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Abstract Probabilistic load forecasting (PLF) is able to

present the uncertainty information of the future loads. It is

the basis of stochastic power system planning and opera-

tion. Recent works on PLF mainly focus on how to develop

and combine forecasting models, while the feature selec-

tion issue has not been thoroughly investigated for PLF.

This paper fills the gap by proposing a feature selection

method for PLF via sparse L1-norm penalized quantile

regression. It can be viewed as an extension from point

forecasting-based feature selection to probabilistic fore-

casting-based feature selection. Since both the number of

training samples and the number of features to be selected

are very large, the feature selection process is casted as a

large-scale convex optimization problem. The alternating

direction method of multipliers is applied to solve the

problem in an efficient manner. We conduct case studies on

the open datasets of ten areas. Numerical results show that

the proposed feature selection method can improve the

performance of the probabilistic forecasting and outper-

forms traditional least absolute shrinkage and selection

operator method.

Keywords Probabilistic load forecasting, Feature

selection, Alternating direction method of multipliers

(ADMM), Quantile regression, L1-norm penalty

1 Introduction

The electrical load is affected by various factors such as

weather condition, distributed renewable integration,

demand response implementation, energy policy, emergent

events, etc. Traditional load forecasting only provides an

expected value of future load. In modern power system,

characterizing the uncertainties of future load will benefit

the reliability and economy of the whole system. More and

more probabilistic load forecasting (PLF) methods have

been proposed in recent years [1].

The whole process of load forecasting includes data

preprocessing, feature engineering, model establishment

and optimization, result analysis and visualization. Quan-

tile regression model is the most frequently used tool for

PFL. An embedding based quantile regression neural net-

work (QRNN) was proposed in [2] for PLF, where the

discrete variables such as day type, day of the week, and

hour of the day are modeled by the embedding matrix.

Another improved QRNN was presented in [3]. The net-

work involves Gaussian noise layer and dropout layer to

overcome the overfitting issue. A ‘‘separate-forecasting-

integrate’’ framework was proposed in [4] to forecast the

net load with high penetration of behind-the-meter
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photovoltaic (PV). The decomposed parts are forecasted by

QRNN, quantile random forest, or quantile gradient

boosting regression tree (QGBRT); while the dependencies

between load and PV uncertainties are modelled by copula

function and describe dependent convolution (DDC) [5].

Quantile, density, and interval are three main forms of

probabilistic forecasts. Kernel density estimation can make

a bridge between quantile forecast and density forecast.

The triangle kernel function was used in [6] to transform

the quantiles obtained by QRNN to density forecasts.

Since there have already existed various point load

forecasting methods, it is a good idea to transform the point

forecasts into probabilistic forecasts. A temperature sce-

nario generation approach was proposed in [7], where

various temperature scenarios were fed into the point

forecasting model to generate various point forecasts and

then the quantiles could be calculated based on the point

forecasts. A simple quantile regression averaging model

was established on multiple point forecasts generated by

sister forecasting models in [8]. A deep investigation of

point forecasting residual was conducted in [9]. Residual

simulation was implemented based on the normality

assumption to produce probabilistic forecasts. Instead of

focusing on specific PLF model, an ensemble approach was

proposed in [10] to combine the quantile probabilistic

forecasts of multiple models. The combining model was

formulated as a linear programing (LP) problem to mini-

mize the pinball loss of the final model.

PLF has also been applied for individual household in

addition to system-level load [11]. Conditional kernel

density estimation was used in [12] to model the condi-

tional distribution of residential load on different time

periods. In [13], the uncertainty within smart meter data

was forecasted by boosting additive quantile regression

model. Case studies show the superiority of the additive

model compared with the normality assumption-based

method. Gaussian process regression (GPR) was applied in

[14] for residential load forecasting, where different forms

of kernels were compared.

Most of the load forecasting literature focuses on the

establishment and optimization of the forecasting model;

while, very few research focuses on the preprocessing and

feature engineering phase, especially for PLF. Feature

selection, as an important part of the feature engineering,

tries to select the most useful or relevant features from the

original data to enhance the accuracy of load forecasts and

increase the interpretability of the forecasting model. When

the number of original features is too large, it can also be

used to reduce the solving complexity of the model. Most

of the research areas of feature selection are concentrated

in the traditional point forecasting, such as least absolute

shrinkage and selection operator (LASSO) method [15].

However, the feature selection in the field of probabilistic

forecasting has rarely been studied. To the best of our

knowledge, there is only one feature selection work for

PLF introduced in [16] by varying the number of lagged

hours and lagged days of the temperature. The proposed

global feature selection method is quite similar to the

exhaustive method. The method was tested on seven states

of the United States. The main idea is to evaluate the

performance of feature selection using pinball loss instead

of root mean square error (RMSE).

In this paper, we enrich the PLF feature selection liter-

ature by proposing a novel sparse penalized quantile

regression method. To tackle the challenges of large

computation burden and non-differentiable issue, alternat-

ing direction method of multipliers (ADMM) [17] is

applied to decompose the optimization problem. The

results show that the proposed feature selection method can

improve the performance of the original probabilistic

forecasting model compared with original model and

heuristic model.

The main contributions of this paper can be summarized

as follows:

1) Proposing a feature selection method for PLF by

introducing L1-norm sparse penalty into quantile

regression model.

2) Designing an ADMM algorithm to decouple the large-

scale optimization problem and boost the efficiency of

the model training process.

3) Validating the superiority of the proposed sparse

penalized quantile regression method by numerical

simulation based on the cases from the open

datasets.

The reminder of this paper is organized as follows:

Section 2 provides the dataset used and the regression

models for load forecasting; Section 3 introduces a

straightforward feature selection method which is used as

benchmark in the case studies; Section 4 introduces the

proposed feature selection method and the ADMM-based

training method; Section 5 presents the implementation

details of our proposed method; and Section 6 conducts the

case studies on the open datasets from Global Energy

Forecasting Competition in the year of 2012 (GEFCom

2012).

2 Data and model

2.1 Load dataset exploration

The load data used in this paper is the open dataset used

for GEFCom 2012 [18]. The dataset includes the 5 years of

hourly load data of 20 region power systems of North

Carolina from 2004 to 2008. The corresponding hourly
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temperature data from 11 weather stations are also

provided.

Figure 1 shows the four-year load data of the first zone

and temperature data from the first weather station from

2004/01/01 to 2007/12/31. The load and weather show

clear periodicity as well as large variations. We can also

find an approximate quadratic relationship between the

load and temperature data. To produce highly accurate

forecasts, we need to carefully model how calendar date

and temperature influence the load.

2.2 Linear regression model considering recency

effects

This section mainly introduces the forecasting model

and the input features to be selected. The temperature has a

complex impact on the electrical load. Both the current and

past temperatures have influence on the load because of the

inertia of air temperature change and consumers’ percep-

tion. For example, when the temperature rises suddenly at a

certain time, the consumers of this area do not often

respond immediately, but take the cooling measures for

several minutes or hours, such as opening the air condi-

tionings. Thus, the load sequence may lag behind the

temperature sequence. We call it lag effect or recency

effect. In addition, the way how temperature affects load

may also change at different day of the year and hour of the

day. It means there is cross effect between temperature and

calendar date.

Multiple linear regression models are widely used in the

field of load forecasting by connecting the characteristic

variables and dependent load. They can generate accurate

load forecasts without consuming abundant computation

resources. Since the load is highly dependent on tempera-

ture as well as calendar variables, for instance hour, week,

and month, [19] proposes a naive vanilla benchmark model

considering cross effects of variables mentioned above

corresponding to the time of load being forecasted. It can

be formulated as:

ŷt ¼ b0 þ b1Nt þ b2Mt þ b3Wt þ b4Ht þ b5WtHt þ frðTtÞ
frðTtÞ ¼ b6Tt þ b7T

2
t þ b8T

3
t þ b9TtMt þ b10T

2
t Mt

þ b11T
3
t Mt þ b12TtHt þ b13T

2
t Ht þ b14T

3
t Ht

:

8
>><

>>:

ð1Þ

where ŷt denotes the estimated load at time t; b0 to b14
denote the linear coefficients of the regression model; Tt
denotes the temperature at time t; Mt, Wt and Ht denote

month-of-the-year, day-of-the-week, and hour-of-the-day

classification variables corresponding to time t, respec-

tively; Nt denotes a series of natural numbers (i.e., 1, 2, ...)

to describe the long-term increase of the load; and frð�Þ is a
function of Tt that accounts for the polynomial relationship

between temperature and load and the cross effects among

temperature, month of the year, and hour of the day.

An improved multiple linear regression model consid-

ering the recency effect is proposed in [20], which takes the

moving historical average temperature, the lagged tem-

perature, and their interactions with the calendar variables

into the regression model. The model with recency effect

can improve the performance of load forecasting. It is

expressed as follows:
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Fig. 1 Load and temperature data from 2004/01/01 to 2007/12/31
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ŷt ¼ b0 þ b1Nt þ b2Mt þ b3Wt þ b4Ht

þ b5WtHt þ frðTtÞ þ
XND

d¼1

frðeTt;dÞ þ
XNH

h¼1

frðTt�hÞ

ð2Þ

where the last two terms represent the recency effect; ND

and NH denote the numbers of days and hours of the lagged

temperature that will be considered as recency effect,

respectively; d and h denote the indexes for the lagged days

and hours, respectively; and eTt;d denote the moving

historical average temperature, which is calculated as

follows:

eTt;d ¼
1

24

X24d

h¼24d�23

Tt�h d ¼ 1; 2; . . .;ND ð3Þ

Thus, the model considering recency effect in (2) can be

neatly presented as follows:

ŷt ¼ bTXt ð4Þ

where Xt denotes a collection of all the features; and b

denotes the vector of the coefficients to be trained.

The number of features NF depends on the number of

lagged hours ND and number of lagged days NH . Mt, Wt,

and Ht are all presented by the dummy variables. The

dummy coding uses all-zero vector 0 to present one cate-

gory of the classification variables. Thus, the dummy

encoding method is one dimension smaller than that of

one-hot encoding method. It can guarantee that the final

feature matrix is a full-rank matrix after adding an all-one

column representing the intercept. Mt, Wt, and Ht need to

be represented by 11, 6, and 23 classification variables.

Thus, the total number of features NF is:

NF ¼1þ 11þ 6þ 23þ 23� 6

þ ð3þ 3� 11þ 3� 23Þð1þ ND þ NHÞ

¼ 284þ 105ðND þ NHÞ

ð5Þ

If we consider the temperature of lagging 7 days and 12

hours, the total number of features is 2279, which makes

the regression model a very high dimensional problem and

results in high computation burden. This is the main reason

for conducting feature selection. In the following two

sections, two LASSO-based feature selection methods

(Pre-LASSO and Quantile-LASSO) are introduced.

3 Pre-LASSO based feature selection

This section first introduces a benchmark for feature

selection named Pre-LASSO. The main idea of Pre-

LASSO is to select the features based on point forecasting

model and then use the selected features for quantile model

training.

A forecasting model is trained to minimize the total loss:

b̂ ¼ argmin
b

XNT

t¼1

lðrtÞ ð6Þ

where rt is the fitting residual, rt ¼ yt � bTXt, yt is the real

load at the time t; NT is the length of all time periods; and

lð�Þ is the loss function. For traditional point forecasting,

the loss function is square error (lðrtÞ ¼ r2t ).

LASSO is an efficient and mature compression estima-

tion method for feature selection and regularization [21]. It

adds the L1-norm sparse penalty to the original loss func-

tion of the regression model:

b̂ ¼ argmin
b

XNT

t¼1

lðrtÞ þ kjjbjj1 ð7Þ

where jjbjj1 is the L1-norm sparse penalty term; and k is the
weight for the sparse penalty and can be determined by

cross validation. L1-norm penalty can force the optimiza-

tion process to change some regression coefficients to 0 or

make the vector b sparse. The features with 0 value coef-

ficients will be filtered out, thus this can be regarded as

feature selection.

Since feature selection has been widely studied for point

load forecasting, a very intuitive way is to conduct feature

selection using traditional LASSO and then use the selec-

ted features for quantile regression. We call this approach

as Pre-LASSO, in which the features are selected before

training the probabilistic forecasting model.

The Pre-LASSO method can be divided into two stages.

The first stage is to select features using traditional point

forecasting based LASSO:

b̂ ¼ arg min
b2RNF

XNT

t¼1

ðyt � bTXtÞ2 þ kjjbjj1 ð8Þ

The problem in (8) is solved using least angle regression

(LARS) method [22].

The second stage is to conduct quantile regression based

on the selected features:

b̂2;q ¼ arg min
b2;q2Rk2

XNT

t¼1

qqðyt; bT2;qX0
tÞ q ¼ 1; 2; . . .;Q ð9Þ

where k2 denotes the number of features that have been

selected in the first stage; X0
t denotes the feature vector that

has been selected in the first stage; b2;q denotes the

coefficient vector for the qth quantile; qq denotes the loss

function; and Q denotes the number of quantiles to be

forecasted. Note that the quantile regression model is

trained individually for each quantile. For the qth quantile

load forecasting, the loss function qq is the pinball loss:
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qqðrq;tÞ ¼
ð1� qÞrq;t rq;t � 0

qrq;t rq;t [ 0

�

ð10Þ

where rq;t denotes the qth quantile error.

4 Sparse penalized quantile regression (Quantile-
LASSO)

The Pre-LASSO method introduced in last section is

straightforward and easily implemented by directly apply-

ing traditional LASSO. This method has two drawbacks:

1) Pre-LASSO directly selects the input features

according to the performance of the point load forecasting

instead of the performance of the probabilistic forecasting.

Different supervised metrics may lead to different selected

features.

2) It is unreasonable to use the same selected features

for all quantile regression models. Feature selection should

be conducted individually for each quantile.

In this section, we propose a sparse penalized quantile

regression method to select the features by directly modi-

fying the objective function of the quantile regression

model. To distinguish our method with Pre-LASSO, we

name this method as Quantile-LASSO.

4.1 Problem formulation

Traditional quantile regression model is to optimize the

parameter bq to minimize the total pinball loss:

b̂q ¼ argmin
bq

XNT

t¼1

qqðrq;tÞ ð11Þ

where rq;t ¼ yt � bTqXt.

The Quantile-LASSO method can be easily formulated

by adding an L1-norm penalty into the objective function of

the quantile regression:

b̂q ¼ argmin
bq

XNT

t¼1

qqðrq;tÞ þ kqjjbqjj1 ð12Þ

where kq is the weight for the sparse penalty of the qth

quantile. For different quantiles, the best values of kq are

different. Quantile-LASSO shares similar strategy for fea-

ture selection with traditional LASSO. Quantile-LASSO

model in (12) is a special form of (7) by substituting the

loss function lðrtÞ with pinball loss qqðrq;tÞ.
Since the pinball loss and L1-norm are convex, it is easy

to prove that the model in (12) is a convex optimization

problem. Even through the Quantile-LASSO model can be

neatly represented like traditional LASSO, solving the

optimization problem is not a trivial task. There are two

main challenges:

1) Since the number of training samples and the number

of features to be selected are very large, the feature

selection process is casted to a big data problem and a

large-scale convex optimization problem.

2) Both the pinball loss and L1-norm are not differen-

tiable everywhere. It is hard to use traditional gradient

descent based optimization method to solve the

problem.

4.2 ADMM algorithm

We tackle the above two challenges by using ADMM to

decompose each iteration of the large-scale convex opti-

mization problem into two sub-optimization problems. The

two sub-optimization problems can be solved using off-the-

shelf methods.

ADMM can efficiently solve the optimization problem

in form of:

minðf ðrÞ þ gðbÞÞ
s.t. Arþ Bb ¼ C

�

ð13Þ

where r is the decision variable; f ð�Þ and gð�Þ are convex

functions; and A, B, and C are constant variables in the

linear constraint. The Quantile-LASSO model for each

quantile in (12) has the same form as (13).

The augmented Lagrangian function of (12) can be

written as follows:

Lcðr; b; uÞ ¼ qqðrÞ þ kjjbjj1 þ uTðy� bTX � rÞ

þ c
2
jjy� bTX � rjj22

ð14Þ

where u is the dual variable; c is a defined positive constant

to control the step of each iteration; y and X are the vector

of yt and the matrix of Xt in all NT time periods, respec-

tively; and qqðrÞ ¼
PNT

t¼1

qqðrq;tÞ.

ADMM takes advantages of the decomposability of dual

ascent and superior convergence properties of the multi-

pliers [17]. The basic idea of ADMM is to minimize the

values of two original decision variables r and b, as well as

update the dual variables. In this way, the augmented

Lagrangian function Lcðr; u; bÞ decreases gradually. Thus,
ADMM consists of two sub-optimization problems and one

update in each iteration:

bkþ1 :¼ argminb Lcðb; rk; ukÞ
rkþ1 :¼ argmin

r
Lcðbkþ1; r; ukÞ

ukþ1 :¼ uk þ cðy� Xbkþ1 � rkþ1Þ

8
><

>:
ð15Þ

If we define s ¼ y� bTX � r, then we have
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uTsþ c
2
jjsjj22 ¼

c
2
jjsþ 1

c
ujj22 �

1

2c
jjujj22 ð16Þ

Thus, the update of b can be rewritten as follows:

bkþ1 :¼ argmin
b

kjjbjj1 þ ðukÞTsþ c
2
jjskjj22

� argmin
b

kjjbjj1 þ
c
2
jjsþ 1

c
ukjj22 �

1

2c
jjukjj22

� argmin
b

kjjbjj1 þ
c
2
jjy� Xb� rk þ 1

c
ukjj22

ð17Þ

The sub-optimization problem in (17) has the same form

as (8), which can also be solved using LARS method

[22].

The update of r can be rewritten as follows:

rkþ1 :¼ argmin
r

qqðrÞ þ ðukÞTsþ c
2
jjsjj22

� argmin
r

qqðrÞ þ
c
2
jjsþ 1

c
ukjj22 �

1

2c
jjukjj22

� argmin
r

qqðrÞ þ
c
2
jjy� Xbkþ1 � rþ 1

c
ukjj22

ð18Þ

The sub-optimization problem in (18) has the close-form

solution by using subdifferential calculus:

rkþ1 :¼ S1=c y� Xbkþ1 þ uk

c
� 2q� 1

c

� �

ð19Þ

where q and 1 are NT � 1 vectors with all the same element

q and 1, respectively; and S denotes the soft thresholding

operator, which is defined as:

SaðbÞ ¼
b� a b[ a

0 �a� b� a

bþ a b\� a

8
<

:
ð20Þ

To summarize, the large-scale Quantile-LASSO model

is decomposed into two sub-optimization problems, where

one can be solved using LARS method, and the other has a

close-form solution. In this way, the Quantile-LASSO

model can be solved in an efficient way and search the

global optimum.

5 Implementation

This section will introduce the process to implement the

proposed feature selection method for probabilistic fore-

casting. The whole procedures are shown in Fig. 2.

First, we collect the historical load data and its corre-

sponding temperature data. Data preprocessing including

data cleaning, normalization, and dataset split is also

conducted. Both the loads are cleaned by exploring the

relationship between load and temperature and detecting

the sudden changes. Details are provided in our previous

work [2]. All the features are normalized into [0, 1] using

min-max scaling. The whole dataset is split into three parts

for training, validation and testing, respectively.

For the Quantile-LASSO method, feature selection is

conducted individually for each quantile q. It means the

Quantile-LASSO method is implemented for Q times. Take

the qth quantile as an example, we generate the search path

of kq, which includes a number of possible values of the

adjustment parameter kq. Then, we conduct line search

according to the search path of kq. For each possible value

of kq, the ADMM algorithm proposed in Section 4.2 is

employed to train the Quantile-LASSO model in (12).

Different possible values of kq produce different coeffi-

cients bq, and thus results in different selected features. We

evaluate the performance of the selected features and

trained model using pinball loss on validation dataset for

each value kq. In this way, we can search the optimal

adjustment parameter kq;best according to their perfor-

mances. Finally, we conduct PLF using the selected fea-

tures with the best penalty coefficient kq;best on testing

dataset and record their performance for comparison with

other benchmarks such as Pre-LASSO method.

The Pre-LASSO method has similar implementation

procedures to the Quantile-LASSO method. The search

path of k is also generated and tested one by one using the

validation dataset. However, the optimal adjustment

parameter kbest is searched according to RMSE instead of

pinball loss on the validation dataset. After determining the

optimal adjustment parameter kbest, we retain the features

Collect and preprocess data

Set q=1

q<sI ?Q

Generate search path of λq

End

Start

N

Train Quantile-LASSO model

Extract coefficient βq

Search λq,best using cross-validation for qth quantile

Conduct PLF using features selected with λq,best

Y

Fig. 2 Procedures for Quantile-LASSO implementation
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with non-zero coefficients to train the quantile regression

model on validation dataset and test the performance on the

testing dataset. For the Pre-LASSO method, the quantile

regression model for different quantiles uses the same

selected features.

After the two methods have been trained and validated,

we compare the performances of the two methods on the

same testing dataset in terms of pinball loss.

6 Case studies

6.1 Experiment setups

The load and temperature data used in the case studies

are from GEFCom 2012, of which the basic information is

introduced in Section 2. We choose three-year load and

temperature data from 2005 to 2007 as the training dataset,

first half-year data of 2008 as the validation dataset, and the

second half-year data of 2008 as the test dataset, which

means the final performance of the load forecasting is

evaluated on the second half-year data of 2008.

We use average quantile score (AQS) to evaluate the

performance of the proposed and competing methods. AQS

is defined as the average of the pinball loss of all the

quantiles:

SAQS ¼
1

QNT

XQ

q¼1

XNT

t¼1

qqðŷq;t � ytÞ ð21Þ

where ŷq;t denotes the forecasted qth quantile of the load. A

total of 9 quantiles 0:1; 0:2; . . .; 0:9, which are denoted as

q1; q2; . . .; q9, are used to form the probabilistic forecasts in

this paper. Since the proposed feature selection is designed

for linear regression model, two base competing methods

are the original linear quantile regression and the linear

quantile regression based on Pre-LASSO. The base fore-

casting model is illustrated in Section 2 to consider the

recency effects of temperature on loads. There are two

variables to be determined: the number of lagged days ND

and the number of lagged hours NH . We choose two

variable pair ðND;NHÞ as (3, 4) and (7, 12) , respectively,

in our case studies, which are denoted as D3-H4 model and

D7-H12 model. The search path of kq in Quantile-LASSO

model and k in Pre-LASSO model for the L1-norm penalty

is the same for both D3-H4 model and D7-H12 model. If

the recency-effect model is D3-H4 model or D7-H12

model, we have 1019 or 2279 features to be selected,

respectively, without consideration of intercept according

to (5). Neural network and gradient boosting regression

tree are commonly used in powerful regression models for

load forecasting. They have been widely used in GEFCom

2012 and 2014 [18, 23]. To show the superiority of the

MLR model for load forecasting, these two nonlinear

quantile regression models, QRNN [24] and QGBRT [25]

with default parameters are also tested for comparison.

6.2 Results

Figures 3 and 4 present the changes of AQS on testing

dataset with variation of k for two randomly selected areas

(Area 6 and Area 9) using Pre-LASSO. The search path of

k varies from 0.0001 to 100, i.e., �lgðkÞ varies from �2 to

4. From Figs. 3 and 4, we can see that with the decrease of

k, i.e., the increase of �lgðkÞ, the number of features that

has been selected NoS shows clear increase trends for all

cases. When �lgðkÞ[ 3, NoS is close to the number of

original features.

It can also be seen from Figs. 3 and 4 that a lower AQS

means a better performance of the model. AQSs of two

models in two areas have similar rough trends: decrease

first, then go up and down before getting a stable value.

The final stable values of AQSs corresponding to the case

of �lgðkÞ ¼ 4 can be viewed as the performance of the

model without feature selection. It means that we can find a

value of k that corresponds to the minimum of AQS before
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the AQS gets stable according to the cross validation. The

minimum values of AQSs are produced by the optimal

value of �lgðkÞ. The optimal values of adjustment

parameter �lgðkÞ are different for different models and in

different areas.

For D3-H4 model in Area 6 and Area 9, the numbers of

selected features with the optimal adjustment parameters of

Pre-LASSO are about 550 and 300, respectively, which are

only 55% and 30% of the number of original features. We

can see only 0.9% and 3.2% improvements in terms of

AQS. However, for D7-H12 model, only 20% and 10% of

the original features have been selected for Area 6 and

Area 9, and gain 4.5% and 4.1% improvements,

respectively.

The feature selection based on D3-H4 model in Area 6

fails to bring a significant improvement on the AQS per-

formance; while the feature selection based on D7-H12

model gains a more significant improvement. A possible

reason is that D7-H12 model contains more recency effects

of temperature and the effective features are selected. The

Pre-LASSO method selects different features and has dif-

ferent improvements for different areas and different

models, because the loads in different areas have different

responsiveness on the current and lagged temperatures. For

example, if the load of an area is less affected by the

temperature, the elimination of the temperature-related

features will less change the performance of the PLF model

in this area. However, for the area whose load is very

sensitive to temperature, feature selection may show higher

gains on the performance. Figure 5 presents the forecasted

quantiles and the real load of Area 2 over ten days from 17

July 2007 to 26 July 2007. The forecasting results are

obtained using D7-H12 model with Quantile-LASSO.

Table 1 gives the number of features that are selected by

Quantile-LASSO method with the optimal adjustment

parameters kq;best for different areas from q1 to q9. The

Quantile-LASSO method is implemented based on the D7-

H12 model. It is interesting that the numbers of selected

features show increase trends in the first four quantiles

(from q1 to q4). However, there is no clear trend for larger

quantiles. The lower quantile may correspond to the base

load and is less influenced by complex recency effects.

Thus, the number of selected features is much smaller.

The number of features selected by Pre-LASSO does not

change for different quantiles. Compared with Pre-LASSO,

Quantile-LASSO method can dynamically select features

by adjusting the sparse penalty (adjustment parameter k)
according to the performance of the model on validation

dataset. In this way, Quantile-LASSO can produce better

probabilistic forecasting after feature selection compared

with Pre-LASSO.

Table 2 presents the AQS of Quantile-LASSO method,

Pre-LASSO method, original model without feature

selection (MLR), QRNN, and QGBRT, where the inputs of

QRNN and QGBRT are the same as MLR model without

feature selection. Both Pre-LASSO and Quantile-LASSO

with D3-H4 model and D7-H12 model have lower AQS

than the original model without feature selection. In addi-

tion, the results again verify that Quantile-LASSO has

better performance compared with Pre-LASSO and origi-

nal method for all ten areas by selecting features individ-

ually for each quantile. QRNN has the worst performance
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because of large number of input features without selec-

tion. For D3-H4 model, QGBRT, a powerful regression

technique, has better performance compared with Quantile-

LASSO in three areas. However, for D7-H12 model,

Quantile-LASSO has the best performance in all areas.

QGBRT may have worse performance with larger number

of input feature which also indicates the importance of

feature selection for probabilistic forecasting.

7 Conclusion

This paper provides a Quantile-LASSO method for

feature selection in the PLF model by adding L1-norm

penalty into the loss function. ADMM algorithm is pro-

posed to solve the large-scale optimization problem. The

method is compared with Pre-LASSO method and original

model without feature selection. Pre-LASSO is easy to

implement using off-the-shelf algorithm but has limited

improvement. Quantile-LASSO has higher degree of free-

dom to adaptively select the features for different quantiles.

The averaged relative improvements of Quantile-LASSO

are 10.46% and 6.06% compared with traditional quantile

regression without feature selection and Pre-LASSO in

terms of pinball loss, respectively. Future works will focus

on parallel implementation of the proposed ADMM algo-

rithm on larger datasets and the applications of proba-

bilistic wind power forecasting or PV forecasting.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

Table 2 Performance of different feature selection methods in terms of pinball loss

Area Pinball loss of D3-H4 (kW) Pinball loss of D7-H12 (kW)

Pre-LASSO Quantile-LASSO MLR QRNN QGBRT Pre-LASSO Quantile-LASSO MLR QRNN QGBRT

1 452.5 437.1 456.4 798 651 442.4 428.9 457.8 1274 592

2 3849.0 3751.0 3918.8 8369 3571 3825.1 2685.3 3988.6 8579 3935

3 4153.0 4047.3 4228.5 9363 3734 4127.6 3976.4 4303.6 10832 4017

4 16.8 16.7 17.9 38 25 16.7 16.5 17.3 39 25

5 341.8 309.4 374.8 884 623 344.8 308.6 397.3 922 668

6 4122.3 3977.4 4160.0 9443 4306 4042.7 3886.4 4237.4 9148 4516

7 4153.0 4047.3 4228.5 9796 3715 4127.6 3976.4 4303.6 10536 4336

8 92.8 92.7 95.4 159 139 95.2 92.1 97.2 172 130

9 6469.9 6400.0 6621.9 14291 10630 6491.8 6452.1 6767 14573 12250

10 599.4 594.8 601.2 1427 717 619.6 613.3 647.1 1681 809

Table 1 Numbers of features of Quantile-LASSO and Pre-LASSO for D7-H12 model

Area Quantile-LASSO for each quantile Pre-LASSO

q1 q2 q3 q4 q5 q6 q7 q8 q9

1 1067 1781 1796 1841 1820 1784 1259 1171 1192 1459

2 223 591 1227 1240 1251 1507 1800 1608 1573 1372

3 224 591 1225 1240 1248 1505 1800 1607 1677 1373

4 55 262 541 621 622 699 670 729 1454 486

5 62 67 114 126 227 225 302 307 374 362

6 234 596 839 1240 1238 1505 1803 1768 1693 723

7 224 591 1225 1240 1248 1505 1800 1607 1677 1373

8 1315 1224 1358 1794 1667 1501 1470 1593 1211 2193

9 372 539 650 631 1192 1192 911 1089 256 310

10 1057 1092 1124 1189 969 984 1181 1091 838 925
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