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Abstract—The Gum diseases (gingivitis and periodontitis) is 
one of the most prevalent dental diseases which are initiated by 
dental plaque (bacterial biofilm). It has been strongly linked to 
the systemic diseases including cardiovascular (atherosclerosis, 
hypertension, stroke), respiratory (aspiration pneumonia), 
adverse pregnancy outcomes and even cancer via systemic 
routes with significant health implications. As the inflammation 
of gum is manifested as increased in redness (colour), increase 
in volume (oedema), and loss of surface characteristics 
(stippling; gum fibre attachment). These diseased sites are site-
specific (i.e. subject can have healthy and disease sites in a 
mouth) can be identified by visual examination of dentists. 
Moreover, these inflammatory changes of gum can also be 
recognized by intraoral photography which has been clinical 
practice of regular dental check-up. The aim of this study is to 
train the computer to identify the inflamed disease sites in pixel 
level by deep learning approach. We collected 337 and 110 
images for training and validation respectively from 110 
patients’ standard intraoral photographs and randomly. They 
are labeled into four health status levels (healthy, questionable 
healthy, questionable diseased and diseased) and verified by a 
dental specialist with more than 15 years clinical experience. 
The proposed semantic segmentation architecture is based on 
the DeepLabv3+ network with Xception and MobileNetV2 as 
the backbone. Experimental results show the effectiveness of the 
proposed system, which shows possible application on dental self 
check-up using mobile app particularly during the disease 
pandemic where visit to dentists are difficult or even impossible. 
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I. INTRODUCTION  

The most prevalent dental diseases are tooth decay (caries) 
and gum diseases (gingivitis and periodontitis). It is evidence 
that these diseases are caused by dental plaque (bacterial 
biofilm) [1]-[3]. Although most patients brush their teeth 
every day, they cannot keep all their teeth clean. Areas in the 
mouth that are difficult to access, such as crowded areas, 
posterior teeth or interdental areas, are usually affected (site-
specific) [4]. After thorough professional tooth cleaning, 
plaque will begin to accumulate on the surface of the teeth 
near the edge of the gum within few days. Clinical studies 
indicating that regular disruption to plaque are needed and can 
prevent and arrest gum disease [5]. However, dental diseases 
may take years to develop, the patient usually does not have 
any pain symptoms [6] unless the disease has progressed to 
the advanced stage. Significant amount of resources and 
clinical time have been used to motivate and instruct patients 

to keep their mouth clean and yet the results are not 
satisfactory. It is desirable to adopt an automated technique 
for monitoring oral health daily so we can seek for treatment 
when it is needed. 

Patients’ response to plaque accumulated at the gum 
margin is by inflammation which brings more blood cells to 
the site to fight against the bacterial invasion [7]. 
Inflammation of gum is manifested as increased in redness 
(colour), increase in volume (oedema), and loss of surface 
characteristics (stippling; gum fibre attachment) [8]. These 
diseased sites can be identified by visual examination of 
dentists. Moreover, these inflammatory changes of gum can 
also be recognized by intraoral photography or photograph 
mapped 3D models [9]-[11]. The objective of this research is 
to apply artificial intelligent (AI) techniques to detect gum 
inflammation from intraoral photographs. As the target 
inflammation site is at gum margin with varied shape and size, 
semantic segmentation at pixel level is needed. 

The first attempt to automated segmentation of gingival 
diseases from intraoral images with deep learning approach is 
proposed in [12]. It adopts an autoencoder network 
architecture with deep convolution neural network. The 
dataset used comprises 405 color-augmented intraoral 
biomarker images from 150 individuals. Areas of gingival 
inflammation were labelled by dental professional and the 
trained network is able to predict the inflammation with area 
under the receiver operating characteristic curve (AUC) 
0.746. The precision and recall values are 0.347 and 0.621, 
respectively. The network was trained with the labeling on 
diseased gum. Some calculus on teeth was also predicted as 
diseased gum as its yellowish color is technically close to that 
of diseased gum. Moreover, some parts of uninterested 
gingival area were also predicted as diseased gum. 

In [13], a Multi-task deep learning framework was 
developed for locating regions with 5 common gum diseases 
(periodontal disease, dental caries, soft deposits, calculus and 
tooth discoloration). This data set contains 3182 oral photos 
annotated by dental experts. It achieves high positioning 
accuracy with an average detection sensitivity of 0.787. 

In this study, we consider a pixelwise multiple level 
detection of gingival inflammation sing semantic 
segmentation network architecture. According to the nature of 
the application and the limitation of the data set, many 
network architectures for segmentation are proposed. In [14], 
Long et. al proposed an end-to-end, pixels-to-pixels fully 



 
Fig 1. The proposed network architecture based on DeepLabv3+ with Xception65 as the backbone. The input intraoral image on the left is firstly fed into the 
encoder-decoder structure, follows with multi-scale ASPP modules and bilinear upsampling. Prediction result is overlaid on the input image on the right. 

 

convolutional network for semantic segmentation. It adapts 
contemporary classification networks and transfers their 
learned representations to output segmentation tasks. It 
reaches 62.7% and 62.2% respectively on the PASCAL VOC 
2011 and 2012 test sets in terms of mean intersection-over-
union (mIOU). Zhao et.al [15] proposed pyramid scene 
parsing network (PSPNet) for scene parsing. It fuses multi-
scale pooling layers features information from a pretrained 
ResNet by concatenation and convolution layer to obtain per-
pixel prediction, reaching 41.68% and 80.04% on ADE20K 
dataset in terms of mIOU and pixel accuracy. Chen et. al 
[16][17] proposed adopting atrous convolution to spatial 
pyramid pooling module to extract multi-scale features. This 
improves the decoder with more effective segmentation 
results especially along object boundaries. It achieves mIOU 
89.0% and 82.1% performance on the PASCAL VOC2012 
and Cityscapes test sets, respectively. Sandler et. al [18] 
proposed a novel layer module: the inverted residual block 
with linear bottleneck. This block further improves the 
performance. In this module, the compressed features 
obtained from input images are expanded to high dimension 
and being filtered with lightweight depthwise convolution. 
Then project back to the same lower dimension as the input. It 
achieves mIOU 75.32% and only requires 2.75B multiply-
adds (MAdds) on the PASCAL VOC 2012 validation set with 
the MobileNetV2 + DeepLabv3 [19] inference strategy. 
Chollet [20] proposed depthwise separable convolutions and 
created the novel Xception architecture. Xception shows small 
gains in classification performance on the ImageNet dataset 
and large gains on the JFT dataset, compared to similar 
parameter count Inception V3. 

In [21], Ronneberger et. al proposed U-net for medical 
image (transmitted light microscopy images) segmentation. 
The network concatenates the feature maps from upsampling 
output and corresponding encoding layer output, to get more 
contextual information. It works excellent for semantically 
simple targets such as edges, lines, and etc. However, it is less 
effective for more complicated semantic segmentation dataset. 
Badrinarayanan et.al [22] proposed SegNet, which is an 
encoding-decoding network, for multi-class semantic 
segmentation. The decoder uses pooling indices computed in 
the max-pooling step of the encoder so avoid decoder learning 
for upsampling. This improves training time and reduces 
realization costs. 

Among the existing network architectures, DeepLabv3+ 
[16] appears to be the most suitable for the current 
applications due to its high transferability. For gingival 
inflammation, the variability of image features is high in terms 

of shape, color and textures. DeepLabv3+ offers several pre-
trained checkpoints on (1) PASCAL VOC 2012, (2) 
Cityscapes, and (3) ADE20K, which can be used for transfer 
learning to the gingival dataset. In this paper, the objective of 
the current study is to segment the multi-level health status of 
the gums, based on the intraoral image annotated by dental 
experts. DeepLabv3+ encoder-decoder network with state-of-
the-art pre-trained backbone Xception and MobileNetV2 is 
proposed to perform pixelwise semantic segmentation of the 
gingival inflammation from the intraoral photographs. The 
photographs are indexed by a dental specialist with more than 
15 years clinical experience to obtain the index category 
images for the network training. In the next section, the dataset 
and adopted network are described. Finally, it is evaluated in 
section III. 

 

II. MATERIAL AND METHODS 

A. Compliance with Ethical Standards 

Standard intraoral photographs were taken using a single 
lens reflex (SLR) camera (EOS 500D Canon) with a macro 
lens (EF 100mm f/2.8, Canon) and a ring flash (Macro Ring 
Lite MR-14EX, Canon). The intraoral photographs of patients 
from the Faculty of Dentistry, The University of Hong Kong 
(HKU), which underwent periodontic treatment, were 
collected for the preliminary study. The study was approved 
by the Institutional review board of HKU (UW20-230). 

B. Ground truth development 

In this study, the gum conditions were marked on the 
printed intraoral photographs of the patients by an experienced 
dentist. The annotations were digitized to label maps using 
LabelMe [23]. The area of interest of gum (about 5mm from 
teeth gum margin) is labeled into 4 categories: 1. diseased, 2. 
healthy, 3. questionable diseased, and 4. questionable healthy. 
Other areas of the image were set to background 
corresponding label 0. The label images were further 
converted to single channel index image format. 

C. Data preparation 

Total 110 standard intraoral photographs with different 
resolutions were collected. They are manually cropped into 
different smaller images, and the target labels occupy the 
largest possible image, which is very beneficial for training. 
The size of the cropped image is unified to 512 × 512. The 
completed dataset is divided into two sets, respectively 337 
images for training, and 110 images for validation. 
Considering that there are multiple images corresponding to 



one patient, so when dividing the dataset, the image of the 
same patient will not appear in the two divided datasets. The 
dataset will save as TFRecord file format. 

 

D. Data augmentation 

To enhance the network training, Random Crop, Random 
Rotation and Vertical Flip are applied to the original image 
and ground truth mask image as the data augmentation 
methods. 
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Fig 2. Loss(a) and receiver operating characteristic curve(b) 
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Fig 3. Selected prediction results on the validation dataset using the adopted 
semantic segmentation network. Rows (I)-(V) show the input images and 
prediction from different patients. (a) Input intraoral image. (b) Ground truth 
segmentation interest marked by expert. Prediction result overlay on input 
image with the backbone of (c) Xception65 and (d) MobileNetV2. 

 

E. The adopted segmentation network 

For the site-specific gum disease detection using neural 
network on mobile platforms, computational cost of 
prediction is crucial. The adopted network structure is based 
on DeepLabv3+ (as shown in Fig 1) implemented in 
TensorFlow [24], running on a Linux system with graphics 
card NVIDIA GeForce GTX 1080Ti. There are two available 
backbones for transfer learning: MobileNetV2 and 
Xception65 with model size of 14 MB and 88 MB 
respectively. The batch size was set to 4, the number of 
training iterations was 30,000. Performance metric for multi-
class segmentation was mean intersection-over-Union 
(mIOU). Performance metric for two-class segmentation 
were mIOU, AUC and precision and recall. 
 

III. RESULT AND DISCUSSION 

In this section, we would like to see performance of the 
proposed system. Firstly, the two-class segmentation 
suggested in [12] is implemented with our dataset. Then, the 
performance of the Five-class segmentation of gingival 
condition model is analyzed. Finally, the performance of the 
Four-class segmentation of gingival condition model is 
analyzed. The adopted DeepLabv3+ model with the backbone 
of Xception65 employs atrous spatial pyramid pooling 
(ASPP) of 6, 12, 18 and the decoder modules output strides of 
4, and the backbone of MobileNetV2 not employs ASPP and 
decoder modules for fast computation. 

 

A. Two-class segmentation of gingival condition 

The ground truth mask image is modified to contain two 
classes: keeping label 1 (diseased) and the rest set 0 
(background). The adopted segmentation model was trained 
and tested with intraoral images from the training and 
validation dataset. Some of the prediction results are shown in 
Fig 2. The area under the receiver operating characteristic 
curve (AUC) is 0.7, and the precision and recall values are 
0.606 and 0.415, respectively. It reaches the mIOU 0.650. 

B. Five-class segmentation of gingival condition 

The adopted segmentation model was tested with intraoral 
images from the validation dataset. The ground truth mask 
images are set to have 5 classes: 0. background, 1. diseased, 2. 
healthy, 3. questionable diseased, and 4. questionable healthy. 
In Fig 3, it shows that the visual performance of the system 
with (c) backbone Xception65 with output stride = 16 and 
ASPP module with atrous rates 6,12,18, reaching the mIOU 
0.379, and (d) the backbone of MobileNetV2 not employed 
ASPP and decoder modules reaching the mIOU 0.355. 

C. Four-class segmentation of gingival condition 

In additions to Five-class semantic segmentation, it is also 
interesting to see how Four-class segmentation performs. The 
questionable diseased and questionable healthy were 
combined into one category, where the index of these two 
categories are encoded as the same index before feeding to the 
model in training. In Fig 4, it shows the visual performance of 
the backbone Xception65  with output stride = 16 and ASPP 
module with atrous rates 6,12,18, reaching the mIOU 0.485, 
and the backbone of MobileNetV2 not employed ASPP and 
decoder modules reaching the mIOU 0.449. 
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Fig 4. Selected prediction results on the validation dataset using the adopted 
semantic segmentation network. Rows (I)-(VI) show the input images and 
prediction from different patients. (a) Input intraoral image. (b) Ground truth 
segmentation interest marked by expert. (c)-(d) Prediction results, with 
yellow refer to questionable healthy and questionable diseased, using 
DeepLabV3+ model with the backbone of Xception65 and MobileNetV2. 

 

 

IV. RESULT AND DISCUSSION 

In this paper, a semantic segmentation network for 
identifying gum condition was presented. MobileNetV2 and 
Xception65 are adopted as the backbone of the DeepLabv3+ 
network. The proposed network model can predict the contour 
of the site-specific gingival area. Experiment results show that 
the proposed segmentation model can accurately divide most 
of the gum inflammation area into five or four categories. The 
mIOU with Xception65 as the backbone network are 0.379 
and 0.485, respectively, and the mIOU with MobileNetV2 as 
the backbone network are 0.355 and 0.449, respectively.  

From [25], it was found that MobileNetV2 is 20 times 
faster than using Xception at inference time in DeepLabv3 
system running on Samsung Galaxy S8 without any additional 
computing device (e.g. laptop, cloud server), achieving 
17.96B FLOPs and 5452 ms inference time with 513 × 513 
crop size and 2.18M Params. Considering the real-time 
performance and memory footprint, MobileNetV2 is the 
backbone choice in DeepLabv3+ network for mobile 
applications. To further improve the gingival disease 
detection, one possible direction is to expand the dataset and 
optimize the network structure. It is because big data [26] can 
avoid overfitting the deep learning models while data 
augmentation cannot overcome all biases present in small 
dataset. 
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