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ABSTRACT: Drought and flood are investigated in the Pearl River basin (PRB) using long-term terrestrial water storage

anomaly (TWSA) data from the mascon (mass concentration) solutions based on Gravity Recovery and Climate

Experiment (GRACE) satellite measurements (2002–19) and reanalysis data (1980–2019). The GRACE mascon solutions

capture two major drought periods (2003–06 and 2009–12) with similar onsets and endings over the last two decades, but

show considerable differences in quantifying total drought severity. The reanalysis data significantly overestimate drought

duration and severity during 1980–2000 owing to overestimated negative TWSA forced by underestimated precipitation.

The GRACE mascon solutions identify four major flood events in August 2002, June 2008, and July in 2006 and 2019. The

flood potential is influenced by the precipitation in both the current and antecedentmonths. The flood potential index of the

most recent flood in 2008 showed a similar spatial pattern compared to precipitation at monthly and subbasin scales. The

precipitation and TWSA in the PRB are mainly influenced by El Niño–Southern Oscillation (ENSO). TWSA exhibits a lag

of 1–3 months responding to ENSO during 1980–2019. This study emphasizes the significance of removing water storage

changes in new large reservoirs before long-term drought and flood characterization. The inclusion of reservoir water

storage would expand (shrink) the drought duration and overestimate (underestimate) drought severity for the period

before (after) reservoir impoundment and overestimate flood potential for the period after reservoir impoundment. This

study highlights the intensifying drought conditions in the PRB over the last four decades under the circumstances of more

frequent human activities (reservoir construction and regulation) and the complex changing climate system.
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1. Introduction

Monitoring drought and flood is necessary to forecast the

development of hazards and to assist in planning strategies for

the prevention and mitigation of the negative impact of the

hazards. Traditionally, drought and flood monitoring rely on

in situ measurement of hydrometeorological variables like

rainfall, soil moisture, and streamflow. However, these in situ

measurements are limited to point and local scales and require

lots of investment of labor, money, and time. With the devel-

opment of remote sensing technology, an unprecedented

breakthrough at spatiotemporal scales has been achieved for

drought and flood monitoring. The advantages of remote

sensing relative to traditional ground observations include

consistent data records, improved spatial resolution, and

global, near-real-time observations (AghaKouchak et al. 2015;

Heumann 2011). However, traditional satellite-based optical

sensors retrieve high-quality data susceptible to weather effects.

Radar sensors do not contain spectral features, and there is

scarce dense spatiotemporal data sampling in many regions

(Sun et al. 2017). Among the many satellite missions, the

Gravity Recovery and Climate Experiment (GRACE; see the

appendix for expansions of acronyms) twin-satellite mission is

the only one that can acquire total terrestrial water storage

anomaly (TWSA) information at a monthly and even denser

temporal scale despite weather effect (Tapley et al. 2004).

Until now, GRACE satellite data have been widely used to

detect regional or basin-scale drought and flood events world-

wide, including for the Amazon River basin (Chen et al. 2009,

2010), La Plata basin (Abelen et al. 2015), Yangtze River basin

(Sun et al. 2017, 2018; Z. Zhang et al. 2015; Zhou et al. 2017),

Liao River basin (X. Chen et al. 2018), and the southwest karst

plateau (Long et al. 2014) in China.

Drought characterization is generally performed using var-

ious drought indices, which are effectively continuous func-

tions of precipitation and other hydrometeorological variables

(Morid et al. 2006). To date, more than 100 drought indices

have been proposed (Zargar et al. 2011). Among the reported

drought indices, the standardized runoff index (Shukla and

Wood 2008), the standardized precipitation index (McKee

1993), and the Palmer drought severity index (Palmer 1965)

are the most widely used indices. In recent years, GRACE

TWSA data have been integrated into the research on drought
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indices. Yirdaw et al. (2008) initially introduced the total

storage deficit index, which is a renaming of the soil moisture

deficit index developed by Narasimhan and Srinivasan (2005).

Thomas et al. (2014) designed a GRACE-derived water stor-

age deficit (WSD) for measuring hydrological drought occur-

rence and severity. Sinha et al. (2017) developed Thomas’s

method into the water storage deficit index (WSDI), which has

been used by Sun et al. (2018) for drought evaluation in the

Yangtze River basin, China. Zhao et al. (2017) designed a new

GRACE-based drought severity index that makes it capable of

comparing drought features across different regions and pe-

riods. Hosseini-Moghari et al. (2019) introduced a modified

total storage deficit index using the residual signal rather than

the total signal. Sinha et al. (2019) proposed a novel combined

climatologic deviation index by combining precipitation anoma-

lies and TWSA.

The world is facing higher flood risk under climate change

and socioeconomic development (Hirabayashi et al. 2013;

Winsemius et al. 2016). However, there have been limited

studies on flood risk indexes since it is difficult to capture flood

due to its relatively small extent and short duration (Sun et al.

2017). To highlight a flood-potential application, Reager and

Famiglietti (2009) designed a monthly global flood index,

namely Reager’s flood potential index (FPI). This index uti-

lizes the difference between GRACE-derived TWS and pre-

cipitation to explore flood potential. The index has been used

by other researchers for flood detection. For example, Long

et al. (2014) examined the severe flood in 2008 in Yun-Gui

Plateau in southwestern China using Reager’s FPI. Molodtsova

et al. (2016) evaluated the efficacy of the Reager’s FPI for flood

risk assessment over the continental United States and found

consistency between Reager’s FPI flood risks and the observed

floods on regional and even local scales. Sun et al. (2017) found

that GRACE data are very useful for monitoring large floods in

the Yangtze River basin. Idowu and Zhou (2019) assessed the

flood potential in the lower Niger River basin in Nigeria and

found that the GRACE-based FPI agrees well with the water

budget–based FPI andwith the flood reported by theDartmouth

Flood Observatory.

Drought and flood are influenced by climate variability like

El Niño–Southern Oscillation (ENSO) and the Indian Ocean

dipole (IOD). Understanding the relationship between TWSA

(or drought and flood) and climate variability is essential for

better management of water resources at a regional or basin

scale. Phillips et al. (2012) and Ni et al. (2018) investigated the

connection between TWS and ENSO on a global scale.

Forootan et al. (2019) explored the global hydrological drought

and connection to ENSO, the IOD, and the North Atlantic

Oscillation (NAO). Awange et al. (2014) analyzed TWSA and

assessed the influence of anthropogenic activities as well as

climate variability (ENSO and IOD) in the Nile Basin. Z. Zhang

et al. (2015) used GRACE-based TWSA to study the 2006

summer drought and 2011 spring drought in the Yangtze River

basin in China and found a connection between drought and

ENSO. Ndehedehe et al. (2017) examined the connection be-

tween TWS and three global climate indices—the Atlantic mul-

tidecadal oscillation (AMO), IOD, and ENSO overWest Africa.

In addition to GRACE data, the development of the data-

assimilation-based reanalysis system offers an alternative way

to monitor and characterize drought and flood as well as the

climatic diagnosis. Previous studies (e.g. Awange et al. 2016;

Ndehedehe et al. 2018) have used reanalysis data like the

MERRA-2 (Modern-Era Retrospective Analysis for Research

and Applications, version 2) TWSA to characterize drought

and flood. However, both GRACE and MERRA-2 reanalysis

data have uncertainty owing to the different strategies of

GRACE data processing centers and the bias in the long-term

forcing data in the reanalysis system. Therefore, an evaluation

of the reliability of both GRACE data from different centers

and the reanalysis data from a long-term perspective is nec-

essary for an accurate drought and flood characterization and

teleconnection analysis.

The Pearl River basin (PRB) in southern China (Fig. 1) is

the second-largest river regarding the average annual runoff in

China (Niu 2013; Pearl River Water Conservancy Commission

2005). Droughts and floods occur frequently in the PRB be-

cause of the high spatiotemporal variation of precipitation/

runoff (Cui et al. 2007; Niu 2010). A previous study (e.g., Luo

FIG. 1. Study region and its digital elevation model (DEM). Also shown is the location of

streamflow stations and the Longtan Dam.
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et al. 2016) analyzed the TWSA in the PRB. However, Luo

et al. (2016) did not focus on the drought and flood in this basin

based on GRACE data. Han et al. (2019) explored the prop-

agation from meteorological drought to groundwater drought

considering the impact of climate variability. However, they

used the output from the Global Land Data Assimilation

System (GLDAS) for the isolation of groundwater storage

components from TWSA. As GLDAS does not include res-

ervoir storage (RESS) changes, their estimates of groundwater

drought may be biased. Besides, they focused on a relatively

short period of GRACE data (2002–15), which is mostly a dry

period. Therefore, their characterization of groundwater drought

may be even more biased relative to the long-term time series.

Considering the research gap in the above literature, and the

significance of drought and flood studies for basin-scale water

resource management, this study aims at monitoring and char-

acterizing drought and flood usingWSDI and FPI based on long-

term TWSA from GRACE (2002–19) and a reanalysis product

(MERRA-2; 1980–2019) in the PRB. The reliability of GRACE

TWSA and long-term reanalysis data will be evaluated using a

water balance approach, long-term observed precipitation data,

and an ancillary drought index before drought and flood char-

acterization. The teleconnection between TWSA and climate

indices will be investigated. The contribution of RESS changes to

drought and flood characterization and teleconnection analysis

will be quantified and discussed.

2. Study area and data

a. Study area

The PRB (Fig. 1; 442 748 km2) is located in southern China

(1028120–1158540E, 218320–268550N). The Pearl River originates

from the Yunnan Plateau and flows eastward through moun-

tains and country to the South China Sea. It has three main

subbasins, namely the West River [2075 km; drainage area:

341 878 km2, including Nan-Bei PanRiver basin (RB), Hongliu

RB, Yu RB, andWest RB], the North River (468 km; drainage

area: 46 834 km2), and the East River (520 km; drainage area:

27 611 km2) (Zhang et al. 2009).

The PRB has a tropical to subtropical climate with an annual

mean temperature of 148–228C, relative humidity of 71%–80%, and

annual averageprecipitationof 1200–2000mm(Liu et al. 2012). The

wet season is April–September, accounting for 72%–88% of the

annual total precipitation. ThePRB receives 6–7 timesmore annual

precipitation in the wet years than in dry years, resulting in the

occurrence of flood or drought disasters (Liu et al. 2012).

b. GRACE TWSA data

This study uses three level-3 mascon (mass concentration)

solutions from GRACE and its Follow-On mission, including

the Release 06 mascons from Center for Space Research

(CSR) at The University of Texas at Austin and Jet Propulsion

Laboratory (JPL), and the mascon from the Goddard Space

Flight Center (GSFC). These three mascon solutions deal with

C20 (degree 2 order 0) and the degree-1 coefficients (geo-

center) similarly. The C20 coefficients are replaced with the

solutions from Satellite Laser Ranging (Cheng et al. 2011,

2013) and the degree-1 coefficients are estimated using the

method from Swenson et al. (2008). A glacial isostatic adjust-

ment correction has been applied for JPL mascon based on the

ICE6G-D model from Peltier et al. (2018), for CSR mascon

based on the model fromA et al. (2012), and for GSFCmascon

based on the model from ICE5G (VM2) (Peltier 2004). The

CSRRL05 mascon is longitude–latitude grids at 0.258, but they
represent the equal-area geodesic grid at 18 3 18 at the equator
(i.e., the current native resolution; Save et al. 2016). JPL RL05

mascons are longitude–latitude grids at 0.58, but they represent
the 38 3 38 equal-area caps (i.e., the current native resolution;

Watkins et al. 2015). The GSFC mascons are estimated with

10-day and 1-arc-degree equal-area (;12 390 km2) sampling,

applying anisotropic constraints (Luthcke et al. 2013). This

study does not apply additional smoothing or filtering to these

data and no further processing is needed. This study uses the

CSR and JPL mascon solutions from April 2002 to

December 2019 with 32 months of missing data, including an

11-month data gap between July 2017 and May 2018. The

GSFC mascon data from 2003 to 2014 are used. The missing

values (excluding the 11-month data gap) are conservatively

estimated through cubic-spline interpolation. The three mascon

solutions (2003–14) are intercompared and validated against

water balance–based total water storage change (TWSC) esti-

mates. Considering the longer period, only the CSR and JPL

mascon solutions are used for long-term analysis with a com-

parison with MERRA-2 data.

c. MERRA-2 TWSA data

This study uses the latest atmospheric reanalysis data,

MERRA-2, which has been used for atmospheric research and

climate monitoring (Gelaro et al. 2017). MERRA-2 uses the

same variation analysis algorithm and observation handling as

MERRA. Significant improvements have been made for

MERRA-2 compared to previous MERRA, MERRA-Land,

and Integrated Earth System Analysis (IESA) (Reichle et al.

2017). Through data assimilation using a three-dimensional var-

iational algorithm and simulation using the catchment model

(Bosilovich et al. 2015; Reichle et al. 2017), MERRA-2 produces

long-term historical time series of atmospheric fields, land surface

variables, and water fluxes at a global scale and different time

scales (hourly, diurnal, or monthly) (Bosilovich et al. 2015). This

study uses the long-termmonthlyTWSAoutput fromMERRA-2

land surface diagnostics from 1980 to 2019 with a resolution of

0.58 3 0.6258. Before using the data for drought and flood char-

acterization, the reliability ofMERRA-2TWSAdata is validated

usingGRACETWSAduring 2002–19. The accuracy of historical

TWS data in the 1980s and 1990s is also assessed by comparing

its precipitation forcing data with observed precipitation data.

The MERRA-2 data can be accessed through the EarthData

search engine.

d. RESS data

According to the annual statistics of constructed reser-

voirs in the China Agriculture Yearbook (Editorial Board of

China Agriculture Yearbook 1980–2017) and China Water

Conservancy Yearbook (Editorial Board of China Water
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Conservancy Yearbook 2018–2019), there is an increasing

number of large reservoirs [storage capacity (SC)$ 0.1 km3] in

Guangxi province since 2000, with turning points occurring

in 2005 and 2011. As shown in Fig. S1 in the online supple-

mental material, the total SC of large reservoirs in Guangxi was

increased by 13.3 km3 from 2005 to 2008 and increased by

27.8 km3 from 2011 to 2012. An increasing trend of SC for

medium reservoirs (0.01, SC# 0.1 km3) can be noted in both

Guangxi andGuangdong since 1990 with the total SC increased

by 4.5 km3 during 1990–2018. There were over 10 000 small

reservoirs (SC, 0.01 km3) in Guangxi and Guangdong, but the

accumulated SC is around 1 km3, and there is only a small in-

creasing trend since 2005 for small reservoirs. An increase of

storage by 1 km3 is equivalent to 2.3-mm water height on basin

average in the PRB. The newly constructed large and medium

reservoirs mainly over the last two decades would result in

considerable positive mass anomalies contributing to TWSA

and their impacts on drought and flood characterization should

be quantified. The contribution of storage anomalies from small

reservoirs is minor and can be neglected.

This study further collected the reported actual storage data

for large and medium reservoirs in the PRB from the Water

Resources Bulletin of the PRB (Pearl RiverWater Conservancy

Commission 2003–2018). The data are only available on 1 January

and 1December each year from 2003 to 2018withmissing values

in 2009. Here, the averaged data on 1 December in one year and

on 1 January the next year are used to be compared with

GRACE TWSA in the same months. As shown in Fig. 2, the

RESS represents a remarkable increasing trend since 2003. For

the period 2012–15, the averageRESS inDecember and January

increased at a rate of 8.0mmyr21, accounting for 26.4% of the

trend (30.3mmyr21) of TWSA from GRACE CSR mascon

solution. For the period 2003–08, the increasing trend is mainly

induced by the water impoundment of the Longtan Reservoir

(LTR) with the storage at a normal water level being approxi-

mately 16.2 km3. Here, the observed water-level data of the

Longtan Reservoir from 2006 to 2014 (Luo et al. 2016) are used.

The water level is converted to storage using the fitted expo-

nential water level–storage relationship estimated by Huang

et al. (2019a). The anomaly time series of Longtan Reservoir

storage (LTRS) is shown in Fig. 2b, exhibiting an increasing rate

of 8.1mmyr21 during 2005–08.

To quantify the impact of RESS change on drought and

flood characterization from a long-term perspective, a syn-

thetic long-term RESS time series is constructed using the

available LTRS and reported RESS data. The LTRS was as-

sumed to be zero for the period (1980–2006) before dam con-

struction and to stay at the deadwater level (330mwith storage

of 4.8 km3) during 2015–19. Due to the lack of observed

monthly data for all large and medium reservoirs, this study

assumes that the trend contribution of RESS to GRACE

TWSA based on the data in winter (December and January) is

equal to the overall trend contribution of theRESS toGRACE

TWSA based on all months. The estimated ratio of 26.4%

between storage trends in large and medium reservoirs and

GRACE TWSA in winter (December–January) is adopted as

FIG. 2. (a) Actual storage data (available on 1 Jan and 1 Dec during 2003–18, with missing

values in 2009) for large andmedium reservoirs in the PRB fromWater Resources Bulletin of

the PRB (Pearl River Water Conservancy Commission 2003–2018). The averaged data on 1

Dec in one year and on 1 Jan the next year are used to be comparedwithGRACETWSAand

LTRS in the same months. (EWH is equivalent water height.) (b) The monthly and 13-point

moving average (13-MA) smoothed anomaly time series of LTRS during 2003–14.
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the ratio of the overall linear fitted trend using the entire

monthly time series. As the overall fitted trend of GRACE

TWSA using the CSR mascon solution during 2012–15 is

17.8mmyr21 (see Fig. 4a), the RESS trend (26.4%) is assumed

to be 4.7mmyr21. This rate results in a total of 18.8-mm water

storage increment in the PRB by the end of 2015, which is

mainly induced by water impoundment at the early stage of

newly constructed reservoirs and should also be considered

after 2015. Hence, the assumed and observed LTRS during

1980–2019, the assumed trend during 2012–15, and a constant

water storage equivalent to 18.8mm during 2015–19 are added

together to construct the synthetic long-termRESS time series,

whose anomalies are estimated and removed from the long-

term TWSA from GRACE and MERRA-2 before drought

and flood characterization.

e. Hydrometeorological data

Themonthly precipitation dataset (0.58) inChina from January

1980 to August 2018 is obtained from the China Meteorological

Administration (CMA). This gridded precipitation dataset was

produced through a thin-plate spline interpolation using the

ground-based precipitation observation data from 2472 meteo-

rological stations in China (http://www.nmic.cn/). This study

compares the in situ precipitation with the satellite precipitation

product (Tropical Rainfall Measuring Mission, TRMM 3B43,

1998–2019) (Huffman et al. 2007) (Fig. 3a or Fig. S2). High

consistency with a correlation coefficient of 0.99 and root-mean-

square error (RMSE) of 13.6mm month21 is found between

in situ and satellite-based precipitation (Fig. S2). This gives the

confidence in the in situ precipitation over the PRB. The CMA

precipitation data will be used for results and discussion. The

CMA precipitation data during September 2018–December

2019 are unavailable, and TRMM data are used as a surro-

gate. In addition to the precipitation data from CMA and

TRMM, the MERRA-2 precipitation data are also used for

comparison. The use of observation-corrected precipitation

data is one of many advances relevant to previous MERRA.

However, there are still some limitations of this precipitation

data, such as the unrealistic representation of the time of max-

imum precipitation inherited from MERRA (Gelaro et al.

2017). Therefore, the reliability of the MERRA-2 precipitation

data should be evaluated to better interpret and assess the his-

torical TWSA dynamics when GRACE TWSA data are un-

available for comparison.

Monthly streamflowmeasurements at the outlet of the three

tributaries of the Pearl River (i.e., the Gaoyao station at the

West River, the Boluo station at the East River, and the Shijiao

station at the North River) are obtained from the China River

Sediment Bulletin (2003–19) for use in estimation of net flow of

the study region.

Evapotranspiration (ET) is obtained from the Moderate

Resolution Imaging Spectroradiometer (MODIS) sensor and

the Global Land Evaporation Amsterdam Model (GLEAM).

For the MODIS ET, the MOD16A2 global ET dataset at 0.58
resolution is used. The MOD16 ET datasets are estimated

usingMu et al.’s improved ET algorithm (Mu et al. 2011) based

on their previous work (Mu et al. 2007). The ET algorithm is

based on the Penman–Monteith equation (Monteith 1965).

The GLEAM is a set of algorithms developed for the estima-

tion of root-zone soil moisture and terrestrial evaporation from

FIG. 3. (a) Monthly time series of precipitation P from China Meteorological Administration

(CMA) and TRMM, evapotranspiration (ET) from MODIS and GLEAM, and in situ stream-

flowR. (b)Monthly TWSC during 2003–14 estimated from TWSA using threeGRACEmascon

solutions and terrestrial water balance.
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satellite data. This study uses version 3 of GLEAM ET data

(0.258). Relative to the previous versions, GLEAMV3 includes a

novel soil moisture data assimilation system, an improved

drainage algorithm, and a modified formulation of the evapora-

tive stress (Martens et al. 2017). The monthly MODIS and

GLEAMETdata from2003 to 2014 are displayed inFig. 3a.Both

ET datasets are used for estimating water balance based TWSC,

which is further compared with GRACE TWSC.

f. Self-calibrated Palmer drought severity index

The self-calibrated Palmer drought severity index (scPDSI)

is developed based on the original PDSI (Palmer 1965), to

make results from different climate regimes more comparable.

The scPDSI automatically adjusts the climate pattern and

calculates the duration factor using the climate pattern at a

given location. In this way, scPDSI considers the precipitation

variation at different locations and allows for more consistent

and accurate comparisons of the index at various locations than

PDSI (van der Schrier et al. 2013; Wells et al. 2004). As the

methodology of calculating scPDSI is not significantly different

fromPDSI, the two indices have the same issue in terms of time

lag, frozen precipitation, and frozen soils. For a better analysis

of drought using scPDSI, the precipitation data (CRUTS 4.03)

used to calculate scPDSI are also collected and validated

against CMA precipitation. The scPDSI and CRU precipita-

tion data at a resolution of 0.58 3 0.58 are available from 1901 to

2018 through the Climatic Research Unit (CRU), the University

of East Anglia, and are freely accessible from https://crudata.

uea.ac.uk/cru/data/drought/.

g. Climate indices

As a climate proxy, El Niño–Southern Oscillation indicates

the occurrence of abnormally warm (El Niño) and cold (La

Niña) sea surface temperature anomalies in the eastern Pacific

(Ndehedehe et al. 2017; Phillips et al. 2012). The magnitude of

ENSO is generally expressed as the Niño-3.4 index (Ahi and

Jin 2019). The North Atlantic Oscillation is one of the most

prominent and recurrent patterns of atmospheric circulation

variability (Hurrell et al. 2003). The Indian Ocean dipole is a

coupled ocean and atmosphere phenomenon in the equatorial

Indian Ocean that mostly affects the climate of countries

around the Indian Ocean (e.g., Awange et al. 2014; Ndehedehe

et al. 2017; Saji et al. 1999). The Pacific decadal oscillation

(PDO) is defined as the leading empirical orthogonal function

of North Pacific sea surface temperature anomalies (Schneider

and Cornuelle 2005). It is a long-lived ENSO-like pattern of

Pacific climate variability (Mantua and Hare 2002).

3. Method

a. GRACE-derived and water balance–based total water

storage change

To validate GRACE TWS data, a water balance–based

estimate of TWSC is comparedwithGRACE-basedTWSC.Due

to the shorter period of MODIS ET data, the validation is only

performed for the period 2003–14. The water balance estimation

of TWSC can be expressed as the following equation:

dS

dt
5 P1R

in
2R

out
2ET, (1)

where dS/dt is monthly TWSC (mm month21); P stands for

monthly precipitation (mm month21), and Rin and Rout rep-

resent the inflow and outflow of the target basin. The inflow is

assumed to be negligible for a basin. The outflow is measured

at the three streamflow stations located at the outlets of the

three tributaries of the Pearl River (i.e., the Gaoyao, Shijiao,

and Boluo stations; see Fig. 1). ET is monthly evapotranspi-

ration (mmmonth21). In this study, we neglected the impact of

human activities on TWSC. GRACE-based TWSC is calcu-

lated as the backward difference of TWSA (Long et al. 2014):

dS

dt
5

TWSA(t)2TWSA(t2 1)

t
. (2)

b. Water storage deficit index

The water storage deficit is estimated as the residuals by

subtracting the climatology from the GRACE-derived TWSA

time series (Thomas et al. 2014). Here, the climatology for the

period from January 1980 toDecember 2019 and for the period

from April 2002 to December 2019 was calculated for the

MERRA-2 and GRACE TWSA time series separately by

averaging the TWSA of each month of the GRACE record

(e.g., averaging the values of all Januaries in the whole data

record). For comparison with GRACE data, WSD and WSDI

based onMERRA-2 data during 2002–19 were also calculated.

The estimation of WSD can be expressed as follows:

WSD
i,j
5TWSA

i,j
2TWSA

j
, (3)

whereTWSAij is theGRACE-derivedTWSAtime series for the jth

month in the year i, and TWSAj is the climatology of TWSA. For a

better characterization of drought using WSD and to compare

WSD with another drought index, the WSD is normalized into

WSDI using zero-mean normalization method as follows:

WSDI5
WSD2 m

s
, (4)

where m is the mean of WSD and s is the standard deviation of

the WSD. The negative sign of WSDI indicates drought con-

ditions, while its magnitude represents the intensity (Sinha

et al. 2017). The detailed categorization of drought intensity

using WSDI is shown in Table 1.

Thomas et al. (2014) further defined the total severity S(t) to

capture the combined effect of deficits and duration of water

storage:

S(t)5 M(t)D(t), (5)

where M is the average deficit since the onset of the deficit

period, D is the duration of a drought event, and t denotes the

number of drought events; S, M, and D are determined after

the termination of the drought event. A drought event is

identified as the negative WSDI persisting for consecutive

three or more months (Thomas et al. 2014).
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c. Flood potential index

This study follows the method proposed by Reager and

Famiglietti (2009) to calculate the flood potential index. First,

the storage deficit SDEF is estimated as follows:

S
DEF

(t)5S
MAX

2S(t21), (6)

where SMAX is the maximum value of GRACE TWSA from

1980 to 2019 (or for the period 2002–19), S(t2 1) is the TWS of

the previous month, and SDEF represents the highest allowable

relative storage change. Second, by combing monthly precipi-

tation PMON and storage deficit SDEF, flood potential amount

(FPA) is calculated as follows:

FPA(t)5P
MON

(t)2 S
DEF

(t), (7)

Finally, the FPI is estimated by normalizing the FPA by its

historical maximum in each grid cell:

FPI(t)5
FPA(t)

max [FPA(t)]
. (8)

The FPI value should be less than or equal to 1. The flood will

be more likely to occur if FPI is closer to 1.

4. Results and discussion

a. Validation of GRACE TWSC

GRACETWSAfromCSR, JPL, andGSFCmascon solutions

are intercompared with each other during 2003–14, showing

good agreement [r . 0.95, root-mean-square difference

(RMSD) 5 15–18 mm] (see Fig. S3). A further comparison of

TWSA from CSR, JPL mascons, and MERRA-2 at a longer

time scale is shown in Fig. 4a (see section 4b). The monthly

TWSC from GRACE data is compared with the water balance

estimation from ground-based precipitation, streamflow, and

MODIS/GLEAM-based ET (Fig. 3b). The TWSC estimated

using CSR, JPL, and GSFC mascons indicates an acceptable

agreement (r5 0.69, 0.70, and 0.68, andRMSD5 33.8, 34.0, and

34.9mmmonth21, respectively) comparing to the water balance

estimations using MODIS ET. The comparison of TWSC be-

tween CSR, JPL, and GSFC mascons and water balance esti-

mations using GLEAM ET also indicates good consistency in

both timing (r 5 0.68, 0.68, and 0.66, respectively) and magni-

tude with slightly lower RMSD (31.8, 32.3, and 33.2mm

month21, respectively) due to better ET estimates. As seen, the

TWSC from CSR and JPL mascon shows a slightly higher cor-

relation and lower RMSD than GSFC mascon compared to

water balance estimations. The overall agreement between

GRACE-based and water balance–based TWSC verifies the

reliability of GRACE TWS data to be used for drought and

flood characterization. Considering the better performance, only

the CSR and JPL mascons are used for further study.

b. Long-term variability of TWSA from GRACE
and MERRA-2

Figure 4a compares the TWSA fromGRACEandMERRA-2

during 2002–19, showing generally good agreement on both

timing and amplitude. The difference between GRACE and

MERRA-2 TWSA is a bit larger than that between the two

GRACE mascon solutions. The major discrepancy lies in the

overestimation of TWSA by MERRA-2 in the wet season

(June–September; see the climatology in Fig. 7e). The three

TWSA time series show a close linear-fitted trend based on the

13-point moving average (13-MA) during 2002–16 with a dif-

ference of less than 2mmyr21 (Figs. 4a,b). Some larger differ-

ences are found among the fitted trend during two short periods.

During 2005–08, the trend of TWSA from the JPL mascon so-

lution is ;7mmyr21 larger than that of CSR mascon and

MERRA-2. During 2012–15, MERRA-2 exhibits a larger trend

of 6–7mmyr21 compared to JPL and CSR mascon solutions

(Figs. 4a,b). It should be noted that these two periods correspond

to the time of building new large dams in the PRB (see

section 2d). The increasing trends shown in Figs. 4a and 4b

should be partly attributed to reservoir impoundment (e.g.,

LTRS accounts for 34%–50% of increment of TWSA during

2005–08). The overall fitted trend of RESS during 2002–16 ac-

cording to observation-based synthetic data is 2.8mmyr21.

Meanwhile, the increasing trend of TWSA during 2002–16 (also

for periods 2005–08 and 2012–15) is partly influenced by the

increased precipitation with a rate of 16.7mmyr21 (Fig. 4c).

It is worth mentioning that the MERRA-2 reanalysis system

does not simulate reservoir and groundwater storage change,

which all can bemeasured byGRACE.Nevertheless, the general

consistency between MERRA-2 and GRACE TWSA indicates

the effectiveness of the total landwater budget used byMERRA-

2 for modeling TWSC in the PRB (Bosilovich et al. 2016).

However, the consistency between MERRA-2 and GRACE

TWSA cannot guarantee the reliability of MERRA-2 TWSA

during the period before the launch of the GRACE mission.

Comparison of precipitation data from MERRA-2 with those

from CMA and TRMM at annual scale shows that MERRA-2

significantly underestimates the precipitation for the period 1982–

97 (before the TRMMmission). This is mainly owing to the lack

of sufficient satellite or observation data to force the reanalysis

system (see Fig. 2-1 in Bosilovich et al. 2015). As precipitation

TABLE 1. Category of drought severity based on drought indices (Sun et al. 2018; Wells et al. 2004).

Category Drought condition scPDSI WSDI

D0 No drought 21.0 , P 0 , W

D1 Mild drought 22.0 , P # 21.0 21.0 , W # 0

D2 Moderate drought 23.0 , P # 22.0 22.0 , W # 21.0

D3 Severe drought 24.0 , P # 23.0 23.0 , W # 22.0

D4 Extreme drought P # 24.0 W # 23.0

15 MARCH 2021 HUANG ET AL . 2059

Unauthenticated | Downloaded 03/22/22 08:41 AM UTC



plays a critical role in regulating TWS dynamics, the under-

estimated precipitation in the 1980s and 1990s in the MERRA-2

system would result in incorrect TWSA simulation. In particular

for the years 1985–87, the MERRA-2 precipitation exhibits an

opposite trend compared to the in situ–based precipitation from

CMA. Although the MERRA-2 TWSA before 1998 may be

unreliable, it provides a test bed for examining the impact of

RESS change on drought and flood characterization from a long-

term perspective. Besides, further comparison betweenMERRA-

2-based WSDI and scPDSI verifies the overall reliability of

TWSA in timing during 1987–2001 [see section 4c(2)].

c. Characterization of drought

1) DROUGHT BEFORE AND AFTER 2000

Figure 5 shows the time series of WSD, drought severity,

precipitation anomaly, and cumulative WSD and precipitation

anomaly. Here, the results with and without RESS contribution

are compared.A statistical summary of drought characteristics is

shown in Table 2 and Tables S1–S3. The results without RESS

contribution will be discussed first. As shown in Table 2, there

are considerable differences in drought characteristics using

different datasets. During 2003–19, CSR mascon, JPL mascon,

andMERRA-2 data identify 14, 11, and 9 drought events with a

total duration (total severity) of 110 (23525), 98 (24014), and 97

(3342) months (mm), respectively. There have been two major

drought periods over the last two decades: 2003–06 and 2009–12.

For the period 2003–06, all three datasets identify a similar onset

in June/July 2003 and the end in May 2006 with a total duration

of 33–35 months (excluding the one-month intervals). However,

there is a large difference in the total severity for this periodwith

the largest severity of 1691.3mm from JPL mascon, followed

by MERRA-2 (1386.9mm) and CSR mascon (1118.9 mm).

CSR mascon might underestimate the drought severity during

FIG. 4. (a) Monthly and 13-MA smoothed TWSA from twoGRACEmascon solutions and

MERRA-2. The linear-fitted trends of TWSA from the twoGRACEmascon solutions for the

periods 2005–08 and 2012–15 are plotted and noted. The linear-fitted trends of TWSA from

the three datasets for the period 2002–16 are shown with notation. The comparison [corre-

lation and root-mean-square difference (RMSD)] between the three TWSA time series are

shown with notation. (b) Long-term monthly and 13-MA smoothed TWSA fromMERRA-2

since 1980. The linear-fitted trends of TWSA for the periods 2005–08 and 2012–15 are plotted

and noted. The TWSA shown in (a) and (b) is the original data without removing RESS.

(c) Annual precipitation from CMA, TRMM, and MERRA-2. The inserted legend with a

table shows the multiyear mean annual precipitation for five different periods and the linear-

fitted trends for three periods. The black and red lines, respectively, show the long-termmean

and linear-fitted trend of precipitation over the past four decades.
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2003–06. As shown in Figs. S3 and S4a, the TWSA values from

GSFC and JPL mascons and MERRA-2 all represent lower

negative amplitude thanCSRmasconduring 2003–06, indicating

the possible underestimation of drought severity by CSR mas-

con. For the period 2009–12, JPL and CSR mascon identify the

same drought duration (38 months, excluding the one-month

intervals), which starts from January 2009 and ends in April

2012, with less divergence (166mm) in total severity than the

period 2003–06. Comparatively, MERRA-2 may fail to well

capture this drought event with the onset occurring later by

4 months (in May 2009) and lasting a longer duration covering

the near-normal water year in 2012 (see Fig. 4c) and ending in

March 2013 (Table 2). The different results estimated from the

GRACE mascons are caused by the sensitivity of time-variable

spatial mass distribution on the mascon solutions considering

their differences in spatial constraints with different spatial res-

olution and mass inversion strategies (Save et al. 2016; Watkins

et al. 2015). The distinctions between GRACE and MERRA-2

are linked to their intrinsic physically different theory and

methodology with the former relying on hydrogeodesy and the

latter based on land water budget and data assimilation.

Over the past four decades, the cumulative rainfall anomaly

(Fig. 5d) exhibits a decreasing trend during two periods, 1984–

92 and 2003–11, indicating the occurrence of meteorological

drought. The period 2003–11 experienced a more serious me-

teorological drought as revealed by the lower turning point of

cumulative rainfall anomaly in August 2011 (2848.6mm) than

that in March 1993 (2606.0mm). The cumulative WSD based

on MERRA-2 without RESS contribution also shows de-

creasing trends during those two drought periods. However,

unlike the period 2003–11 when the cumulative WSD and

precipitation anomaly behave in a similar trend, the decreasing

trend that began in 1984 lasted for a longer duration than the

cumulative precipitation anomaly with the turning point oc-

curring later by five years in 1997. This result is problematic.

MERRA-2 significantly overestimates the WSD before 2000

since it used poor precipitation data with large underestimation

(Fig. 4c). In particular, for the period May 1985–July 1987 the

FIG. 5. (a)Monthly time series of water storage deficit (WSD) estimated using TWSA from

MERRA-2 (1980–2019) and two GRACEmascon solutions (2002–19). For comparison with

GRACE results, theWSD estimated using theMERRA-2 TWSAonly during 2002–19 is also

plotted. (b) Water storage severity for each drought event estimated using the data shown in

(a). (c) Monthly time series of precipitation P anomalies using the data from CMA.

(d) Cumulative WSD using MERRA-2 data and cumulative precipitation anomaly using

CMA data. It is noted that in (a), (b), and (d), except for the notation ‘‘with RESS’’, all the

other legends are the results without RESS. RESSmeans reservoir storage based on synthetic

data (see section 2d).
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drought duration and severity quantified using MERRA-2

reach 27 months and 1338.7mm respectively (Fig. 5b and

Table S1), which exceed the values for 2003–06 and 2009–12

despite less rainfall deficit (Fig. 4c). Besides, using the

problematic long-term MERRA-2 data from 1980 to 2019

leads to underestimated duration and severity for the drought

events after 2000 (Fig. 5b, Table 2, and Table S1). Although

this study lacks reliable historical TWS data for quantifying

the hydrological drought before 2000, it can be inferred that

the total severity of the hydrological drought for that period

should be less than that of the period after 2000 considering

the propagation from less severe meteorological drought.

TABLE 2. A statistical summary of characteristics of hydrological drought events identified using GRACE and MERRA-2 data without

RESS contribution during 2002–19.

No. Period

Duration

(months)

Avg deficit

(mm

month21)

Peak

deficit

(mm)

Peak

deficit

date

Total

severity

(mm)

Peak

WSDI

(category)

Peak

scPDSI

(category)

Combined

category

MERRA-2 2002–19

1 Jul 2003–May 2005 23 245.6 272.0 Jan 2004 21049.7 21.6 (D2) 23.5 (D3) D2/D3

2 Aug 2005–May 2006 10 233.7 257.7 Jan 2006 2337.2 21.3 (D2) 23.3 (D3) D2/D3

3 Apr 2007–Aug 2007 5 216.9 226.5 Aug 2007 284.3 20.6 (D1) 22 (D2) D1/D2

4 Nov 2007–Jan 2008 3 241.0 250.9 Jan 2008 2123.1 21.1 (D2) 22.4 (D2) D2/D2

5 Mar 2008–May 2008 3 28.9 218.8 May 2008 226.6 20.4 (D1) 21.2 (D1) D1

6 May 2009–Sep 2010 17 240.8 290.0 Oct 2009 2693.3 22 (D3) 23.3 (D3) D3

7 Nov 2010–Mar 2013 29 229.3 2115.4 Sep 2011 2850.2 22.6 (D3) 24 (D4) D3/D4

8 Jun 2013–Aug 2013 3 242.1 263.8 Jul 2013 2126.2 21.4 (D2) 21.1 (D1) D2/D1

9 Apr 2018–Jul 2018 4 212.9 221.2 Jul 2018 251.5 20.5 (D1) 1.4 (D1) D1

1–9 2003–18 97 234.5 23342.2

1–2 2003–06 33 242.0 21386.9

6–7 2009–13 46 233.6 21543.5

JPL mascon 2002–19

1 Jun 2003–May 2005 24 245.3 298.1 Jan 2004 21087.3 22 (D3) 23.5 (D3) D3

2 Jul 2005–May 2006 11 254.9 282.8 Jan 2006 2604.1 21.6 (D2) 23.3 (D3) D2/D3

3 Oct 2007–Jan 2008 4 247.3 265.0 Jan 2008 2189.4 21.3 (D2) 22.4 (D2) D2

4 Jan 2009–Jun 2009 6 225.9 243.0 Feb 2009 2155.3 20.9 (D1) 21.4 (D1) D1

5 Aug 2009–May 2010 10 256.5 288.0 Nov 2009 2565.2 21.8 (D2) 23.3 (D3) D2/D3

6 Jul 2010–Apr 2012 22 239.7 2130.7 Sep 2011 2874.0 22.6 (D3) 24 (D4) D3/D4

7 Jun 2013–Oct 2013 5 227.2 241.5 Aug 2013 2136.1 20.8 (D1) 21.1 (D1) D1

8 Mar 2015–Jul 2015 5 243.4 270.2 Jun 2015 2217.0 21.4 (D2) 0.3 (D0) D2/D0

9 Apr 2017–Jun 2017 3 211.5 223.4 Jun 2017 234.4 20.5 (D1) 2.2 (D2) D1/D2

10 Apr 2018–Aug 2018 5 219.4 239.4 Jun 2018 297.1 20.8 (D1) 1.4 (D1) D1

11 Oct 2019–Dec 2019 3 218.0 236.7 Dec 2019 253.9 20.7 (D1) — —

1–11 2003–18 98 241.0 24013.8

1–2 2003–06 35 248.3 21691.3

4–6 2009–12 38 242.0 21594.5

CSR mascon 2002–19

1 Jun 2003–Aug 2004 15 226.0 266.3 Jan 2004 2390.2 21.5 (D2) 22.7 (D2) D2

2 Oct 2004–May 2005 8 238.9 264.5 Jan 2005 2311.3 21.5 (D2) 23.5 (D3) D2/D3

3 Jul 2005–May 2006 11 238.0 259.4 Jan 2006 2417.5 21.3 (D2) 23.3 (D3) D2/D3

4 Sep 2006–Nov 2006 3 210.2 213.5 Oct 2006 230.5 20.3 (D1) 22.4 (D2) D1/D2

5 Jan 2007–Aug 2007 8 217.3 235.6 Feb 2007 2138.4 20.8 (D1) 22 (D2) D1/D2

6 Oct 2007–Mar 2008 6 236.7 267.3 Jan 2008 2220.1 21.5 (D2) 22.4 (D2) D2

7 Jan 2009–May 2010 17 238.0 277.7 Nov 2009 2646.7 21.8 (D2) 23.3 (D3) D2/D3

8 Jul 2010–Sep 2010 3 235.5 250.3 Aug 2010 2106.4 21.1 (D2) 22.9 (D2) D2

9 Nov 2010–Apr 2012 18 237.5 2115.1 Sep 2011 2675.5 22.6 (D3) 24 (D4) D3/D4

10 Sep 2012–Nov 2012 3 221.7 232.4 Oct 2012 265.2 20.7 (D1) 21.3 (D1) D1

11 Jun 2013–Nov 2013 6 226.3 240.2 Sep 2013 2157.5 20.9 (D1) 21.1 (D1) D1

12 Mar 2015–Jul 2015 5 242.0 268.8 May 2015 2209.9 21.6 (D2) 0.3 (D0) D2/D0

13 Jun 2018–Aug 2018 3 221.7 232.4 Jul 2018 265.1 20.7 (D1) 1.5 (D1) D1

14 Sep 2019–Dec 2019 4 222.7 237.7 Dec 2019 291.0 20.9 (D1) — D1/—

1–14 2003–19 110 232.0 23525.1

1–3 2003–06 34 232.9 21118.9

7–9 2009–12 38 237.6 21428.6
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This will be further demonstrated by the scPDSI in the next

section.

2) WSDI VERSUS SCPDSI

Figure 6 compares the time series ofWSDI and scPDSI over

the PRB from 1980 to 2018. Agreement on timing can be noted

betweenWSDI and scPDSI, except for the period before 1987.

During 2002–19, the WSDI derived using GRACE mascons

represents a slightly higher correlation (r 5 0.73) with scPDSI

thanMERRA-2 (r5 0.69). For the period 1980–2001 (or 1987–

2001), the WSDI based on MERRA-2 also has a good corre-

lation with scPDSI with a correlation coefficient of 0.65 (or

0.72). As the scPDSI originated from PDSI, which is designed

to measure meteorological drought (Palmer 1965), a time lag

would be expected betweenWSDI and scPDSI considering the

propagation from meteorological drought to hydrological

drought. However, there is no apparent time lag between

WSDI and scPDSI as indicated by the maximum cross-

correlation coefficients at the lag of month zero in Fig. 6a.

This is because scPDSI involves the balance between soil

moisture supply and demand. Hence, scPDSI can be also re-

garded as a hydrological drought index (Heddinghaus and

Sabol 1991; Karl 1986). A further comparison between the

drought indices and precipitation anomalies during the two

drought periods 2003–06 and 2009–12 is conducted to reveal

the lag effect between meteorological and hydrological drought.

As shown in Figs. 6b and 6c, the troughs of WSDI always occur

later (at least one month) than the largest rainfall deficit. This is

more apparent when the rainfall deficit occurs in summer (e.g.,

July in 2003 and 2005 and August in 2009 and 2011). Similar lag

responses also happen to scPDSI except for the summer drought

in 2011 when the peak rainfall deficit andminimum scPDSI value

co-occur in August. The results indicate that scPDSI does have

the characteristics of hydrological drought index as WSDI, but it

may not be suitable for all drought conditions like the severe

drought in 2011.

Despite the overall good agreement on timing, WSDI and

scPDSI have large differences in characterizing drought du-

ration as well as the drought intensity, in particular during

2004–12. For the droughts since 2003, both WSDI and scPDSI

FIG. 6. (a) Comparison of scPDSI and WSDI estimated using TWSA from MERRA-2

(1980–2019) and two GRACE mascon solutions (2002–19). For comparison with GRACE

results, theWSDI estimated using theMERRA-2 TWSA only during 2002–19 is also plotted.

(b) As in (a), but only for the period 2003–06. (c) As in (a), but only for the period 2009–12.

Precipitation anomalies are also shown in (b) and (c) for comparison.
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indicate the similar onset of drought in June/July 2003 (or

January/February 2009). However, the drought events re-

flected by scPDSI are more continuous with a longer duration

than those reflected by WSDI, which are divided into several

shorter droughts (Table 2 and Figs. 6a–c). In particular, for the

mirroring on severe drought (scPDSI # 23, WSDI # 22),

scPDSI reveals three dry spells that reach severe drought

with a duration of 3–8 months (i.e., the droughts during

October 2004–May 2005, October 2005–January 2006, and the

summer drought in 2011), whereas only two short severe

droughts with a 2-month duration are detected by WSDI in

2009 and 2011 (Table 3). Over 40% of the drought events

identified by WSDI are characterized to be less serious by one

category compared to scPDSI (Table 2). For instance, all the

three datasets (MERRA-2 and two GRACE mascon solu-

tions) capture the same lowest WSDI in September 2011 when

the drought is classified as severe level (D3), one level lower

than the extreme drought (D4) identified by scPDSI (Table 2).

Such differences in drought characteristics quantified between

WSDI and scPDSI are reasonable. First, unlike WSDI, which

encompasses all the water storage components, the storage

contribution in lakes, reservoirs, rivers, and aquifers is not in-

cluded in the Palmer drought model. Besides, the scPDSI is

calibrated based on a longer period of data starting from 1901,

whereas the WSDI is estimated using a shorter period of data.

The parameters (e.g., potential evapotranspiration) used by

scPDSI are sensitive to the calibration period. This will cause

changes in the scPDSI values from a longer perspective.

Although scPDSI is different in measuring hydrological

drought comparing to WSDI, its longer period provides an

insight into the long-term variability of drought conditions

over the last four decades. A comparison between the CRU

precipitation data used by scPDSI and the data from CMA

shows good agreement (r 5 0.99, RMSE 5 15.2mm month21;

see Fig. S2), further stressing confidence in using scPDSI as an

alternative to interpreting historical drought features when no

reliable TWSA data for calculating WSDI are available. For

the period before 2000, compared to scPDSI, MERRA-2

overestimates the drought intensity during 1983–86 and un-

derestimates the wet condition during 1993–97. The hydro-

logical drought condition is less serious before 2000 than after.

The total drought duration identified by scPDSI during 1980–

99 is 67 months including only one month with severe drought

(November 1989) compared to the 94 months of drought du-

ration with 15 months being severe drought during 2000–19

(Table 3).

3) CONTRIBUTION OF RESS TO DROUGHT

CHARACTERIZATION

The above two subsections only illustrate the results after

removing the contribution of storage change in the new res-

ervoirs over the last two decades (the LTR constructed in 2008

and some large and medium reservoirs during 2012–15). Here,

the original results considering RESS contribution are also

presented. Figure 5d compares the cumulative WSD before

and after removing the reservoir contribution. When consid-

ering the RESS contribution, the cumulative WSD stays at a

stable level during 2006–12, reflecting no serious droughts. This

is distinguishable from the decreasing trend of cumulative

WSD during 2009–12 when reservoir contribution is removed.

Tables S2 and S3 and Table 2 respectively summarize the du-

ration and severity of each drought event identified before and

after removing the RESS contribution. The inclusion of RESS

contribution results in expanded (shrunk) drought duration

and overestimated (underestimated) severity for the period

2003–06 (2009–12). Taking CSR mascon as an example, the

duration (severity) considering theRESS contribution is 2months

longer (586.4mm larger) during 2003–06, but 7 months shorter

TABLE 3. A summary of the drought duration when scPDSI is below 21 and 23 and WSDI is below 22, and the peak value of drought

index during each event.

No. Period Duration (months) Peak index Peak date

scPDSI , 21

1 Jan 1980–Jun 1980 6 21.6 Jan 1980

2 Jan 1986–Mar 1986 3 21.4 Mar 1986

3 Nov 1986–Oct 1987 12 22.0 Apr 1987

4 Dec 1987–Jul 1988 8 22.0 Jul 1988

5 Jun 1989–Jan 1990 8 23.1 Nov 1989

6 Aug 1990–Dec 1990 5 21.5 Aug 1990

7 Apr 1991–Dec 1991 9 22.3 May 1991

8 Aug 1992–Jan 1993 6 22.3 Nov 1992

9 Sep 1998–Jun 1999 10 22.9 Jun 1999

10 Jul 2003–Feb 2008 56 23.5 Feb 2005

11 Feb 2009–Dec 2011 35 24.0 Aug 2011

12 Aug 2012–Oct 2012 3 21.3 Oct 2012

scPDSI , 23

1 Oct 2004–May 2005 8 23.5 Feb 2005

2 Oct 2005–Jan 2006 4 23.3 Jan 2006

3 Jul 2011–Sep 2011 3 24.0 Aug 2011

WSDI , 22

1 Oct 2009–Nov 2009 2 22.0 Oct 2009

2 Aug 2011–Sep 2011 2 22.6 Sep 2011
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(135.2mm lower) during 2009–12 than those removing the res-

ervoir contribution. For the period 1980–99, the drought dura-

tion (severity) quantified using MERRA-2 data is also

overestimated by 17 months (1211.4mm) when considering

reservoir contribution.

The impact of RESS change on drought characterization can

be divided into two stages. The first is the early water-filling

stage as the new dam is built, and the second is the seasonal

regulation stage for hydropower generation or flood control

purposes, etc. The water-filling stage mainly results in an in-

creasing trend of TWSA, while the seasonal regulation alters

the amplitude and timing of TWSA. Both stages influence the

quantification of drought duration and severity. Notably, the

water-filling stage only increases the constant water storage

in a reservoir, which usually remains insignificant change even

during drought after the reservoir reaches dead water level

(e.g., the lowest level of LTRS during summer 2011 in Fig. 2b).

The increasing trend induced by the water-filling stage cannot

reflect hydrological drought and should be removed when fo-

cusing on a long-term hydrological drought analysis, especially

surface water drought.

d. Characterization of flood

1) FLOOD POTENTIAL BEFORE AND AFTER 2000

The FPI calculated using the TWSA and precipitation di-

rectly indicates the flood potential. Figures 7a and 7b show the

long-term monthly, smoothed time series of FPI over the past

four and two decades, respectively. Here, the impact of RESS

change on FPI estimation has been removed. Figures 7c and 7d

show the monthly and smoothed time series of rainfall and

streamflow. FPI (Figs. 7a,b) exhibits the same interannual

variability and trend as GRACE TWSA (Figs. 4a,b) as well as

rainfall and streamflow (Figs. 7c,d). There are increasing trends

for FPI, rainfall, and streamflow from 2005 to 2008 and from

2012 to 2015 and decreasing trends in 2003, 2009, 2011, and

2016–17. Figures 7e–g compare the climatologies of TWSA,

FPI, P, and streamflow before and after the GRACE mission

(2002). TheFPI is featured by an apparent seasonal cyclewith the

high flood potential occurs in summer (June–August) (Fig. 7f).

Notably, as a result of considering precipitation the climatology of

FPI during 2002–19 peaks onemonth earlier in June (the same as

the peak of precipitation) than the TWSA (Figs. 7e–g). This in-

dicates the effectiveness ofGRACE- and precipitation-basedFPI

on capturing the hydrometeorological extremes.

For better analysis of the capability of FPI to capturing flood

events using different datasets, this study defines a high flood

potential when the FPI is equal to or above 0.7. A summary of

the flood events with corresponding FPI, precipitation, and

streamflow is shown in Table 4. During 2002–19, both JPL and

CSR mascons identify four flood events with the highest flood

potential that occurred inAugust 2002 (FPI5 1.0), followed by

June 2008 (FPI . 0.80), July 2006 (FPI $ 0.79), and July 2019

(FPI5 0.76). Notably, the flood potential is relatively higher in

August 2002 although the precipitation (293.3mm) is 29.5%

less than that in June 2008 (415.8mm). This difference is caused

by the antecedent precipitation that controls the degree of soil

saturation and hence influences the runoff generation process. In

2002, May and June are normal months with almost identical

rainfall compared to climatology, which determined the initial

status of soil saturation. The following July is a wet month. As

indicated in Table 4, both July andAugust in 2002 received more

rainfall (over 21% and 43%) than the climatology. With contin-

uous rainfall infiltration in the antecedent threemonths, the soil is

saturated, and substantial overland flow generated when peak

rainfall came in August. As seen, the streamflow in August 2002

was 100.2% more than the climatology (Table 4). The flood po-

tential in June 2008 was relatively lower than that in August 2002

considering the relatively drier antecedent spring with the total

rainfall below the long-term mean (by 4%). As the soil layers are

drier, they need more water to become saturated and to lead to

runoff generation.

The FPI based on MERRA-2 should be overestimated in

summer owing to the higher TWSA (Figs. 7e,f). This can be

further confirmed by considering the rainfall intensity, particu-

larly for June 2016 and August 2019 when no abnormal high

rainfall occurred (Table 4). It is still difficult to verify the reliability

of the FPI based on MERRA-2 before 2002 when no GRACE

data or other reliable flood index is available for validation.

Nevertheless, the high flood potential identified byMERRA-2 in

July 1994 and July 1997 may be realistic considering the high

rainfall intensity (over 50%more than the climatology). It should

be noted that the FPI is sensitive to the study period, which in-

fluences the determination of the maximum flood potential

amount for normalization. Table 4 shows that five more flood

events are captured by MERRA-2 when focusing on a shorter

period during 2002–19 than the long-term period 1980–2019.

Besides, during the gap between GRACE and the Follow-On

mission, MERRA-2 identifies a flood event in August 2017 when

the FPI estimated using theMERRA-2 data on a long-term basis

during 1980–2019 is 0.78, much lower than that estimated (0.94)

based on the period 2002–19. The former 0.78 is more acceptable

considering the rainfall and streamflow amount, which exceed the

climatology by only 22.9% and 31.1%, respectively.

2) SPATIAL VARIABILITY OF THE FLOOD IN 2008

This section will focus on the spatial variability of the most

recent severe flood event in 2008. The monthly spatial map of

FPI from March to November 2008 is derived using gridded

CSR mascon solution (0.258), which is compared with gridded

precipitation data from TRMM at the same resolution (Fig. 8).

In March and April, the entire PRB was at a relatively dry

status with low FPI (,0), especially for the upper stream of the

western PRB (i.e., the Nan-Bei Pan RB). In May, the western

and northern parts of Nan-Bei Pan RB were still dry, but the

other regions of the PRB became wet, especially for the

northern PRB (the Hongliu RB) with the highest FPI of 0.82.

In June, the high flood potential region moved to the eastern

parts of the PRB, including the West RB, North RB, East RB,

and Pearl River Delta with the FPI above 0.9 in most of these

regions. In July, the western PRB became wet, and the highest

flood potential (FPI . 0.8) located in the Hongliu RB. In

August, the whole PRB was in wet condition, in particular for

the Hongliu RB and Yu RB where most regions had an FPI

over 0.9. The severity of the flood started to alleviate in most

parts of the PRB in September except for the Yu RB, most of
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FIG. 7. (a) Monthly and 13-MA smoothed time series of flood potential index (FPI) estimated using TWSA from

MERRA-2 (1980–2019). (b) Monthly and 13-MA smoothed time series of FPI estimated using TWSA from

MERRA-2 and two GRACE mascon solutions during 2002–19. (c) Monthly and 13-MA smoothed time series of

precipitation P. (d) Monthly and 13-MA smoothed time series of streamflow R. (e) Climatology (i.e., multiyear

mean annual cycle) of TWSA for the periods before and after 2002. (f) Climatology of FPI for the periods before

and after 2002 using the data in (a) and (b). (g) Climatology of precipitation and streamflow for the periods before

and after 2002 using the data in (c) and (d). It is noted that in (a), (b), (e), and (f), except for the notation ‘‘with

RESS’’, all the other legends are the results without RESS. RESS means reservoir storage based on synthetic data

(see section 2d).
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FIG. 8. (top) Spatial evolution of flood in the PRBbased on flood potential index (FPI) estimated using CSRmascon TWSAandTRMM

precipitation data during March–November 2008. Here, the contribution of RESS was not removed from TWSA. (bottom) Spatial

evolution of precipitation in the PRB based on the TRMM data during March–November 2008.
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which shows the FPI above 0.70. In October, the eastern PRB

became dry, while the western part had high flood potential

with the center at the southwestern Hongliu RB where the

highest FPI was above 0.8. In November, the entire PRB re-

turned to the dry status again.

The lower panel of Fig. 8 displays the gridded precipitation.

It is obvious to find the consistency of the spatial pattern be-

tween FPI and precipitation with the occurrence of high and

low values locating in the same region (e.g., the heavy rainfall

and large FPI in theHongliu RB inMay and July, in the eastern

PRB in June, in the Hongliu RB and Yu RB in August, etc.).

This consistency is directly caused by the inclusion of precipi-

tation data for calculating FPI. It is worth mentioning that the

spatial pattern of FPI revealed by the CSRmascon solution can

highlight the high flood potential at the subbasin scale below

the typical GRACE footprint (90 000 km2; Huang et al. 2019b;

Vishwakarma et al. 2016; Watkins et al. 2015) as indicated

above. This result is partly attributed to the use of high-

resolution TRMM precipitation data for calculating FPI.

Therefore, it does not implicate the suitability of the CSR

mascon solution for small- or local-scale hydrological studies

below the typical GRACE footprint like drought character-

ization and TWS variability considering the intrinsic larger

leakage effects at smaller scales. Besides, although the CSR

mascon-based FPI shows subscale spatial variability, its spatial

resolution at several tens of thousands of square kilometers

and the monthly temporal scale still cannot meet the demand

for small- or even local-scale near-real time flood monitoring.

3) IMPACT OF RESS CHANGE ON FLOOD

CHARACTERIZATION

The impact of RESS change on FPI estimation is different

from that on drought characterization. As shown in Fig. 7a and

Table 4, there is no apparent change in timing and amplitude

between the FPI estimated with and without RESS contribution

before 2007, but RESS enlarged the amplitude FPI after 2007

when RESS represented large seasonal amplitude due to human

regulation. As shown in Table 4, the FPI estimated using both

CSR and JPL mascon with RESS contribution identifies three

more flood events (June 2016, June 2019, and August 2019) than

that without RESS contribution. For these three flood events, the

FPI should be overestimated considering the insignificant incre-

ment (,20%) of precipitation/streamflow over the climatology.

e. Drought and flood in response to climate variability

1) CROSS-CORRELATION BETWEEN INTERANNUAL

PRECIPITATION/TWSA AND CLIMATE INDICES

This section uses the interannual TWSA data for telecon-

nection analysis. To highlight the interannual variability of

TWSA and climate indices, TWSA is deseasonalized and de-

trended through least squares harmonic analysis (Jin and Feng

2013; Pawlowicz et al. 2002). The deseasonalized and de-

trended (i.e., interannual) TWSA and the four climate indices

are smoothed using a 5-month moving averaging similar to Ni

et al. (2018) and Z. Zhang et al. (2015). A comparison is made

between using the smoothed and nonsmoothed interannual

TWSA to calculate their correlation with the four climate

indices. As shown in Fig. S4, the smoothed interannual TWSA

has a relatively higher correlation with the climate indices than

the interannual TWSA without smoothing. This study also

compares interannual TWSA and WSDI and their correlation

with climate indices. Despite some differences in the correla-

tion coefficients between TWSA and WSDI when compared

with IOD and PDO, TWSA and WSDI exhibit the same ca-

pability on capturing the time lag in response to the four cli-

mate indices (Fig. S4). The cross-correlation analysis is

conducted for the periods before and after 2002, and also the

entire period during 1980–2019. Although MERRA-2 has

overestimated the drought condition before 2002, the timing

of MERRA-2 TWSA during 1987–2001 should be reliable

considering the overall consistency between MERRA-2-based

WSDI and scPDSI [see section 4c(2)]. Therefore, MERRA-2

TWSA before 2002 can be used for cross-correlation analysis.

Here, monthly precipitation data are also deseasonalized, de-

trended, and smoothed to be used for cross-correlation analysis

with climate indices.

The smoothed TWSA, precipitation, and the four climate

indices are shown in Fig. 9. Figure 10 plots the cross-correlation

coefficients between smoothed TWSA (also precipitation) and

climate indices considering a 30-month lag. The time lag is

determined at the month with maximum (minimum) positive

(negative) correlation. A positive (negative) time lag means

that TWSA lags behind (leads ahead) climate index. A sum-

mary of the time lag and the corresponding correlation coef-

ficient is shown in Table 5. Precipitation leads one month

ahead of ENSO for the period 1980–2001, whereas it lags one

month behind ENSO for the period 2002–19. TWSA lags be-

hind ENSO by one to three (two) months longer than precip-

itation with the lagged correlation coefficient above 0.4 (0.3)

for the period 2002–19 (1980–2001) (Figs. 10a,e, Table 5).

There are three peaks for the cross-correlation coefficients

between PDO and precipitation during 2002–19, with the

highest correlation of 0.32 at the lag of 213 months (Fig. 10b,

Table 5). Also, significant correlation can be noted at the lag

of 23 months (lagged r 5 0.29) and 10 months (lagged r 5
0.30). There are some discrepancies in the maximum correla-

tion (i.e., time lag) between different TWSA data and PDO

during 2002–19. TWSA from CSR mascon shows a time lag of

14 months after PDO with a significant correlation of 0.46,

while TWSA from JPL mascon and MERRA-2 shows a time

lag of 22 and 21 month(s) relative to PDO with the correla-

tion of 0.41 and 0.42, respectively. Considering the hysteresis

relationship between TWSA and precipitation, the TWSA should

exhibit a longer time lag relative to PDO than precipitation.

Therefore, both the lag of 14 months and the lag of 22

or21month(s) are possible forTWSAcompared to the 10- and23-

month lags for precipitation in response to PDO. For the period

1980–2001, precipitation represents a lagof26months in response to

PDO with a weaker significant correlation (lagged r 5 0.21) than

during the period 2002–19, while there is an insignificant relationship

between PDO and TWSA (Figs. 10b,f, Table 5).

For the period 1980–2001, a significant correlation is found

between the IODand precipitation (MERRA-2 TWSA)with a

maximum correlation of 0.34 (0.45) at a lag of 2 (5) months.

For the period 2002–19, a long lag of over 30 months is found
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between the IOD and precipitation (also TWSA) with a sig-

nificant negative correlation of 20.34 (20.25 to 20.31) (Figs.

10c,g, Table 5). Precipitation (TWSA) exhibits a lag of 9 (11–12)

months after NAO during 2002–19 with a significant correlation

above 0.30. The time lag of precipitation in response toNAO for

the period 1980–2001 is 215 months (i.e., leading ahead) with a

significant negative correlation of20.29. TWSA represents a lag

of 19 months after NAO during 1980–2001, but this lag seems to

be indirectly linked to precipitation (Figs. 10d,h, Table 5). As

seen, there is another trough for the cross-correlation between

TWSA and NAO during 1980–2001, showing a significant neg-

ative correlation of 20.25 at a lag of 211 months (Fig. 10h,

Table 5), which is more reasonable compared to the215-month

lag of precipitation in response to NAO.

FIG. 9. (a) Deseasonalized and detrended time series of precipitation fromCMAand TWSA

fromMERRA-2 and twoGRACEmascon solutions. For comparisonwithGRACE results, the

deseasonalized and detrended TWSAestimated using theMERRA-2 data only during 2002–19

is also plotted. (b) Anomaly time series for the Niño-3.4 index. (c) Anomaly time series for

PDO index. (d) Anomaly time series for the IOD index. (e) Anomaly time series for the NAO

index. All the time series in (a)–(e) are smoothed using a 5-monthmoving average. Please note

that in (a), except for the notation ‘‘with RESS’’, all the other legends are the results without

RESS. RESS means reservoir storage based on synthetic data (see section 2d).
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The above results indicate that the correlation between

TWSA/precipitation and climate indices are different for the

two periods before and after 2002, indicating the different role

of climate variability during different periods. During 2002–19,

precipitation and TWSA are positively correlated with ENSO,

PDO, and NAOwith a significant correlation above 0.30. During

1980–2001, ENSO and IOD (NAO) play a positive (negative)

role in influencing precipitation and TWSA, while PDO repre-

sents an insignificant impact onTWSA.ENSO is considered to be

the dominant climate index that affects precipitation and TWSA

FIG. 10. (a)–(d) Cross-correlation coefficients between deseasonalized and detrended precipitation and the four

climate indices for the period 1980–2019 and the two subperiods before and after 2002. (e)–(h) Cross-correlation

coefficients between deseasonalized and detrended TWSA and the four climate indices for the period 1980–2019

and the two subperiods before and after 2002. Please note that the legend ‘‘MERRA-2 2002–2019a’’ means the

results are derived using the data extracted from 1980 to 2019, while ‘‘MERRA-2 2002–2019b’’ means the results

are derived using the data only during 2002–19. The notation ‘‘RESS’’ means reservoir storage based on synthetic

data (see section 2d). The black lines show the upper and lower bound of the 95% confidence level determined

based on a two-tailed t test. The time lag is determined at the lag of months with a maximum cross-correlation

coefficient. The lag greater than zero means climate index leads to TWSA/precipitation. The time lag smaller than

zero means TWSA/precipitation leads to climate index. The lag equal to zero means no time lag.
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considering the shorter time lag (#3 months) and significant

lagged correlation for the entire period 1980–2019. Although

precipitation/TWSA represents a positive lagged correlation in

response to ENSO, it does not mean that the occurrence of

the warm (cool) phase of ENSO [i.e., El Niño (La Niña)] will
result in a high (low) TWSA. As shown in Figs. 9a and 9b, only

the droughts during 2003–05 and 2009 co-occurred with ElNiño.
The droughts in 1989, 1992–93, and 2006 were during the

transition stage from La Niña to El Niño, and the droughts in

1999 and 2011 were under the impacts of La Niña. This phe-
nomenon is associated with the asymmetric impacts of El Niño
and La Niña on rainfall under the East Asian climate system

(Chen et al. 2008; Z. Zhang et al. 2015). This asymmetric impact

may be caused by the anomalous circulation over the western

North Pacific in the lower troposphere that can be affected by

the intraseasonal oscillation (R. Zhang et al. 2015). Further, the

four climate indices are not independent of each other. Instead,

they have a combined influence on the East Asia climate system

and hence exert impacts on precipitation and TWSA in the PRB

[see section 4e(3)].

2) IMPACT OF RESS CHANGE ON TELECONNECTION

ANALYSIS

The above results do not consider RESS contribution.

Figure 10 and Table 5 also show the results with RESS con-

tribution. The interannual TWSA without RESS contribution

represents a slightly higher cross-correlation with ENSO and

PDO during 2002–19, and with PDO and IOD during 1980–

2001 than that with RESS contribution. The slightly higher

cross-correlation without RESS contribution is caused by ex-

cluding the impact of human regulation on RESS whose peak

generally occurs later in October (see the peak of LTRS in

Fig. 2b) than the peak in July of TWSA (see Fig. 7e). Overall,

the impact of human regulation of RESS on the relationship

between climate variability and interannual TWSA is minor.

The inclusion of RESS contribution does not influence the

determination of time lag based on the maximum correlation

coefficient except for the relationship between PDO and

TWSA. During 2002–19, the interannual TWSA using CSR

mascon with (without) RESS contribution represents a lag

of 22 (14) months in response to PDO with the lagged corre-

lation of 0.41 (0.46). This may indicate that human regulation

of RESS is more sensitive to PDO than other climate indices.

3) INFLUENCE OF CLIMATE VARIABILITY ON

PRECIPITATION/TWSA

TWSA is directly regulated by precipitation, while precipi-

tation is related to the atmospheric circulations that influence

the monsoon system (Niu 2013; Niu et al. 2014). The East

Asian monsoon (EAM) is the dominant climate system that

affects the precipitation and TWSA in the PRB (Xiao et al.

2016; Zheng et al. 2017). The EAM generally begins in April

and brings substantial (little) rainfall in summer (winter) through

the strong southerly (northerly) winds (Chen et al. 2013). ENSO

is the major factor that influences the EAM and finally controls

the summer precipitation in the PRB. Considering the different

atmospheric response to sea surface temperature, the influence of

ENSO on the East Asian summer monsoon (EASM) is different

during the developing and decaying phases of ENSO. In the de-

veloping phases of El Niño, southern China may experience dry

conditions since the subtropical high moves southward triggered

by the colder western tropical Pacific in summer, while opposite

summer rainfall anomaliesmay occur after the peak of ElNiño as
the subtropical high shifts northward (Chen et al. 2013; Huang

and Wu 1989). It should be noted that there is an unstable in-

terannual relationship between ENSO and EASM, and they

show significant multidecadal variations.

ENSO is the principal but not the only factor that affects

EAM. Previous studies have demonstrated that EAM is jointly

influenced by ENSO, PDO, IOD, and NAO (Xiao et al. 2016).

As for PDO, it plays a critical role in modulating the rela-

tionship between the ENSO-related East Asian winter mon-

soon (EAWM) and EASM (Chen et al. 2013). During the cool

phase of PDO, there are significantly low-level temperature

TABLE 5. Matrix of time lag and the maximum cross-correlation coefficients between precipitation/TWSA and four climate indices

during 1980–2019 and the two subperiods. The period ‘‘2002–19a’’ means the results are derived using the data extracted from 1980 to

2019, while ‘‘2002–19b’’ means the results are derived using the data only during 2002–19. The 95% confidence intervals for the periods

1980–2001, 2002–19, and 1980–2019 are 60.13, 60.15, and 60.096, respectively.

Periods Data

Niño-3.4 PDO IOD NAO

Lag (months) r Lag (months) r Lag (months) r Lag (months) r

1980–2001 P_CMA 21 0.33 26 0.21 2 0.34 215 20.29

2002–19 1 0.33 213 0.32 30 20.34 9 0.38

1980–2019 0 0.32 24 0.24 2 0.26 9 0.20

TWSA without RESS

1980–2001 MERRA-2 2 0.34 224 20.13 5 0.45 19 20.27

2002–19a 3 0.43 21 0.43 3 0.28 11 0.35

2002–19b 3 0.43 21 0.42 30 20.25 12 0.30

2002–19 CSR_Mascon 2 0.46 14 0.46 30 20.31 11 0.36

2002–19 JPL_Mascon 1 0.42 22 0.41 30 20.29 11 0.37

1980–2019 MERRA-2 2 0.37 21 0.18 4 0.36 230 0.14

TWSA with RESS

1980–2001 MERRA-2 1 0.36 5 0.10 5 0.41 19 20.27

2002–19 CSR_Mascon 2 0.42 22 0.41 30 20.30 11 0.35
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changes over eastern Asia due to the strong impact on the

EAWM exerted by ENSO (Wang et al. 2008), whereas during

the warm phase of PDO, a stronger EASM would follow the

weak ENSO-related EAWM (Chen et al. 2013). Besides, Chan

(2005) figured out that there tends to be below or above normal

South China monsoon rainfall when ENSO and PDO are in

phase. As for IOD, it usually co-occurs with ENSO (Du et al.

2009; Liu et al. 2020). IOD strongly influences the precipitation

in the PRB (in particular for the central and eastern parts of the

PRB; Niu 2013) through affecting the onset of the South China

Sea summer monsoon and Asian summer monsoon in the

following year (Yuan et al. 2008). During the positive (nega-

tive) phase of IOD, the Asian summer monsoon breaks out

later (earlier) with higher (lower) intensity than normal. As a result,

more precipitationoccurs in the eastern and southern parts ofChina

(Yan and Zhang 2004). It was also pointed out by Niu et al. (2014)

that the dominant variabilities of runoff and soil moisture show a

good correlation with IOD in the PRB. A connection between

NAO and southern China precipitation was revealed by Zhou

(2013), with increased (decreased) spring precipitation in south-

ern China following a strong (weak) winter NAO. This con-

nection was significantly weakened after the early 1980s due to

the changing climatology of the East Asian jet. Moreover,

spring NAO can also enhance the relationship between

EASM and ENSO by inducing a tripole sea surface temper-

ature anomaly in the North Atlantic that sustains from spring

until summer, which develops the subpolar teleconnections

downstream across northern Eurasia and finally results in a

stronger or weaker EASM (Wu et al. 2009).

In addition to the four indices mentioned in this study, some

other factors also influence the drought and flood in the PRB

such as Tibetan Plateau heating (Tao and Ding 1981) and

Arctic Oscillation (Barriopedro et al. 2012; Wang et al. 2015).

For instance, the snow cover on the Tibetan Plateau can

modulate the ENSO teleconnections and ENSO is significantly

correlated with the EASM only during summer when snow

cover on Tibetan Plateau is reduced (Wu et al. 2012).

5. Limitations and future directions

There are some limitations to this study. First, although

long-term TWSA data are used for drought and flood charac-

terization, no robust results are presented for the period before

theGRACEmission due to the inaccurate long-termMERRA-2

reanalysis data. Nevertheless, this study provides caveats for

future studies that focus on a hydrological study usingMERRA-2

TWSA data from a long-term perspective. Unlike the previ-

ous papers (e.g., Awange et al. 2016; Ndehedehe et al. 2018) that

directly use long-term MERRA-2 TWSA for spatiotemporal

analysis, future studies should first examine the accuracy of

long-term TWSA by validating the historical precipitation

data (mainly for the period before 1998). There are also some

other options for using long-term TWSA data such as 1)

extending the time series by combining modeled TWSA and

long-term precipitation and temperature data using relevant

algorithms like neural networks (X. Chen et al. 2018; Long

et al. 2014; Sun et al. 2020), random forest, and a spatially

moving window structure (Jing et al. 2020); 2) reconstructing

long-term TWSC time series using satellite/observation-based

precipitation, evapotranspiration, and streamflow data based

on a water balance approach (Pellet et al. 2020); and 3) using

reliable model simulation like the LEAF-Hydro-Flood (LHF)

model as used by Chaudhari et al. (2019). Besides, future

MERRA-2 data assimilation system can include GRACE data

to improve its outputs.

Second, this study only considers a single large reservoir

with short monthly time series of observed water level data

and constructs the synthetic long-term RESS time series

based on simplified assumptions due to the lack of data.

Considering the difficulty of obtaining observed reservoir

water level/storage data, future studies could choose the wa-

ter level data retrieved from altimetric satellites like Envisat,

ICESat, Jason, Cryosat-2, and the planned Surface Water and

Ocean Topography (SWOT) mission, etc. Combining the al-

timetric water level and the water area of reservoirs/lakes

detected by optical satellites like Landsat (Pekel et al. 2016)

or MODIS (Han and Niu 2020), the storage change can be

estimated.

Third, this study only considers precipitation as the influ-

encing factor for drought, flood characterization, and tele-

connection analysis. Future studies could consider the impact

of temperature on drought and flood under the warming cli-

mate from a long-term perspective. Fourth, the drought char-

acterization and the teleconnection analysis only focus on the

whole PRB on the basin-averaged basis. Previous studies have

indicated that the drought, flood, and teleconnection in the

PRB vary spatially as impacted by the weather system and

topography (Y. Chen et al. 2018; Zheng et al. 2017). Future

studies may take a deeper insight into the drought and flood

characteristics at the subbasin scale. However, as the subbasin

scale is below the GRACE footprint, the TWSA will contain

large leakage errors, especially for those induced by large man-

made reservoirs. Therefore, the recovery of the biased signal

would be the major challenge for subbasin-scale studies using

GRACE data. Fifth, considering the uncertainty in GRACE

data, the large footprint, and limited temporal resolution, it is

recommended to use GRACE as a tool for forecasting and

warning future drought and flood events as indicated by

Reager et al. (2014) rather than as a management tool, which is

also suggested by Alley and Konikow (2015).

6. Summary

This study characterizes the drought and flood and analyzes

their teleconnection to climate variability in the PRB using long-

term GRACE (2002–19) and MERRA-2 reanalysis (1980–2019)

data. GRACE TWSC is consistent with water balance–based

TWSC. Reasonably good agreement is found between

MERRA-2 andGRACETWSAduring 2002–19 except for some

overestimation of amplitude in summer. The timing ofMERRA-2-

based WSDI is consistent with scPDSI during 1987–2001.

However, the magnitude of MERRA-2 TWSA before 1998

is unreliable owing to the significant underestimation of

precipitation.

Two major drought periods are identified over the last two

decades: 2003–06 and 2009–12. The two GRACE mascon
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solutions (JPL and CSR) show good agreement on identifying

drought duration but have large discrepancies in quantifying

total drought severity owing to the accumulation of monthly

uncertainty. MERRA-2 does not well capture the 2009–12

drought duration and significantly overestimates the drought

duration and severity during 1980–2000, in particular for the

period 1985–87. Good agreement on timing is found between

WSDI and scPDSI, both of which exhibit apparent time lags

after precipitation anomalies, indicating the propagation from

meteorological drought to hydrological drought. However,

comparing to scPDSI, WSDI may underestimate the drought

intensity by one category for over 40% of the identified

drought events. Overall, the whole PRB is getting drier with

more severe drought events after 2000 than before. This

conclusion is consistent with the findings by Luo et al. (2017).

Four major flood events are identified by GRACE mascon

data: August 2002 (FPI5 1.0), followed by June 2008 (FPI.
0.80), July 2006 (FPI $ 0.79), and July 2019 (FPI 5 0.76).

MERRA-2 overestimates the flood potential in summer.

Owing to the consideration of precipitation for calculating

FPI, the spatial pattern of FPI based on CSR mascon data is

consistent with precipitation (TRMM) at monthly and sub-

basin scales.

ENSO is the dominant climatic factor that affects precipi-

tation and TWSA in the PRB, representing a lag from 21 to

3 months (the lag of TWSA may be longer than precipitation

in response to ENSO) over the entire period 1980–2019.

Different climate indices play different roles in influencing

precipitation/TWSA before and after 2002. A significant cor-

relation is found between PDO (or NAO) and precipitation/

TWSA during 2002–19, and between IOD (or NAO) and

precipitation/TWSA during 1980–2001, but with a longer time

lag (from 213 to 30 months) than that between ENSO and

precipitation/TWSA. EAM is the dominant climate system

that affects the precipitation and TWSA in the PRB. EAM is

mainly influenced by ENSO, with the combined impact from

PDO, IOD, and NAO. The impacts of El Niño and La Niña
on rainfall under the East Asian climate system are asym-

metric. Generally, a drought or flood event is jointly influ-

enced by different climate systems with different response

times.

RESS change is of great significance for long-term drought

and flood characterization. The inclusion of RESS contribution

results in longer (shorter) drought duration and overestimated

(underestimated) severity for the period 2003–06 (2009–10).

RESSmainly influences the FPI estimation for the period after

reservoir impoundment, leading to some overestimation. The

overall impact of RESS change on cross-correlation analysis

between TWSA and climate indices is minor. The inclusion of

RESS contribution slightly enhances the correlation between

TWSA and ENSO/PDO. Among the four indices, RESS

change only modulates the lag for TWSA in response to PDO,

which might indicate the sensitivity of human activity to PDO.
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APPENDIX

Acronyms and Definitions

13-MA 13-point moving average

CMA China Meteorological Administration

CRU Climatic Research Unit

CSR Center for Space Research

EAM East Asia monsoon

EASM East Asia summer monsoon

EAWM East Asia winter monsoon

ENSO El Niño–Southern Oscillation

ET Evapotranspiration

EWH Equivalent water height

FPA Flood potential amount

FPI Flood potential index

GLDAS Global Land Data Assimilation System

GLEAM Global Land Evaporation Amsterdam Model

GRACE Gravity Recovery and Climate Experiment

GSFC Goddard Space Flight Center

IESA Integrated Earth System Analysis

IOD Indian Ocean dipole

JPL Jet Propulsion Laboratory

LHF LEAF-Hydro-Flood

LTR Longtan Reservoir

LTRS Longtan Reservoir storage

Mascon Mass concentration

MODIS Moderate Resolution Imaging Spectroradiometer

NAO North Atlantic Oscillation

P Precipitation

PAC Percentage of precipitation or streamflow above

the climatology

PDO Pacific decadal oscillation

PRB Pearl River basin

R Streamflow or runoff

RB River basin

RESS Reservoir storage

RMSD Root-mean-square difference

SWOT Surface Water and Ocean Topography

TRMM Tropical Rainfall Measuring Mission

TWSA Total terrestrial water storage anomaly

WSD Water storage deficit

WSDI Water storage deficit index
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