an
agent postselects on the occurrence of a quantum operation,
then any scaling factor becomes irrelevant.

B. Nonlinear symmetries

In this paper, we defined operation symmetries as trans-
formations that preserve the convex structure and the notion
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of zero probability, by mapping the null operation into it-
self. These two requirements imply that every symmetry
transformation acts linearly on the vector space spanned by
quantum operations (see Proposition 2 in Appendix D).

A way to evade Theorem 4 is to give up the above require-
ments and to consider nonlinear symmetries, such as those
considered in nonlinear modifications of quantum mechanics
[82–84]. These modifications, however, generally come with
a significant change of the operational content of quantum
theory. For example, the state space in nonlinear quantum
mechanics is generally different from the space of density ma-
trices, and ensembles of pure states that are indistinguishable
in ordinary quantum mechanics may become distinguishable
in nonlinear modifications [85].

We now show that, if one gives up the requirement of
linearity, a time reversal can be defined for all possible
quantum operations. A nonlinear time reversal was intro-
duced by Crooks in the case of quantum channels with
Hin = Hout [86]. Crooks’ definition of time reversal coincides
with Petz’ recovery map [73,75]: given a quantum channel
C and a quantum state ρ0 such that C(ρ0) = ρ0, Crooks’
time reversal is the recovery map Cρ0 defined as Cρ0 (ρ) :=
ρ

1/2
0 C† (ρ−1/2

0 ρ ρ
−1/2
0 ) ρ

1/2
0 , where ρ−1

0 is inverse of ρ0 on its
support. For bistochastic channels, one can choose ρ0 to be
the maximally mixed state, and this definition of time reversal
coincides with the definition in Eq. (7). In general, the map
� : C �→ Cρ0 is nonlinear, because it depends on the choice of
a fixed point ρ0 for the channel C.

More generally, Crooks’ definition can be extended to
channels with different input and output spaces, by fixing an
arbitrary state ρ0 ∈ St(Hin ) and defining the state-dependent
time reversal Cρ0 as

Cρ0 (ρ) := ρ
1/2
0 C†([C(ρ0)]−1/2 ρ [C(ρ0)]−1/2)ρ1/2

0 . (12)

Note, however, that the above definition is noncanonical, due
to the arbitrariness in the choice of the state ρ0.

Similarly, a time reversal could be defined for arbitrary
quantum operations. Given a quantum operation Q, one could
(1) fix a complementary quantum operation Q′ such that the
map C0 := Q + Q′ is a quantum channel, and (2) fix an arbi-
trary quantum state ρ0 ∈ St(Hin ). Then, a time reversal QC0,ρ0

could be defined via the relation

QC0,ρ0 (ρ) := ρ
1/2
0 Q†( [C(ρ0)]−1/2 ρ [C(ρ0)]−1/2) ρ

1/2
0 . (13)

This definition would guarantee that QC0,ρ0 is a valid quantum
operation. Still, the map � : Q �→ QC0,ρ0 is nonlinear and
noncanonical, due to the arbitrariness in the choice of channel
C0 and state ρ0.

VIII. CONCLUSIONS

In this work we introduced a notion of symmetry for quan-
tum evolutions, defined as a one-to-one transformation that
is consistent with randomizations and with the notion of zero
probability. We established a Wigner theorem for quantum op-
erations, showing that every symmetry of quantum operations
can be broken down into two symmetries of quantum states,
which are either both unitary or both antiunitary.

We then showed that the time-reversal symmetry of unitary
quantum dynamics cannot be extended to a symmetry of the

full set of stochastic quantum evolutions. In other words,
the set of all quantum evolutions is incompatible with time
symmetry. Our no-go theorem implies that it is impossible
to translate the quantum description of experiments made by
an ordinary agent into a quantum description of experiments
made by a hypothetical agent with time-reversed arrow of
time: if the ordinary agent can perform all possible quantum
experiments (and therefore all possible quantum operations),
then its experiments cannot be described by the time-reversed
agent.

It is worth noting that the impossibility of defining a
time-reversal symmetry is not necessarily unique to quantum
theory. As a matter of fact, most of the steps in the proof
of our no-go result can be reproduced also in classical prob-
ability theory, leading to a no-go theorem for time-reversal
symmetries of classical stochastic evolutions. What makes
the quantum case more interesting, however, is that in the
classical world there is a natural notion of time-symmetric
theory, namely deterministic classical theory, with only pure
states and reversible classical evolutions. In quantum theory,
instead, defining a time-symmetric theory is more problem-
atic, at least in the standard operational interpretation where
measurements play a central role. One could, of course, con-
sider the fragment of quantum theory containing only pure
states and unitary evolutions, as it is done in Everett’s inter-
pretation of quantum mechanics. If this route is taken, the
remaining difficulty would be to give a consistent account of
how the theory is to be used to make predictions about the
outcomes of experiments [87]. On the other hand, if even just
a single projective measurement is added on top of pure states
and unitary evolutions, then all quantum operations can be
generated, and time symmetry is broken.

After establishing our no-go theorem for time symmetry
in the standard framework, we formulated a time-symmetric
variant of quantum theory in which the deterministic opera-
tions are required to preserve the maximally mided state. We
showed that our time-symmetric variant is maximal among
all time-symmetric variants where all unitary channels are al-
lowed evolutions, and that the standard operational framework
of quantum theory can be retrieved from the time-symmetric
variant through an operation of conditioning on the outcomes
of state preparations.

The results of this work provide a rigorous framework for
the analysis of dynamical symmetries in quantum theory. We
hope that the framework and the analysis initiated in this
work will inform future developments in the foundations of
quantum mechanics and in quantum information theory.
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APPENDIX A: PROOF OF THEOREM 2

The proof of Theorem 2 is based on the following argu-
ments. (1) Every state space symmetry must map pure states
into pure states, and therefore it induces a transformation of
ray space, (2) the induced transformation of ray space pre-
serves the ray product, (3) hence, every state space symmetry
induces a ray space symmetry, which can be characterized
using (the original formulation of) Wigner’s theorem.

In the following, we provide the proof of all the steps used
in this argument. Let us start by showing that every state space
symmetry maps pure states into pure states. For a given vector
ψ ∈ H, we will use the notation Pψ := |ψ〉〈ψ |.

Lemma 3. Every state space symmetry S maps pure states
into pure states. The correspondence Pψ �→ S (Pψ ) is bijective.

Proof. The proof is standard and is reproduced here just for
completeness. For a generic unit vector ψ ∈ K, the operator
S (Pψ ) is a density matrix. Hence, S (Pψ ) can be decomposed
as as S (Pψ ) = ∑

i pi Pψi where {pi} are probabilities and
{|ψi〉} ∈ H are unit vectors. Since S is a state space symmetry,
one has Pψ = S−1 ◦ S (Pψ ) = ∑

i pi S−1(Pψi ), and, therefore
S−1(Pψi ) = Pψ for all i. Applying S on both sides of the
equality, one obtains Pψi = S (Pψ ), ∀i. Hence, S (Pψ ) is a pure
state.

The correspondence Pψ �→ S (Pψ ) is injective, because S is
injective on the whole space of density matrices. Moreover, S
is surjective: since the inverse transformation S−1 maps pure
states into pure states, every pure state Pφ is the image of the
pure state S−1(Pφ ) under the map S . �

Now, recall that the set of rank-one projectors is in one-
to-one correspondence with the set of unit rays. For every
rank-one projector P, let ray(P) be the corresponding unit ray,
defined as

ray(P) :=
{

Pψ

‖Pψ‖
∣∣∣∣ψ ∈ H, Pψ = 0

}
. (A1)

Owing to the one-to-one correspondence between rank-one
projectors and unit rays, we have the following.

Corollary 1. Every state space symmetry S : St(H) →
St(K) induces a bijective transformation S : H → K via the
relation

S(ψ ) := ray(S (Pψ )). (A2)

The next step is to show that the ray space transformation S
preserves the ray product. In preparation for this, we introduce

some notation. For two generic Hilbert-Schmidt operators X :
H → H and Y : H → H, we denote their Hilbert-Schmidt
product by

〈X,Y 〉 := Tr[X †Y ]. (A3)

The ray product of two unit rays ψ and φ can be expressed in
terms of the Hilbert-Schmidt product as

ψ · φ = √〈Pψ, Pφ〉. (A4)

For rank-one projectors Pψ and Pφ , the Hilbert-Schmidt prod-
uct can be equivalently expressed as

〈Pψ, Pφ〉 = F (Pψ, Pφ ), (A5)

where F (ρ, σ ) := (Tr[
√√

ρσ
√

ρ])2 is the (square of the)
Uhlmann fidelity [88,89], defined for any two density matrices
ρ and σ .

The last definition we need is the definition of state space
homomorphism.

Definition 4. A map J : St(H) → St(K) is a state space
homomorphism if it preserves convex combinations.

Recall that every state space homomorphism can be equiv-
alently represented in the “Heisenberg picture,” as a map
on observables. Specifically, the Heisenberg picture of the
map J : St(H) → St(K) is provided by the dual map J † :
L(K) → L(H), uniquely defined by the condition

〈J †(A), Pψ 〉 = 〈A,J (Pψ )〉 ∀A ∈ B(K),∀ψ ∈ H. (A6)

Lemma 4. A map J : St(H) → St(K) is a state space ho-
momorphism if and only if the dual map J † : B(K) → B(H)
is positive and unital.

Proof. We recall that a map is positive if it maps non-
negative operators into non-negative operators. Let P : K →
K be a non-negative operator. Then, for every unit vector ψ ∈
H, one has 〈ψ |J †(P)|ψ〉 = 〈J †(P), Pψ 〉 = 〈P,J (Pψ )〉 =
Tr[P J (Pψ )] � 0, the last inequality following from the fact
that J (Pψ ) is a density matrix. Hence, J †(P) is a non-
negative operator, and J † is positive.

Similarly, it is easy to see that J † is unital, namely
J †(IK) = IH. Indeed, for every unit vector ψ ∈ H,
one has 〈ψ |J †(IK)|ψ〉 = 〈J †(IK), Pψ 〉 = 〈IK,J (Pψ )〉 =
Tr[J (Pψ )] = 1, because J (Pψ ) is a density matrix.
Summarising, the map J † is positive and unital.

Conversely, if the map J † is positive and unital, then the
map J transforms density matrices into density matrices:
indeed, it transforms positive operators into positive operators
and unit-trace operators into unit-trace operators, as one can
see by running the above arguments in reverse. Moreover,
since J † is linear, the map J = (J †)† is linear, too. In partic-
ular, it is convex-linear. Hence, J induces a map from St(H)
to St(K) that is compatible with convex combinations. �

An important property of state space homomorphisms is
that they cannot increase the distinguishability of quantum
states, or equivalently, they cannot decrease the similarity of
quantum states. Taking the fidelity as the measure of similar-
ity, we have the following lemma.

Lemma 5. Every state space homomorphism J :
St(H) → St(K) is fidelity nondecreasing, namely,

F (J (ρ),J (σ )) � F (ρ, σ ) ∀ρ, σ ∈ St(K). (A7)

If J is a state space symmetry, then the equality holds.
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Proof. The fidelity between two generic density matrices ρ

and σ can be equivalently expressed as

F (ρ, σ ) =
(

max
{Pi}

∑
i

√
Tr[Pi ρ] Tr[Pi σ ]

)2

, (A8)

where the maximum is over all positive operator-valued
measures (POVMs) (Pi ), consisting of positive semidefi-
nite operators Pi � 0 satisfying the normalization condition∑

i Pi = I . Hence, one has

F (J (ρ),J (σ ))

=
(

max
{Pi}

∑
i

√
Tr[J †(Pi ) ρ] Tr[J †(Pi ) σ ]

)2

�
(

max
{Qi}

∑
i

√
Tr[Qi ρ] Tr[Qi σ ]

)2

= F (ρ, σ ) (A9)

where the inequality follows from the fact that the operators
Qi := J †(Pi ) form a POVM, because J † is positive and unital
(Lemma 4).

If J is a state space symmetry, then one has F (ρ, σ ) =
F (J −1 ◦ J (ρ),J −1 ◦ J (σ )) � F (J (ρ),J (σ )) � F (ρ, σ ),
whence the equality F (J (ρ),J (σ )) = F (ρ, σ ). �

We are now ready to show that every state space symmetry
induces a ray space symmetry.

Lemma 6. For every state space symmetry S : St(H) →
St(K), the associated ray space transformation S : H → K,
defined in Eq. (A2), preserves the ray product.

Proof. For two generic unit vectors ψ and φ, Eqs. (A4)
and (A5) imply ψ · φ = √〈Pψ, Pφ〉 = √

F (Pψ, Pφ ).
On the other hand, Lemma 5 guarantees the equality
F (Pψ, Pφ ) = F (S (Pψ ),S (Pφ )). In turn, Eqs. (A5)
and (A4) imply F (S (Pψ ),S (Pφ )) = 〈S (Pψ ),S (Pφ )〉 =
[ray(S (Pψ )) · ray(S (Pφ ))]2, with the notation ray(·) defined
as in Eq. (A1). Finally, the definition of the map S in Eq. (A2)

yields the equality ray(S (Pψ )) · ray(S (Pφ )) = S(ψ ) · S(φ).
Hence, we obtained the equality ψ · φ = S(ψ ) · S(φ). Since
the unit vectors ψ and φ are arbitrary, we conclude that S
preserves the ray product. �

We then conclude with the proof of Theorem 2.
Proof of Theorem 2. For a given space symmetry S :

St(H) → St(K), the corresponding ray space transformation
S : H → K is bijective (corollary 1) and preserves the ray
product (Lemma 6). Hence, it is a ray space symmetry.

By Wigner’s theorem, S has either the form S(ψ ) = Uψ ,
or the form S(ψ ) = Uψ∗, for some unitary operator U : H →
K. In terms of rank-one projectors, this means that one has ei-
ther S (Pψ ) = UPψU † or S (Pψ ) = UPψ∗U † = UPT

ψ U †. Since
the map S is uniquely determined by its action on the pure
states, the action of S on a generic density matrix ρ is either
of the form S (ρ) = UρU † or of the form S (ρ) = UρT U †. �

APPENDIX B: EQUIVALENCE BETWEEN THE ORIGINAL
WIGNER THEOREM AND ITS DENSITY MATRIX

FORMULATION

In the previous Appendix, we have seen that the original
formulation of Wigner’s theorem (Theorem 1) implies the
characterization of state space symmetries of Theorem 2. We
now show that the converse also holds: Theorem 2 implies
Wigner’s theorem.

Let S : H → K be a ray space symmetry. Our goal is
to show that S is induced by a unitary or antiunitary trans-
formation in Hilbert space. Note that there is a one-to-one
correspondence between the unit vectors ψ ⊗ ψ∗ ∈ H ⊗ H
and the unit rays ψ ∈ H. Hence, the transformation S induces
a transformation of the vectors ψ ⊗ ψ∗, hereafter denoted by
Sprod. If S(ψ ) = ψ ′, then Sprod(ψ ⊗ ψ∗) = ψ ′ ⊗ ψ ′ ∗.

Now, let {ψi} ⊂ H be a set of unit vectors with the property
that {ψi ⊗ ψ∗

i } is a spanning set for the space H ⊗ H. Then,
we have

〈Sprod(ψi ⊗ ψ∗
i )|Sprod(ψ j ⊗ ψ∗

j )〉 = 〈ψ ′
i ⊗ ψ ′ ∗

i |ψ ′
j ⊗ ψ ′ ∗

j 〉
= |〈ψ ′

i |ψ ′
j〉|2

= ψ ′
i · ψ ′

j

= ψi · ψ j

= |〈ψi|ψ j〉|2
= 〈ψi ⊗ ψ∗

i |ψ j ⊗ ψ∗
j 〉.

In other words, the two sets {ψi ⊗ ψ∗
i } and {ψ ′

i ⊗ ψ ′ ∗
i } have

the same Gram matrix. This condition guarantees that there
exists a unitary transformation W : H ⊗ H → K ⊗ K such
that ψ ′

i ⊗ ψ ′ ∗
i = W (ψi ⊗ ψ∗

i ) (for a proof, see, e.g., property
3 of Ref. [90]). The transformation W is uniquely defined,
because the states {ψi ⊗ ψ∗

i } are a basis. Using this fact, we
can guarantee the equality ψ ′ ⊗ ψ ′ ∗ = W (ψ ⊗ ψ∗) for every
unit vector ψ . Hence, the transformation Sprod is linear.

Now, since the product vectors ψ ⊗ ψ∗ are in one-to-one
linear correspondence with the rank-one projectors Pψ , the
linear transformation Sprod induces a linear transformation S
on the rank-one projectors Pψ . By linearity, the transformation
S acts on the set of density matrices, and is consistent with
randomizations. Moreover, since Sprod is a bijection, also S
is. Hence, it is a symmetry of the set of quantum states. By
applying Theorem 2, we then obtain that S is either a unitary
transformation S : ρ �→ UρU † or an antiunitary transforma-
tion S : ρ �→ UρT U †. Restricting its action on pure states,
we have that the pure state |ψ〉〈ψ | is transformed either
into U |ψ〉〈ψ |U † or into U (|ψ〉〈ψ |)T U † = U |ψ∗〉〈ψ∗|U †.
Translating back in terms of the map S, we obtain that S(ψ ) is
either equal to Uψ or equal to Uψ∗. Hence, S is either induced
by a unitary transformation or by an antiunitary transforma-
tion. This concludes the derivation of Wigner’s theorem from
Theorem 2. �

APPENDIX C: PROOF OF PROPOSITION 1

Here we prove that every symmetry of quantum operations
maps channels into channels.
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Let S : Op(Hin,Hout ) → Op(Kin,Kout ) be a symmetry of
quantum operations, and let C ∈ Chan(Hin,Hout ) be a quan-
tum channel. Since the set of quantum channels is a subset of
the set of quantum operations, S (C) is a quantum operation.

Now, for every quantum operation Q there exists an-
other quantum operation Q′ such that Q + Q′ is a quantum
channel. Let Q′ be the quantum operation such that C ′ :=
S (C) + Q′ is a quantum channel. Applying the inverse map
S−1 to both sides of the equation, we obtain S−1(C ′) =
C + S−1(Q′). Since the map S−1 transforms quantum oper-
ations into quantum operations, the map C + S−1(Q′) must
be trace nonincreasing. Since both terms in the sum are com-
pletely positive, and since C is trace preserving, we obtain
the condition S−1(Q′) = 0. Hence, we obtained S−1(C ′) =
C. Applying the map S on both sides, we finally conclude
C ′ = S (C), that is, S (C) is a quantum channel. Since C was
a generic channel, we conclude that S maps channels into
channels. �

APPENDIX D: PROOF OF THEOREM 3

In this section we first review the technical tools used in the
proof, and then provide the derivation of Wigner’s theorem for
quantum operations.

a. Supermaps

First of all, we observe that every symmetry of quantum
operations induces a linear map acting on the vector space
spanned by quantum operations. Such higher-order linear
maps are called supermaps [8–11,13], and can be used for
a variety of purposes. The special type of supermaps that
transform quantum operations into quantum operations were
characterized in Ref. [8] in the finite dimensional case, and
in Ref. [11] in the infinite dimensional case. Another type
of supermaps was defined in Ref. [13], which considered
transformations of a certain convex set of completely positive
maps into itself, and used them to define the dynamics in an
extended version of quantum theory where the state space of
a d-dimensional system has dimension d4.

To avoid technical complications, in the following we will
restrict ourselves to the finite-dimensional case. In the fol-
lowing, we will use the notation L(H,K) for the space of
linear operators on a generic Hilbert space H to a generic
Hilbert space K, the notation L(H) := L(H,H) for the linear
operators on H, and the notation Map(H,K) for the set of
linear maps from L(H) to L(K).

Proposition 2. Every map S : Op(Hin,Hout ) →
Op(Kin,Kout ) that is consistent with randomizations and
preserves the null operation can be uniquely extended to a
linear map Slin : Map(Hin,Hout ) → Map(Kin,Kout ).

Proof. Since the map S is consistent with randomizations
and preserves the null operation, we have

S (pQ) = S (pQ + (1 − p) 0)

= pS (Q) + (1 − p)S (0)

= pS (Q), (D1)

for every probability p ∈ [0, 1] and for every quantum opera-
tion Q.

Due to Eq. (D1), any two quantum operations Q and Q′
satisfying the condition λ′ Q′ = λQ for positive numbers λ

and λ′, must also satisfy the condition λ′ S (Q′) = λS (Q).
Now, we show that the map S is linear on conic combina-

tions: if
∑

i λi Qi = ∑
j λ′

j Q′
j , then∑

i

λi S (Qi ) =
∑

j

λ′
j S (Q′

j ), (D2)

for every set of quantum operations {Qi} ({Q′
j}) and positive

coefficients {λi} ({λ′
j}).

To prove Eq. (D2), we define the probability distributions
(pi ) and (p j ) as

pi := λi

λ
, λ :=

∑
i

λi, p′
j := λ′

j

λ

′
, λ′ :=

∑
j

λ′
j,

and the quantum operations

Q :=
∑

i

pi Qi, Q′ :=
∑

j

p′
j Q′

j . (D3)

With these definitions we have the equality λ′ Q′ = λQ,
which implies λ′S (Q′) = λS (Q). Hence, we have∑

i

λi S (Qi ) = λ
∑

i

pi S (Qi ) = λS
(∑

i

pi Qi

)

= λS (Q) = λ′ S (Q′) = λ′ S
(∑

j

p′
j Q′

j

)

= λ′ ∑
j

p′
j S

(
Q′

j

) =
∑

j

λ′
j S (Q′

j ). (D4)

Hence, the map S can be uniquely extended to a map Slin

transforming the cone

Op+(Hin,Hout ) := {λQ |Q ∈ Op(Hin,Hout ), λ � 0} (D5)

into the cone

Op+(Kin,Kout ) := {λQ |Q ∈ Op(Kin,Kout ), λ � 0}. (D6)

and the map Slin is linear on conic combinations.
To conclude, we invoke the fact that every map from a cone

C to a cone C′ that is linear on conic combinations can be
uniquely extended to a linear map from the linear span of C to
the linear span of C′ [91]. Since the linear span of the cone of
quantum operations Op+(Hin,Hout ) is the space of all maps
Map(Hin,Hout ), this concludes the proof. �

Since the linear extension is unique, in the following we
will drop the subscript from Slin, and simply write S .

b. Choi representation of linear maps and supermaps

The other key ingredient in the proof of Theorem 3 is the
Choi representation of linear maps [80], widely used in quan-
tum information theory [92–95] and quantum foundations
[59,96]. The Choi representation of a map M : L(Hin ) →
L(Hout ) is the linear operator Choi(M) ∈ L(Hout ⊗ Hin ) de-
fined by

Choi(M) :=
∑
i, j

M(|i〉〈 j|) ⊗ |i〉〈 j|, (D7)
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where {|i〉} is a fixed (but otherwise arbitrary) basis for the
input Hilbert space Hin.

The Choi representation is related to the Jamiołkowski
representation [97]

Jam(M) :=
∑
i, j

M(|i〉〈 j|) ⊗ | j〉〈i|, (D8)

the difference between the two representations being a partial
transpose operation on the input Hilbert space.

For a quantum operation Q, the Choi operator is propor-
tional to an unnormalized state, namely Choi(Q)/din. The
relation between the set of quantum maps and the set of bipar-
tite states was investigated in Refs. [94,95], and in Ref. [59],
which extended the correspondence to a class of physical
theories including quantum theory as a special case.

The Choi representation offers a convenient way to repre-
sent supermaps. In the Choi representation, a supermap S :
Map(Hin,Hout ) → Map(Kin,Kout ) is associated to a linear
map Ŝ : L(Hout ⊗ Hin ) → L(Kout ⊗ Kin ) uniquely defined by

Ŝ (Choi(M)) := Choi(S (M)) ∀M ∈ Map(H). (D9)

c. Derivation of the theorem

The first step in the proof of Theorem 3 is to show that the
map Ŝ is a symmetry of quantum states:

Lemma 7. For every symmetry of quantum operations
S : Op(Hin,Hout ) → Op(Kin,Kout ), the associated map Ŝ :
St(Hout ⊗ Hin ) → St(Kout ⊗ Kin ) is a state space symmetry.

In order not to break the flow of the argument, we postpone
the proof of Lemma 7 to Appendix E.

An immediate consequence of Lemma 7 is that the total
dimension of the spaces Hout ⊗ Hin and Kout ⊗ Kin must be
the same, namely,

dHin dHout = dKin dKout . (D10)

The second step in the proof of Theorem 3 is to break
down the operation space symmetry S into two state space
symmetries. This result is accomplished through the following
lemma.

Lemma 8. For every quantum operation symmetry S :
Map(Hin,Hout ) → Map(Kin,Kout ), there exists a state space
symmetry J : L(Hin ) → L(Kin ) such that

Ŝ (IHout ⊗ ρ) = IKout ⊗ J (ρ) ∀ρ ∈ St(Hin ). (D11)

If Ŝ is unitary, then J is unitary. If Ŝ is antiunitary, then J is
antiunitary.

The proof of Lemma 8 can be found in Appendix F. A
consequence of Lemma 8 is that the input spaces Hin and Kin

have the same dimension. Combining this fact with Eq. (D10),
we obtain that also the output spaces Hout and Kout must have
the sam dimension. In summary,

dHin = dKin := din

dHout = dKout := dout. (D12)

The Wigner theorem for quantum operations is then ob-
tained by combining lemmas 7 and 8.

Proof of Theorem 3. Let J : St(Hin ) → St(Kin ) be the
state space symmetry defined in Lemma 8. The goal of the

proof is to show that Ŝ can be broken down into the product
of two state space symmetries.

Consider first the case where both Ŝ and J are uni-
tary transformations. Then, write the maximally mixed state
IHout /dout as the marginal of the maximally entangled state
|φ+〉 = ∑

i |i〉 ⊗ |i〉/√dout ∈ HR ⊗ Hout, where HR is an aux-
iliary Hilbert space, isomorphic to Hout. Using the notation
Pψ := |ψ〉〈ψ | for a generic vector ψ , we can rewrite
Eq. (D11) as

(TrR ⊗ Ŝ )(Pφ+ ⊗ ρ) = (TrR ⊗ IKout ⊗ J )(Pφ+ ⊗ ρ). (D13)

Since Eq. (D11) holds for every density matrix ρ, it holds in
particular for every pure state. Hence, we have

(TrR ⊗ Ŝ )(Pφ+ ⊗ Pψ ) = (TrR ⊗ IKout ⊗ J )(Pφ+ ⊗ Pψ ),
(D14)

for every unit vector ψ ∈ Hin.
Since Ŝ and J are unitary transformations, the two opera-

tors on the two sides of the equality are rank-one projectors,
representing pure states. Equation (D14) shows that these two
pure states have the same marginal states once the auxiliary
system is traced out. In other words, they are two purifications
of the same mixed state. Hence, the two pure states must
be equivalent up to a unitary transformation on the auxiliary
system. Explicitly, one must have

(IR ⊗ Ŝ )(Pφ+ ⊗ Pψ ) = (Wψ ⊗ IKout ⊗ J )(Pφ+ ⊗ Pψ ),
(D15)

for some unitary transformation Wψ : L(HR) → L(HR), pos-
sibly depending on ψ .

Now, we use the relation (X ⊗ I )|φ+〉 = (I ⊗ X T ) |φ+〉,
valid for every operator X ∈ L(HR) � L(Hout ). Using this
relation, Eq. (D15) can be rewritten as

(IR ⊗ Ŝ )(Pφ+ ⊗ Pψ ) = (IR ⊗ WT
ψ ⊗ J )(Pφ+ ⊗ Pψ ), (D16)

where WT
ψ is the transpose of Wψ .

From the above equation we obtain

Ŝ (Pϕ ⊗ Pψ ) = WT
ψ (Pϕ ) ⊗ J (Pψ ) (D17)

for every pair of unit vectors ϕ and ψ .
Since the transformations on both sides of the equality are

unitary, it is easy to show that the transformation Wψ must
be independent of ψ (see Appendix G for an explicit proof).
Hence, Eq. (D17) becomes Ŝ (Pϕ ⊗ Pψ ) = WT (Pϕ ) ⊗ J (Pψ ),
∀ϕ,∀ψ or equivalently, Ŝ = WT ⊗ J .

Translating back from the Choi representation, we then
obtain that the map S has the form S (Q) = WT ◦ Q ◦ J T .
Defining S1 := J T and S2 := WT we then obtain the desired
result.

To conclude the proof, consider the case where the state
space symmetries Ŝ and J are both antiunitary. In this case,
we can rewrite them as Ŝ = Ŝ ′ ◦ (THout ⊗ THin ) and J =
J ′ ◦ THin , where Ŝ ′ and J ′ are unitary transformations, and
THin (THout ) is the transpose map on Hin (Hout). Inserting
the expression of Ŝ and J into Eq. (D11), we obtain that
Eq. (D17) holds also for Ŝ ′ and J ′.

Hence, the same derivation used in the unitary case
holds for the maps Ŝ ′ and J ′, and we obtain Ŝ ′ = W ′T ⊗
J ′, for a suitable unitary transformation W ′. Getting back
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to the map Ŝ , we obtain Ŝ = Ŝ ′ ◦ (THout ⊗ THin ) = (W ′ T ◦
THout ) ⊗ (J ′ ◦ THin ) = S2 ⊗ J , where S2 := W ′ T ◦ THout is
an antiunitary symmetry.

Translating back from the Choi representation, we then ob-
tain that the map S has the form S (Q) = S2 ◦ Q ◦ S1, where
S1 := J T is an antiunitary transformation. �

APPENDIX E: PROOF OF LEMMA 7

The proof uses the notion of channel-preserving homomor-
phism, that is, a supermap that maps quantum channels into
quantum channels [8–11].

Definition 5. A supermap S : Op(Hin,Hout ) →
Op(Kin,Kout ) is a homomorphism of quantum operations if
it preserves convex combinations and the null operation. An
homomorphism S is channel-preserving if, for every channel
C ∈ Chan(Hin,Hout ), one has S (C) ∈ Chan(Kin,Kout ).

We now show that every channel-preserving homomor-
phism induces a homomorphism of quantum states.

Lemma 9. Let S : Op(Hin,Hout ) → Op(Kin,Kout ) be a
channel-preserving homomorphism, let Ŝ : L(Hout ⊗ Hin ) →
L(Kout ⊗ Kin ) be the associated map in the Choi represen-
tation. Then, there exists a state space homomorphism A :
St(Kin ) → St(Hin ) such that

Ŝ†(IKout ⊗ ρ) = IHin ⊗ A(ρ) ∀ρ ∈ St(Kin ), (E1)

where Ŝ† is the adjoint of the map Ŝ . If S is a symmetry of
quantum operations, then A is a symmetry of quantum states.

Proof. Let us define the set ChoiChan(Hin,Hout )
to be the set of Choi operators of quantum channels
in Chan(Hin,Hout ). For a non-negative operator A ∈
L(Hout ⊗ Hin ), the relation 〈A,C〉 = 1 holds for every C ∈
ChoiChan(Hin,Hout ) if and only if A has the form A =
Iout ⊗ ρ for some density matrix ρ ∈ St(Hin ) [98]. Now, for
every density matrix ρ ∈ St(Kin ), the operator Ŝ†(IKout ⊗ ρ)
is non-negative and satisfies〈̂

S†
(
IKout ⊗ ρ

)
,C

〉 = 〈
IHout ⊗ ρ, Ŝ(C)

〉
= 1, (E2)

the last equality following from the fact that Ŝ (C) is
in ChoiChan(Kin,Kout ), because S is channel-preserving.
Hence, Ŝ†(IKout ⊗ ρ) must be of the form IHout ⊗ ρ ′ for some
density matrix ρ ′ ∈ St(Hin ). Explicitly, the density matrix ρ ′
can be computed as

ρ ′ := Tr1[Ŝ†(IKout ⊗ ρ)]

d

=: A(ρ), (E3)

where Tr1 denotes the partial trace over the first Hilbert space.
The map A transforms density matrices into density matrices,
and it preserves convex combinations. Therefore it is a state
space homomorphism.

Now, suppose that S is a symmetry of quantum operations.
Let T̂ := Ŝ−1 be the inverse of Ŝ , and let B : St(Hin ) →
St(Kin ) be the state space homomorphism associated to
T̂ as in Lemma 9. Hence, for every density matrix ρ ∈
St(Kin ), one has IKout ⊗ ρ = (T̂ † ◦ Ŝ†)(IKout ⊗ ρ) = IKout ⊗

(B ◦ A)(ρ). Hence, B ◦ A = IKin . Similarly, one can prove
that A ◦ B = IHin . Hence, A is a state space symmetry. �

Equipped with the above result, we are ready to prove
Lemma 7.

Proof of Lemma 7. We need to show that the map Ŝ
is a state space symmetry whenever S is a symmetry of
quantum operations. We first show that Ŝ† is a unital map,
namely Ŝ†(IKout ⊗ IKin ) = IHout ⊗ IHin . By Lemma 9, we have
Ŝ†(IKout ⊗ IKin ) = IHout ⊗ A(IKin ), where A is a state space
symmetry. By Wigner’s theorem, every state space sym-
metry is either unitary or antiunitary, and therefore it is
unital. Hence, A(IKin ) = IHin , and Ŝ†(IKout ⊗ IKin ) = IHout ⊗
IHin . This proves that Ŝ† is unital.

Moreover, the map Ŝ† is positive: for every posi-
tive operator P and for every unit vector � ∈ Hout ⊗
Hin one has 〈�|Ŝ†(P)|�〉 = 〈Ŝ†(P), P�〉 = 〈P, Ŝ (P� ) =
Tr[P Ŝ (P� )] � 0, because Ŝ (Pψ ) is a positive operator. This
proves that Ŝ† is positive.

Since Ŝ† is positive and unital, Lemma 4 implies that Ŝ is
a state space homomorphism. Applying the same argument
to the inverse map Ŝ−1 we obtain that Ŝ is a state space
symmetry. �

APPENDIX F: PROOF OF LEMMA 8

We need to prove that for every operation space symmetry
S there exists a state space symmetry J such that the condi-
tion

Ŝ
(
IHout ⊗ ρ

) = IKout ⊗ J (ρ) ∀ρ ∈ St(Hin ), (F1)

and the symmetry J is unitary (antiunitary) whenever the
symmetry Ŝ is unitary (antiunitary).

Note that (1) the map Ŝ is a state space symmetry (Lemma
7), and (2) Lemma 9 already guarantees the existence of a
state space symmetry A such that

Ŝ†
(
IKout ⊗ ρ

) = IHin ⊗ A(ρ) ∀ρ ∈ St(Kin ). (F2)

Since Ŝ and A are state space symmetries, Wigner’s
theorem implies that they are either unitary or antiunitary
transformations. In either case, one has Ŝ†Ŝ = IHout ⊗ IHin

and A†A = IKin . Hence, Eq. (F2) implies Eq. (F1) with
J = A†.

It only remains to show that J is unitary (antiunitary)
whenever Ŝ is unitary (antiunitary). To this purpose, note that
Eq. (F1) implies

J (ρ) = TrKout

[
Ŝ

(
IHout ⊗ ρ

)]
dout

∀ρ ∈ St(Hin ). (F3)

If Ŝ is unitary, then the map acting on ρ on the right-hand
side is completely positive. Hence, the map J is completely
positive, which is possible only if J is unitary.

Similarly, if Ŝ is antiunitary, the composition of the map on
the right-hand side with the transpose map THin is completely

033028-14



SYMMETRIES OF QUANTUM EVOLUTIONS PHYSICAL REVIEW RESEARCH 3, 033028 (2021)

positive. Hence, the map J ◦ THin is completely positive,
which is possible only if J is antiunitary. �

APPENDIX G: PROOF THAT THE UNITARY
TRANSFORMATION Wψ IN EQ. (D17)

IS INDEPENDENT OF ψ

We provide two alternative proofs, the first based on a
quantum information-theoretic argument, and the second on
explicit matrix calculations.

Quantum information-theoretic proof. Equation (D17)
states that the unitary transformations Ŝ , Wψ , and J satisfy
the condition

Ŝ (Pϕ ⊗ Pψ ) = WT
ψ (Pϕ ) ⊗ J (Pψ ) (G1)

for every unit vector ϕ. A physical way to read the equation
is to imagine that the reversible process Ŝ is applied to a
system, initially in the state Pψ , coupled to an ancilla in the
state Pϕ . The result of the process is to implement a fixed
unitary transformation J on the system, and another unitary
transformation Wψ on the ancilla. Since the transformation J
is unitary, it can be reversed by applying the inverse process
J −1. If this is done, the system is brought back to the state
Pψ , while the ancilla is in a new state Wψ (Pϕ ), possibly
depending on ψ . However, the so-called “No-information-
without-disturbance” theorem implies that the state of the
ancilla should be independent of ψ , for otherwise one could
extract information about ψ by measuring the ancilla, without
affecting the state of the system (see Ref. [99] for a gen-
eral proof of the no-information-without-disturbance theorem,
which does not require the details of the quantum framework).
Hence, we conclude that, for every state Pϕ , the state WT

ψ (ϕ)
should be independent of ψ . In other words, the transforma-
tion WT

ψ should be independent of ψ .
Matrix algebra proof. Let ψ and ψ ′ be two different unit

vectors. Since the transformation Ŝ is unitary, we have

〈 Ŝ (Pϕ ⊗ Pψ ), Ŝ (Pϕ ⊗ Pψ ′ )〉 = 〈Pϕ ⊗ Pψ, Pϕ ⊗ Pψ ′ 〉
= 〈Pψ, Pψ ′ 〉. (G2)

Using Eq. (D17) for ψ and ψ ′, we obtain

〈Pψ, P′
ψ 〉 = 〈 Ŝ (Pϕ ⊗ Pψ ), Ŝ (Pϕ ⊗ Pψ ′ )〉

= 〈
WT

ψ (Pϕ ) ⊗ J (Pψ ),WT
ψ ′ (Pϕ ) ⊗ J (Pψ ′ )

〉
= 〈

WT
ψ (ϕ),WT

ψ ′ (Pϕ )
〉 〈J (Pψ ),J (Pψ ′ )〉

= 〈
Pϕ,WψWT

ψ ′ (Pϕ )
〉 〈Pψ, Pψ ′ 〉, (G3)

the last equation following from the fact that J is a state space
symmetry, and therefore preserves the ray product.

Equation (G3) must hold for every choice of unit vectors
ϕ,ψ , and ψ ′. Choosing ψ and ψ ′ to be nonorthogonal, we
have 〈Pψ, Pψ ′ 〉 = 0, and Eq. (G3) becomes〈

Pϕ,WψWT
ψ ′ (Pϕ )

〉 = 1 ∀|ϕ〉 ∈ Hout, (G4)

which is equivalent to WψWT
ψ ′ = IHout . Hence, Wψ = Wψ ′

whenever ψ and ψ ′ are nonorthogonal.
Now, for every two unit vectors ψ1 and ψ2 there is a third

unit vector ψ that is neither orthogonal to ψ1 nor to ψ2. Hence,

one must have Wψ1 = Wψ and Wψ2 = Wψ , which implies
Wψ1 = Wψ1 . In summary, the unitary Wψ is independent
of ψ .

APPENDIX H: DOUBLE ANTIUNITARY
TRANSFORMATIONS ARE NOT COMPLETELY POSITIVE

An active interpretation of double antiunitary operations
is incompatible with a general notion of physical transfor-
mation, captured by the framework of quantum supermaps
[8–11,18,19,26,33–35], also called quantum superchannels in
later works [20–22,24,27,37,100,101] (see also Ref. [13] for
a related notion of supermap transforming a certain set of
completely positive maps into itself).

Quantum supermaps represent the most general transfor-
mations that can in principle be applied locally to the reduced
dynamics of subsystems. Under such requirement, Ref. [8]
showed that the most general quantum supermap on the set
of quantum oeprations consists in the insertion of the input
quantum operation Q between two quantum channels, A and
B, thus obtaining the new quantum operation Q′ = B ◦ (Q ⊗
IA) ◦ A, where IA denotes the identity channel on an auxiliary
quantum system, output by channel A, input into channel B,
and unaffected by the quantum operation Q. This result was
later extended to infinite dimensions in Ref. [11].

Our Wigner theorem for quantum operations implies that
the only reversible quantum supermaps are those for which
the channels A and B are unitary, and the auxiliary system A
is trivial (i.e., one-dimensional).

The same conclusion was reached by Ref. [17] for quantum
supermaps that are generated by a continuous-time evolution.
Our Wigner theorem shows that the assumption of continuity
is not necessary in the case of quantum supermaps on quantum
operations: reversibility and the applicability to subsystems
are already enough to single out the double unitary form for
any transformation of quantum operations that can be imple-
mented actively in standard quantum mechanics.

In contrast, double antiunitary symmetries cannot be ap-
plied locally to the evolution of subsystems. Mathematically,
they are associated to linear maps that are not completely
positive. In the following, we provide a proof of this fact.

First, note that every double antiunitary transformations
is unitarily equivalent to the double transpose map τin/out :
Q �→ τout ◦ Q ◦ τin. Since unitary equivalence just amounts
to a change of basis, in the following we will restrict our
attention to the map τin/out.

Under the action of the double transpose, a generic quan-
tum operation Q with Kraus operators {Qi} is transformed
into a quantum operation Q′ with Kraus operators {Q∗

i }, ob-
tained by complex conjugation in a fixed basis.

Now, let us examine the transformation Q �→ Q′ in the
Choi representation [80]. The Choi operator of Q is

Choi(Q) :=
∑
m,n

Q(|m〉〈n|) ⊗ |m〉〈n|

=
∑

i

(Qi ⊗ IHin ) |IHin〉〉〈〈IHin |(Q†
i ⊗ I ), (H1)
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where we used the notation |IHin〉〉 := ∑
m |m〉 ⊗ |m〉. The

Choi operator of Q′ is

Choi(Q′) =
∑

i

(
Q∗

i ⊗ IHin

) |IHin〉〉〈〈IHin |
(
QT

i ⊗ I
)

= [Choi(Q)]∗

= [Choi(Q)]T , (H2)

the last equality following from the fact that Choi(Q) is
self-adjoint. Hence, at the level of Choi operators, the double
transpose map τin/out is just the transpose. Since the transpose
is known to be not completely positive, we conclude that the
double transpose map is not a completely positive transforma-
tion. Physically, the failure of complete positivity implies that
it is not possible to apply the map τin/out on a generic bipartite
quantum operation [8].

APPENDIX I: CHOI REPRESENTATION OF THE
TRANSFORMATIONS � AND �′

Here we consider the transformations � : Q → Q† and
�′ : Q → QT , which are the natural extensions of the time-
reversal transformations U �→ U † and U �→ U T , defined at
the level of unitary dynamics.

Let us consider first the Choi representation of the transfor-
mation �′ : Q → QT .

For generic completely positive map Q : L(Hin ) →
L(Hout ), written in the Kraus representation Q(ρ) :=∑

i QiρQ†
i , the Choi operator is given by

Choi(Q) :=
∑
m,n

Q(|m〉〈n|) ⊗ |m〉〈n|

=
∑

i

(
Qi ⊗ IHin

) ∣∣IHin

〉〉〈〈IHin |(Q†
i ⊗ I ), (I1)

where we used the notation |IHin〉〉 := ∑
m |m〉 ⊗ |m〉.

Using the condition(
A ⊗ IHin

)∣∣IHin

〉〉 = (
IHout ⊗ AT

)∣∣IHout

〉〉
, (I2)

valid for every operator A : Hin → Hout, we obtain the relation

Choi(Q) =
∑

i

(
IHout ⊗ QT

i

) ∣∣IHout

〉〉〈〈
IHout

∣∣(Q∗
i ⊗ IHout

)
= SWAPin/out Choi

(
QT

)
SWAPin/out, (I3)

where SWAPin/out : Hin ⊗ Hout → Hout ⊗ Hin is the swap op-
erator, defined by the condition SWAP(φ ⊗ ψ ) = ψ ⊗ φ,
∀φ,∀ψ .

Hence, at the level of Choi operators, the map �′ : Q �→
QT is represented by a unitary transformation. Explicitly, the
transformation is

�̂′ : Q �→ SWAPout/in Q SWAPout/in, (I4)

with SWAPout/in := SWAP−1
in/out. This unitary transformation cor-

responds to the exchange between the input and output spaces
of the Choi operator [81].

Let us now consider the Choi representation of the time
reversal � : Q → Q†. By definition, we have

Choi(Q†) =
∑

i

(
Q†

i ⊗ IHin

) ∣∣IHin

〉〉〈〈
IHin

∣∣(Qi ⊗ I )

= [ ∑
i

(
QT

i ⊗ IHin

) ∣∣IHin

〉〉〈〈
IHin

∣∣(Q∗
i ⊗ I )

]∗

= [
Choi(QT )

]∗

= [
Choi(QT )

]T

= [SWAPout/in Q SWAPout/in]T .

Hence, at the level of Choi representation, the map �′ : Q �→
QT is represented by the map

�̂ : Q �→ [SWAPout/in Q SWAPout/in]T , (I5)

namely the antiunitary transformation resulting from the com-
position of the swap operation with the transpose.

APPENDIX J: PROOF OF THEOREM 4

The proof is by contradiction: we assume that the sym-
metry S exists, and show that its existence leads to a logical
contradiction.

Let us start from the case of symmetries satisfying the
condition S (U ) = U† for every unitary channel U . Since S
is symmetry of quantum operations, its action on a generic
unitary channel U is either S (U ) = W ◦ U ◦ V or S (U ) =
W ◦ τin/out (U ) ◦ V , where τin/out is the “double transpose”.

Let us inspect these two cases separately. In the first
case, the transformation S (U ) = W ◦ U ◦ V is a sequence
of quantum channels. References [33,35] showed that the
transformation U �→ U† cannot be implemented by inserting
the channel U in a sequence of quantum channels. For com-
pleteness, we provide an alternative proof here. The condition
W ◦ U ◦ V = U† implies WUV = eiγU U † for every unitary
operator U . Choosing U = I reveals that one should have
V = eiγIW †. Choosing U = W , one obtains WeiγI = eiγW W †.
Hence, one must have W †UeiγW W † = eiγU U †, which implies
that W †U is proportional to (W †U )†. In other words, W †U
must be proportional to a Hermitian operator. But since W †U
is a generic unitary operator, this condition cannot be satisfied.

In the second case, the channel τin/out (U ) has the form
ρ �→ U ∗ρU T . Hence, the condition W ◦ τin/out (U ) ◦ V = U†

implies WUV = eiγU U † for every unitary operator U . Choos-
ing U = I reveals that one should have V = eiγIW †. Choosing
U = W , one obtains WeiγI = eiγW W T . Hence, one must have
W T UeiγW W † = eiγU U †, which implies that W T U is propor-
tional to (W T U )T . In other words, W T U must be proportional
to a symmetric operator. But since W T U is a generic unitary
operator, this condition cannot be satisfied.

Summarising, no symmetry of the set of quantum opera-
tions can satisfy the condition S (U ) = U† for every unitary
channel U . Let us now consider symmetries satisfying the
condition S (U ) = UT for every unitary channel U . Note that
the relation U† = τin/out (UT ) holds for every unitary channel
U . If there existed a symmetry S such that S (U ) = UT for
every unitary channel, then one could combine the symmetry
S with the double transpose, thus obtaining a symmetry S ′ =
τin/out ◦ S such that S ′(U ) = U† for every unitary channel, in
contradiction with the previous part of the proof. �
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CHIRIBELLA, AURELL, AND ŻYCZKOWSKI PHYSICAL REVIEW RESEARCH 3, 033028 (2021)

[47] F. Shahbeigi, K. Sadri, M. Moradi, K. Życzkowski, and
V. Karimipour, Quasi-inversion of quantum and classical
channels in finite dimensions, arXiv:2104.06062.

[48] Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz, Time sym-
metry in the quantum process of measurement, Phys. Rev. 134,
B1410 (1964).

[49] B. Reznik and Y. Aharonov, Time-symmetric formulation of
quantum mechanics, Phys. Rev. A 52, 2538 (1995).

[50] Y. Aharonov, S. Popescu, and J. Tollaksen, A time-symmetric
formulation of quantum mechanics, Phys. Today 63(11), 27
(2010).

[51] B. Coecke and R. Lal, Time Asymmetry of Probabilities Ver-
sus Relativistic Causal Structure: An Arrow of Time, Phys.
Rev. Lett. 108, 200403 (2012).

[52] O. Oreshkov and N. J. Cerf, Operational formulation of time
reversal in quantum theory, Nat. Phys. 11, 853 (2015).

[53] M. S. Leifer and M. F. Pusey, Is a time-symmetric interpreta-
tion of quantum theory possible without retrocausality? Proc.
R. Soc. A 473, 20160607 (2017).

[54] B. Coecke, S. Gogioso, and J. H. Selby, The time-reverse of
any causal theory is eternal noise, arXiv:1711.05511.

[55] A. Di Biagio, P. Donà, and C. Rovelli, Quantum information
and the arrow of time, arXiv:2010.05734.

[56] G. Chiribella and Z. Liu, Quantum operations with indefinite
time direction, arXiv:2012.03859.

[57] L. Hardy, Time symmetry in operational theories,
arXiv:2104.00071.

[58] R. B. Griffiths, Consistent Quantum Theory (Cambridge Uni-
versity Press, Cambridge, UK, 2003).

[59] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Probabilistic
theories with purification, Phys. Rev. A 81, 062348 (2010).

[60] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Informational
derivation of quantum theory, Phys. Rev. A 84, 012311 (2011).

[61] G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Quantum
from principles, in Quantum Theory: Informational Founda-
tions and Foils (Springer, 2016), pp. 171–221.

[62] G. M. D’Ariano, G. Chiribella, and P. Perinotti, Quantum
Theory from First Principles: an Informational Approach
(Cambridge University Press, Cambridge, UK, 2017).

[63] M. Horodecki and J. Oppenheim, Fundamental limitations for
quantum and nanoscale thermodynamics, Nat. Commun. 4,
2059 (2013).

[64] G. Gour, M. P. Müller, V. Narasimhachar, R. W. Spekkens, and
N. Y. Halpern, The resource theory of informational nonequi-
librium in thermodynamics, Phys. Rep. 583, 1 (2015).

[65] G. Chiribella and C. M. Scandolo, Microcanonical thermody-
namics in general physical theories, New J. Phys. 19, 123043
(2017).

[66] A. Uhlmann, Anti- (conjugate) linearity, Sci. China 59,
630301 (2016).

[67] A. S. Holevo, Quantum Systems, Channels, Information: a
Mathematical Introduction (Walter de Gruyter, Berlin/Boston,
2012), Vol. 16.

[68] V. Cappellini, H.-J. Sommers, and K. Życzkowski, Subnor-
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