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Abstract 20 

Estrogen and progesterone regulate the expression of endometrial proteins that determine 

endometrial receptivity for embryo implantation. The protein disulfide isomerase (PDI) family 

of proteins play a diverse role in regulating protein modification and redox function. Although 

the role of PDIs in cancer progression has been widely studied, their role in endometrial 

receptivity is largely unknown. We have focused on the expressions of PDIA1, PDIA2, PDIA3, 25 

PDIA4, PDIA5, and PDIA6 isoforms in endometrial epithelium under the influence of estrogen 

and progesterone and investigated their functional role in regulating endometrial receptivity. 

We found PDIA1-6 transcripts were expressed in endometrial epithelial Ishikawa, RL95-2, 

AN3CA, and HEC1-B cell lines. The expression of PDIA1 was low and PDIA5 was high in HEC1-

B cells, whereas PDIA2 was high in both AN3CA and HEC1-B cells. In Ishikawa cells, estrogen 30 

(10 and 100 nM) upregulated PDIA1 and PDIA6, whereas estrogen (100 nM) downregulated 

PDIA4 and PDIA5; and progesterone (0.1 and 1 µM) downregulated transcript expressions of 

PDIA1-6. In human endometrial samples, significantly lowered transcript expressions of PDIA2 

and PDIA5 were observed in the secretory phase compared with the proliferative phase, 

whereas no change was observed in the other studied transcripts throughout the cycle. 35 

Inhibition of PDI by PDI antibody (5 and 10 µg/mL) and PDI inhibitor bacitracin (1 and 5 mM) 

significantly increased the attachment of Jeg-3 spheroids onto AN3CA cells. Taken together, 

our study suggests a role of PDI in regulating endometrial receptivity and the possibility of 

using PDI inhibitors to enhance endometrial receptivity. 
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1. Introduction 

Endometrial receptivity is a tightly regulated phenomenon that plays a vital role in 

embryo implantation and pregnancy success [1]. Predicting endometrial receptivity before 

embryo transfer is one of the challenging research questions that remains unanswered. 45 

Different transcriptomic [2], proteomic [3, 4], microbiomic [5, 6], and lipidomic [7, 8] 

approaches have been used to ascertain the endometrial receptivity in women undergoing 

fertility treatment. However, the underlying molecular mechanism leading to a receptive 

endometrium remains largely unknown. 

Estrogen and progesterone play major roles in regulating endometrial receptivity [9, 50 

10], with the proliferative phase of the menstrual cycle dominated by estrogen regulation and 

the secretory phase by progesterone regulation. Estrogen and progesterone also regulate the 

expression of genes through classical and non-classical steroid receptor signaling pathways 

[10]. Interestingly, the classical ligand-receptor binding pathways also play vital roles in 

regulating endometrial receptivity [11].  55 

Different endometrial biomarkers have been identified to predict the endometrial 

receptivity. Transcriptional factors such as HOXA genes are promising markers in predicting 

endometrial receptivity [12], with HOXA-10 and HOXA-11 playing a major role in implantation 

[13]. Higher expression of HOXA-10 and HOXA-11 is observed in the mid-luteal phase of the 

human menstrual cycle [13, 14], and significantly lower HOXA-10 and HOXA-11 transcripts 60 

expression has been observed in infertile patients [15]. Moreover, lower HOXA-10 and HOXA-

11 transcripts expression is observed in infertile women with endometrioma [16] and lower 

HOXA-10 transcripts expression is observed in patients with endometriosis [17]. 



Protein disulfide isomerases (PDIs) are a family of proteins with 21 isoforms with 

multiple functions including in redox reactions, chaperone activity, and protein folding [18]. 65 

They are mainly located in the endoplasmic reticulum of cells and are also present in the 

nucleus, cytosol, and cell membrane [19]. Many studies have reported that PDIs have a role 

in cancer cell progression [20]. Moreover, several PDI isoforms including PDIA1, PDIA3, or 

PDIA6 are regulated by estrogen in cancer cells [21]. It has been reported that PDIA3 is 

expressed in human endometrial epithelial cell lines RL95-2 and HEC1-B [22].  70 

Due to the limited availability of human endometrial epithelial cells and embryos for 

research, studies have widely used endometrial and trophoblastic cell lines. The phenotype 

and molecular properties of endometrial epithelial cells are different during the receptive and 

non-receptive phases. Thus, different cell lines have been developed for this purpose. 

Ishikawa, RL95-2, HEC1-B, and AN3CA are the most used endometrial epithelial cell lines. 75 

Ishikawa and RL95-2 are endometrial epithelial cell lines that exhibit properties of a receptive 

endometrium, whereas HEC1-B and AN3CA cell lines exhibit characteristics of a non-receptive 

endometrium [23]. These cell lines differ from each other in terms of their adhesiveness 

toward trophoblastic spheroids such as Jeg-3 or JAr spheroids, with Ishikawa and RL95-2 

exhibiting a higher spheroid attachment rate [24], while HEC1-B [25] and AN3CA [26] have a 80 

lower spheroid attachment rate. In addition, these receptive and non-receptive cell lines 

differ in their expression of adhesive and anti-adhesive molecules and steroid receptors [23]. 

There have been no reports to date of the expression and steroid regulation of PDI isoforms 

in human endometrial cell lines and endometrial tissues. Therefore, this study focused on the 

analysis of the differential expression of transcripts of PDIA1, PDIA2, PDIA3, PDIA4, PDIA5, 85 

and PDIA6 in endometrial epithelial cells to delineate their functional role in regulating 

endometrial receptivity.   



2. Materials and Methods 

2.1. Human endometrial epithelial cell lines 

Human endometrial epithelial Ishikawa (ECACC 99040201), RL95-2 (CRL1671, ATCC), 90 

AN3CA (HTB-111, ATCC), and HEC1-B (HTB-113, ATCC) cells, and human trophoblastic Jeg-3 

cells (HTB-36, ATCC) were used in this study. Ishikawa, AN3CA, and HEC1-B cells were 

maintained in Minimum Essential Medium (MEM, M0268, Sigma) supplemented with 1% 

Penicillin/Streptomycin (15140-122, Thermo Fisher), 1% L-glutamine (25030-081, Thermo 

Fisher), and 10% fetal bovine serum (FBS, 10270, Thermo Fisher). Both RL95-2 and Jeg-3 cells 95 

were maintained in Dulbecco’s Modified Eagle Medium nutrient mixture F12 (DMEM F12, 

D8900, Sigma) supplemented with 1% Penicillin/Streptomycin (15140-122, Thermo Fisher), 

1% L-glutamine (25030-081, Thermo Fisher), and 10% FBS (10270, Thermo Fisher). All cells 

were sub-cultured every 2-3 days and maintained at 37°C in 5% CO2.  

 100 

2.2. Total, membrane, and cytoplasmic protein extraction from endometrial cells 

Total cell protein from Ishikawa, RL 95-2, AN3CA, and HEC1-B was extracted using 

Radio Immunoprecipitation Assay buffer solution (1× phosphate-buffered saline (PBS), 1% 

Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS) with protease inhibitors. Membrane 

proteins were extracted using the Native Membrane Protein Extraction Kit (ProteoExtract-105 

Native Membrane Protein Extraction Kit, 444810, Sigma). Briefly, 3x105 cells were collected 

and washed two times with 1X Tris-buffered saline with centrifugation at 600 g for 10 minutes 

for each wash. Cytosolic proteins were separated by adding 2 mL of lysis buffer I with 10 µL 

protease inhibitor cocktail to the cells followed by incubation for 15 minutes and 



centrifugation at 16000 g for 30 minutes. The supernatant was collected. Next, 1 mL of lysis 110 

buffer II with 5 µL protease inhibitor cocktail was added to the remaining pellet and incubated 

for 30 minutes with intermittent shaking followed by centrifugation at 16000 g for 30 minutes. 

The supernatant enriched with membrane proteins was collected. Protein concentrations 

were measured using Pierce BCA assay (Pierce BCA protein assay kit, 23225, Thermo Fisher) 

before Western blot analysis. 115 

 

2.3. SDS-Polyacrylamide gel electrophoresis and Western blotting 

Total/membrane/cytosolic proteins were denatured by adding 5X SDS loading buffer 

and heating at 95°C for 10 minutes. The denatured proteins were separated by 8% SDS PAGE 

at a constant 60 mA. The separated proteins in the gel were transferred to a PVDF membrane 120 

for 2 hours under a constant 100 V. The PVDF membranes were blocked in 5% blocking buffer 

(5% skimmed milk in PBS) for 1 hour at room temperature. Blocked membranes were 

incubated over night with primary mouse monoclonal PDI antibody (ab2792) diluted in 5% 

blocking buffer at 1:1000 or β actin (ProteinTech-66009) diluted in 5% blocking buffer at 

1:5000 in a cold room. On the following day, membranes were incubated with anti-mouse 125 

secondary antibody conjugated with horse-radish peroxidase (1:5000, GE Healthcare) for 1 

hour and bands were observed by an enhanced chemiluminescence system.  

 

2.4. Hormonal treatment in Ishikawa cells 

Ishikawa cells expressing estrogen receptor (ER) and progesterone receptor (PR) were 130 

used. Ishikawa cells were treated with 5% charcoal dextran stripped-FBS (csFBS, Hyclone) with 



phenol red-free MEM for 24 hours before treating with estrogen (0, 10, and 100 nM) or 

progesterone (0, 0.1, and 1 µM). After 24 hours, total RNA was extracted from the cells and 

real-time PCR was performed. 
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2.5. RNA extraction, reverse transcription and real-time PCR 

Total RNA was extracted from the human endometrial samples using the MirVANA 

PARIS Kit (Invitrogen). TaqMan reverse transcription reagents and TaqMan 2X Universal PCR 

Master Mix (Life Technologies) were used to reverse transcribe the RNA samples to cDNA for 

the real-time PCR analysis. Real-time PCR was carried out in a QuantStudio 5 real-time PCR 140 

System (Applied Biosystems). TaqMan probes for human PDIA1 (Hs001050257_m1), PDIA2 

(Hs00429010_m1), PDIA3 (Hs00607126_m1), PDIA4 (Hs01115905_m1), PDIA5 

(Hs00895698_m1), and PDIA6 (Hs01012543_m1) were used to study the transcript 

expressions in the samples, with 18S (4318839) as the internal control. The 2-ΔΔCt method 

was used to calculate the relative mRNA expressions. 145 

 

2.6. Spheroid-endometrial cells co-culture assay 

Adhesion of Jeg-3 spheroids onto endometrial epithelial cells was quantified as 

reported previously [24, 27, 28]. Briefly, multi-cellular Jeg-3 spheroids were generated by 

shaking (4x g) the trypsinized Jeg-3 cells overnight. Spheroids with sizes between 60 and 200 150 

µm were transferred on confluent monolayers of untreated/treated Ishikawa, RL95-2, 

AN3CA, or HEC1-B cells and incubated for 1 or 2 hours at 37°C in a 5% CO2 humidified 

environment. Unattached spheroids were removed by shaking (8x g) the plate for 10 minutes. 

To study the effect of PDI antibody (PDI-RL77, ab5484) on the receptivity of endometrial cells, 



AN3CA cells were pre-treated with the PDI antibody (5 or 10 μg/mL) and then washed and co-155 

cultured with untreated Jeg-3 spheroids for 2 hours at 37°C in 5% CO2. Similarly, bacitracin 

(PDI inhibitor, B0125-50KU, Sigma) was used to pretreat AN3CA and Ishikawa cells for 3 hours. 

Next, AN3CA cells were co-cultured with Jeg-3 spheroids for 2 hours at 37°C at 5% CO2, while 

Ishikawa cells were co-cultured with Jeg-3 spheroids for 1 hour. The number of attached 

spheroids were counted under a light microscope and the attachment rate (% adhesion) was 160 

expressed as the number of attached spheroids over the total number of added spheroids as 

a percentage, as described previously [27-29]. 

 

2.7. Statistical analysis 

Amino acids sequences were retrieved from the GenBank database and sequence 165 

alignment was performed using ClustalW (https://www.genome.jp/tools-bin/clustalw) and 

BoxShade (https://embnet.vital-it.ch/software/BOX_form.html). All numerical results were 

expressed as means ± SEM. Statistical comparisons were performed by t-test or one-way 

ANOVA using SPSS 20 and GraphPad Prism5. A P<0.05 was considered to be a significant 

difference. Each experiment was independently repeated at least three times.  170 

  

https://www.genome.jp/tools-bin/clustalw
https://embnet.vital-it.ch/software/BOX_form.html


3. Results 

3.1. Sequence alignment of PDIA1-6 transcripts 

We performed an amino acid sequence alignment of PDIA1-6 transcripts using 

ClustalW and BoxShade programs (Fig. 1A). We found that PDIA1-6 had some sequence 175 

homology, with overall amino acid similarity of less than 50% with the other PDIs. 

Interestingly, we found PDIA4 had a long stretch of N-terminal sequence, which was unique 

among the six PDI transcripts. Furthermore, PDIA1, PDIA3, PDIA4, PDIA5, and PDIA6 were 

found to be expressed in endocrine tissues, the pancreas, the gastrointestinal tract, the lungs, 

the brain, muscle tissues, lymphoid tissues, male reproductive tissues, and female 180 

reproductive tissues (endometrium, ovary, fallopian tube, and cervix), whereas PDIA2 was 

largely expressed in the pancreas, the gastrointestinal tract and, to a lesser extent, in female 

reproductive tissues such as the endometrium [30-32].  

 

3.2. Expression of PDIA1-6 transcripts in endometrial epithelial cell lines 185 

We studied the expression of PDIA1-6 transcripts in receptive (Ishikawa and RL95-2) 

and non-receptive (AN3CA and HEC1-B) human endometrial epithelial cells by qPCR. All four 

cell lines expressed PDIA1-6 transcripts (Fig. 1B). Among the four cell lines, HEC1-B cells had 

a significantly lower expression of PDIA1. Interestingly, non-receptive AN3CA and HEC1-B cells 

expressed significantly higher levels of PDIA2 compared with receptive Ishikawa and RL95-2 190 

cells. No significant difference was found in the expression of PDIA3, PDIA4, and PDIA6 

transcripts among the four cell lines. However, HEC1-B cells were found to have a significantly 

higher PDIA5 expression compared with Ishikawa, RL95-2, and AN3CA cells.  

 



3.3. Expression of total, membrane, and cytoplasmic PDI proteins in endometrial 195 

epithelial cell lines 

We further investigated the cellular distribution of PDI proteins in receptive (Ishikawa 

and RL95-2) and non-receptive (AN3CA and HEC1-B) human endometrial epithelial cells by 

Western blotting (Fig 1C). The membrane and cytoplasmic fractions of the proteins were 

isolated and subjected to Western blot analysis using antibodies against the PDI proteins. We 200 

found similar expression of total PDI proteins in all four cell lines. However, non-receptive 

cells (AN3CA and HEC1-B) had significantly higher amounts of membrane but lower amounts 

of cytoplasmic PDI proteins compared with receptive cells (Ishikawa and RL95-2). The purity 

of membrane and cytoplasmic fractions was confirmed by the presence of -actin protein in 

cytoplasmic fraction and total -actin protein as the control for protein loading. 205 

 

3.4. Effect of steroid hormones on the expression of PDIA1-6 transcripts in Ishikawa cells 

We next investigated the effect of estrogen and progesterone on the expression of 

PDI transcripts. As both estrogen and progesterone function through ligand-receptor binding, 

we studied the expressions of estrogen receptor alpha (ESR1) and progesterone receptor 210 

(PGR) in the four cell lines by qPCR (Suppl. Fig. 1). Receptive cells (Ishikawa and RL95-2) 

expressed ESR1 and PGR, whereas non-receptive cells (AN3CA and HEC1-B) expressed low or 

undetectable levels of both receptors. Therefore, we further investigated the effects of 

steroid hormones on the expression of PDIA1-6 in receptive Ishikawa cells expressing both 

ESR1 and PGR.  215 

The addition of estrogen at 10 or 100 nM for 24 hours significantly induced the expression of 

PDIA1 and PDIA6 transcripts, but significantly suppressed transcript expression of PDIA4 (at 



100 nM) and PDIA5 (at 10 and 100nM) when compared with the 0.1% ethanol (solvent) 

control (Fig 2A). Estrogen treatment at 10 and 100 nM had no effect on the expression of 

PDIA2 and PDIA3 transcripts in Ishikawa cells. Interestingly, progesterone treatment at both 220 

0.1 and 1 M for 24 hours suppressed the expression of PDIA1-6 transcripts in Ishikawa cells 

(Fig. 2B) when compared with the 0.1% ethanol (solvent) control. 

 

3.5. Effect of PDI, PDI inhibitor, and PDI antibody on spheroid-endometrial cells co-

culture assay 225 

The in vitro spheroid-endometrial cells co-culture assay was used to study whether 

the expression of PDI proteins plays any role on spheroid attachment. We used trophoblastic 

Jeg-3 spheroids with sizes between 60 and 200 μm to compare the spheroid attachment rates 

on receptive (Ishikawa and RL95-2) and non-receptive (AN3CA and HEC1-B) epithelial cells 

(Fig. 3A). In each attachment assay, 30 spheroids were added on top of a monolayer (Fig. 3A) 230 

and the attachment rate after 1 and 2 hours of co-culture was recorded. We found the 

attachment rates after 1 and 2 hours were highest on Ishikawa cells (87.4% and 93.1%) 

followed by RL95-2 (84% and 86.2%), and then HEC1-B (11.4% and 31.3%) and AN3CA (4% 

and 26.2%). 

To study the functional role of PDIs on the receptivity of endometrial cells, non-235 

receptive AN3CA cells that express high levels of membrane PDI proteins were investigated. 

The AN3CA cells were treated with 0.5, 1, and 5 mM PDI inhibitor (bacitracin) for 24 hours. 

The attachment rate of Jeg-3 spheroids increased between 13% and 17% in treated AN3CA 

cells compared with untreated AN3CA cells (Fig. 3B). Similarly, AN3CA cells were treated with 

5 or 10 µg/mL of PDI antibody for 24 hours. The attachment rate of Jeg-3 spheroid increased 240 

by 12% and 10% in the treated AN3CA cells, respectively, compared with untreated AN3CA 



cells (Fig. 3B). No observable change in the attachment rate was found when a control 

antibody was used at 2 µg/mL. On the contrary, receptive Ishikawa cells expressing lower 

levels of membrane PDIs treated with 5 mM bacitracin did not further increase the 

attachment rate of Jeg-3 spheroids (Fig 3C). To exclude the possibility that bacitracin altered 245 

the expression of PDI transcripts in the treated AN3CA cells, we performed a qPCR analysis of 

PDIA1-6 transcripts, which found no significant changes in their transcript expressions after 

bacitracin treatment (Fig 3D). 

  



4. Discussion 250 

Endometrial receptivity is regulated by various factors including the expression of 

membrane proteins that facilitate or block embryo attachment. Here, we have reported that 

PDIs in endometrial epithelial cells play an important role in the implantation process. The 

expressions of PDI transcripts were downregulated by progesterone in receptive Ishikawa 

cells. High levels of membrane PDI proteins were found in non-receptive AN3CA and HEC1-B 255 

cells. The receptivity of AN3CA to Jeg-3 spheroid attachment increased with pre-treatment 

with PDI inhibitor or PDI antibody, suggesting the membrane expression of PDI proteins may 

modulate embryo attachment in vivo. 

We used mass spectrometric analysis to show differential expressions of PDIA1 

membrane proteins in receptive endometrial cells when compared with the other cell lines 260 

(unpublished data). The PDI family of proteins consist of 21 members, with PDIA1-6 the most 

studied in various human tissues [33-34]. The amino acid sequence alignment of PDIA1-6 

indicated low similarity between these PDI proteins. We investigated the expression of PDIA1-

6 transcripts in receptive (Ishikawa and RL95-2) and non-receptive (AN3CA and HEC1-B) cell 

lines. Although we found similar expressions of PDI proteins, the expression levels of 265 

membrane PDI proteins were higher in non-receptive endometrial cells (AN3CA and HEC1-B). 

The reasons for the higher expression levels of membrane PDI proteins in non-receptive cells 

remain unknown, but a steroid hormone regulatory mechanism may be involved that shuffles 

between cytoplasmic and membrane proteins [35-36]. For example, it has been reported that 

estrogen induces E cadherin translocation via a clathrin-dependent pathway in HC11-siERβ 270 

cells via ligand activation of ERα [37]. In our study, we also found non-receptive endometrial 



cells (AN3CA and HEC1-B) expressed low or undetectable levels of steroid receptors ESR1 and 

PGR, suggesting that PDI shuffling may be hampered in non-receptive endometrial cells. 

Estrogen treatment at 100 nM in Ishikawa cells upregulated transcript expression of 

PDIA1 and PDIA6, but downregulated PDIA4 and PDIA5. No significant expression changes in 275 

PDIA2 and PDIA3 were observed in estrogen-treated Ishikawa cells. Progesterone was found 

to downregulate the expression of PDIA1-6 in the treated Ishikawa cells. In line with this, 

bovine aortic endothelial cells were reported to have upregulated PDI upon estrogen 

treatment [38]. Further studies are needed to investigate the combined effects of steroid 

hormones on the expression of PDI transcripts to mimic steroid hormone changes in vivo. 280 

PDI regulates the expression of other implantation associated molecules such as 

integrin β3, E-cadherin, and EGFR. PDI binds to integrin β3 in regulating endothelial and 

platelet functions, and significantly lower endometrial integrin β3 expression is observed in 

repeated implantation failure patients [39]. A recent study reported that PDIA1 silencing 

increased E-cadherin expression in HKE3 cells [40]. A significant reduction in endometrial 285 

luminal E-cadherin expression was reported in infertile women compared with fertile women 

[41]. Downregulation of EGFR could significantly reduce receptivity of RL95-2 cells [42], and 

upregulate PDIA6 in U87MG cells [43], suggesting the collective role of PDIA6 in regulating 

endometrial receptivity with other implantation associated molecules.  

Due to limitations in the availability of human primary endometrial epithelial cells and 290 

human embryos for the research purposes, we used receptive (Ishikawa and RL95-2) and non-

receptive (AN3Ca and HEC1-B) endometrial epithelial cells to perform the attachment assays 

using trophoblastic Jeg-3 spheroids. In this study, we observed a higher Jeg-3 spheroid 

attachment rate on receptive endometrial cells (Ishikawa and RL95-2) compared with non-



receptive cells (AN3CA and HEC1-B). These results agreed with previous studies that used 295 

different endometrial cell lines in the attachment assays [23, 24].  

We further investigated the association between endometrial receptivity and PDI 

functions. Two approaches were used to study the role of PDIs in endometrial receptivity via 

the spheroid attachment assay. First, we used the PDI inhibitor bacitracin, which functions to 

inhibit the reductive activity of PDI [44], but does not alter the expression PDI proteins [45]. 300 

Although it has been reported that bacitracin is non-specific for PDI inhibition [46], our data 

indicated that bacitracin enhanced Jeg-3 spheroid attachment onto treated AN3CA cells when 

compared with the control, suggesting that inhibiting PDI function enhances spheroid 

attachment. Second, we used PDI antibody to treat AN3CA cells before the spheroid 

attachment assay. Similarly, the findings suggest that blocking PDI protein enhances spheroid 305 

attachment. Many previous studies have also reported that functional blocking of cell surface 

proteins by antibodies affected spheroid attachment. For example, JAr spheroid attachment 

on HEC1-A cells was increased after cell surface blockage of TUBB2C, whereas JAr spheroid 

attachment on RL95-2 cells was reduced with anti-CRT antibody/HSPA9 antibody treatment 

[22]. Conversely, receptive endometrial epithelial Ishikawa cells treated with PDI inhibitor did 310 

not further enhance spheroid attachment, suggesting that lower expression of membrane PDI 

favors spheroid attachment. 

In summary, a higher expression of membrane PDI regulated by estrogen and 

progesterone in the endometrial epithelium creates an environment that is non-conducive 

for healthy embryo implantation. Further studies on the role of estrogen and progesterone 315 

receptors in steroid hormone-mediated membrane PDI expression may provide valuable 



insights on the role of PDI transcripts on endometrial receptivity and early embryo 

attachment. 
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Figure Legends 

Figure 1 Human protein disulfide isomerase (PDI) sequence and expression in 

endometrial cells. (A) Alignment of PDIA1 (P07237), PDIA2 (Q13087), PDIA3 (P30101), PDIA4 

(P13667), PDIA5 (Q14554), and PDIA6 (Q15084) amino acid sequences with ClustalW and 465 

BoxShade. Conserved sequences are shown on the bottom. (B) Expression of PDIA1-6 

transcripts in receptive (Ishikawa and RL95-2) and non-receptive (AN3CA and HEC1-B) human 

endometrial epithelial cells. N=5, p<0.05. (C) Expression of total, membrane, and cellular PDI 

proteins in the four cell lines. The expression of -actin was used as a loading control and for 

purity of the different cellular fractions. 470 

 

Figure 2 Effect of estrogen and progesterone on the expression of PDI isoforms in 

Ishikawa cells. The effect of (A) estrogen and (B) progesterone on the expression of PDIA1-6 

transcripts. Ishikawa cells were treated with estrogen (10 and 100 nM) or progesterone (0.1 

and 1 M) for 24 h, and total RNA was extracted for real-time RT-PCR analysis using TaqMan 475 

probes specific for PDIA1-6 transcripts. Ethanol at 0.1% was used as the control. N=4-5, 

p<0.05. 

 

Figure 3 Role of PDI on spheroid attachment on human endometrial epithelial cells. 

(A) Photomicrograph of spheroids attached to receptive (Ishikawa and RL95-2) and non-480 

receptive (AN3CA and HEC1-B) endometrial epithelial cells. Arrowheads indicate the attached 

Jeg-3 spheroids on the endometrial epithelial cells. The corresponding spheroid attachment 

rate after 1 and 2 h co-culture. The number of attached spheroids over total spheroids added 



is shown in the bars. (B) Effect of PDI inhibitor (bacitracin) and PDI antibody on the attachment 

rate of Jeg-3 spheroids onto non-receptive AN3CA cells. PBS and control antibody were used 485 

as controls in the experiment, respectively. (C) Effect of PDI inhibitor (bacitracin) on the 

attachment rate of Jeg-3 spheroids onto receptive Ishikawa cells. PBS at 0.1% was used as a 

control. N=4-6, p<0.05. (D) Effect of bacitracin on the expression of PDIA1-6 transcripts in 

treated AN3CA cells. N=4, p<0.05. 

 490 

Supplementary Figure 1 Expression of steroid receptors in human endometrial 

epithelial cells. Real-time PCR was used to detect the expression of estrogen receptor alpha 

(ESR1) and progesterone receptor (PGR) in receptive (Ishikawa and RL95-2) and non-receptive 

(AN3CA and HEC1-B) cells. N=3, p<0.05. 
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Figure 1

A
P07237_PDIA1    1 -MLRRALLCLAVAALVRADAPE-------------------------------------EEDHVLVLRKSNFAEALAAHK 

Q13087_PDIA2    1 --MSRQLLPVLLLLLLRASCPWGQE------------------QGARSPSEEPPEEEIPKEDGILVLSRHTLGLALREHP 

P30101_PDIA3    1 MRLRRLALFPGVALLLAAARLAAAS-------------------------------------DVLELTDDNFESRISDTG 

P13667_PDIA4    1 MRPRKAFLLLLLLGLVQLLAVAGAEGPDEDSSNRENAIEDEEEEEEEDDDEEEDDLEVKEENGVLVLNDANFDNFVADKD 

Q15084_PDIA6    1 -MALLVLGLVSCTFFLAVNGLYSSS------------------------------------DDVIELTPSNFNREVIQSD 

Q14554_PDIA5    1 -MARAGPAWLLLAIWVVLPSWLSSAKVS---------------------------------SLIERISDPKDLKKLLRTR 

consensus       1  ....... ....... . .. .                                     .. ...... ..   . .   

 

 

P07237_PDIA1   43 -------------------------------------------------------------------------------- 

Q13087_PDIA2   61 -------------------------------------------------------------------------------- 

P30101_PDIA3   44 -------------------------------------------------------------------------------- 

P13667_PDIA4   81 TVLLEFYAPWCGHCKQFAPEYEKIANILKDKDPPIPVAKIDATSASVLASRFDVSGYPTIKILKKGQAVDYEGSRTQEEI 

Q15084_PDIA6   44 -------------------------------------------------------------------------------- 

Q14554_PDIA5   47 -------------------------------------------------------------------------------- 

consensus      81                                                                                  

 

 

P07237_PDIA1   43 -----------------------------------YLLVEFYAPWCGHCKALAPEYAKAAGKLKAEGSEIRLAKVDATEE 

Q13087_PDIA2   61 -----------------------------------ALLVEFYAPWCGHCQALAPEYSKAAAVLAAESMVVTLAKVDGPAQ 

P30101_PDIA3   44 --------------------------------SAGLMLVEFFAPWCGHCKRLAPEYEAAATRLKG---IVPLAKVDCTAN 

P13667_PDIA4  161 VAKVREVSQPDWTPPPEVTLVLTKENFDEVVNDADIILVEFYAPWCGHCKKLAPEYEKAAKELSKRSPPIPLAKVDATAE 

Q15084_PDIA6   44 ----------------------------------SLWLVEFYAPWCGHCQRLTPEWKKAATALKD---VVKVGAVDADKH 

Q14554_PDIA5   47 -----------------------------------NNVLVLYSKSEVAAENHLRLLSTVAQAVKGQGTICWVDCGDAES- 

consensus     161                                    ..................... ..*  ...   .. ....*...  

 

 

P07237_PDIA1   88 SDLAQQYGVRGYP---TIKFFRNGDTASPKEYTAGREADDIVNWLKKRTGP----------AATTLPDGAAAESLVES-S 

Q13087_PDIA2  106 RELAEEFGVTEYP---TLKFFRNGNRTHPEEYTGPRDAEGIAEWLRRRVGP----------SAMRLEDEAAAQALIGG-R 

P30101_PDIA3   89 TNTCNKYGVSGYP---TLKIFRDGEE--AGAYDGPRTADGIVSHLKKQAGP----------ASVPLRTEEEFKKFISD-K 

P13667_PDIA4  241 TDLAKRFDVSGYP---TLKIFRKGR---PYDYNGPREKYGIVDYMIEQSGP----------PSKEILTLKQVQEFLKDGD 

Q15084_PDIA6   87 HSLGGQYGVQGFP---TIKIFGSNKN-RPEDYQGGRTGEAIVDAALS-----------------------ALRQLVKDRL 

Q14554_PDIA5   91 RKLCKKMKVDLSPKDKKVELFHYQDGAFHTEYNRAVTFKSIVAFLKDPKGPPLWEEDPGAKDVVHLDSEKDFRRLLKKEE 

consensus     241  ... ...*...*   ....*. ..   . .*........*......  ..            . . .. . . ....   

 

 

P07237_PDIA1  154 EVAVIGFFKDVESDSAKQFLQAAEAIDD-IPFGITSNSDVFSKYQLDKDGVVLFKKFDEGRNNFEGEVTK----ENLLDF 

Q13087_PDIA2  172 DLVVIGFFQDLQDEDVATFLALAQDALD-MTFGLTDRPRLFQQFGLTKDTVVLFKKFDEGRADFPVDEELGLDLGDLSRF 

P30101_PDIA3  153 DASIVGFFDDSFSEAHSEFLKAASNLRDNYRFAHTNVESLVNEYDDNGEGIILFRPSHLTNKFEDKTVAYTEQKMTSG-K 

P13667_PDIA4  305 DVIIIGVFKGESDPAYQQYQDAANNLREDYKFHHTFSTEIAKFLKVSQGQLVVMQPEKFQSKYEPRSHMMDVQGSTQDSA 

Q15084_PDIA6  140 GGRSGGYSSGKQGRSDSSSKKDVIELTD----------DSFDKNVLDSEDVWMVEFYAPWCGHCKNLEPEWAAAASEVKE 

Q14554_PDIA5  171 KPLLIMFYAPWCSMCKRMMPHFQKAATQLRGHAVLAGMNVYSSEFENIKEEYSVRGFPTICYFEKGRFLFQYDNYGSTAE 

consensus     321 ........ .  ..    .....  . .   ....   ...  . .  . ..... .     ..           .     

 

 

P07237_PDIA1  229 IKHNQLPLVIEFTEQTAPKIFGGEIKTHILLFLPKSVSDYDGKLSN--------FKTAAESFKGKILFIFIDSDHTDNQR 

Q13087_PDIA2  251 LVTHSMRLVTEFNSQTSAKIFAARILNHLLLFVNQTLAAHRELLAG--------FGEAAPRFRGQVLFVVVD-VAADNEH 

P30101_PDIA3  232 IKKFIQENIFGICPHMTED-NKDLIQGKDLLIAYYDVDYEKNAKGS-NYWRNRVMMVAKKFLDAGHKLNFAVASRKTFSH 

P13667_PDIA4  385 IKDFVLKYALPLVGHRKVSNDAKRYTRRPLVVVYYSVDFSFDYRAATQFWRSKVLEVAKDFPEY----TFAIADEEDYAG 

Q15084_PDIA6  210 QTKGKVKLAAVDATVNQVLASRYGIRGFPTIKIFQKGESPVDYDGG----------------------------RTRSDI 

Q14554_PDIA5  251 DIVEWLKNPQPPQPQVPETPWADEGGSVYHLTDEDFDQFVKEHSSVLVMFHAPWCGHCKKMKPEFEKAAEALHGEADSSG 

consensus     401 ...  ....     .     ..  .  . .. .. .... ..  ..   ..      ..    .     ...  . .  . 

 

 

P07237_PDIA1  301 ILEFFGLKKEECPAVRLITLEEEMTKYKPESEE-LTAERITEFCHRFLEGKIKPHLMSQELPEDWDKQPVKVLVGKNFED 

Q13087_PDIA2  322 VLQYFGLKAEAAPTLRLVNLETTKKYAPVDGGP-VTAASITAFCHAVLNGQVKPYLLSQEIPPDWDQRPVKTLVGKNFEQ 

P30101_PDIA3  310 ELSDFGLESTAGEIPVVAIRTAKGEKFVMQEEFSRDGKALERFLQDYFDGNLKRYLKSEPIPESNDG-PVKVVVAENFDE 

P13667_PDIA4  461 EVKDLGLS-ESGEDVNAAILDESGKKFAMEPEE-FDSDTLREFVTAFKKGKLKPVIKSQPVPKNNKG-PVKVVVGKTFDS 

Q15084_PDIA6  262 VSRALDLFSDNAPPPELLEIINEDIAKRTCEEHQLCVVAVLPHILDTGAAGRNSYLEVLLKLADKYKKKMWGWLWTEAGA 

Q14554_PDIA5  331 VLAAVDATVNKALAERFHISEFPTLKYFKNGEK--YAVPVLRTKKKFLEWMQNPEAPPPPEPTWEEQQTSVLHLVGDNFR 

consensus     481 ..  ...  . .. .......    .. .. .  . .  .  ... .... ..... ..... . .  ...........  

 

 

P07237_PDIA1  380 VAFDEKKNVFVEFYAPWCGHCKQLAPIWDKLGETYKDHENIVIAKMDSTAN----EVEAVKVHSFPTLKFFPASADRTVI 

Q13087_PDIA2  401 VAFDETKNVFVKFYAPWCTHCKEMAPAWEALAEKYQDHEDIIIAELDATAN----ELDAFAVHGFPTLKYFPAGPGRKVI 

P30101_PDIA3  389 IVNNENKDVLIEFYAPWCGHCKNLEPKYKELGEKLSKDPNIVIAKMDATANDV--PSP-YEVRGFPTIYFSPANKKLNPK 

P13667_PDIA4  538 IVMDPKKDVLIEFYAPWCGHCKQLEPVYNSLAKKYKGQKGLVIAKMDATANDV--PSDRYKVEGFPTIYFAPSGDKKNPV 

Q15084_PDIA6  342 QSELETALGIGGFGYPAMAAINARKMKFALLKGSFSEQG----------------INEFLRELSFGRGSTAPVGGGAFPT 

Q14554_PDIA5  409 ETLKKKKHTLVMFYAPWCPHCKKVIPHFTATADAFKDDRKIACAAVDCVKDKNQDLCQQEAVKGYPTFHYYHYGKFAEKY 
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P07237_PDIA1  456 DYNGE-RTLDGFKKFLESGGQDGAGDDDDLEDLEEAEEPDMEEDDDQKAVKDEL 

Q13087_PDIA2  477 EYKST-RDLETFSKFLDNGGVLPTEEPPEEPAAPFPEPPANSTMGSKEEL---- 

P30101_PDIA3  466 KYEGG-RELSDFISYLQREATNPPVIQEEKPKKKKKAQEDL------------- 

P13667_PDIA4  616 KFEGGDRDLEHLSKFIEEHATKLSRTKEEL------------------------ 

Q15084_PDIA6  406 IVEREPWDGRDGELPVEDDIDLSDVELDDLGKDEL------------------- 

Q14554_PDIA5  489 DSDRTELGFTNYIRALREGDHERLGKKKEEL----------------------- 
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