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Abstract—Adequate capacity planning of substations
and feeders primarily depends on an accurate estimation
of the future peak electricity demand. Traditional coin-
cident peak demand estimation is carried out based on
the empirical metric, after diversity maximum demand,
indicating individual peak consumption levels and demand
diversification across multiple residents. With the privilege
of smart meters in smart cities, this paper proposes a data-
driven probabilistic peak demand estimation framework
using fine-grained smart meter data and sociodemographic
data of the consumers, which drive fundamental electricity
consumptions across different categories. In particular,
four main stages are integrated in the proposed approach:
load modeling and sampling via the proposed variable trun-
cated R-vine copulas method, correlation-based customer
grouping, probabilistic normalized maximum diversified
demand estimation, and probabilistic peak demand esti-
mation for new customers. Numerical experiments have
been conducted on real demand measurements across
2639 households in London, collected from Low Carbon
London project’s smart-metering trial. The mean absolute
percentage error and the pinball loss function are used to
quantitatively demonstrate the superiority of the proposed
approach in terms of the point estimate value and the
probabilistic result, respectively.

Index Terms—Coincident peak demand, distribution net-
work planning, probabilistic estimation, R-vine copulas,
smart meter.

I. INTRODUCTION

IN FUTURE smart cities, increasingly more smart buildings
or parks will be expanded or planned starting from scratch

[1]. Accurate peak load estimation is the key driver for deter-
mining the capacities of electricity power delivery equipment
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such as substations and feeders. A balance between reliability
and economy should be achieved by optimally matching the de-
mand and supply. Underestimating the peak demand will result
in undersized assets and an inability to service load during some
periods. Meanwhile, overestimating the peak demand can lead
to substantially cost-inefficient decisions, given that the same
level of reliability could be provided with less expensive assets
of reduced rating [2].

The electricity consumption behaviors of individual con-
sumers exhibit high randomness and volatility [3]. The total
coincident peak load is more regular and stable with a larger
number of consumers that are aggregated [4]. Therefore, the
peak load estimation for a single or multiple buildings sup-
plied by a low-voltage substation and a feeder is much more
challenging than for larger power systems. For small groups
of consumers, it is imperative to consider the diversity of elec-
tricity consumption behaviors of individual consumers. In fact,
fundamental electricity consumptions are driven by the different
categories of customers (e.g., income levels and the number of
occupants). For example, in [5], household size is shown to be
clearly correlated with the maximum peak demand and can be
a useful proxy for sizing connections of individual households.

In the literature, several metrics have been proposed to mea-
sure the demand diversity and to estimate the peak demand for
the sizing and siting of substations. In particular, after diversity
maximum demand (ADMD) is one of the most widely used
metrics, defined as the maximum coincident peak demand per
consumer when the number of consumers approaches to infinity
[6]. In addition, the diversity factor, defined as the ratio between
the sum of individual peak demand in a group of customers
and the coincident peak demand of this group, has been used for
peak demand estimation in [7]. Other metrics such as the coinci-
dence factor [8] and the conversion factor have also been applied
for network planning. It is constructive to note that most of the
above-mentioned metrics can only provide a single estimation
value obtained based on heuristic formulation and engineering
judgment, which is not suitable for the applications considering
uncertainties.

The uncertainties of the electricity load are generally depicted
by a probabilistic distribution. The skewness of the distribu-
tion of typical load current is fitted by a beta distribution in
[9]. Both the Weibull distribution and the log-normal distribu-
tion are used to model the probability distributions of individ-
ual households in [10], where the goodness of fit is quantified
by the Kolmogorov–Smirnov test. In addition, sampling and
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simulation can be considered as effective approaches to esti-
mate future coincident peak demand.

For example, a Monte Carlo simulation model is established
for consumers considering the statistical spread of demand in
[11]. The consumption data are sampled from a gamma dis-
tribution. In [5], a random sampling method based on a smart
meter and demographic data is applied to calculate the ADMA of
nine types of consumers. However, the accuracy of the proposed
sampling method has not been verified. In addition, the software
HOMER is used in [12] to simulate individual household load
and then to investigate the diversity of these households. The
results show that for a minigrid system, there should be at least
50 households to guarantee the manageability of the demand
variance and the economy of the whole system.

With the widespread adoption of smart meters, which pro-
vide more fine-grained electricity consumption data of individ-
ual consumers [13], substantial efforts have been devoted to the
applications of smart meter data including load profiling [14],
anomaly detection [15], demand response program implemen-
tation [3], phase detection [16], and load forecasting [17]. A
comprehensive review on smart meter data analytics is avail-
able in [18]. In contrast to traditional load forecasting, which is
generally applied to assist the system operation by predicting
the future short-term electricity consumptions of the existing
customers based on historical data, the coincident peak demand
estimation problem has two characteristics: 1) it aims to predict
the coincident peak demand of future customers without hav-
ing existing data at the time of connection to the network; and
2) it is essentially a long-term forecasting problem for sizing
infrastructures.

Although various approaches have been proposed in the ex-
isting literature for estimating the coincident peak demand, most
of the previous works are focused on empirical methods. The
influx of smart meter data introduces an intuitive question: Is it
possible to further improve the peak load estimation accuracy
by making full use of fine-grained smart meter data and sociode-
mographic information of consumers? A few studies have begun
to conduct peak load estimation based on smart meter data. For
example, a clusterwise weighted constrained regression-based
peak load estimation method for a low-voltage substation is pro-
posed in [19], where the contribution factor is developed. The
accuracy and stability of this method have been verified using
cross validation.

In this paper, we propose a data-driven probabilistic peak
load estimation approach based on smart meter data and so-
ciodemographic data. First, the complex nonlinear dependence
structures among different consumers are modeled via the pro-
posed variable truncated R-vine copulas (VTRC) method for
sampling-based data augmentation. Subsequently, the metrics
ADMD and normalized maximum diversified demand (NMDD)
are estimated following a consumer grouping procedure, which
aims to enhance the efficiency of selecting a determined num-
ber of customers at random. Finally, the uncertainties of future
peak load are described by a series of quantiles. Note that, in
this paper, we do not consider the losses in distribution systems
and focus on proposing a novel probabilistic peak load estima-
tion method. In the future work, the accuracy of the estimated

coincident peak load can be further improved with the consid-
eration of the losses in the network. As stated above, the key
contributions of this paper can be summarized as follows.

1) A composite data-driven probabilistic peak demand esti-
mation framework is proposed based on the information
derived from high-resolution smart meter measurements
and demographic data that will be useful for designing
new buildings in smart cities.

2) A novel VTRC method is proposed to model and sample
the high-dimensional demand data with large computa-
tion speedups, while capturing their complex nonlinear
dependencies, particularly the tail dependence.

3) A correlation-based customer grouping is proposed to be
conducted before the NMDD estimation procedure for
efficiently selecting the given number of customers.

4) The superior performance of the proposed method has
been demonstrated through comparisons with the other
tested methods, as indicated by the lower estimation er-
rors. Additionally, the results demonstrate the importance
of using the demographic data when designing new build-
ings with different categories of customers.

The remainder of this paper is organized as follows. Section II
formally defines the peak load estimation problem. Section III
introduces the framework and technical details of the proposed
approaches. Section IV presents the evaluation metrics and the
methods to be compared in the case studies. Section V con-
ducts numerical experiments on the Low Carbon London (LCL)
dataset. Finally, the conclusion is presented in Section VI.

II. PROBLEM STATEMENT

In smart cities, it is imperative to perform an accurate future
coincident peak demand estimation for the electricity network
design, which has the following main challenges.

1) Different types of properties with various future cus-
tomers exhibit different consumption behaviors. Al-
though these customers can be categorized based on their
demographic data, for each category, it is still challenging
to estimate the coincident peak demand without having
existing data at the time of connection to the network.

2) The demand diversity among customer loads significantly
increases the difficulties in estimating the group peak de-
mand, particularly when the number of new connected
customers n is considerably lower than the number of
existing ones in the network. Note that demand diversifi-
cation refers to the effect that the coincident peak demand
exhibits reduced sensitivity to the attributes of individ-
ual consumers with an increasing number of n, and vice
versa. This is because not all of the customers consume
their peak demand simultaneously.

Mathematically, the problem can be defined as follows. Given
that there are G customer categories defined by the demographic
data (e.g., household occupancy and wealth level) and N new
customers need to be connected to the network, for each cat-
egory g, the number of new connections is denoted by ng ,
where

∑G
g=1 ng = N . In addition, let mg denote the number

of existing customers in category g with smart meter data and
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demographic data for g = 1, ..., G. The target of this problem is
to estimate the total coincident peak demand

ĈN =
G∑

g=1

Ĉng
. (1)

For each category, we estimate Ĉng
via the metric ADMD,

which is traditionally defined as the coincident peak electrical
demand per customer when n approaches infinity. In this work,
we extend the concept of ADMD to be a function of n, denoted
by ADMDn . Consequently, based on the smart data of exist-
ing customers Dg ∈ RT ×mg , ADMDn for n ∈ {1,mg} can be
calculated for each category as follows:

ADMDn = max
t=1,...,T

(
n∑

i=1

Dt,i

)

/n. (2)

Note that it is computationally impractical to calculate ADMDn

for all the n!/n!(mg − n)! possible household combinations,
particularly when n << mg . To this end, it is more efficient to
randomly select n customers out of mg as many as required. For
each category, we obtain the ADMDn curve from n = 1 to mg

and then normalize it based on the highest value of each curve.
In this way, the NMDD value NMDDn in [0, 1] can be further
used to estimate Ĉng

as follows:

Ĉng
= ng × NMDDng × D0.95max

g (3)

where D0.95max
g represents the 95th percentile peak demand of

Dg . Finally, the total coincident peak demand of the future N

customers, ĈN , can be obtained by calculating the sum of Ĉng

for g = 1, ..., G. Note that the output ĈN is a probabilistic dis-
tribution rather than a single-point value due to the large number
of combinations that we select while calculating ADMDn .

III. METHODOLOGIES

A. Proposed Framework

As illustrated in Section II, the challenges related to the co-
incident peak demand estimation are the unknown data of fu-
ture customers and the influence of demand diversity among
customer loads. To address these challenges, a novel proba-
bilistic peak demand estimation framework shown in Fig. 1 is
introduced in this paper. This framework consists of four main
stages.

1) Load modeling and sampling stage: Given the input
smart meter data Dg ∈ RT ×Mg , the existing customers
of category g are randomly partitioned into training
customers Dtrain

g ∈ RT ×mg and test customers Dtest
g ∈

RT ×ng , where mg + ng = Mg and mg ≈ 0.8 × Mg .
Subsequently, an accurate statistical model is constructed
based on Dtrain

g at the VTRC modeling stage. Given the
input number of samples Ts , the output of the VTRC
sampling stage is D̂train

g ∈ RTs ×mg .
2) Customer grouping stage: This stage can be regarded as

a pregrouping stage for the probabilistic ADMDn esti-
mation stage. In particular, given the number of clusters
K, all the mg training customers are clustered based on

Fig. 1. Proposed probabilistic coincident peak demand estimation
framework for a single category g.

their nonlinear correlations, quantified by the calculated
Spearman’s rank correlation coefficient matrix Rg . The
output of this stage is the constructed K groups of cus-
tomers, where D̂k

train ∈ RTs ×dk , for k = 1, ...,K.
3) Probabilistic NMDD estimation stage: In this stage,

we calculate the distribution of ADMDn for each n ∈
{1, ..,mg} based on the constructed groups and obtain
the probabilistic ADMDn curve. Then, the probabilistic
NMDDn curve is obtained by normalizing the ADMDn

curve.
4) Probabilistic peak demand estimation stage for new cus-

tomers: Using the probabilistic NMDDn curve, given the
number of future customers ng , a probabilistic coincident
peak demand estimation result Ĉng

can be computed us-
ing (3). Compared with the actual coincident peak de-
mand Cng

, the performance of the proposed method can
be evaluated via quantitative metrics. In particular, the
mean absolute percentage error (MAPE) and the pinball
loss function are used to assess the mean value and the
distribution of Ĉng

, respectively.
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Fig. 2. Bivariate example of histograms of marginals and scatter plots
of active energy consumption data (kW) for two randomly selected
households from the LCL smart meter trail, measured between Jan-
uary 2013 and December 2013. Additionally, this figure illustrates the
procedure for transforming the data from original domain kW to uniform
domain [0, 1] through ECDFs.

B. Load Modeling and Sampling

Given the training customers’ data Dtrain
g ∈ RT ×mg , the first

step of the proposed framework is to construct a statistical model
for the residential electricity demand. The aim of this stage is
to understand current consumers’ behavior and to model their
dependence structure by interpolating and extrapolating the his-
torical smart meter measurements. Then, the constructed model
can be used to generate as many samples as required to represent
the potential consumption behavior for future customers with
unknown data. To illustrate the challenges of modeling high-
dimensional smart meter data, an example of the demand data
of two customers randomly selected from the Adverse and 1 oc-
cupant households is presented in Fig. 2. It can be observed
that the demand data exhibit highly non-Gaussian marginal
distributions and complex nonlinear dependence structure be-
tween different customers even though they are in the same
category. To address these problems, a novel VTRC model is
proposed to perform the load modeling and sampling procedure
for each category’s households while retaining the empirical
marginal distributions and capturing the multivariate nonlinear
dependencies.

1) Proposed VTRC Modeling Approach: Let f , F , c, and
C denote the probability density function (PDF) and the cumula-
tive distribution function and their copula versions, respectively.
Consider mg random variables Dtrain

g = (D1 , ...,Dmg
) ∈

RT ×mg with marginal density functions fi(di) and distribu-
tion functions Fi(si) for i = 1, ...,mg . According to Sklar’s
theorem [20], the joint PDF can be expressed as follows:

f(d1 , d2 , ..., dmg
) =

(mg∏

i=1

fi(di)

)

× c1···mg
(F1(d1), ..., Fmg

(dmg
)) (4)

where the copula density function c1...mg
: [0, 1]mg represents

the dependence structure between uniform random variables
{U1 , ..., Umg

} = {F1(D1), ..., Fmg
(Dmg

)}. Note that the
empirical cumulative distribution function (ECDF) and its
inverse version ECDF−1 are used to model the marginal
distributions and to transform it between the actual domain (i.e.,
kW) and the [0, 1] domain, as shown in Fig. 2. Regarding the
correlation among the stochastic variables, various classes of
copula functions are capable of describing complex dependence
structures, but most of them are limited to the bivariate case.
To this end, the pair-copula construction method was proposed
in [21] to decompose a multivariate copula into the product
of a cascade of bivariate copulas, introducing flexibility in
capturing complex dependence structures, particularly different
characters of tail dependence.

In this work, we consider one of the most flexible graphi-
cal models, regular vine (R-vine), which consists of a nested
set of mg − 1 trees Υ = (T1 , ..., Tmg −1) such that the edges
Ej of tree Tj become the nodes Nq+1 of tree Tq+1 , for
j = 1, ...,mg − 1. Based on the definition provided in [22], for
mg random variables, Υ of an R-vine on mg random variables
needs to satisfy the following conditions.

1) The first tree T1 consists of nodes N1 = 1, ...,mg and a
set of edges denoted by E1 .

2) Ti consists of edges Ei and nodes Ni = Ei−1 , for i =
2, ...,mg .

3) For i = 2, ...,mg − 1, {j, k} ∈ Ei must hold that #(j ∩
k) = 1, where j = {j1 , j2} and k = {k1 , k2}.

Note that condition 3 represents that two nodes in Tq+1
are only connected by an edge if they share a common node
in Tq . For a regular vine Υ, let Se = {ν ∈ N1 |∃ei ∈ Ei, i =
1, ...,mg − 1, with ν ∈ e1 ∈ ... ∈ emg −1 ∈ e} denoting the
complete union of an edge e = {j, k} ∈ Eq in tree Tq . The
conditioning set and the conditioned sets associated with edge
e = {j, k} are defined as Ψe := Sj ∩ Sk and {Ωe,j = Sj\Ψe ,
Ωe,k = Sk\Ψe}, respectively, where (−)\(∗) := (−) ∩ (∗)C

and (∗)C is the complement of (∗). Following the above-
mentioned definitions, the density function f(d1 , ..., dmg

) can
be decomposed as follows:

mg∏

i=1

fi(di) ×
mg −1∏

i=1

∏

e∈Ei

cΩe , j ,Ωe , k |Ψe
(FΩe , j |Ψe

(.), FΩe , k |Ψe
(.))

(5)
where e = {j, k} and FΩe , j |Ψe

(.) = FΩe , j |Ψe
(dΩe , j

|dΨe
),

which is denoted as an h-function. The detailed formulation
of h-function for R-vine is presented in [22].

Note that there are a series of nodes–edges–trees combina-
tions that meet the R-vine conditions. Therefore, the key chal-
lenges related to constructing an appropriate R-vine include the
following.

1) Select the optimal sets of {Ωe,j ,Ωe,k |Ψe} for all edges.
2) For each edge of the selected trees, determine the optimal

bivariate copula family.
3) Estimate corresponding parameters for each bivariate

copula.
Regarding the selection of the bivariate copula, the Akaike

information criterion (AIC) is used in this work to choose the
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best-fit copula, which is indicated by the smallest AIC values.
In addition, a Kendall’s τ -based sequential method, an auto-
mated strategy, was proposed in [23] to select the R-vine tree
that maximizes the sum of absolute empirical Kendall’s τ . The
output of the sequential method is an R-vine specification matrix
M . The detailed definition and explanation of the specification
matrix and sequential method are presented in [23]. Note that al-
though the sequential method cannot ensure a global optimum,
the selected model can be regarded as a reasonable one because
it models the original variables and the following conditional
variables from higher to relatively lower dependencies. When
the variables in higher tree exhibit independence, the truncation
method and the simplification method proposed in [22] can be
used to accelerate the modeling procedure. However, the number

of possible R-vines on mg variables (i.e., mg !/2 × 2(m g −2
2 )) and

the number of estimated pair copulas (i.e., nf × mg (mg − 1)/2,
where nf is the number of considered bivariate copula families)
rapidly increase with mg , resulting in an impractical issue for
very high-dimensional cases (e.g., 10 000 households) due to
the high computational complexity.

To fundamentally accommodate the problem of high dimen-
sionality, a variable truncated R-vine copula method is proposed
in this work to make the R-vine modeling and sampling pro-
cedure executed in a lower dimensional space constructed with
important features. In [24], locality preserving projection (LPP)
has been demonstrated as an efficient dimensionality reduction
technique for C-vine and D-vine copulas, which are two rep-
resentative subclasses of R-vine copulas. In particular, LPP is
a sparse-spectral linear feature extraction technique that aims
to identify a lower dimensional dataset that preserves the local
neighborhood structure of the original data manifold [25]. Note
that the number of reduced dimensions is determined by the
user-defined information retainment threshold in [0, 1], which
is defined based on eigenvalues for quantifying the proportion
of variance that can be retained using a reduced number of trans-
formed variables. Also, the issues of missing data and outliers
could be addressed by fitting the data to a sophisticated statistical
model via the proposed copula-based approach [14]. To sum-
marize, the proposed VTRC modeling and sampling algorithm
is outlined in Algorithm 1.

C. Customer Grouping

When calculating the ADMDn for n customers at the next
stage, the existence of demand diversity necessitates selecting a
large amount of replicates that consist of different combinations
of n customers. Instead of randomly selecting n customers
from all the mg trained customers, it may be more efficient
to select the customers from different groups of customers,
each of which has similar consumption patterns. To this end,
the customer grouping stage is proposed in the framework to
construct K groups based on the correlations among different
customers. It is constructive to mention that the reason for
employing correlation-based clustering, rather than traditional
distance-based clustering, is because the occurrence of the
coincident peak demand is highly related to the correlations of
their electricity consumption behaviors. For example, if a group

Algorithm 1: VTRC Modeling and Sampling.

Input: Historical demand data: Dtrain
g = [D1 , ...,Dmg

] ∈
RT ×mg , Information retainment threshold: IR,
Number of samples: Ts .

Output: Sampled demand data: D̂train
g = [D̂1 , ..., D̂mg

] ∈
RTs ×mg .

Step 1: Transform Dtrain
g from the original domain to

V = [V1 , ..., Vmg
] in the rank-uniform domain

[0, 1]mg via the ECDFs of Dtrain
g :

1: Vi = Fi(Di), for i = 1, ...,mg

Step 2: Given the input parameter IR, perform LPP
to extract important features Xg ∈ RTs ×lg ,
where lg < mg . Also, the solution matrix A,
where X = AT V , needs to be stored for the
sampling procedure:

2: [X,A] = LPP(V, IR)
Step 3: Perform the uniform transformation again

through the ECDFs of Xg and obtain U =
[U1 , ..., Ulg ] in the unit domain [0, 1]lg .

3: Ui = Fi(Xi), for i = 1, ..., lg
Step 4: Perform the sequential method to determine

the optimal R-vine specification Υ, indicated
by matrix M ∈ Rlg ×lg , the best-fit bivariate
copula families, stored in matrix
B ∈ R(lg −1)×(lg −1) as well as their estimated
parameters Θ ∈ R(lg −1)×(lg −1) .

4: [M,B,Θ] = TheSequenceMethod(U)
Step 5: Given the required number of samples Ts ,

simulate the R-vine specification to generate
samples Us ∈ RTs ×lg .

5: Û = SimulationRvine(M,B,Θ, Ts)
Step 6: Transform the generated samples Û from the

uniform domain back to the domain of
extracted features X , thus obtaining X̂ ∈
RTs ×lg via the inverse empirical distribution
functions (ECDF −1) of X .

6: X̂i = F−1
i (Ûi), for i = 1, ..., lg

Step 7: Back-project X̂ from the lower dimensional
space to the original dimensional space and
obtain V̂ ∈ RTs ×mg . Finally, obtain the
samples D̂train

g ∈ RTs ×mg via the ECDF −1 s
of Dtrain

g .

7: V̂ = AX
8: D̂i = F−1

i (V̂i), for i = 1, ...,mg

of customers are highly correlated, then they will have very
similar consumption patterns across different points in time,
and the influence of demand diversity will be decreased when
calculating their coincident peak demand. Given the sampled
demand data D̂train

g ∈ RTs ×mg , the first step of this stage
is to calculate the correlation matrix R = (ri,j )i,j=1,...,mg

.
According to the definition of Spearman’s correlation coef-
ficient, which is one of the most widely used nonparametric
measures of rank correlation, for each pair of D̂i and D̂j ,
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Algorithm 2: Probabilistic NMDD Estimation.
Input: Total number of customers in category g: mg ;

Number of replicates: Nr ; Constructed groups:
(D̂k

train)k=1,...,K ; Probability for each group:
(Pk )k=1,...K .

Output: Probabilistic NMDDn curve, n = 1, ...,mg :
NMDD

1: for n = 1:mg do
2: for i = 1:Nr do
3: for k = 1:K do
4: Dk

n ∈ RTs ×nk : randomly select nk = n × Pk

customers from dk customers in the kth group
D̂k

train .
5: end for
6: Dn,i = {D1

n , ...,DK
n } ∈ RTs ×n

7: CPn,i = max
t∈{1,..,Ts }

{∑n
j=1 Dj

t,i}: calculate the

coincident peak demand for replicate i.
8: end for
9: CP = {CPn,1 ,...,CPn,Nr

}T ∈ RNr ×1

10: ADMDn = CP/n
11: end for
12: ADMD = {ADMD1 ,...,ADMDmg } ∈ RNr ×mg

13: for i = 1:n do
14: NMDDn

i = ADMDn
i /max( ADMD1

i )
15: end for
16: NMDD = {NMDD1 ,...,NMDDmg } ∈ RNr ×mg

we have

ri,j = cov(rank(D̂i), rank(D̂j ))/(σrank(D̂ i )σrank(D̂ j )) (6)

where rank(.) indicates the rank variable, cov(rank(D̂i),
rank(D̂j )) is the covariance of the rank variables, and σrank(.)
represents the standard deviation of the rank variable. Subse-
quently, an agglomerative hierarchical clustering method with
single linkage is performed to cluster the customers based on
the new “distance” matrix 1 − R. The output of this stage is
D̂k

train ∈ RTs ×dk with corresponding probability Pk = dk/mg

for k = 1, ...,K. The reason of employing the agglomer-
ative hierarchical clustering method with single linkage to
establish different groups of customers can be concluded as
follows.

1) Hierarchical clustering method can handle nonspherical
data.

2) The constructed hierarchical clusters are independent to
their initial points, thus leading to its deterministic nature.

3) No prior knowledge of K is required.

D. Probabilistic NMDD Estimation

Using (2), the distribution of ADMDn for each n ∈
{1, ..,mg} can be calculated based on the constructed groups,
thus obtaining the probabilistic ADMDn curve. Then, the prob-
abilistic NMDDn curve is obtained by normalizing the ADMDn

curve. The calculation procedure is outlined in Algorithm 2.

E. Probabilistic Peak Demand Estimation

Given ng new customers from category g, the distribution of
the coincident peak demand Ĉng

∈ RNr ×ng can be estimated
using (3) based on the obtained probabilistic NMDD curve.
Compared with the actual coincident peak demand Cng

, the
performance of the proposed framework can be assessed via the
evaluation metrics, introduced in the next section.

IV. EVALUATION METRICS AND COMPARISONS

A. Evaluation Metrics

1) Mean Absolute Percentage Error: In this work, we use
the MAPE to evaluate the performance of the estimation model
in terms of the expectation value of the estimated probabilistic
distribution:

MAPE(Cn,
¯̂
Cn ) = 100% × |Cn − ¯̂

Cn |/Cn (7)

where Cn and ¯̂
Cn are the actual coincident peak demand and

the expected estimated coincident peak demand for the tested n
customers, respectively.

2) Pinball Loss Function: In general, three main factors,
namely, calibration, sharpness, and reliability, should be eval-
uated for the probabilistic estimation model [26]. The pinball
loss function is considered in this work with the benefits of pro-
viding a comprehensive metric value for all three factors. Let
Cn and Ĉn,q denote the actual coincident peak demand and the
estimated coincident peak demand at the qth percentile for the
tested n customers, respectively. Then, the pinball loss function
can be expressed as

Pinball(Cn, Ĉn,q , q) =

{
(Ĉn,q − Cn )(1 − q), Ĉn,q > Cn

(Cn − Ĉn,q )q, Ĉn,q < Cn .
(8)

In this work, the average of all the Pinball(Cn, Ĉn,q , q) s for q =
0.01, 0.02, ..., 0.99 is used to evaluate the overall performance
of the probabilistically estimated coincident peak demand of
n customers. Note that a lower pinball loss indicates a better
quantile model.

B. Comparisons

To illustrate the benefits of each stage of the proposed frame-
work, a series of tested methods are compared in this paper.
Note that M0 is a point estimation method, whereas M1, M2,
M3, and M4 are all probabilistic methods.

1) M0: Empirical ADMD: Traditionally, the coincident peak
demand of future customers without existing data is generally
estimated using empirical ADMD, which been widely used in
distribution network operator (DNO)’s planning guidelines [5].
Given that n new customers will be connected to the network,
Ĉn can be calculated via the following equation:

Ĉn = 0.7 × n × ADMD × (1 + 12/(ADMD × n)). (9)

According to the network design manual [27], we set ADMD =
2 kW for properties with up to four bedrooms and gas heating.
Note that the scaling factor 0.7 is multiplied to take the effect of
demand diversification into account.
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TABLE I
TESTED METHODS

Empirical Historical VRTC Customer Grouping

M0
√

– – –
M1 –

√
– –

M2 –
√

–
√

M3 – –
√

–
M4 – –

√ √

2) M1: Historical NMDDn: M1 estimates the coincident
peak demand based on NMDDn curves, obtained by using
the historical smart meter data with random customer selection
approach.

3) M2: Historical NMDDn and Customer Grouping:
Based on M1, M2 is appended with the proposed correlation-
based customer grouping stage.

4) M3: VTRC NMDDn: A large amount of samples, gener-
ated via the proposed VTRC method, are used to estimate Ĉn

based on the framework of M1.
5) M4: VTRC NMDDn and Customer Grouping: M4 is the

proposed probabilistic peak demand estimation method that in-
tegrates both VTRC sampling and correlation-based customer
grouping.

To summarize, all the tested methods are concluded in Table I.

V. CASE STUDY

A. Data Description

The LCL smart meter trials provide a valuable opportunity
to understand residential electricity consumption behaviors and
to assess the benefits from exploiting smart metering for dis-
tribution network design. In the LCL project, Landis and Gyr
(L+G) E470 electricity meters were installed in 2639 residential
households across the Mayor of London’s Low Carbon Zones
and the London Power Networks distribution network license
area operated by U.K. Power Networks [5]. Specifically, the
Engineering Instrumentation Zones of the LCL trial include the
areas of Brixton, Merton, and Queen’s Park. Regarding the col-
lected data, the LCL demand dataset consists of 17 520 half-
hourly measurements of demand across 2639 customers in kW
for a full calendar year from January 1, 2013, to December 31,
2013. In addition, various socioeconomic data of the participat-
ing households were also recorded in the dataset. In this paper,
we focus on the data pertaining to household occupancy (i.e.,
the number of people living in the property) and wealth level
(i.e., determined based on mapping all participating households
to ACORN groups). In particular, we consider three types of
occupancy, namely, 1 occupant, 2 occupants, and 3 occupants,
as well as three wealth classes, namely, Adverse, Comfortable,
and Affluent in an increasing order. Consequently, nine cate-
gories (i.e., G = 9 ) are defined as the combinations of occu-
pancy and wealth level, and the number of customers for each
category is given in Table II. Note that more detailed descrip-
tions of the tested LCL dataset can be found in the literature
(e.g., [28]).

TABLE II
NUMBER OF HOUSEHOLDS ACROSS NINE CUSTOMER CATEGORIES

1 occupant 2 occupants 3 occupants

Adverse 315 278 234
Comfortable 240 304 214
Affluent 431 400 223

Fig. 3. Scatter plots of the total load of the randomly selected cus-
tomers 1–10 and customers 11–20. (a) Historical data. (b) Sampled
data.

B. Visual Comparison

An example of 20 randomly selected customers from Ad-
verse1 is given in this part to visually inspect the superior per-
formance of the proposed R-vine copulas sampling method.
Given the historical dataset of size 17 520 × 20, the output of
the proposed VTRC modeling and sampling stages is a larger
set of sampled data of size 100 000 × 20 (i.e., Ts = 100 000)
with the information retainment threshold IR = 0.5. In order to
present and compare these two sets of 20-D data, the total load of
the first ten customers (vertical axis) and the rest ten customers
(horizontal axis) is shown in Fig. 3. As can be seen, the sum of
the sampled load data [see Fig. 3(b)] can accurately represent
the complex nonlinear dependence structure of the historical
data [see Fig. 3(a)] with only 50% information retained. Also,
it is important to note that more extreme values can be obtained
via using the proposed sampling method, which may improve
the accuracy of the final estimated coincident peak demand. Re-
garding the central processing unit times, the proposed VTRC
method was implemented in MATLAB 2017b and run on an In-
tel Xeon E5-2690 PC with eight cores. For the case of IR = 1,
which means no dimensionality reduction is performed, the to-
tal time including modeling and generating 100 000 samples is
about 4429.32 s, whereas it only takes 810.66 s for IR = 0.5
(i.e., R-vine is performed on a 9-D dataset). Both the great
capability of capturing the dependence structure and the signif-
icantly reduced computational cost demonstrate the efficiency
and effectiveness of the proposed VTRC approach.

C. Results Across Different Numbers of Customers

In this section, the performance of the proposed probabilistic
peak demand estimation method is evaluated based on a single
category of customers, Adverse and 1 occupant, with different
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TABLE III
MAPE FOR DIFFERENT NUMBERS OF TESTED CUSTOMERS (%)

ng = 10 ng = 20 ng = 40 ng = 50 ng = 60

M1 20.70 22.97 24.12 24.33 23.76
M2 17.92 21.23 23.05 23.50 24.39
M3 10.31 7.57 6.95 6.94 6.69
M4 8.97 6.37 5.68 5.51 5.35

TABLE IV
PINBALL LOSS FOR DIFFERENT NUMBERS OF TESTED CUSTOMERS (kW)

ng = 10 ng = 20 ng = 40 ng = 50 ng = 60

M1 0.7538 1.4111 2.7220 3.3824 4.0219
M2 0.6554 1.2903 2.5472 3.2021 3.8437
M3 0.4687 0.5682 0.8392 0.9661 1.0705
M4 0.4429 0.5360 0.7708 0.8753 0.9640

numbers of future customers. As illustrated in Fig. 1, all 315
customers in this category are first randomly partitioned into
training customers of size mg = 249 and test customers of size
ng = [10, 20, 40, 50, 60]. For each number of ng , in order to
obtain the distribution of the actual coincident peak demand, we
randomly select 100 000 sets of customers from the whole set
of customers except for the training ones. For the tested meth-
ods M3 and M4, as introduced in Section IV, the first step is
to model the historical load data of the mg = 249 training cus-
tomers via the proposed VTRC method. Then, a large number
of samples are generated via simulating the constructed model.
Note that the input parameters of this stage are given as follows:
number of samples Ts = 100 000 and information retainment
threshold for LPP IR = 0.5. Afterwards, for M2 and M4 that
include the correlation-based consumer grouping stage, we set
the number of clusters for this category to Kg = 4. For the
stage of probabilistic NMDD estimation, we set the number of
replicates Nr = 100 000 for all the methods. In terms of the
evaluation metrics, we evaluate the point estimation results and
the probabilistic estimation results of M1, M2, M3, and M4 via
the metrics MAPE and the pinball loss, shown in Tables III and
IV, respectively. Note that, for each ng , the benchmark value of
the estimated peak demand is the mean value of the actual peak
demand distribution when calculating the pinball loss and the
MAPE. Also, for the MAPE, the point estimated peak demand
is the mean value of the probabilistic estimated values.

In particular, the results presented in Tables III and IV both
indicate that the proposed framework M4, consisting of the
VTRC method and the correlation-based grouping strategy, ex-
hibits superior performance to the other methods. This is evi-
denced by the gradually reduced MAPE and pinball loss val-
ues from historical data-based estimation to sample-based es-
timation, from random customer selection to clustering-based
selection. In terms of the average performance across all the
ng s, when including the customer group stage, M2 has approx-
imately 6.06% and 6.12% improvements when compared with
M1 in terms of the point estimation result and the probabilistic
estimation result, respectively. Additionally, the introduction of

the load modeling and sampling stage in M3 presents 66.99%
and 68.17% reductions in the MAPE and pinball loss values of
M1. Finally, the combination of both sampling and grouping
stages makes further enhancements based on M3, as indicated
by a 17.09% reduced MAPE value and a 8.27% reduced pinball
loss value.

In addition, Fig. 4 presents the boxplots and the PDF plots of
the estimated probabilistic peak demand for each method when
ng = [10, 20, 40, 50, 60]. It can be observed that the sample-
based methods (i.e., M3 and M4) exhibit better estimation than
the historical-data-based methods (i.e., M1 and M2) in terms
of the distribution of the estimated peak demand. Additionally,
the range of the estimated values obtained via M3 and M4 can
almost cover the actual values, whereas parts of extreme actual
values are out of the range of the estimated values obtained
using M1 and M2. This also demonstrates the importance of the
proposed load modeling and sampling method, VTRC, which
can capture the tail dependencies among various consumers and
obtain more probable coincident peak demand via using the vast
number of samples rather than the limited number of historical
measurements.

Another critical aspect that impacts the accuracy of the
estimated coincident peak demand is the time resolution of
smart meter data. Theoretically, low time resolution of the smart
meter data will result in an inherent underestimation of the
aggregated peak load. In order to demonstrate the importance
of high-resolution data, an additional case study based on lower
resolution data (i.e., 1-h resolution data obtained based on the
30-min data) is conducted by use M1 to estimate the peak
demand across different numbers of tested customers. Fig. 5
presents the bar plots of the MAPE values for the cases of
30-min resolution data and 1-h resolution data. Note that in this
case, we do not take the absolute value of Cn − ¯̂

Cn when cal-
culating the MAPE using (7). Therefore, positive and negative
MAPE values represent the underestimation and the overes-
timation, respectively. As can be seen, in terms of the mean
value of the estimated peak demand, the lower time resolution
indeed leads to higher positive estimation errors than those of
the high-resolution case, which indicates a more severe under-
estimation problem when using the dataset with 1-h resolution.
However, as the proposed method is applicable to arbitrary time
resolution, the accuracy of the estimated peak demand can be
further improved if more fine-grained data can be employed.

D. Results for Each Category

Although the previous results have demonstrated the supe-
rior performance of the proposed approach in a single category,
it is also imperative to extend the analysis to the other cate-
gories. For each category, five replicates of training and test
sets are constructed by randomly partitioning the customers of
each category into 80% and 20%, respectively. The parame-
ters of the VTRC model in Section V-B are retained in this
case, whereas the number of clusters at the customer group-
ing stage is set to different values for different categories, as
follows: K = [K1 ,K2 , ...,K9 ] = [5, 10, 30, 6, 20, 4, 4, 20, 20].
Note that all the Kg s are determined by a series of performance
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Fig. 4. Boxplots and PDF plots of the estimated probabilistic peak demand and the actual peak demand for ng = [10, 20, 40, 50, 60].

Fig. 5. MAPE for different numbers of tested customers based on the
datasets of 30-min resolution (blue bar) and 1-h resolution (yellow bar).

TABLE V
PINBALL LOSS FOR EACH CATEGORY OF CUSTOMERS (kW)

M1 M2 M3 M4

Adverse1 5.2849 5.2401 2.1653 2.1332
Adverse2 2.0718 2.1549 1.2651 1.0700
Adverse3+ 7.1984 4.1119 4.0572 3.3464

Comfortable1 9.7770 9.4943 5.5652 3.6345
Comfortable2 8.2052 7.4132 6.6503 6.2836
Comfortable3+ 4.6918 4.7407 3.3053 3.2805

Affluent1 7.6162 7.3931 4.7740 4.4668
Affluent2 3.2321 2.9902 1.9698 1.5258
Affluent3+ 11.2875 11.2735 9.0511 8.9089

tests, and they may not be the optimal number for each group.
For all the tested methods, the probabilistic estimation perfor-
mance for each category is shown in Table V, as evaluated by
the average pinball loss value of all five replicates.

As shown above, the order of the probabilistic estimation’s
performance across different methods is highly consistent with
the results shown in Table IV. The proposed method M4 always
has the lowest pinball loss values for all nine categories, whereas
the categories with 3+ occupants exhibit higher pinball loss val-
ues than the other types of occupancy. Meanwhile, for most of
the tested methods, the average pinball loss displays increasing

values with an ascending order of wealth levels from Adverse
to Affluent. Both of these results may be because for larger
and wealthier households, consumers’ habits present higher di-
versity with more types of electrical appliances (e.g., electric
vehicle). Additionally, for some specific categories (e.g., Ad-
verse2 and Comfortable3+), M2 presents slightly higher pinball
loss values than M1. This issue could be caused by the inappro-
priate number of clusters determined in the customer grouping
stage. Therefore, future work could be focused on investigat-
ing how to determine the optimal or suitable number of groups
based on the performance of estimation.

To visually inspect the ADMD curve and then applied to
the case of multiple categories, an example of M4 is pre-
sented in Fig. 6 that shows the maximum, minimum, and
mean ADMDn values as a function of households, for all the
nine categories; the specific numbers provided on the plots are
n = [1, 5, 10, ..., 100, 150,mg ] households. As can be seen in
the figure, for all the categories, the estimated ADMDn values
across an increased number of households exhibit the reduced
sensitivity to the attributes of individual customers due to the
effect of demand diversification. Additionally, in most of the
cases (e.g., categories of Comfortable and categories of 2 oc-
cupants), households of increasing wealth and occupancy level
exhibit higher estimated ADMDn values for each n. It can be
concluded that wealth and occupancy information are both use-
ful proxies in inferring the diversified demand for the network
design in smart cities. In addition, with the increasing number
of considered households n, there is a significant reduction in
the diversified peak demand for each category (e.g., ADMD∞

is approximately ten times lower than ADMD1 for Affluent3+),
thus highlighting the importance of considering demand diver-
sity while estimating the peak demand for practical applications
such as operation and planning. Finally, compared with the em-
pirical value (i.e., ADMD∞ = 2 kW), which has been widely
used in DNO’s network design [27], lower values for different
categories are presented in Fig. 6, indicating the overestima-
tion problem of using the heuristic value and demonstrating the
benefits of employing the proposed data-driven approach.
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Fig. 6. ADMDn curve for all the nine categories estimated via M4.

TABLE VI
PEAK DEMAND ESTIMATION PERFORMANCE COMPARISON

FOR MULTIPLE CATEGORIES

M0 M1 M2 M3 M4

MAPE (%) 102.11 14.14 12.87 10.02 8.12
Pinball (kW) – 3.2509 2.9312 2.2236 1.8787

E. Results for Multiple Categories

The analyses in the previous sections have illustrated that
the tested methods for each of the nine categories show signifi-
cant differences in the performance of peak demand estimation.
However, it is a more realistic scenario for a DNO to perform the
network design across multiple categories with different num-
bers of future customers. Consequently, in this section, an exam-
ple of a multicategory case is described as follows: a new devel-
opment of 50 new one-bedroom flats, 30 new two-bedroom flats,
and ten new three-bedroom houses in the areas that fall within
the ACORN categories designated as Adverse, Comfortable,
and Affluent, respectively. The total coincident peak demand
for all the tested methods can be estimated following the steps
introduced in Section II by using the probabilistic NMDD val-
ues, obtained by normalizing ADMD n curves shown in Fig. 6.
Comparing the estimation performance of the different tested
methods, it is apparent that the gradually decreased MAPE and
pinball loss values shown in Table VI indicate the advantages of
considering the load modeling and sampling stage, the customer
grouping stage, and their combinations during the peak demand
estimation procedure. Specifically, in terms of the MAPE, M4
has an approximately 92% improvement when compared with
the empirical method M0. Additionally, from M4 to M1, there
is an approximately 42.21% reduction in the calculated pinball
loss value. Note that the pinball loss value cannot be calcu-
lated for the empirical method M0 because it is a deterministic
estimation method.

VI. CONCLUSION

In future smart cities, the coincident peak demand estimation
of new customers is one of the key challenges for designing

power equipment such as substations and power delivery lines.
This paper proposed a data-driven probabilistic peak demand
estimation method that includes four main stages. In the load
modeling and sampling stage, a novel VTRC method was pro-
posed to capture the complex dependencies among consumers.
In addition, a correlation-based hierarchical clustering method
was implemented in the customer grouping stage to improve
the performance of peak demand estimation. In this work, a
vast number of fine-grained smart meter data and the corre-
sponding sociodemographic data across 2639 customers were
provided by the LCL smart meter trial. Nine customer categories
were constructed according to the information of household oc-
cupancy (i.e., 1, 2, and 3+) and wealth level (i.e., Adverse,
Comfortable, and Affluent). Subsequently, M1, M2, M3, and
M4 were performed and compared in the context of different
numbers of ng . Moreover, this analysis was conducted for each
category. Finally, the case of multiple categories peak demand
estimation was investigated. Comparing the calculated MAPE
and pinball loss values of the tested methods, major conclusions
stemming from the analysis are that the performance of the es-
timated peak demand exhibits gradual improvements from the
empirical method to the data-driven method, from using his-
torical data to employing generated samples, and from random
customer selection to cluster-based selection.

Further research could focus on developing the proposed peak
load estimation method for a more complex situation with dis-
tributed photovoltaic, storages, and demand response.
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[2] C. Cecati, J. Kolbusz, P. Różycki, P. Siano, and B. M. Wilamowski, “A
novel RBF training algorithm for short-term electric load forecasting and
comparative studies,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6519–
6529, Oct. 2015.

[3] Y. Wang, Q. Chen, C. Kang, and Q. Xia, “Clustering of electricity con-
sumption behavior dynamics toward big data applications,” IEEE Trans.
Smart Grid, vol. 7, no. 5, pp. 2437–2447, Sep. 2016.

[4] P. G. Da Silva, D. Ilic, and S. Karnouskos, “The impact of smart grid
prosumer grouping on forecasting accuracy and its benefits for local elec-
tricity market trading,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 402–410,
Jan. 2014.



1618 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 66, NO. 2, FEBRUARY 2019

[5] M. Sun, I. Konstantelos, and G. Strbac, “Analysis of diversified residential
demand in London using smart meter and demographic data,” in Proc.
IEEE Power Energy Soc. Gen. Meeting, 2016, pp. 1–5.

[6] C. Barteczko-Hibbert, “After diversity maximum demand (ADMD) re-
port,” Report for the “Customer-Led Network Revolution” project,
Durham Univ., Durham, U.K., Rep. CLNR-L217, 2015.

[7] U. C. Chukwu, O. A. Nworgu, and D. O. Dike, “Impact of V2G penetration
on distribution system components using diversity factor,” in Proc. IEEE
SOUTHEASTCON, 2014, pp. 1–8.

[8] C. J. Ziser, Z. Dong, and T. K. Saha, “Probabilistic modelling of demand
diversity and its relationship with electricity market outcomes,” in Proc.
IEEE Power Eng. Soc. Gen. Meeting, 2007, pp. 1–6.

[9] R. Herman and C. T. Gaunt, “A practical probabilistic design procedure
for LV residential distribution systems,” IEEE Trans. Power Del., vol. 23,
no. 4, pp. 2247–2254, Oct. 2008.

[10] J. Munkhammar, J. Rydén, and J. Widén, “Characterizing probability
density distributions for household electricity load profiles from high-
resolution electricity use data,” Appl. Energy, vol. 135, pp. 382–390, 2014.

[11] D. H. McQueen, P. R. Hyland, and S. J. Watson, “Monte Carlo simulation
of residential electricity demand for forecasting maximum demand on
distribution networks,” IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1685–
1689, Aug. 2004.

[12] P. Boait, V. Advani, and R. Gammon, “Estimation of demand diversity and
daily demand profile for off-grid electrification in developing countries,”
Energy Sustain. Develop., vol. 29, pp. 135–141, 2015.

[13] Z. Wan, G. Wang, Y. Yang, and S. Shi, “SKM: Scalable key management
for advanced metering infrastructure in smart grids,” IEEE Trans. Ind.
Electron., vol. 61, no. 12, pp. 7055–7066, Dec. 2014.

[14] M. Sun, I. Konstantelos, and G. Strbac, “C-vine copula mixture model for
clustering of residential electrical load pattern data,” IEEE Trans. Power
Syst., vol. 32, no. 3, pp. 2382–2393, May 2017.

[15] X. Li, C. P. Bowers, and T. Schnier, “Classification of energy consumption
in buildings with outlier detection,” IEEE Trans. Ind. Electron., vol. 57,
no. 11, pp. 3639–3644, Nov. 2010.

[16] H. Yang and S.-Y. R. Hui, “Nonintrusive power measurement method with
phase detection for low-cost smart meters,” IEEE Trans. Ind. Electron.,
vol. 64, no. 5, pp. 3962–3969, May 2017.

[17] S. B. Taieb, R. Huser, R. J. Hyndman, and M. G. Genton, “Forecasting
uncertainty in electricity smart meter data by boosting additive quan-
tile regression,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2448–2455,
Sep. 2016.

[18] G. Chicco, “Customer behaviour and data analytics,” in Proc. Int. Conf.
Expo. Elect. Power Eng., 2016, pp. 771–779.

[19] R. Li, C. Gu, F. Li, G. Shaddick, and M. Dale, “Development of low
voltage network templates—Part II: Peak load estimation by clusterwise
regression,” IEEE Trans. Power Syst., vol. 30, no. 6, pp. 3045–3052,
Nov. 2015.

[20] R. B. Nelsen, “Introduction,” in An Introduction to Copulas. New York,
NY, USA: Springer, 1999, pp. 1–4.

[21] K. Aas, C. Czado, A. Frigessi, and H. Bakken, “Pair-copula constructions
of multiple dependence,” Insurance: Math. Econ., vol. 44, no. 2, pp. 182–
198, 2009.

[22] E. C. Brechmann, C. Czado, and K. Aas, “Truncated regular vines in high
dimensions with application to financial data,” Can. J. Statist., vol. 40,
no. 1, pp. 68–85, 2012.

[23] J. Dissmann, E. C. Brechmann, C. Czado, and D. Kurowicka, “Selecting
and estimating regular vine copulae and application to financial returns,”
Comput. Statist. Data Anal., vol. 59, pp. 52–69, 2013.

[24] M. Sun, I. Konstantelos, S. Tindemans, and G. Strbac, “Evaluating com-
posite approaches to modelling high-dimensional stochastic variables in
power systems,” in Proc. IEEE Power Syst. Comput. Conf., 2016, pp. 1–8.

[25] X. He and P. Niyogi, “Locality preserving projections,” in Proc. 16th Int.
Conf. Neural Inf. Process. Syst., 2004, pp. 153–160.

[26] T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and R. J. Hyndman,
“Probabilistic energy forecasting: Global energy forecasting competition
2014 and beyond,” Int. J. Forecast., vol. 32, pp. 896–913, 2016.

[27] T. Haggis, Network Design Manual, E.on, Essen, Germany, 2006.
[28] J. R. Schofield, R. Carmichael, S. H. Tindemans, M. Bilton, M. Woolf,

and G. Strbac, “Low Carbon London project: Data from the dynamic
time-of-use electricity pricing trial, 2013,” 2015.

Mingyang Sun (M’16) received the Ph.D. de-
gree in electrical and electronic engineering from
Imperial College London, London, U.K., in 2017.

He is currently a Research Associate at Im-
perial College London. His research interests in-
clude big data analytics in power systems.

Yi Wang (S’14) received the B.S. degree in elec-
trical engineering from the Huazhong University
of Science and Technology, Wuhan, China, in
2014. He is currently working toward the Ph.D.
degree in electrical engineering with Tsinghua
University, Beijing, China.

He is also a Visiting Student Researcher with
the University of Washington, Seattle, WA, USA.
His research interests include data analytics in
smart grids and multiple energy systems.

Goran Strbac (M’95) received the Ph.D. degree
in electrical engineering from the University of
Belgrade, Yugoslavia, in 1993.

He is a Professor of Electrical Energy Sys-
tems at Imperial College London, London, U.K.
His current research interests include operation,
planning and market design of flexible, low car-
bon energy systems.

Chongqing Kang (M’01–SM’08–F’17) received
the Ph.D. degree in electrical engineering from
Tsinghua University, Beijing, China, in 1997.

He is currently a Professor with Tsinghua Uni-
versity. His research interests include power sys-
tem planning, power system operation, renew-
able energy, low-carbon electricity technology,
and load forecasting.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


