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A peak-period taxi scheme design problem: formulation and policy

implications

Abstract

Taxis are one of the most important urban transportation modes which provide prompt
and comfortable service to customers. It is commonly known that demand for and
supply of taxis fluctuate at different times of a day, leading to peak periods when
customer waiting time for taxis is longer and the quality of taxi service is lower than
that of the off-peak periods. There have been real-world practices to mitigate the
demand-supply imbalance and improve the service quality of taxis during peak periods.
For example, a peak-period surcharge is imposed on taxi passengers in Singapore; the
city of Perth in Australia introduces a fleet of peak-period taxis (PTs) which are allowed
to operate within specific hours as the additional supply to the market. However, there
lacks theoretical evidence to tell which means (or both) should be implemented and it
is also unclear which factor(s) is determinant to the optimal surcharge and the optimal
fleet size and shift of PTs. Moreover, there is no methodology to design the optimal
shifts (the permitted operating hours) and fleet size of PTs and the optimal peak-period
surcharge. To tackle the above issues, this paper proposes a peak-period taxi scheme
design problem (PTSDP) that aims to determine the optimal fleet size/shifts of PTs and
a peak-period taxi surcharge. The problem is formulated as a bi-level optimization
model in which the upper level is the regulator (government) problem and the lower
level stands for the taxi driver problem. The model is solved by a brute force method
combined with the Hooke-Jeeves pattern search and the Frank-Wolfe algorithm.
Numerical examples are given to give policy implications and managerial insights into

the regulation of taxi markets.

Keywords:
Taxi market regulation; taxi shift; peak-hour taxi; peak-hour surcharge; bi-level

optimization

1. Introduction

Taxis offer round-the-clock and door-to-door services to customers with comforts and
speed. As one of the most important urban transportation modes, taxis take up a large
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proportion of daily trips. For example, in Hong Kong, there are in total 18,163 taxis
running in the city that takes nearly one million passengers daily (GovHK, 2020a). In
New York City, over 130000 taxis serve around 1000000 trips every day (TLC, 2019).

It is well-known that the demand for and supply of taxi services vary during different
hours of a day and that the demand-supply imbalance of taxi markets exists, resulting
in peak periods in which customer waiting time for taxis is longer and the quality of
taxi services is lower than that of the off-peak periods.

To tackle the demand-supply imbalance during peak-periods, two main ways can be
found in several real-world practices, namely the implementation of peak-period taxi
surcharge and the introduction of peak-period taxis (PTs). For example, Singapore
implements a peak-period surcharge to taxi passengers with an additional 25% price on
top of the meter fare of each ride. The peak-period surcharge is effective in two periods.
The first one is from 6 a.m. to 9 a.m. from Monday to Friday and the second one refers
to the time from 6 p.m. to 12 a.m. on any day. According to SG Observer (2019), the
idea behind the surcharge is to adjust the prices of the taxi rides to match customer
demand with driver supply. Raising the taxi fares during peak periods can ensure that
there are sufficient cabs around for passengers during these times.

Another example can be found in the city of Perth in Australia, where the Department
of Transport introduced a fleet of PTs to the city. There were 1493 conventional taxis
and 293 PTs operating in the city in 2016 (GovWA, 2016). The PTs must operate on
Friday and Saturday nights (5 p.m. to 6 p.m.) and may work in the other three optional
time slots (see Table 1). According to the introduction from the Swan Taxi Limited
(2019), the main purpose of PTs is to increase the taxi fleet size in Perth during peak
periods to reduce the customer waiting time for taxis.

The above real-world practices, yet, bring some critical questions to our attention.
First, there lacks theoretical evidence to tell which means (peak-period surcharge or
PTs) or both should be implemented in resolving demand-supply imbalance during
peak periods. On one hand, imposing a peak-period surcharge lowers the customer
waiting time for taxis by pricing out a certain number of passengers, which implies that
consumer surplus also decreases. On the other hand, although introducing PTs brings
more taxis on streets so that customer waiting time for taxis falls, the existing taxis in
the market may earn less as now more taxis are competing with them, which leads to a
lower producer surplus. Therefore, it is still necessary to verify whether we should
adopt a peak-period surcharge or PTs (or both) to reduce the customer waiting time for

taxis while social welfare can be properly sustained.
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Table 1 Optional operating time slots for PTs in Perth (GovWA, 2014)

Time slots Effective day(s) of week Permitted operating hours
1 Friday From 4 p.m. onwards

2 Monday to Friday 4am.to9am.

3 Sunday 6 p.m. to 12 a.m.

The second critical question is how to determine the optimal shifts of PTs, the
optimal fleet size of PTs, and the optimal peak-period surcharge. Normally, a taxi shift
refers to a set of consecutive hours during which taxi drivers are permitted to work. In
many cities around the world (e.g., Beijing, Hong Kong, Sydney, and Barcelona), the
same fleet of taxis is usually operated by more than one group of drivers, dividing a day
into several shifts. Within a driver's shift, he can freely design his work schedule (when
to start and end working). The same mechanism also applies to PTs, which are
introduced to serve the passengers within confined periods. Although the introduction
of PTs aims at addressing demand-supply imbalance during peak periods, it is worth
investigating whether the PT shifts should cover off-peak hours to achieve better system
performance (e.g., higher social welfare). It is important to have a methodology to
answer this question. Moreover, it is essential to have a methodology to determine the
optimal PT fleet size and peak-period surcharge to maximize social welfare.

The final question is what the determinant factors to the optimal peak-period
surcharge and the optimal PT fleet size and shifts are. Understanding these factors can
help the government to draw policy insights and select an appropriate strategy in
different scenarios to regulate the taxi market. We believe that the above three questions
are related to the regulation of taxi markets in terms of price, fleet size, shift design,
and labor supply. Section 2 reviews the existing literature related to these topics and

points out the contributions of this study.

2. Literature review, research scope, and contributions

This study is related to the temporally heterogeneous taxi fleet size and pricing
regulations, in which the supply of taxi service (or the service intensity) is a result of
the scheduling decisions by individual taxi drivers. There have been extensive studies
on fleet size and pricing regulations of taxi markets, most of which followed the work
by Douglas (1972). For example, Arnott (1996) proposed an aggregate taxi model that
depicted demand-supply equilibrium without congestion effects in a simplified circle
city and revealed that the first-best taxi fare per ride should only cover the operating
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cost of a taxi during ride time. Therefore, all taxis are operating at a loss equal to the
vacant time and need to be subsidized. Yang et al. (2005a) incorporated congestion
effects into the aggregate taxi model and investigated the corresponding optimal taxi
fare and fleet size. They found that the first-best taxi fare per ride should cover, in
addition to the operating cost of a taxi during ride time, a cost related to the congestion
effects. Yang and Yang (2011) proposed a function with constant and nonconstant
returns to scale to spell out the bilateral searching and meeting process between taxis
and customers in a congestion-free market. They showed that the first-best taxi fare
should be higher than, equal to, or lower than the operating cost of a taxi during ride
time, depending on the returns to scale of the meeting function. Until most recently,
more and more attention has been paid to the emerging e-hailing taxi platforms, which
provide customers with more convenient taxi services compared with the traditional
street-hailing mode. For example, He and Shen (2015) considered both the street-
hailing and e-hailing modes in a taxi market. Customers could choose between the two
hailing modes when traveling, while vacant taxi drivers could also choose to pick up a
passenger through e-hailing or street-hailing. Wang et al. (2016) investigated the
pricing strategies for a taxi e-hailing platform, which included the platform’s charges
on taxi drivers and passengers. They analytically showed the conditions under which a
price perturbation (a small change in charges on taxi drivers and customers) can affect
the system performance, including the platform profit, customer waiting time, and
market equilibrium. He et al. (2018) studied the optimal pricing and
penalty/compensation strategies for a taxi hailing-platform. The penalty/compensation
strategy was designed to penalize customers who had already reserve a taxi through the
taxi-hailing app but canceled the order by taking another taxi through street-hailing
before being picked up by the reserved taxi. Two optimization models were formulated
that maximized social welfare and platform’s revenue, respectively.

The above studies assumed a one-hour modeling period to represent the market
situation, which failed to capture the temporal dynamics of customer demand.
Moreover, they assumed all drivers are mandated to work during the modeling period,
which did not capture the supply variation of drivers in a day. Therefore, a series of
studies have been conducted to model the temporal dynamics of taxi markets and to
explore the scheduling behaviors of taxi drivers. Cairns and Liston-Heyes (1996) first
modified the aggregate taxi model by assuming that taxi drivers can choose the number
of hours to work each day, while the customer demand and the total number of taxis in

service were still assumed to be uniformly distributed throughout the day. Camerer et
5
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al. (1997) investigated the relationship between the taxi drivers' work duration and the
level of income with the data on trip sheets of New York City taxi drivers. They
reported a negative wage elasticity among drivers (i.e., a higher wage leads to a shorter
work duration) and argued that the drivers stopped working if they earned a targeted
income. In contrast, Farber (2005) and Farber (2015) reported a positive wage elasticity
among taxi drivers in New York based on taxi trip sheets and GPS-based taxi trip data.
Yang et al. (2005b) proposed a multi-period dynamic model with service intensity as
an endogenous variable. In their model, a day is divided into 24 hours in which
customer demand varies. Taxi drivers were assumed to be homogeneous and could
freely choose their working schedules so that the number of taxis in service also varies
across the day. The scheduling behaviors of taxi drivers were formulated as an
equilibrium problem in the time-expanded network. Recently, Qian and Ukkusuri (2017)
proposed a time-of-day dynamic pricing scheme to increase the total taxi revenue in a
day. The temporal dynamic of a taxi market was modeled as a semi-Markov process.
By using the New York City taxi trip data, they found that the dynamic pricing scheme
can increase the total taxi revenue by more than 10%.

In addition to the studies on the temporal dynamics of taxi markets, we notice that
there is a series of similar studies on the ride-sourcing markets. Both the taxi drivers
and the ride-sourcing drivers can design their own schedules, although ride-sourcing
drivers may enjoy a higher degree of freedom because, in many cities, taxi drivers'
schedules are usually confined to the shift they work in. As the shift ends, taxi drivers
hand over the vehicles to those working in the next shift. Chen and Shelton (2015)
reported a positive wage elasticity among ride-sourcing drivers using a randomly-
chosen dataset from Uber. Zha et al. (2018) studied the surge pricing and labor supply
with heterogeneous ride-sourcing drivers who have different preferences in the
start/end time of work and the target income level. The time-expanded network
proposed by Yang et al. (2005b) was adopted in their study to model the scheduling
behaviors of the ride-sourcing drivers. Ke et al. (2019a) further used the time-expanded
network to investigate the scheduling and recharging behaviors of ride-sourcing drivers
considering both electric and gasoline vehicles. Sun et al. (2019a) simultaneously
investigated the participating decisions and working-hour decisions of the ride-sourcing
drivers. They empirically found a positive and significant elasticity in both participation
and work hours. Sun et al. (2019b) modeled the drivers’ participating decisions and
working hour decisions with an objective to maximize their utility from income and

leisure time. They revealed that the participating and working hour decisions are
6
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dependent on drivers’ heterogeneous characteristics such as their other income, idle
time, and leisure time. Guda and Submaranian (2019) investigated how should the ride-
sourcing platforms manage the drivers through surge pricing, forecast communication,
and driver incentives. In their model, the time horizon was comprised of two successive
periods, in which customer demand varies. Yang et al. (2020b) proposed a reward
scheme integrated with surge pricing for ride-sourcing passengers to balance demand
and supply. They considered two types of periods for trips, namely peak and off-peak
periods with relatively low and high demand, respectively. Other studies that involved
the temporal dynamics of ride-sourcing markets include demand forecasting (Ke et al.,
2017, 2019b), optimal matching strategy between passengers and drivers (Yang et al.,
2020a; Ke et al., 2020), etc.

The above studies on the temporal dynamics of taxi or ride-sourcing markets and the
scheduling behaviors of drivers rarely considered the existence of shifts, the PTs, and
peak-hour surcharges. As mentioned in Section 1, taxi shifts are commonly observed
in taxi markets around the world and it is necessary to model taxi shifts, especially if
we aim to design the optimal shifts for PTs. Unfortunately, few studies can be found on
providing a methodology to design the optimal shift design for taxis. Salanova and
Estrada (2019) investigated the optimal shifts and fares for the Barcelona taxi market.
In Barcelona, the number of taxis is under strict regulation from the government, while
the number of licensed drivers is unregulated. A taxi may be operated by more than one
driver in a day so that the total working hour per taxi increases, which results in
oversupply during some periods of a day. In their paper, regulating taxi shifts means to
determine the maximum number of hours permitted for a taxi to run on streets to
mitigate oversupply, which is different from the concept of our study defined in Section
1. Moreover, their study assumes the fleet size is known and does not consider another
important regulation strategy, the peak-hour surcharge, to deal with the demand-supply
imbalance during peak hours. In terms of surcharge, although surge pricing has been
proposed in taxi or ride-sourcing markets (e.g., Qian and Ukkusuri, 2017; Zha et al.,
2018), it is different from the concept of surcharge. Generally, surge pricing means to
alter the trip fare in every short time interval, which is easy to implement based on the
smartphone ride-sourcing apps. However, for traditional taxi industries in which trip
fare is usually regulated by the government and taxi-hailing apps may not be very
common, the applicability of such a highly time-dependent pricing scheme is still

debatable. On the contrary, a surcharge that is only implemented on top of the regular
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taxi fare in several hours of a day with a fixed extra trip fare on passengers can be more
applicable to traditional taxi markets.

Based on the above literature review and the introduction, we can summarize the
following research gaps. First, there lacks theoretical evidence to justify which of the
following means (or both) can address the demand-supply imbalance of taxi service
during peak periods, namely implementing peak-period taxi surcharges and introducing
PTs. Second, there is no methodology to design the optimal shifts and fleet size of PTs
and optimal peak-period surcharge. Third, it is also unclear what the determinant factors
are to the optimal surcharge, and the optimal PT fleet size and shifts.

To fill the research gaps, this study proposes a peak-period taxi scheme design
problem (PTSDP) to simultaneously determine the peak-period taxi surcharge and the
optimal fleet size and shifts of PTs in a regulated taxi market. We assume there is a
fleet of normal taxis (NTs) in the market and the taxi fare per ride is given. A time-
expanded network, which divides the span of a day into 24 periods with each equal to
1 hour, is adapted from the network of Zha et al. (2018) to depict the time-of-day
dynamics of demand for and supply of taxis in the market. Customer demand for taxis
in each period is assumed to be a monotonically decreasing function of taxi fare, in-
vehicle travel time, and customer waiting time for taxis in that period. We assume that
NT and PT drivers are mutually exclusive and all drivers are working on a shift basis.
The NTs are driven by two groups of drivers with an equal number in two non-
overlapping shifts, and each shift counts for 12 hours. Moreover, we assume that taxi
drivers are mandated in terms of shift choice but can freely design their work schedules
within the designated shift.

The PTSDP is formulated as a bi-level optimization program. The upper level is the
regulator (government) problem and the lower level refers to the taxi driver problem.
The upper-level objective is to maximize social welfare by determining the optimal
fleet size and shifts of PTs and the optimal surcharge for taxi passengers. Meanwhile,
we require that the level of taxi service, which is represented by the customer waiting
time for taxis, must be higher than a pre-determined value throughout the day. The
lower-level problem is adapted from the problem of Zha et al. (2018), which describes
the equilibrium of taxi drivers' scheduling behaviors. The upper-level problem is solved
by a brute force method with Hooke-Jeeves pattern search and the lower-level problem
is solved by the famous Frank-Wolfe algorithm. Numerical experiments are conducted
to give policy implications and managerial insights into the regulation of taxi markets.

The main contributions of this paper are summarized as follows.
8
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1. We propose a new peak-period taxi scheme design problem that focuses on the
management of taxi markets during peak-periods;

2. We propose a bi-level formulation of the problem and a solution method to solve
the problem;

3. We justify the choice of implementing peak-period taxi surcharges or
introducing PTs to resolve the demand-supply imbalance of taxi services during
peak periods;

4. We identify determinant factors to the optimal fleet size and shifts of PTs,
thereby providing insights into the regulation of taxi markets.

The remainder of this paper is organized as follows. Section 3 provides modeling

preliminaries. Section 4 proposes the bi-level formulation of the PTSDP. Section 5
introduces the solution method to the proposed bi-level model. Section 6 presents the

numerical examples and gives policy insights. Finally, Section 7 concludes the paper.

3. Preliminaries

This section presents the basic modeling preliminaries. Section 3.1 introduces our
proposed time-expanded network adapted from the network of Zha et al. (2018).
Section 3.2 gives the definitions and assumptions of taxi drivers in the market and their
cost structure. Section 3.3 presents the aggregate taxi model, which spells out the
demand-supply equilibrium of taxi service in each period defined in the time-expanded

network. Appendix A summarizes the main notations used in this paper.

3.1. The time-expanded network

A time-expanded network to describe the temporal dynamics of a taxi market was first
proposed by Yang et al. (2005b) and was modified later by Zha et al. (2018) and Ke et
al. (2019a) to study the ride-sourcing market. We adapt the version of Zha et al. (2018)
yet present the network in a different way to suit our application (see Figure 1). We

denote the network as G(T,A) inwhich T is the set of nodes and A is the set of

links. A day is equally divided into 24 periods and each period accounts for one hour.
In the time-expanded network, all taxi drivers are assumed to travel from the origin
node O to the destination node D by traversing nodes and links of the network. As

shown in Figure 1, there are two sets of nodes indexed as 1,2,...,24 and 1,2',...,24’.
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The nodes indexed with the same number represent the same time (e.g., both 1 and
1" represent 1a.m., 13 and 13’ represent 1 p.m., etc.).
The link set A can be further divided into five subsets, which are denoted as

A, — A, and represent the sets of entry, work, rest, transition, and exit links. All links

are directed links except for the transition links. Corresponding to the work and rest

links, we call the nodes 1,2,...,24, asthe work nodes and 1,2',...,24" asthe rest nodes.
Time is consumed only on work and rest links, during which a driver chooses to work
or rest. We use (e,u) as an alternative expression of links in the time-expanded
network for a better presentation of our optimization model in Section 4, in which

e,ueT.Awork (rest) link (e,u) stands for the period from e a.m. (or e-12 p.m.)

to u am. (u-12 p.m.).

A work schedule of taxi drivers can be viewed as a path in the time-expanded
network connecting @) to D. For example, a path
0515253545555 56 —>6—>7—>7 — D meansthat a taxi driver starts
to work at 1 a.m., takes a rest from 5 a.m. to 6 a.m., goes back to work until 7 a.m., and
stops working.

In many cities, the same fleet of taxis is usually operated by more than one group of
drivers, splitting a day into several shifts. For example, there are two shifts in Hong
Kong for all taxi drivers, with each shift lasts for 12 hours. The day shift is from 4 a.m.
to 4 p.m., while the night shift begins at 4 p.m. and ends at 4 a.m. Drivers working in a
shift can freely design their work schedules, but the schedules cannot start earlier (end
later) than the start (end) time of the shift. Generally, the start and end times of shifts
are determined either by consensus among drivers (e.g., taxi shifts in Hong Kong) or
by the government. We note that the existence of shifts creates a service time restriction
to taxi drivers, which can be viewed as a restriction of traversing certain links/nodes in

the time-expanded network.

10
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Figure 1 The time-expanded network

3.2. Taxi drivers and their costs

In this study, we assume two types of taxis in the market, namely NTs and PTs. NTs
are those that already exist in the market, while PTs are to be introduced into the market

by the government. We denote the fleet sizesof NTsand PTsas N" (model parameter)

and NP (decision variable), respectively. Corresponding to NTs and PTs, there are
NT and PT drivers that are mutually exclusive. We specify the following:
Assumption 1. NT drivers are full-time drivers and PT drivers are part-time drivers.

Full-time and part-time drivers are different in terms of their cost to work, which will
be illustrated later in this section.

As introduced in Section 3.1, we consider different shifts of taxis, which means that
NTs and PTs are operated by more than one group of NT and PT drivers, respectively.
In reality, drivers may have the freedom to choose a shift to work in but for simplicity,
we make the following assumption:

Assumption 2. Taxis drivers are mandated to work in a particular shift but are free to
design their schedules within their designated shift. Each driver works for one shift in
a day and the number of NT (PT) drivers working in each NT (PT) shift is equal to the

fleet size of NTs (PTs).
11
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Under Assumption 2, we further categorize taxi drivers based on the shift that they

work in. We define D ={d|d =1,2,...|D} as the set of driver groups. Each d e D

represents a group of taxi drivers working in a shift. The cardinality of D, i.e., |D|

indicates the number of driver groups in the market, including the NT and PT shifts.
Figure 2 illustrates the relationships between taxis, taxi drivers, and driver groups when
there are two shifts for NT and PT drivers. The NT (PT) fleet is assigned to two groups
of NT (PT) drivers, with each group working in a shift.

NTs PTs

RN RN

Full-time NT drivers Full-time NT drivers Part-time PT drivers Part-time PT drivers
for shift 1 (d=1) for shift 2 (d=2) for shift 3 (d=3) for shift 4 (d=4)

Figure 2 Relationship between taxis, taxi drivers, and driver groups

We also point out that the requirements of NT and PT shifts are different. First, for
each driver group, their shifts are mutually non-overlapping. Second, NT shifts must
cover the whole span of a day since NTs are expected to be available to customers at
any time of the day. Such a requirement does not apply to PT shifts since PTs serve as
the supplementary supply to customers. Therefore, PT shifts may only cover some
hours of a day. A PT shift may start several hours after the last PT shift ends and
terminates earlier than the start time of the next PT shift. Third, like the assumption
about the fleet sizes of NTs, we assume that the NT shifts are given and fixed, while

the government determines the start and end times of PT shifts.

On each link (e,u) € A, we denote v,, as the number of taxis (service intensity)
traversing link (e,u), which can be calculated as
Ve, = Ve, V(E,U) € A, @

deD
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in which vju is the number of group d drivers traversing link (e,u).Welet P be

the path set that contains all paths connecting the O-D pair® in the time-expanded

network and the number of group d drivers that choose peP as their work
schedule is denoted as fpd . In this regard, Vv, can be expressed as

vi, =Y flof, v(eu)eA. (2)

eu’
peP

@> is the link-path incidence indicator which equals 1 if path p traverses link

eu

(e,u), and 0 otherwise. Substituting Eq. (2) into Eq. (1) gives
Vo= o V(e u)eA. )

deD peP
In terms of the cost of taxi drivers, we assume two types of costs incurred to each

taxi driver in group d e D . The first type of cost is called the link-specific cost

d
eu’

C..,(e,u) € A, meaning the cost incurred by traversing a particular link in the time-

expanded network. The link-specific cost can be further divided into five types
according to the link type, namely entry cost, work cost, transition cost, rest cost, and
exit cost. Different types of link-specific costs have different meanings. For example,
the entry cost can represent the fixed cost of a driver (e.g., the rental fee charged by taxi
owners or the opportunity cost of being a taxi driver) and the work cost can stand for

the hourly operating cost of a taxi.
The second type of cost, namely the path-specific (duration) cost C‘;, pe P, captures
the cumulative effect of work duration on group d drivers and is expressed as

Cf) :Zald (h:))“g ,VpeP,d eD, (4)

leL
in which h:, is the length of sub-shift | in path p. For a path in the time-expanded
network, a sub-shift | e L is defined as a consecutive period in which the drivers work.
Figure 3 shows an example of sub-shifts in a path, in which a path consists of work

nodes 13, 14, 15, 16, and 17. Therefore, there are two sub-shifts in this path, the first
sub-shift is from node 13 to node 15 with a length as 2, and the second sub-shift is from

node 16 to node 17, which lasts for 1 hour. o and «) are positive parameters and

1 As drivers’ possible schedules (paths) are confined within their shifts, the path set that contains all possible paths
within a shift is obviously a subset of P
13
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we assume ¢ >1 to show that the duration cost incurred to drivers increases more

than linearly as total work hour increases.

O)—O—0—0 ©—0O
~ —

1=LH =2 I=|L|=2.1 =1

Figure 3 Example of sub-shifts in a path

3.3. Demand-supply equilibrium of the taxi market in each period

Customer demand varies across different periods (hours) of a day. We use an aggregate
taxi model to describe the demand-supply equilibrium of the taxi market in each period.
First, we assume that NTs and PTs have the same fare level and vehicle type, which

means that they can be treated as a single traffic mode and customers have no preference

between NTs and PTs. In any period (e,u) € A, a Cobb-Douglas meeting function is
used to quantify the meeting rate K, between taxis and customers as
Keu :®(Nglu)ﬁ1(Necu)ﬂzl V(e’u) € A11 (5)

in which N =w.V,, and N:=wQ, are the numbers of vacant taxis and

buVeu
unserved customers in period (e,u), respectively. Note that N; and N; are
period-specific and independent of those in other periods. The situation in which the
unserved customers and vacant taxis in one period move into the next period is not
considered in this study. In a stationary equilibrium, we have

K =Ve =Q» V(BU)EA, (6)
which gives an expression of customer waiting time for taxis as

L wAs A
W, =(0) 2(Q,) = (W), V(eu)eA. (7

The customer demand for taxis Q,, is assumed to be a strictly decreasing function

of the full price of taking taxis p,, as

Qeu =QEU (peu) ZQGU(FGU’IGU’WGCU)’ v(e’u) € ,Al’ (8)
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inwhich p,, isa function of taxi fare per ride F,,, the in-vehicle travel time |,,, and

eu’?
the customer waiting time for taxis w;, as
Po =F,, +0l, +xW,,, V(e,u)eA. 9)
In Eq. (9), 6§ and « are values of customers' in-vehicle travel time and waiting

time for taxis. The in-vehicle travel time |, is assumed to be given because

congestion effects are not considered in this study for simplicity. The taxi fare per ride
is expressed as

F,=F+u.,, VEeueA, (10)
inwhich F is the flag fare and is assumed to be equal among different periods. y is
a decision variable to be determined by the government representing the taxi surcharge.

X, IS a binary decision variable which equals 1 if taxi surcharge is implemented in
period (e,u), and O otherwise. Therefore, the term jy,, indicates that the taxi

surcharge is implemented only within the PT shifts and is identical among periods that
belong to the PT shifts.

For each period (g,u), the values of Q and W, can be obtained by

eu ? EU 1 eu

solving the system of equations (7)-(10), given the values of y, x,,,and v,

Once we obtain Q,, and F

eu?

the average taxi revenue in period (e,u) can be

calculated as

R :%, V(e,u)e A, (11)

eu
eu

inwhich F,,Q,, stands for the total revenue collected from taxi trips in period (e,u).

It is necessary to note that the marginal average revenue with respectto v,, isgiven

as
8Reu :i aQeu B Feu?eu eu (aQeu Veu l), \v/(e’u) c ,A1 (12)
N, Y, OV, VS veu Ney Qe

In Eq. (12), Oy Ve is the elasticity of the customer demand with respect to the

eu eu

total taxi service hour in period (e,u). Clearly, the marginal average revenue of taxi

OQu Vo
aVeu Qeu .

drivers can be either positive or negative depending on the elasticity term

However, the situation in which 25—9“ >0 only occurs with an unrealistically small
eu
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value of v, . It is more commonly observed that the increase in v,, leads toa fall in

R,, (Yang et al., 2005a). Hence, we make the following assumption for the analysis

hereinafter.

Assumption 3. For V(e,u)e A, 25—9“ <0 isalways satisfied.

eu

4. A bi-level formulation of PTSDP

The PTSDP can be formulated as a bi-level optimization program, in which the upper
level refers to the government problem and the lower level represents the problem of
taxi drivers (both the NT and PT drivers). This section presents the formulation of the

bi-level program.

4.1. Upper-level formulation

We assume the following market scenario. There is a fleet of NTs (the fleet sizeis N")
operated by two groups of NT drivers in two shifts. The morning shift is from 4 a.m. to
4 p.m., while the evening shift is from 4 p.m. to 4 a.m. For simplicity, we assume two
non-overlapping PT shifts to be determined by the regulator, with each shift at least
covering a set of peak periods in a day (morning and afternoon peaks). The two sets of
peak periods are the same as those reported by the Annual Traffic Census (GovHK,
2017). The morning peak lasts from 7 a.m. to 9 a.m., while the afternoon peak is from
4 p.m. to 7 p.m. Now, the government plans to introduce a fleet of PTs, design two non-
overlapping PT shifts, and set a taxi surcharge during the PT shifts. We let d =1 and
d =2 be the driver groups of morning and evening NT shifts, respectively, and let
d=3 and d=4 be the driver groups of morning and afternoon PT shifts,
respectively.

To facilitate the expression of our model, we denote T,={t|t=12,3,...,24} as the

set of work nodes of the time-expanded network. To design a shift is equivalent to
selecting work nodes and links between each pair of adjacent work nodes to form a
connected sub-network of the time-expanded network. In graph theory, a sub-network
(or sub-graph) of a network is a network whose nodes (links) form a subset of the nodes
(links) of the network. A connected sub-network must satisfy the contiguity condition,

which requires that there exists at least one path connecting any two work nodes in the
16
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sub-network without traversing any work node that does not belong to the sub-network.
Figure 4 shows the difference between connected and disconnected sub-networks, in
which (a) is the work-node circle as shown in Figure 1. Both (b) and (c) are sub-
networks of (a). (b) is a connected sub-network but (c) is a disconnected one (e.g., there

is no path from node 1 to node 4).

/ (b) Connected sub-network

N v

(a) Work-node circle

®
©)
O
O,

(£

(c) Disconnected sub-network
Figure 4 Illustrative examples of connected and dis-connected sub-networks
To model the contiguity condition, we adopted the formulation approach proposed
by Shirabe (2005), which assumed the following mechanism. For any shift design, we
arbitrarily choose one work node as the sink and every other work node provides at
least one unit of supply (imaginary flow). Then for a shift to be contiguous (i.e., for a
non-split shift), supply sent from every source node must ultimately arrive at the sink
without passing through any work node or link that is not included in the sub-network.

The objective of the government is to maximize social welfare. We also require that

customer waiting time for taxis in each period W,

£ (e,u)e A is not larger than a
predetermined value to ensure the quality of taxi services throughout the day.
We give the upper-level mathematical program as follows.
m = . F.Q, — ve el —ficT
ax S= 3 [ Qpde+ X RQ-> X vich-fel (13)

p
Xy 87N (euyen ~ PR (e.u)eA deD (e'u)eA

S.t.
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W, <n, V(e,u) e A, (14)

s’ =1, (15)
te{7,8,9}
st =1, (16)
t{16,17,18,19}
D Ve <(K-DX{, vd e{3,4}, e€T, (17)
{ul(u.e)eA}
doya— D YL =XI-Ks!, vde{34}, eeT, (18)
{ul(e.u)eA} {ul(u.e)eA}
XS+ X8 >240 V(e,u)e A, de{3,4}, (19)
> <1, V(e u)eA, (20)
de{3,4}
D =X V(EU)EA, (21)
def3,4}
X! ={0,1}, vd e{3,4}, teT, (22)
s’ ={0,}, vd €{3,4}, teT,, (23)
¢edu ={0,1}, V(e,u) e A, d e{3,4}, (24)
X ={0.1}, V(e,u) e A, (25)
yo >0, V(e,u) e A, d e{3,4}, (26)
720, and (27)
NP >0. (28)

In objective (13), the flow vector f* is obtained by solving the lower-level problem

T

defined in Section 4.2 for any fixed X,y,%®,s,7, and NP. c" is the transpose of

the path cost vector c:[cg],VpeP,Vd e D . According to our definition, the

generalized cost p,, , customer demand Q,, , and link flow V&, are functions of f*.

For variables and parameters, Xtd is a binary decision variable which equals 1 if work
node t is included in the sub-network for the shift of group d drivers, and O

otherwise. #° is a binary decision variable which equals 1 if work link (g,u) is

selected into the sub-network for the shift of group d drivers and, O otherwise. std IS
a binary decision variable which equals 1 if work node t is chosen as the sink, and 0

otherwise. Yo, is a non-negative continuous decision variable that indicates the
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amount of imaginary flow of group d drivers from e to u. y isthe non-negative

continuous decision variable that reflects the level of taxi surcharge. K is equal to the

number of work nodes that can be selected, i.e.,, K=24 . Lastly, we have
X=(X!,vd e{3,4}teT) , y=(ys,vd e{3,4},(e,u) € A) ,
@ = (¢, V(e,u) e A,d e{3,4}) , 1= (X, V(&,U) €A) , and
s=(s’,vd e{3,4}teT).

The objective (13) aims at maximizing social welfare, which is the sum of total

+00
consumer  surplus ZI Q.. (p)do and total  producer  surplus
(e,u)eAi Peu

d ~d * T
> FQu-D, > vi,cd, —fc’ . Total consumer surplus and total producer

(e,u)eA deD (e',u’)eA
surplus are functions of (X,y,%,®,s,7,N?) and f* in which f* solves the lower-

level problem for a given (X,y,y®,s,7, N?) determined by the regulator. We use
Figure 5 to elaborate on the calculation of consumer surplus and taxi revenue. Figure 5

shows a general demand curve Q,, against the full-price of taking taxis p,,. For a

specific point on the curve (Qeuiﬁeu) , the figure shows that p,, is comprised of the

trip fare F,,, the travel time cost &I,

eu’ eu’

and the waiting time cost xW;,. Clearly, the
blue area stands for the taxi revenue F,Q,, and the yellow area represents the total

waiting time cost xW:,Q,, . According to the economic theory, the consumer surplus

is represented by the green area, which can be calculated by the integral

J Pw Qu (w)aw= | Fwan g, Qe (W)W
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Total waiting time cost Kﬁ';éﬂ,

Qen fo”

Figure 5 Diagrammatic representation of full-price and customer demand

Constraint (14) is the level-of-service (LOS) constraint for the taxi service, which
requires that customer waiting time for taxis in each period must be no higher than a

pre-determined level 77. The parameter 77 can be viewed as the LOS index. The
lower the value 7, the higher the LOS for the taxi service. The LOS constraint is to

assist the government in designing the optimal peak-period surcharge and the optimal

PT shifts and fleet size. Yet, the LOS constraint and 7 do not necessarily affect

customer demand. The customer demand Q,, is affected by waiting time w;, in a

way described by the demand function Eq. (8). Constraints (15) and (16) indicate that
the sink of each sub-network for a PT shift must be chosen within the corresponding
peak period. Constraint (17) requires that the total imaginary inflow of the sub-network
of each PT shiftto any node e isnon-positiveif e isnotincluded in the sub-network.
It also requires that the total inflow cannot exceed the maximum total network supply
(K-1) if e isincluded in the sub-network. Moreover, the maximum total supply in
a K -node network isequal to K —1 because we have one node selected as a sink that
provides no supply and others provide at least one unit of supply. If all K nodes are
chosen, then each non-sink node provides exactly one unit of supply and the total supply
is K-1.

Constraint (18) represents the imaginary outflow of the sub-network of each PT shift
from node €. It ensures that any selected non-sink node provides at least 1 unit of
supply. Note that when X ¢=1 and s!=1 (node e is selected as a sink), Constraint
(17) is still consistent with Constraint (18). Constraint (19) indicates that a work link

is selected into the sub-network of group d drivers if and only if both its start and end
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nodes are included in that sub-network. Constraint (20) requires that a work link cannot
be included in the sub-networks of both PT shifts. Constraint (21) means that the taxi
surcharge is implemented on link (e,u) if and only if the corresponding work link of
(e,u) belongs to the sub-network of a PT shift. Finally, Constraints (22) to (28)

define the variable domains.
With the formulation of the upper-level problem, we have the following proposition

regarding the lower bound of PT fleet size:

Proposition 1. Given any NT fleet size N" >0, a lower bound of PT fleet size NP
can be calculated as N = max(arg max {veu|we°u (Ve Qo) =1, V(e,U) € Ai} -N ”,0).

Proof. In view of the fact that customer demands in different periods are independent
of each other and that customer waiting time in any period (e,u) monotonically
decreases with service intensity (the number of taxis) v,, (Yang et al., 2005b), there
is a minimum required service intensity V,, for each period (e,u) with which the

LOS constraint is binding (i.e., W, (V,,,Q.,)=7). Clearly, the largest v,, among all

24 periods is the minimum service intensity required so that all periods satisfy the LOS

constraint (i.e., v,, =arg max{veu|we°u (v, Q. )=mV(e,u) e Ai}). Therefore, the total

T}

taxi fleet size N"+NP should at least equal V., , which implies N°>v, —N".

—eu ! — —eu
Moreover, NP is nonnegative. Therefore, a lower bound for the PT fleet size is
NP = max(arg max{veu|we°u (v,,Q.)=mV(eu) e Al} - Nn’o).
Proposition 1 further gives rise to the following corollary:

Corollary 1. The fleet size lower bound NP increases as the LOS index 7 increases.

Corollary 1 is intuitive. As the expected taxi service level increases, more PTs are
needed to satisfy the LOS constraint.

4.2. Lower-level formulation

The lower-level problem can be viewed as a multi-class network equilibrium problem
that describes the scheduling behaviors of different groups of taxi drivers. Given the PT

shifts, fleet size, and taxi surcharge from the upper-level problem (i.e., X,Y,%®,s,7,
and NP), the scheduling equilibrium of taxi drivers can be defined as follows.

21



574
575
576
577

578

579
580

581

582

583

584

585
586
587

588

589

590

591

592
593
594
595
596

597

Definition 1. At the scheduling equilibrium of taxi drivers, for each driver group
d e D, all used paths (with positive flows) yield the same path profit (the difference
between path revenue and path cost), which is no less than that of any unused path.

The formulation of the lower-level problem is given as follows.

min Z== 3 [“R.W)dy+Y > vich,+fcT (29)
(e,u)eA deD (e',u")eA
S.t.
3 =N",vd efL, 2}, (30)
peP
D £l =NP,vd e{3 4}, (31)
peP
f) >0, vpeP,deD, and (32)
M¢edu > Z fpd(oeﬂ, V(e,u)e A, d {34}, (33)

peP
where v, and vfu are defined by Egs. (1)-(3); €= [C‘H in which c‘; is defined by

Eq. (4); R, (w) isdefined by Eq. (11), which is in turn defined by Eqgs. (7)-(10). M
is a large constant. It should be noted that the impacts of surcharge rate and passenger
demand on drivers' scheduling decisions are captured in this formulation. In the lower-

level objective function (29), the first term on the left-hand side — z J.OV R,, (w)dy
(e,u)eA

Fo.Q

is related to the average taxi revenue R,, = —=% inwhichthe trip fare F,
v

eu

contains

u

the surcharge rate y and Q,, is the customer demand.

The lower-level program treats the path flow vector f:[fﬂ, VpeP,vdeD as

the decision variable. Constraints (30) and (31) require that the sum of all path flows
of group d drivers must equal the corresponding taxi fleet size, which means that all
drivers come out to work during their designated shift. Constraint (32) is the non-
negativity constraint for path flows. Constraint (33) ensures that the path flow of group

d drivers on work link (e,u) can be positive only if (e,u) is included in the sub-

network for the shift of group d .
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5. Solution method

5.1. A brute force method with Hooke-Jeeves pattern search for the upper-level
problem

For the upper-level problem, which is formulated as a mixed-integer nonlinear program
(MINLP), it can be solved by various well-known exact methods such as the branch-
and-bound method. However, since the time-expanded network contains small numbers
of work nodes and links, all feasible combinations of PT shifts can be easily enumerated.

There are, in total, 3276 feasible shift combinations. For each feasible shift combination,

we used a Hooke-Jeeves pattern search to determine the optimal PT fleet size NP and

the taxi surcharge y . After determining the optimal PT fleet size and surcharge of each

shift combination, the best solution among them was then selected as the final output
of the PTSDP. Note that for each given pair of intermediate PT fleet and taxi surcharge
found by the Hooke-Jeeves pattern search for a given PT shift, the famous Frank-Wolfe
algorithm described in the next subsection was invoked to determine the objective value

of the upper-level problem.

5.2. The Frank-Wolfe algorithm for the lower-level problem

For any given PT shifts, fleet size, and taxi surcharge from the upper-level program,
the lower-level program is convex with linear equality constraints. The lower level
program can, therefore, be solved to global optimality by the Frank-Wolfe algorithm.
At each iteration 1, a shortest-path problem for each driver group d, which finds the

path with maximum profit within the corresponding taxi shift, is solved to expand the

used path set (if needed). The decent direction of the current solution f® is then
obtained by performing the all-or-nothing assignment. The main steps of the Frank-
Wolfe algorithm are given as follows.

Step 1. Set iteration count i=0 . For each driver group d, select a path that

traverses all work nodes and links belonging to the corresponding taxi shift to form the

used path set Pd“) € P. Load each group of drivers on the corresponding path to obtain
the initial path flow vectoras f” =[f;, vpe P d e D];

V(e,u)e A basedon f;

23
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Step 3. For each driver group d, solve the shortest-path problem to update the used
path set P and f%;

Step 4. Perform the all-or-nothing assignment to obtain the auxiliary flow pattern
FO-

Step5. Calculate f™ by f =(1-p)f" +¢f? | in which the step size ¢ is

determined by solving the program rn[m]Z((l—go)f(‘) +of MY;
PELY,

Step 6. If VZ(f')(f*" —f') >¢ (¢ is the convergence tolerance close to zero),

output ™ and stop. Otherwise, set i=i+1 and return to Step 2.

6. Numerical examples

This section provides numerical examples with functions and values of parameters
given in Section 6.1 unless specified otherwise. Section 6.2 illustrates three determinant
factors to optimal taxi surcharges and PT fleet sizes and discusses which means
(introducing taxi surcharge or PTs) is better to maximize social welfare. Sections 6.4
and 6.5 demonstrate how the LOS index and the duration cost of taxi drivers affect

optimal PT fleet sizes/shifts and social welfare.

6.1. Function and parameter settings

6.1.1. Customer waiting time function

We first specify the customer waiting time function W,,, which takes the following

form:

AT 4

eu " eu

inwhich Q,w;, is the vacant taxi hours in period (e,u) .

6.1.2. Customer demand function

We use a simple exponential function to describe the customer demand for taxis Q,, :

Q. =Q., exp| O(F,, +5l,, +xnf,) |. (35)
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Qeu is the total travel demand (trips/h) in each period, which is assumed to be a

constant. @ (1/$) is the sensitivity of customer demand towards the full price of taking

taxis.

6.1.3. Input parameters

We assume the total travel demand in each period as given in Table 2. The in-vehicle
travel time is assumed to be 0.3 (h) for all non-peak periods and 0.4 (h) for peak periods.

The LOS index 77 isassumed to be 0.1 (h), which is equal to the maximum acceptable
waiting time for taxis adopted from the Traffic Characteristic Survey (GovHK, 2011).
The link-specific costs ¢l (HKD) are given in Table 3, in which the entry cost of

NT drivers (d=1,2) is estimated based on the daily taxi rent in Hong Kong that a rentee-
driver pays to taxi companies (Hong Kong Extras, 2020). The entry cost of PT drivers
has rare empirical evidence but is expected to be no larger than that of the NT drivers.
Therefore, we take the entry cost of PT drivers as $150. For the duration cost of drivers

defined by Eq. (4), there is no existing data for calibration and hence we set the

coefficients for NT driversare o =2 and a; =13 (d €{L,2}). For PT drivers, we

assume larger coefficients as o =4 and o =2 (de{3,4}) to depict that PT

drivers have a higher duration cost than that of the NT drivers given the same work
duration. This setting is valid in reality that part-time drivers spend their free time to do
a part-time job so that they are more sensitive to work hours than full-time drivers.
Similarly, the work, transition, rest, and exit costs are all estimated in this paper because
there is no empirical data for our reference.

The values of other parameters are summarized in Table 4. Based on the Traffic

Characteristic Survey (GovHK, 2011), we let the sensitivity of customer demand to the

full price of taking taxis be p,, =0.03, the values of customers' in-vehicle travel time
and waiting time are §=68 and x =50, respectively. The fleet size of NTs is

assumed to be identical to the fleet size of Hong Kong taxisas N" =18163 (GovHK,
2020a). The taxi base fare is estimated based on the current fare structure of Hong Kong
urban taxisas F =50 (HKD) (GovHK, 2020D).
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Table 2 Hourly total travel demand Q,

eu

Period Total travel  Period Total travel  Period Total travel
demand demand demand

1 169650 9 346478 17 450192

2 169650 10 296478 18 459845

3 169650 11 219180 19 248365

4 169650 12 219180 20 247065

5 200850 13 219180 21 235755

6 206895 14 224835 22 226200

7 441183 15 224835 23 226200

8 456112 16 447381 24 226200

Table 3 Link-specific cost Cl,

Driver group d=12 d=34
Entry cost 400 150
Work cost 10 8
Transition cost 0 0

Rest cost 0 0

Exit cost 0 0
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Table 4 Input parameters

Parameter Value
Sensitivity of customer demand to the full price of

taking taxis o, 0.03 (1%
Base fare F 50 (HKD)
Value of customers' in-vehicle travel time & 68 (HKD/h)
Value of customers' waiting time for taxis x 50 (HKD/h)
Parameter of the customer waiting time function ® 0.0025 (veh-h)
The convergent tolerance for the Frank-Wolfe 001

algorithm ¢

6.2. Optimal solution to the PTSDP

We start by showcasing the optimal solution to the PTSDP using the functions and
parameter setting in Section 6.1. The Frank-Wolfe algorithm introduced in Section 5
was coded and complied in MATLAB R2018a on a Desktop with Intel Core i7-7700
CPU 3.60GHz and 64 GB RAM. The Hooke-Jeeves pattern search was conducted with
the MATLAB Optimization Toolbox. For comparative purposes, a benchmark (BM)
scenario was also designed in which there were no PTs and taxi surcharge.

Table 5 displays the BM and PTSDP results and Figure 6 depicts the customer
waiting times in different periods. We observe from Table 5 that the optimal PT fleet
size is 3033, the optimal PT shifts are 7 a.m. — 10 a.m. (for d =3)and 4 p.m. -7 p.m.
(for d =4), and the optimal surcharge is zero. Moreover, we see that the introduction
of PTs increases consumer surplus (customer waiting time is shorter with a higher
service intensity) but decreases producer surplus (the individual profit of each driver in
peak-periods is lower due to a higher service intensity), and the overall effect on social
welfare is positive. This means that, in this example, introducing PTs helps improve
social welfare. Furthermore, as observed in Figure 6, the BM customer waiting time
violates the LOS constraint in periods from 8 a.m. — 10 a.m. and from 4 p.m. — 7 p.m.
Hence, by introducing PTs, customer waiting times in the above periods are reduced

and the LOS constraint is satisfied.

27



706

707 Table 5 Comparison of BM and PTSDP results
Optimal PT ~ Optimal PT Optimal Social - Consumer - Producer
] ) welfare  surplus surplus
fleet size shifts surcharge
(x10)  (x10") (x107)
BM N/A N/A N/A 3.86 2.37 1.49
PTSDP 3033 7am.—10am. 3.89 244 1.45
4p.m.—7p.m.
708
709 We then show the scheduling behaviors of drivers in BM and PTSDP solutions,
710  whichare shown in Table 6 and Table 7, respectively. It is interesting to see that in both
711  the BM and PTSDP solutions, drivers in each group work for a full shift. The non-
712 resting behaviors of drivers are probably the consequence of a low cumulative working
713  cost compared with the cumulative revenue that a driver can earn by increasing his/her
714 work duration. We also note that the optimal PT fleet size in this example is exactly
715  equal to the lower bound as introduced in Proposition 1, i.e., NP =3033. With this
716  lower bound of PT fleet size, the LOS constraint is satisfied in all periods and is binding
717 inperiod (18,19) with Wy, =7=0.1.
718 Table 6 Results for BM driver scheduling equilibrium
Schedule Driver Start End time Duration Path  Driver Individual
group time flow  cost profit
1 1 4a.m. 4 p.m. 12 18163 421.1 392.1
2 2 4 p.m. 4 a.m. 12 18163 397.1 400.0
719
720 Table 7 Results for PTSDP driver scheduling equilibrium
Schedule Driver Start End time Duration Path  Driver Individual
group time flow  cost profit
1 1 4 a.m. 4 p.m. 12 18163 571.6 394.1
2 2 4 p.m. 4 a.m. 12 18163 571.6 376.6
3 3 7am. 10 a.m. 3 3033 211 87.8
4 4 4 p.m. 7 p.m. 3 3033 211 90.2
721
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Figure 6 Customer waiting times for taxis in the BM scenario and PTSDP

6.3. Determinant factors to optimal taxi surcharges and PT fleet sizes under
given PT shifts

We then examine the two means in real-world practice, namely implementing a peak-
period surcharge only and introducing PTs only, to see which one is better in improving
social welfare and what are the determinant factors to the optimal PT fleet size and
surcharge. To capture the real-world situations and reduce the complexity of our
analyses, we fixed the PT shifts to the peak periods only and omitted the LOS constraint
(14). The morning PT shift is from 7 a.m. to 9 a.m. and the afternoon PT shift is from
4p.m.to7p.m.

To clearly show the effects of the entry cost, the base fare, and the fleet size of NTs,

we designed three scenarios (denoted as I, I, and 111). The base fare F and the fleet
size of NTs N" differ among the three scenarios, which are listed in Table 8. In each
scenario, we assume that the entry cost CSU,V(e,u) € A, (HKD) is the same for all

driver groups and let it vary from 250 to 350 at an interval of 10. The corresponding

optimal taxi surcharge and PT fleet size are shown in Figure 7.

Table 8 Base fare and fleet size of NTs

Scenario Base fare F Fleet size of NTs N"
[ 20 (HKD) 18163 (veh)
T 50 (HKD) 8000 (veh)

i 50 (HKD) 18163 (veh)
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It is interesting to observe from Figure 7 that the values of the three parameters

directly affect the optimal taxi surcharge and PT fleet size. Firstly, in Figure 7a

(Scenario I) where F is relatively low, we observe that when c;‘u <310, the optimal

surcharge increases with c, while the optimal PT fleet size decreases instead.
Afterward, the optimal PT fleet size becomes zero and both the optimal surcharge and

PT fleet size remain unchanged against c: . We note that Figure 7a shows two
situations. The first one (cg‘u <310) is that both taxi surcharge and PTs are needed to

maximize social welfare. The second one is that only a surcharge is needed (¢, >310).

Secondly, Figure 7b (Scenario Il) shows the opposite situation to Figure 7a where F
is high but N" is low. In this case, only PTs are needed to maximize social welfare

and the surcharge is zero. Thirdly, Figure 7c (Scenario 111) shows that when both F

and N" are high, neither surcharge nor PTs is necessary for the market.

We thus conclude from Figure 7 that in terms of social welfare maximization, the
peak-period surcharge and PTs are not always required, depending on the current levels
of the entry cost of taxi drivers, the base fare, and the fleet size of NTs. Furthermore,

there is no guarantee that which means is better than the other.
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Figure 7 Optimal surcharge and PT fleet size against the entry cost of taxi drivers
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We use another example to further shed light on the implementation of taxi surcharge

and PTs and their impacts on social welfare, consumer surplus, and producer surplus.
Weassume ¢S =250, F=20,and N"=18163.Under these settings, we learn from

Figure 7a that the optimal taxi surcharge and PT fleet size are around 20.5 (HKD) and
5397.5 (veh), respectively. Then, we obtain the corresponding social welfare, consumer
surplus, and producer surplus that are shown in Table 9. In addition, Table 9 also gives
the social welfare, consumer surplus, and producer surplus when the government 1)
only implements a taxi surcharge, 2) only implements PTs, and 3) does nothing on the
current market situation.

As shown in Table 9, implementing both the surcharge and PTs yields the largest
social welfare among the four cases and the corresponding consumer and producer
surpluses are both larger than those of the do-nothing case. The rise in consumer surplus
can be seen as the consequence of the reduction in customer waiting time by pricing
out some passengers through the taxi surcharge and introducing more taxis (PTs).
Although implementing the surcharge also raises the trip fare so that consumer surplus
decreases, the decrease cannot offset the increase by lowering customer waiting time.
Besides, the increase in producer surplus compared with the do-nothing case is
obviously due to the significant rise in taxi revenue by implementing the surcharge and
providing more taxis. Although providing more taxis increases the total operating cost,
the resultant increase in total taxi operating cost is insufficient to offset the increase in
taxi revenue so that producer surplus increases. Moreover, it is interesting to observe
that the two cases in which either the surcharge or PTs is introduced also lead to larger
social welfare compared with that of the do-nothing case. However, the changes in
consumer surplus and producer surplus are distinct. For the case with surcharge only,
consumer surplus falls while producer surplus rises, which is respectively because of
the increases in trip fare and taxi revenue resulted from the taxi surcharge. For the case
of providing PTs only, consumer surplus is higher but producer surplus is lower than
that of the do-nothing case. This is the consequence of a lower waiting time cost of
customers and a higher taxi operating cost.

The above results clearly show the potential flaw in solely implementing a surcharge
or PTs. Although either method can reduce customer waiting time and mitigate
demand-supply imbalance, we see that either customers or taxis are made better off
with the other party being made worse off compared with the do-nothing case. By

contrast, the implementation of both the surcharge and PTs shows improvements in
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both the consumer surplus and producer surplus. Therefore, the situations in Singapore
and Perth may be further improved if the government considers implementing both

surcharge and PTs.

Table 9 System performance under different regulation regimes

Taxi surcharge  PTs  Social welfare ~ Consumer surplus Producer surplus

(HKD) (HKD) (HKD)
N N 54142895.1 43006503.6 11136391.5
N x 54039240.6 40018547.3 14020693.3
x N 50608419.0 43299757.6 7308661.3
x x 49643324.1 40598489.5 9044834.5

6.4. How the LOS index affects the optimal PT fleet size/shifts and social welfare

We then investigate how the LOS index 7 (h) affects the optimal PT fleet size/shifts

to PTSDP and social welfare. The taxi surcharge is not considered in this section to
better focus on how the LOS index changes the PT shifts and fleet size. As defined in
Section 4.1, PTSDP must satisfy the LOS constraint (14). The lower the value of 7
is, the higher the taxi service quality is. We let 7 vary from 0.04 (2.4 minutes) to 0.16
(9.6 minutes) at an interval of 0.01. The corresponding optimal PT fleet size/shifts and
social welfare were obtained. We also give social welfare in each hour of BM scenario,
in which there is no PT nor taxi surcharge.

The optimal PT fleet size and social welfare of BM/PTSDP are depicted in Figure 8,
whereas the optimal PT shifts are shown in Table 10. It can be observed from Figure 8
that the optimal PT fleet size decreases with the LOS index and reaches 2816 when
n>0.11. Moreover, the social welfare of PTSDP increases with 7 and is less than
that of BM when 7 <0.06. The lower social welfare of PTSDP compared with that of
BM is clearly because of the presence of PTs, which leads to a lower customer waiting
time so that both the consumer surplus and taxi revenue increase (taxi fare per ride is
fixed). However, the increase in taxi operating cost resulted from the entry of PTs is
higher than the increases in consumer surplus and taxi revenue, which results in a

decrease in social welfare compared with BM. When 7 >0.06, PTSDP yields larger
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825  social welfare than the BM. This can be explained by the fact that the BM fleet size can

826  further increase to improve social welfare.

827
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r o
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2 135
g 8000 | Optimal PT fleet size 1 368
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D —
= 6000 r — = SW-BM 1 2
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= 1 322
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4 30
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0.04 0.05 0.06 0.07 0.08 009 01 0.11 0.12 0.13 0.14 0.15 0.16
828 LOS index (h)
829 Figure 8 Optimal PT fleet size and social welfare of BM/PTSDP against the LOS index
830
831 In terms of optimal PT shifts, Table 10 shows that when 7 =0.04, the two PT shifts

832 are7am.tol12p.m.and 2 p.m.to 12 a.m. As n grows, the optimal PT shifts shrink
833 to7am.tollam.and4 p.m.to7 p.m.(when 7=0.05) and are further confined to
834 7 am.to 10 am. and 4 p.m. to 7 p.m. when 7 €[0.06,0.16]. Afterward, no PTs are

835 needed and hence the PT shifts are unavailable.

836 We thus conclude from Figure 8 and Table 10 that the LOS index can influence the
837  optimal PT shifts and fleet size. The presence of PTs improves the taxi service quality
838 Dby reducing customer waiting time. Yet, the resulting social welfare decreases
839 compared with that of BM. This reveals the possible trade-off that exists between
840  welfare maximization and the level of taxi service. Therefore, whether or not to
841 introduce PTs depends on how the government balance between the service level to

842  taxi passengers and the benefit of the whole society.

843 Table 10 Optimal PT shifts against the LOS index
n Morning PT shift Afternoon PT shift
0.04 7am.to12 p.m. 2p.m.to12 am.
0.05 7am.to1llam. 4p.m.to7 p.m.
0.06 to 0.16 7 a.m. to 10 a.m. 4p.m.to7 p.m.
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6.5. How the sensitivity of PT drivers towards work duration affects the optimal
PT fleet size/shifts and social welfare

Lastly, we examine how the change of o (d e{3,4}) defined in Eq. (4) alters the
optimal PT fleet size/shifts and social welfare. Similar to Section 6.4, taxi surcharge is
not considered in this section. The value of o) (d e{3,4}) reflects the sensitivity of

PT drivers towards the work duration of their schedules. As mentioned in Section 6.1.3,
a part-time driver is expected to be more sensitive to work hours compared with a full-

time driver because he spends his spare time to do a part-time job. Therefore, by
assuming that o is the same for all driver groups and letting o (de{3,4})
gradually increase, the situation when o (d e{l,2})isequalto a; (de{3,4})can
be viewed as the scenario that PT drivers are full-time drivers. In this section, we set
a =2, vdeD andlet of (de{34})vary from 1.3to 2 at an interval of 0.1. The

fleet size of NTs is assumed to be N" =18163 and the LOS index is set as 7 =0.1.

All unspecific parameters take the same values as given in Section 6.1.3.
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Figure 9 Optimal PT fleet size and social welfare against 055j

Figure 9 depicts the optimal PT fleet size and social welfare as ¢ varies and Table
11 shows the optimal PT shifts. We observed from Figure 9 that, on one hand, the
optimal PT fleet size decreases with o when o) €[1.3,1.6] and o) €[1.7,2].
When « increases from 1.6 to 1.7, the optimal fleet size has a sudden rise from 3306
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to 3314 because the optimal shifts also change. On the other hand, social welfare

decreases with «; , which is resulted from the rising path-specific cost (and therefore
the falling producer surplus) as aﬁ increases.

Table 11 tells us that the optimal PT shifts shrink as «; rises. This can be explained

in away that as the PT drivers become more sensitive to work duration, extending their
shifts to off-peak hours results in a higher total taxi operating cost and the
corresponding decrease in producer surplus cannot be off-set by the rise in consumer
surplus of the off-peak hours resulted from a lower customer waiting time for taxis. In
contrast, if the PT drivers are less sensitive to work duration, extending their shifts to
off-peak hours does not contribute too much to the increase in their total operating costs.
In this case, the rise in consumer surplus is greater than the fall in producer surplus, and

therefore social welfare increases.

Table 11 Optimal PT shifts against ag

ag (d e{3,4}) Morning PT shift Afternoon PT shift
13t01.6 7am.tollam. 4 p.m.to 10 p.m.
1.7t02 7am.to9am. 4p.m.to7 p.m.

The above results suggest that in some cases, it would be better to hire full-time
drivers (or more generally, those who are less sensitive to work duration) as PT drivers
bring higher social welfare and longer PT shifts that benefit the customers for longer
periods in a day. However, full-time drivers driving PTs may earn less profit compared
with those driving NTs because PT shifts are shorter than NT shifts. Therefore, the
government should work out some methods (e.g., subsidizing the PT drivers) to balance
the profits between PT and NT drivers. Otherwise, a full-time driver may not be willing
to be a PT driver for the comparatively lower profit he can earn, causing a shortage of
labor supply to PTs.

7. Conclusion

We propose a peak-period taxi scheme design problem to simultaneously determine the
peak-period taxi surcharge and the optimal fleet size/shifts of PTs in a regulated taxi
market. The problem is formulated as a bi-level program, in which the upper level is
the government problem and the lower level refers to the taxi driver problem. The
upper-level objective is to maximize social welfare and we require that customer
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waiting time for taxis in each period of a day must be lower than a predetermined value

to guarantee the taxi service quality. The lower level is an equilibrium problem that

describes the scheduling behaviors of taxi drivers working in different shifts. A time-

expanded network is used to depict the time-of-day dynamics of demand for and supply

of taxis. The bi-level program is solved by a brute force method combined with the

Hooke-Jeeves pattern search and the Frank-Wolfe algorithm. Numerical experiments

are conducted to give policy implications and managerial insights into the regulation of

taxi markets. In summary, we have the following findings or insights.

1.

In terms of social welfare maximization, the need for a peak-period taxi
surcharge or PTs is highly dependent on the entry cost of taxi drivers, the current
taxi fare, and the fleet size of NTs. Moreover, either implementing a surcharge
or PTs can mitigate the demand-supply imbalance, but solely implementing a
surcharge or PTs may yield a sub-optimal result to the market. Our experimental
results show that implementing a surcharge and PTs simultaneously can reach
social optimum;

The LOS index can directly affect the optimal fleet size and shifts of PTs. A
smaller LOS index (i.e., a higher requirement of LOS) implies the need for more
PTs but lower social welfare. Therefore, there is a trade-off between social
welfare maximization and taxi service quality. The LOS index, which is based
on the empirical evidence for taxi passengers' preference for waiting time, is
critical to support the government in the decision-making process;

The optimal PT shifts are affected by the sensitivity of PT drivers towards the
work duration. The optimal PT shifts become shorter and social welfare falls if
PT drivers are more sensitive to work duration. Therefore, it is suggested that
some full-time drivers should be hired as PT drivers (and working on a split-
shift), but the government should work out some methods to address other issues

such as balancing the profit levels between NT and PT drivers.

We believe that this study provides several directions for future studies. First, it

would be meaningful to further analyze the mathematical properties of the proposed

bi-level optimization model and to develop efficient solution methods. Second, this

study only considers the drivers' decision on working hours, which is also known as

the supply at the intensive margin, yet the drivers' participation decisions (also

known as supply at the extensive margin) can still be considered (i.e., the decisions

on whether to be taxi drivers or not) in future studies. Third, another group of

essential stakeholders in the taxi market, i.e., the taxi companies, is not specified in
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this study. In many cities, taxi drivers do not own taxis but lease from the taxi

companies with a rental fee. Therefore, one possible extension to this study is to

investigate the interaction among the government (or regulator), taxi companies, and

taxi drivers.
Appendix A
The following notations are used in this paper:
Sets
T Set of nodes in the time-expanded network;
A Set of links in the time-expanded network;
A-A Sets of entry, work, transition, rest, exit links in the time-expanded
network;
P Set of paths in the time-expanded network;
D Set of taxi driver groups (shifts).
Indices
t Index of node in the time-expanded network;
(e,u) Index of link in the time-expanded network;
d Index of driver group;
p Index of path (work schedule) in the time-expanded network.

Decision variables

Upper-level decision variables

/4

Np

Non-negative continuous decision variable which represents a taxi
surcharge;

Non-negative continuous decision variable which represents the fleet

size of PTs;

Binary decision variable which equals 1 if work node t is selected into
the shift of group d drivers, and O otherwise;

Non-negative continuous decision variable which indicates the amount

of imaginary flow of group d driversfrom e to u;
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970
971

972

973

974

975
976

977

978

979

980

981

982

983

984

985

986
987

A

Binary decision variable which equals 1 if work link (e,u) is selected
into the shift of group d drivers, and O otherwise;

Binary decision variable which equals 1 if work node t is chosen as
the sink, and 0 otherwise;

Binary decision variable which equals 1 if a taxi surcharge is
implemented in period (e,u), and O otherwise;

[X!1;

[Vei];

[4.];

el

Lower-level decision variables

fy

Functions

QEU

Parameters

Non-negative continuous lower-level decision variable which indicates

the number (flow) of group d drivers working in schedule (path) p;

[f].

Customer demand for taxis in period (e,u) (trips/h);

Taxi fare per ride in period (e,u) (HKD);

Flow on link (e,u) with respect to group d drivers (veh/h);

Total flow on link (e,u) (veh/h);

Customer waiting time for taxis in period (e,u) (h);

Average revenue of all taxi drivers in period (e,u) (HKD);
Link-specific cost of group d drivers traversing link (e,u) (HKD);
Path-specific (duration) cost of group d driversonpath p (HKD);

Total working hour of sub-shift | in schedule p (h);
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Q. Total travel demand in period (e,u) (trips/h);

F Flag fare (HKD);

0 Parameter that reflects the sensitivity of customer demand towards the
full price of taking taxis (1/HKD);
Value of customer waiting time for taxis (HKD/h);
Value of customer in-vehicle travel time (HKD/h);

l., Average trip travel time in period (e,u) (h);

N" Fleet size of NTs (veh);

! Link-path incidence which equals 1 if path p traverses link (e,u),
and O otherwise;

n LOS index of taxi service (h);

O, 4,5, Parameters of the Cobb-Douglas meeting function.
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