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Anthraquinones are bioactive natural products, some of which are active components in
medicinal medicines, especially Chinese medicines. These compounds exert actions
including purgation, anti-inflammation, immunoregulation, antihyperlipidemia, and
anticancer effects. This study aimed to review the pharmacokinetics (PKs) of
anthraquinones, which are importantly associated with their pharmacological and
toxicological effects. Anthraquinones are absorbed mainly in intestines. The absorption
rates of free anthraquinones are faster than those of their conjugated glycosides because
of the higher liposolubility. A fluctuation in blood concentration and two absorption peaks
of anthraquinones may result from the hepato-intestinal circulation, reabsorption, and
transformation. Anthraquinones are widely distributed throughout the body, mainly in
blood-flow rich organs and tissues, such as blood, intestines, stomach, liver, lung, kidney,
and fat. The metabolic pathways of anthraquinones are hydrolysis, glycuronidation,
sulfation, methylation/demethylation, hydroxylation/dehydroxylation, oxidation/reduction
(hydrogenation), acetylation and esterification by intestinal flora and liver metabolic
enzymes, among which hydrolysis, glycuronidation and sulfation are dominant. Of
note, anthraquinones can be transformed into each other. The main excretion routes
for anthraquinones are the kidney, recta, and gallbladder. Conclusion: Some
anthraquinones and their glycosides, such as aloe-emodin, chrysophanol, emodin,
physcion, rhein and sennosides, have attracted the most PK research interest due to
their more biological activities and/or detectability. Anthraquinones are mainly absorbed in
the intestines and are mostly distributed in blood flow-rich tissues and organs.
Transformation into another anthraquinone may increase the blood concentration of
the latter, leading to an increased pharmacological and/or toxicological effect. Drug-
drug interactions influencing PK may provide insights into drug compatibility theory to
enhance or reduce pharmacological/toxicological effects in Chinese medicine formulae
and deserve deep investigation.
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INTRODUCTION

Anthraquinones naturally exist in plant families, such as,
Polygonaceae, Leguminosae, Rubiaceae (Chen et al., 2020),
Rhamnaceae, Scrophulariaceae, Liliaceae, Verbenaceae and
Valerianaceae (Zhao et al., 2011), e.g., Rheum palmatum
L., Rheum tanguticum Maxim, ex Balf., Rheum officinale Baill.,
Cassia obtusifolia L., Cassia tora L., Verbena officinalis L.,
Polygonum multiflorum Thunb., Aloe barbadmsis Miller., Aloe
ferox Miller, Rubia cordifolia L., Cassia angustifolia Vahl, Cassia
acutifolia Delile, and Morinda angustifolia Roxb (Chen et al.,
2020). Anthraquinones are also found in the secondary
metabolites of lower-order plants, such as, lichens (Solárová
et al., 2020). Some plants have been used for Chinese
medicines (Yang et al., 2016; Li H. et al., 2018; Yang et al.,
2018) (Figures 1A–F).

Pharmacological studies have shown that anthraquinones
exert purgative (Gong et al., 2015), anti-inflammatory (Li D.
et al., 2013), immunoregulation (Abu et al., 2018),
antihyperlipidemia (Wang et al., 2014), and anticancer effects
(Lin et al., 2015; Cui et al., 2016; Yang N. et al., 2019). Thus,
pharmacokinetics (PKs) has attracted increasing attention and
in-depth research for scholars, especially in the field of Chinese
medicines.

Anthraquinones are structurally divided into two classes,
mononuclear and dinuclear. Their names and CAS numbers
are listed in Supplementary Table S1. The parent rings of
anthraquinones are illustrated in Figure 1G.

Thanks to advanced technologies and methodologies, the
pharmacological and/or toxicological effects of anthraquinones
have been gradually uncovered. However, there has been no
overall review of their PKs untill now, which are closely
associated with their bioactions. Thus, this study summarized
the PKs of anthraquinones, aiming to provide basic knowledge
for further research on the pharmacological and toxicological
effects and mechanisms of anthraquinones.

ABSORPTION

Absorption Sites and Rate
The absorption of anthraquinones depends on their physical and
chemical properties, especially quinone structure and
liposolubility under the normal conditions. The dominant
absorption sites for anthraquinones are the intestines rather
than the stomach (Wang J. et al., 2011; Liu X. et al., 2011;
Wang P. et al., 2011), although emodin is absorbed more
quickly in the stomach than in the intestines (Kong et al.,
2011). This may result from anthraquinones having more
retention time in the intestines than in the stomach (Kong
et al., 2011).

Regarding the intestines, the accumulated absorption rates of
total anthraquinones in the small intestines and colons of male
SD rats at 2 h are 66.99 and 23.54%, respectively (Liu X. et al.,
2011). Anthraquinones can easily enter small intestinal villi
epithelial cells through passive diffusion (Li et al., 2012). This
can be calculated via their absorption rate constant (Ka) and

apparent absorption coefficient (Papp) (Table 1) (Figure 1H). A
larger Ka means a shorter Tmax, i.e., faster drug absorption. A
larger Papp means a larger area under the curve (AUC). Actually,
the Papp of anthraquinones is the greatest in the duodenum and
then decreased in the jejunum and are minimum in the ileum
(Qiu et al., 2011; Wang J. et al., 2011; Wang P. et al., 2011).
However, the Ka and Papp of anthraquinones increased in the
colon than that in the ileum (Figure 1H). This may be associated
with the weak acidity of anthraquinones and the pH conditions in
the intestines. Since the upper small intestines are a weakly acidic
environment (Wang J. et al., 2011; Wang P. et al., 2011), given
that most anthraquinones are weakly acidic, this may lead to
lower ionization and higher liposolubility of anthraquinones. In
contrast, with a higher pH value, the ileum is an alkaline
environment (pH � 7–8), where the ionization degree of
anthraquinones is increased leading to little anthraquinone
absorption. However, compaired with the ileum, the Ka and
Papp of anthraquinones increase in colons because the acidity
increases slightly and the retention time is prolonged (Table 1).

Generally, anthraquinones are absorbed with over a wide
range in vivo. This may be due to differences in drug dosages,
detection instruments, and protocols. As described inTable 2, the
greater the body weight of the subjects is, the greater the Cmax and
AUC are. Among anthraquinones, rhein has the lowest Tmax, and
the highest Cmax and AUC in dogs (Zhu et al., 2006) (Table 2).

Affecting Factors
Physiological Conditions
Experimental Animal Species The absolute bioavailability (F) of
rhein in beagle dogs is higher than that in rats (49.7 vs. 23.8%, p <
0.01) (Zhang et al., 2010) (Table 1).

Sex The AUC values of emodin (Liu W. et al., 2011) and aloe-
emodin (Yang et al., 2010) in male rats are higher than those in
female rats. In contrast, the AUC of rhein in healthy women is
higher than that in men. Furthermore, the Tmax of rhein is shorter
in women than that in men (Zhu et al., 2006), indicating a faster
absorption of rhein in female (Yang et al., 2010). These findings
may result from the difference in the body fat ratio between
females and males (Zhu et al., 2006).

Hepato-Intestinal Circulation and Reabsorbing The blood
levels of aloe-emodin, chrysophanol, emodin, chrysoobtusin,
physcion-8-O-β-D-glucoside, chrysophanol-8-O-β-D-glucoside,
obtusin, aurantio-obtusin, obtusifolin, physcion and rhein
fluctuate dramatically due to the hepato-intestinal
circulation (and glycoside hydrolysis in the intestines)
(Ullah et al., 2018; Yang B. et al., 2019). Another factor is
that anthraquinones are rapidly distributed to other organs
and re-absorbed into the blood. Thus, aurantio-obtusin,
obtusin, chrysoobtusin, emodin, chrysophanol, rhein and
aloe-emodin form second absorption peaks. For example,
the second absorption peaks for emodin from different
studies range from approximately 3–10 h (Wu W. J. et al.,
2017; Wang L. et al., 2017; Ullah et al., 2018; Yang B. et al.,
2019; Zhang et al., 2019).

Food Compared with the fasted rats, the Cmax and AUC of
rhein and emodin increase in the fed group (Gong et al., 2011).
However, the mechanism is currently unknown.
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Disorders
The AUC values of rhein, aloe-emodin, chrysophanol, emodin
and physcion increase significantly in the rats with
microcirculation disturbance compaired with the normal
group (Zhu et al., 2017). The Cmax and Tmax of
chrysophanol are increased in acute pancreatitis in dogs
compaired with the normal group (Yang et al., 2012).
Conversely, rhein had a lower AUC in liver-injured male
rats. The potential mechanism may result from changes in
the expression and activation of metabolic enzymes in the
injured liver (Zhang et al., 2015). For constipated rats, oral
administration of rhubarb extract (anthraquinone-rich
containing plant) resulted in a the Cmax and AUC of emodin
that were approximately ten times those of normal rats, while
the AUC values for aloe-emodin and rhein were decreased. The
mechanisms may be attributed to the direct action of aloe-
emodin and rhein on intestinal cell membranes and the indirect
action of emodin on bowel movement through adjustment by
the nervous system (Gong et al., 2015). This may synergistically
enhance the purgative effect on constipation.

Drug–Drug Interactions
Drug–drug interactions always alter the single herb
pharmacological effects. Since natural products especially
Chinese medicines are always used as formulae that consist of
two or more herbs, they play a critical role in investigating the
influencing factors of drug-drug interactions in PKs. Generally,
the combination of anthraquinones with other drugs has three
types, pure compounds of anthraquinones, anthraquinone-
containing single herbs (including their extracts and fractions),
and anthraquinone-containing herbs in formulae.

Anthraquinone-containing single herbs combined with other
drugs or single-herbs (herb pairs) are a basic building block for
Chinese medicine use. For example, a rhubarb-gardenia herb pair
consisting of Rhei Radix et Rhizoma (Dahuang containing
anthraquinones) (Figures 1A,D) and Gardeniae Flos
(Zhizihua, containing genipin) is used for treating cholestasis
diseases. A study showed that Gardeniae Flos increased the Cmax

and AUC of aloe-emodin, chrysophanol, emodin and rhein in
rats, indicating a synergistic effect of the rhubarb-gardenia herb
pair on hepatoprotection (Dong et al., 2015).

Compared with pure compounds and single herbs,
interactions between herbs in a formula are the most common
to assess drug compatibility for traditional Chinese medicines.

Da-Cheng-Qi decoction (DCQD), a classic formula including
Rhei Radix et Rhizoma (“monarch” herb), Magnoliae Officinalis
Cortex (Houpo), Aurantii Fructus Immaturus (Zhishi), and
Natrii Sulfas (Mangxiao, Na2SO4·10H2O), has been used for
treating acute pancreatitis and intestinal obstruction.
Combining DCQD with ranitidine (an H2 receptor inhibitor)
is a Chinese-Western integrative strategy for such diseases. Thus,
it is necessary to investigate the drug-drug interactions between
ranitidine and DCQD. Ren et al. reported that ranitidine reduces
the Cmax and AUC of rhein in DCQD. Therefore, the
bioavailability of DCQD may be decreased, indicating the
dosage of DCQD should be increase when combined with

ranitidine. This may result from ranitidine changing
gastrointestinal motility and inhibiting the absorption of rhein.
(Ren et al., 2009).

San-Huang tablets, consisting of Rhei Radix et Rhizoma,
extracts of Scutellariae Radix (Huangqin) and berberine
hydrochloride, are used for multiple diseases, such as
constipation, inflammation, pathogenic microbes, and spasm.
Rhei Radix et Rhizoma is the main component for
constipation because of its active compound, emodin. Studies
have shown that Scutellariae Radix and/or berberine
hydrochloride increased the AUC and Cmax of emodin,
indicating a potentiation role of Scutellariae Radix and/or
berberine hydrochloride in the efficacy of emodin (Zhou et al.,
2010). Moreover, Xin et al. reported that San-Huang-Xie-Xin
decoction (SHXXD), including Rhei Radix et Rhizoma,
Scutellariae Radix and Coptidis Rhizoma (containing
berberine), increases the Cmax and AUC of rhein compared
with a single herb of Rhei Radix et Rhizoma (Xin et al., 2009).
The mechanisms may be due to the inhibited glucuronidation
activity of UDP-glucuronyltransferases (UGTs) by other
ingredients in SHXXD, leading to the increased bioavailability
of rhein (Hou et al., 2014).

Dahuang-mudan decoction (DMD) consists of Rhei Radix et
Rhizoma, Moutan Cortex (Mudanpi), Persicae Semen (Taoren),
Benincasae Semen (Dongguaren), and Natrii Sulfas. DMD has
been used for treating intestinal carbuncles for approximately
1,700 years since the Han Dynasty. Pharmacological effects on
appendicitis, inflammatory bowel disease, pelvic inflammatory
disease and acute pancreatitis have been found with the
identification of active compounds, emodin, aloe-emodin,
rhein, paeoniflorin and amygdalin. Nong et al. reported that
Natrii Sulfas decreases the Cmax and AUC of emodin and rhein
while increasing the absorption of aloe-emodin, indicating novel
insight into the role of Natrii Sulfas in DMD in addition to a stool
softener treatment of archenteric inflammatory disease (Zhang Y.
X. et al., 2013; Nong et al., 2019).

Tao-He-Cheng-Qi-Tang (THCQT), including Persicae
Semen (Taoren), Rhei Radix et Rhizoma, Natrii Sulfas,
Cinnamomi Ramulus (Guizhi), and Glycyrrhizae Radix et
Rhizoma (Gancao), has been used to treat platelet
aggregation, hyperlipidemia, diabetes, inflammation, and
related conditions. Xie et al. reported that compared with the
oral administration of Rhei Radix et Rhizoma alone, the Cmax

and AUC of rhein in THCQT increased in rabbits. However, the
mechanisms for the alternation of rhein absorption are
unknown (Xie et al., 2005).

An eight-herb formula, Niu-Huang-Jie-Du tablets (NHJDT),
including Bovis Calculus (Niuhuang), Rhei Radix et Rhizoma,
Realgar (As2S2, Xionghuang), Gypsum Fibrosum (CaSO4·2H2O,
Shigao), Platycodonis Radix (Jiegeng), and Borneolum
Syntheticum (D-borneoland, Bingpian), exerts heat clearance
and detoxification in Chinese medicine. Compaired with oral
adminstraton of Rhei Radix et Rhizoma alone in rats, the AUC
and Cmax of rhein increased in NHJDT, while the Tmax of the
chrysophanol isomer decreased. The mechanism requires further
study (Liu Y. et al., 2018).
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DISTRIBUTION

Tissues and Organs
Since the bioavailability of anthraquinones is low, to date, only a
few distribution studies of the anthraquinones aloe-emodin,
chrysophanol, emodin, rhein, and physcion have been
reported, as listed in Table 3. These anthraquinones are
widely distributed and are more abundant in blood-rich

tissues and organs, such as the intestines, stomach, plasma,
lung, liver, heart, and kidney. More intestine and stomach
distribution may facilitate anthraquinone treatment of
digestive gut disorders. They are also detected in fat, possibly
due to their good liposolubility. However, few anthraquinones
have been discovered in the brain since they have difficulty
passing through the blood-brain barrier (Ding et al., 2003;
Shia et al., 2011b; Tan et al., 2013; Chen et al., 2014; Du et al.,

FIGURE 1 | Pharmacokinetics (PK) of anthraquinones. (A) Rheum officinale Baill. (B) Cassia tora L. (C) Polygonum multiflorum Thunb. (D) Rhei Radix et Rhizoma.
(E) Cassiae Semen. (F) Polygoni Multiflori Radix. (G) structures of anthraquinones and dinuclear anthraquinone glycosides. R1 and R2 represent different groups
including glucoses. (H) absorption of anthraquinones. Papp: apparent absorption coefficient. CH: chrysophanol; PH: physcion; EM: emodin; RH: rhein; AE: aleo-emodin.
(I) metabolism of anthraquinones.
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2014), although chrysophanol easily enters the brain when it is
prepared in liposomes (Zhu et al., 2012).

Affecting Factors
Physiological Condition
Sex After oral administration of 4.5 mg/kg of 14C-aloe-emodin to
rats, the concentration of aloe-emodin in rat ovaries is higher than
that in testes (Lang, 1993). The amounts of emodin and rhein in the

liver of female rats are greater than those in male rats (Chen et al.,
2017). The different distribution betweenmales and females suggests
that sex should be taken into consideration before clinical drug use.

Disorders
The distribution of anthraquinones in tissues and organs is associated
with therapeutic target sites, effects and storage. More tissue
distribution may involve stronger efficacy on tissues and organs.

TABLE 2 | The pharmacokinetic parameters of anthraquinones in rats and dogs.

Pharmacokinetic
parameters

Cmax (μg/ml) Tmax (h) AUC0-‘ mg/(L·h) References

Rats Dogs Rats Dogs Rats Dogs

Aloe-emodin 0.004–124.40 0.03–0.45 0.20–11.33 0.75–1.55 0.008–4.67 0.42–1.61 (Yang et al., 2012; Zhang et al., 2013b; Feng et al.,
2013; Feng et al., 2014; Jiang et al., 2015; Yang
et al., 2019a; Cheng et al., 2020)

Alizarin 0.25 – 0.98 – 1.64 – (Gao et al., 2018)
Aurantio-obtusin 0.17–1,135.80 – 0.08–0.53 – 0.99–5.90 – (Zhang et al., 2014; Yang et al., 2015; Guo et al.,

2017; Yang et al., 2019a)
Chrysophanol 0.001–3,142.80 0.04–0.30 0.25–9.28 1.00–2.00 0.01–37.05 0.54–0.83 (Yang et al., 2012; Feng et al., 2014; Zhu et al., 2017;

Ullah et al., 2018; Yang et al., 2019a; Cheng et al.,
2020)

Chrysophanol-8-O-β-D-
glycoside

0.03 – 2.00 – 0.158 – (Ullah et al., 2018)

Chryso-obtusin 0.05–894.1 – 0.08–3.64 – 0.27–3.58 – (Zhang et al., 2014; Yang et al., 2019a)
Citreorosein 0.149 – 0.19 – 0.134 – (Cheng et al., 2020)
Emodin 0.001–348.4 0.27–0.48 0.10–8.94 0.75–1.42 0.004–39.6 1.38–4.05 (Song et al., 2009b; Yang et al., 2012; Feng et al.,

2014; Zhu et al., 2014; Jiang et al., 2015; Zhu et al.,
2017; Yang et al., 2019a;

Emodin-8-O-β-D-
glycoside

0.02–0.10 – 0.28–0.29 – 0.014–0.084 – (Zhang et al., 2018b; Cheng et al., 2020)

Munjistin 0.03–0.74 – 1.61–1.93 – 0.14–3.99 (Gao et al., 2016; Gao et al., 2018)
Obtusifolin 0.10–1,535.5 – 0.13–3.94 – 0.24–18.17 – (Yang et al., 2015; Guo et al., 2017; Yang et al.,

2019a)
Obtusin 0.12–802.0 – 0.33–1.13 – 0.36–7.07 – (Zhang et al., 2014; Yang et al., 2019a)
Physcion 0.03–0.49 0.03 0.17–10.4 2.00 0.07–3.29 0.48 (Feng et al., 2013; Feng et al., 2014; Huang et al.,

2014; Yang et al., 2015; Feng et al., 2017; Zhu et al.,
2017)

Physcion-8-O-β-D-
glycoside

0.019–0.021 – 0.26–0.75 – 0.084 – (Ullah et al., 2018; Cheng et al., 2020)

Purpurin 0.07–0.21 – 1.61–1.64 – 0.24–1.55 – (Gao et al., 2016; Gao et al., 2018)
Questinol 0.001 – 4.38 – 0.017 – (Cheng et al., 2020)
Questin 0.028–0.056 – 0.17–0.23 – 0.22–0.26 – (Guo et al., 2017)
Rhein 0.001–134.0 1.44–3.39 0.08–12.00 0.71–1.50 0.002–63.14 4.24–35.15 (Yang et al., 2012; Feng et al., 2014; Jiang et al.,

2015; Li et al., 2017b; Yang et al., 2019a; Cheng
et al., 2020)

Xanthopurpurin 0.06 – 1.3 – 0.34 (Han et al., 2020)
1-desmethylobtusin 0.11 – 0.5 – 0.54 – (Zhang et al., 2014)

Cmax: peak concentration; Tmax: peak time; AUC: area under the curve.

TABLE 1 | Ka and Papp values of some anthraquinone compounds absorbed in different intestines and colons of rats.

Duodenum Jejunum Ileum Colons References

Kam (×10−
4/s)

Papp (×10−
5 cm/s)

Ka (×10−
4/s)

Papp (×10−
5 cm/s)

Ka (×10−
4/s)

Papp (×10−
5 cm/s)

Ka (×10−
4/s)

Papp (×10−
5 cm/s)

AE 5.43–16.07 7.65–10.68 4.88–13.03 6.29–9.83 2.23–8.63 3.45–5.90 3.88–12.17 5.12–7.9 (Wang et al., 2011a; Wang et al.,
2011b; Qiu et al., 2011)CH 19.02 13.77 15.15 12.88 10.80 10.27 18.17 15.22

EM 15.55 10.18 11.45 7.98 8.38 5.65 12.45 8.05
PH 10.08 5.53 6.38 3.83 6.22 4.00 16.12 12.42
RH 6.96–10.68 6.15–8.91 5.70–11.13 7.95–8.22 4.79–6.27 4.17–6.59 5.18–6.55 3.85–8.92

Ka: absorption rate constant; Papp: apparent absorption coefficient; AE: aloe-emodin; CH: chrysophanol; EM: emodin; PH: physcion; RH: rhein. The number of male and female rats in the
studies was equal.
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Regarding gastrointestinal diseases, aloe-emodin, rhein, rhein-8-O-
β-D-glycoside and sennoside A are distributed at higher levels in the
liver and colon in the constipation model mice than in the normal
group when they are treated with a Chinese formula, Dahuang-
Gancao decoction. The greater distribution in the colon may benefit
the treatment of constipation (Chen et al., 2019). For acute
pancreatitis, rhein in Da-Cheng-Qi decoction is distributed more
in the pancreas than in normal rats, indicating a promising effect of
Da-Cheng-Qi decoction on acute pancreatitis (Zhao et al., 2015). To
investigate the potential change in the distribution of rhubarb
anthraquinones, the total extract of Rhei Radix et Rhizoma was
orally administered to normal and CCl4-induced liver injury rats.
Data have shown that the distribution of aloe-emodin, emodin and
rhein in the rat spleen, liver and kidney is decreased under liver injury
(Fang et al., 2011), which deserves further study. The distribution of
anthraquinones is listed in Table 3.

METABOLISM

Biotransformation is an important process for anthraquinones to
be changed into inactive or more active metabolites and cleared
from the body. The transformation occurs mainly in the liver.
However, since most Chinese medicines are orally administered,
biotransformation of anthraquinones has already begun in the
early phase of absorption in the gut based on the actions of
enzymes in the intestinal flora, including Bifidobacterium sp.
(Wang et al., 2010), Peptostreptococcus, Clostridium spp., and
Eubacteria (Rong et al., 2016). (Table 4 and Figure 1I).

Hydrolysis
Anthraquinone glycosides can be hydrolyzed by both intestinal
bacteria and liver enzymes. Song et al. incubated processed

rhubarb aqueous extracts with rat intestinal bacteria and found
that 12 anthraquinone glycosides were hydrolyzed into
anthraquinone aglycones, aloe-emodin, chrysophanol, emodin, and
physcion respectively (Song et al., 2012) (Table 4). For anthraquinone
glycoside-containing formulae, Liu and colleagues incubated Xiao-
Cheng-Qi decoction (XCQD) with human intestinal bacteria in vitro
and found that sennoside A and seven other anthraquinone
glycosides were hydrolyzed (Liu X. Y. et al., 2018). It is worth
noting that anthraquinone glycosides, such as aloe-emodin-8-O-
β-D-glucopyranoside, emodin-8-O-β-D-glucopyranoside, and
rhein-8-O-β-D glucopyranoside can also be transformed into their
aglycones by the enzymes in the liver (Xu et al., 2018).

Glucuronidation
Glucuronidation in the intestines and liver is one of the main phase II
metabolic reactions of anthraquinones. UGTs play a pivotal role in the
glucuronidation of anthraquinones (Wu et al., 2014; Meng and Ding,
2019). When oral administered with Zhi-Zi-Da-Huang decoction
(ZZDHD), which consists of Gardenia jasminoides Ellis (Zhizi),
Rheum palmatum L. (Dahuang), Citrus aurantium L. (Zhishi) and
Sojae Semen Praeparatum (Dandouchi), emodin and rhein can be
transformed to rhein-8-O-glucuronide, rhein-1-O-glucuronide,
emodin-1-O-glucuronide, and emodin-3-O-glucuronide (Zhu et al.,
2015). Aloe-emodin is transformed to glucuronidation forms by
β-glucuronidase and sulfatase/β-glucuronidase following
intravenous and oral administration in rats (Yu et al., 2016).

Da-Huang-Xiao-Shi decoction (DHXSD) is another formula
for treating jaundice. It is composed of four crude drugs: Rheum
officinale Baill (Dahuang), Gardenia jasminoides Ellis (Zhizi),
Phellodendron amurense Rupr. (Huangbo), and Natrii Sulfas.
When DHXSD was orally administered to rats, six
anthraquinone glucuronidation, aloeemodin-O-glucuronide,
chrysophanol-O-glucoside-O-glucuronide, rhein-O-glucuronide,

TABLE 3 | Distribution of anthraquinones in various tissues and organs.

Components Species/
biomatrix

Administration
routines

Administration dosage Distribution References

Aloe-emodin KM mouse i.g. 300 mg/kg (rhubarb extract) Intestines, stomach, kidney, lung, muscle, liver, heart,
fat, brain, plasma, spleen

(Wang et al.,
2020)

Aloe-emodin KM mouse i.g. 52.2 mg/kg, 26.1 mg/kg,
13.05 mg/kg

Intestines, heart, lung, liver, kidney, brain, stomach,
spleen, muscle, fat, plasma

(Li and Feng,
2018)

Chrysophanol KM mouse i.g. 300 mg/kg (rhubarb extract) Stomach, intestines, liver, spleen, kidney, fat, lung,
plasma, muscle, heart, brain

(Wang et al.,
2020)

Chrysophanol New Zealand
rabbits

i.v. 15 mg/kg Heart, lung, liver, kidney, brain (Tan et al.,
2013)

Chrysophanol SD rats i.g. 15 mg/kg Heart, kidney, spleen, liver, lung, brain (Chen et al.,
2014)

Chrysophanol KM mouse i.v. 10 mg/kg Blood, heart, kidney, spleen, liver, lung, brain (Zhu et al.,
2012)

Emodin KM mouse i.v. (5.45 μg,13.7 nmol) 0.1 ml Blood, lung, kidney, stomach, thyroid, liver, bone, small
intestines, skin, heart, spleen, mucle, brain

(Du et al., 2014)

Emodin KM mouse i.g. 300 mg/kg (rhubarb extract) Stomach, intestines, liver, kidney, lung, spleen, plasma,
fat, heart, muscle, brain

(Wang et al.,
2020)

Rhein KM mouse i.g. 300 mg/kg (rhubarb extract) Liver, stomach, intestines, plasma, spleen, kidney, lung,
heart, fat, muscle, brain

(Wang et al.,
2020)

Rhein SD rats i.g. 2.0 g/kg of rheum palmatum L.
decoction

Kidney, liver, lung (Shia et al.,
2011b)

Physcion KM mouse i.g. 300 mg/kg (rhubarb extract) Intestines, stomach, liver, lung, spleen, heart, plasma,
muscle, fat, brain, kidney

(Wang et al.,
2020)
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TABLE 4 | Metabolic pathways and metabolites of anthraquinones.

Compound Animal
species

Dose Administration
routines

Metabolic pathway Metabolites References

Aloe-emodin SD rats 10 mL/kg rhubarb
decoction

i.g. Glucuronidation,
hydroxylation,
hydrogenation, oxidation

Aloe-emodin-8-O-glucoside-1-O-
glucuronide or aloe-emodin-1-O-
glucoside-8-O-glucuronide, 2-
hydroxyaloe-emodin-ω-O-glucuronide

(Song et al.,
2010)

Aloe-emodin SD rats NA Liver microsomes Monohydroxylation,
hydrogenation,
methylation, oxidation in
side chain

Aloe-emodin, rhein, 1,8-dihydroxy-3-
hydroxymethyl-10-oxanthranol, 1,2,8-
trihydroxy-3-
hydroxymethylanthraquinon, 1,4,8-
trihydroxy-3-
hydroxymethylanthraquinon,
1,8,9,10-tetrahydroxy-3-(methoxyl)
methyl-9,10-dihydroanthracene, 1,8-
dihydroxy-3-(methoxyl)
methylanthraquinone, 1,8-dihydroxy-
3-hydroxymethyl-4-
methylanthraquinone, 1,8-dihydroxy-
3-hydroxymethyl-2-
methylanthraquinone

(Song et al.,
2009a)

Aloe-emodin SD rats 0.035 mg/mL Liver microsomes Hydroxylation, reduction,
oxidation

Dihydroxy-aloe-emodin, hydroxy-
aloe-emodin, hydroxy-rhein, hydroxyl-
1, 8-dihydroxy-3-hydroxymethyl-9-
oxanthranol/hydroxyl-1, 8-dihydroxy-
3-hydroxymethyl-10-oxanthranol,
aloe-emodin, rhein isomer

(Xu et al., 2018)

Aloe-emodin SD rats NA Intestinal bacteria Hydrolysis, hydroxylation,
acetylation, demethylation

3-acetoxy–1,8-dihydroxy-6-
hydroxymethyl-10-oxanthranol, 2-
formyl-1,8-dihydroxy-3-
hydroxymethyl-6-
methoxyanthraquinone

(Song et al.,
2011)

Aloe-emodin In vitro 0.0156 mg/mL Human intestinal
bacteria

Reduction, methylation O-methyl-aloe-emodin, 1,8-
dihydroxy-3-hydroxymethyl-9-
oxanthranol or 1,8-dihydroxy-3-
hydro-xymethyl-10-oxanthranol and
aloe-emodin isomer

(Huang et al.,
2019)

Aloe-emodin 1/8-O-
glycoside

In vitro 0.5 mL Intestinal bacteria Hydrolysis, reduction,
substitution reaction

aloe-emodin, and reduction and
acetoxyl derivatives

(Song et al.,
2012)

Aloe-emodin-8-O-
β-D-glycoside

SD rats 0.0240 mg/mL Liver microsomes Hydrolysis, hydroxylation,
reduction, oxidation

aloe-emodin-8- O-β-D
-glucopyranoside, aloe-emodin
isomer, hydroxy-aloe-emodin, aloe-
emodin, rhein

(Xu et al., 2018)

Aloe-emdion-
O-glucopyranoside

In vitro 1 ml Xiao-Cheng-Qi
Decoction solution
(1g/ml raw formula
herbs), including rhei
Radix et Rhizoma
(wine processed),
Aurantii Immaturus
Fructus and
Magnoliae officinalis
Cortex

Human intestinal
bacteria

Hydrolysis and oxidation aloe-emdion, rhein and rheinanthrone (Liu et al.,
2018b)

11-O-actyl-aloe-
emdion-O-β-glc-xyl

In vitro 1 ml Xiao-Cheng-Qi
Decoction solution
(1g/ml raw formula
herbs), including rhei
Radix et Rhizoma
(wine processed),
Aurantii Immaturus
Fructus and
Magnoliae officinalis
Cortex

Human intestinal
bacteria

Hydrolysis and oxidation aloe-emdion, rhein and then
rheinanthrone

(Liu et al., 2018a)

(Continued on following page)
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TABLE 4 | (Continued) Metabolic pathways and metabolites of anthraquinones.

Compound Animal
species

Dose Administration
routines

Metabolic pathway Metabolites References

Chrysophanol SD rats 10 mL/kg rhubarb
decoction

i.g. Glucuronidation, sulfation Chrysophanol-1-O-glucoside-8-O-
glucuronide, chrysophanol-8-O-
glucoside-1-O-glucuronide,
chrysophanol-1,8-biglucuronides,
chrysophanol-1-O-glucuronide,
chrysophanol-8-O-glucuronide

(Song et al.,
2010)

Chrysophanol SD rats 0.0755 mg/mL Liver microsomes Hydroxylation, acetylation,
demethylation,
hydroxylation, reduction,
oxidation

Chrysophanol, dihydroxy-
chrysophanol, dihydroxyl-1,8-
dihydroxy-3-methyl-9-oxanthranol/
dihydroxyl-1,8-dihydroxy-3-methyl-
10-oxanthranol, hydroxy-
chrysophanol, rhein

(Xu et al., 2018)

Chrysophanol SD rats NA Liver microsomes Monohydroxylation,
dihydroxylation

Chrysophanol, 1,4,8-trihydroxy-3-
hydroxymethylanthraquinone, 2-
hydroxychrysophanol, 4-
hydroxychrysophanol

(Song et al.,
2009a)

Chrysophanol SD rats NA Intestinal bacteria Hydrolysis, hydroxylation,
acetylation, demethylation

3-acetoxy-1,8-dihydroxy-6-methyl-
10-oxanthanol, 1,8-dihydroxy-2-
(acetoxy) methyl-6-
methylanthraquinone, 1,8-dihydroxy-
2-(1-hydroxyethoxy) methyl-6-
methylanthraquinone

(Song et al.,
2011)

Chrysophanol In vitro 0.0755 mg/mL Human intestinal
bacteria

Reduction, hydrolysis,
acetylation, oxidation,
demethylation, methylation,
hydroxylation,
dehydroxylation

Chrysophanol isomer, O-methyl-
hydroxy-chrysophanol, aloe-emodin,
O-methyl-chrysophanol, 1,8-
dihydroxy-3-methyl-9-oxanthranol or
1,8-dihydroxy-3-methyl-10-
oxanthranol, emodin, acetyl-1,8-di-
hydroxy-anthraquinone, danthron,
rhein

(Huang et al.,
2019; Tian.,
et al., 2012)

Chrysophanol-1/8-
O-glucoside

In vitro 0.5 mL Intestinal bacteria Hydrolysis, reduction,
substitution reaction

Chrysophanol and then reduction and
acetoxyl derivatives

(Song et al.,
2012)

Chrysophanol-O-
glucopyranoside

In vitro 1 ml Xiao-Cheng-Qi
Decoction solution
(1g/ml raw formula
herbs), including rhei
Radix et Rhizoma
(wine processed),
Aurantii Immaturus
Fructus and
Magnoliae officinalis
Cortex

Human intestinal
bacteria

Hydrolysis and oxidation Chrysophanol, rhein and then
rheinanthrone

(Liu et al., 2018a)

Emodin Wistar
rats

50 mg/kg i.g. Methylation, hydroxylation,
oxidation

physcion, chrysophanol, aloe emodin,
danthron, rhein

(Tian et al.,
2012)

Emodin SD rats 8 g/kg Zhi-Zi-Da-
Huang decoction

i.g. Glucuronidation, sulfation Emodin-1-O-glucuronide, emodin-1-
O-sulfate, emodin-3-O-glucuronide,
emodin-3-O-sulfate

(Zhu et al., 2015)

Emodin SD rats 2.26 mg/kg i.g. Oxidation, acidification,
methylation,
glucuronidation, sulfation

Emodin methylate, ω-hydroxy-
emodin, 6-carboxyl emodin, physcion,
emodin, sulfonyl emodin, emodin-di-
glucuronide, emodin-glucuronide,
emodin-glucuronide oxidate, emodin-
sulfate oxidate

(Zhang et al.,
2018b)

(Continued on following page)
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TABLE 4 | (Continued) Metabolic pathways and metabolites of anthraquinones.

Compound Animal
species

Dose Administration
routines

Metabolic pathway Metabolites References

Emodin SD rats 10 mL/kg rhubarb
decoction

i.g. Glucuronidation, sulfation,
hydroxylation,
hydrogenation, oxidation

emodin-O-diglucuronides, emodin-O-
glucoside-O-glucuronide, 1,8-
Dihydroxy-3-carboxy-6-
methylanthraquinone-1or 8-O-
glucoside, emodin-1 or 8-O-
glucuronide-3-O-sulfate or emodin-1
or 8-O-sulfate-3-O-glucuronide,
1,3,8-trihydroxy-6-methyl-10-
oxanthranol glucuronide, emodin-O-
diglucuronides, 1,3,8-trihydroxy-6-
(glucuronidyl)methylanthrquinone,
emodin acid-O-glucuronide, emodin-
2-C-glucuronide, emodin-3-O-
glucuronide

(Song et al.,
2010)

Emodin SD rats Raw root of P.
multiflorum Thunb
extract (10 mL/kg/,
2 g/mL)

i.g. Glucuronidation, sulfation,
oxidation

Emodin glucuronide sulfate, emodin 1,
8-O-diglucuronide, emodin 1, 3-O-
diglucuronide, emodin 3, 8-O-
diglucuronide, 4-hydroxyemodin, 5-
hydroxyemodin, emodin acid-3-O-
glucuronide, emodin acid-3-O-sulfate,
physcion-glucuronides

(Huang et al.,
2018)

Emodin SD rats 0.0156 mg/mL Liver microsomes Transhydroxylation,
hydroxylation, reduction,
dehydroxylation, oxidation

Hydroxy-emodin, 1,3,8-trihydroxy-6-
methyl-9-oxanthranol/1, 3,8-
trihydroxy-6-methyl -10-oxanthranol,
dihydroxy-emodin, hydroxy-emodin,
aloe-emodin isomer, hydroxy-rhein,
hydroxyl-aloe-emodin, aloe-emodin,
emodin

(Xu et al., 2018)

Emodin SD rats NA Liver microsomes Hydroxylation ω-hydroxyemodin, 2-hydroxyemodin,
4-hydroxyemodin, emodin acid, 3-
carbomethoxy-6-methoxy-1,8-
dihydroxyanthraquinone, physcion

(Song et al.,
2008)

Emodin SD rats NA Liver microsomes/
intestinal bacteria

Monohydroxylation,
methylation, oxidation in
side chain

Emodin, physcion, 1, 3, 8-trihydroxy-
6-(acetoxy) methyl-10-oxanthranol,
ω-hydroxyemodin, 2-hydroxyemodin,
4-hydroxyemodin, emodin acid, 3-
carbomethoxy-6-methoxy-1,8-
dihydroxyanthraquinone, 1,8-
dihydroxy-3-hydroxymethyl-10-
oxanthranol

(Song et al.,
2008; Song
et al., 2009a;
Song et al.,
2011)

Emodin In vitro 0.1950 mg/mL Human intestinal
bacteria

Acetylation, hydroxylation,
methylation, trans
hydroxylation, reduction

Aloe-emodin, isomer of emodin, 8-O-
methyl-emodin, 1-O-methyl-
emodin,3-O-methyl-emodin, 2-
hydroxy-emodin, 4-hydroxy-emodin,
ω-hydroxy-emodin, acetyl-1,3,8-
trihydroxy-6-methyl-9-oxan-thranol or
acetyl-1,3,8-trihydroxy-6-methyl-10-
oxanthranol, acetyl-hydroxy-emodin

(Huang et al.,
2019)

Emodin-1/8-
O-glucoside

In vitro 0.5 mL Intestinal bacteria Hydrolysis, reduction,
substitution reaction

Emodin and then reduction and
acetoxyl derivatives

(Song et al.,
2012)

Emodin-8-O-β-D-
glucoside

SD rats 0.01 mg/mL Liver microsomes Transhydroxylation,
hydrolysis, oxidation,
hydroxylation

Dihydroxyl-1, 3, 8-trihydroxy-6-
methyl-9-oxanthranol/dihydroxyl-1, 3,
8-trihydroxy-6-methyl-10-
oxanthranol, hydroxy-emodin-O-
glucopyranoside, hydroxy-emodin-O-
glucopyranoside, emodin-8-O-
β-glucopyranoside, emodin

(Xu et al., 2018)

(Continued on following page)
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TABLE 4 | (Continued) Metabolic pathways and metabolites of anthraquinones.

Compound Animal
species

Dose Administration
routines

Metabolic pathway Metabolites References

Emodin-O-
glucopyranoside

In vitro 1 ml Xiao-Cheng-Qi
Decoction solution
(1g/ml raw formula
herbs), including rhei
Radix et Rhizoma
(wine processed),
Aurantii Immaturus
Fructus and
Magnoliae officinalis
Cortex

Human intestinal
bacteria

Hydrolysis and oxidation Emodin, rhein and then rheinanthrone (Liu et al., 2018a)

Physcion SD rats NA i.g. Glucuronidation, sulfation Physcion oxidate, physcion-sulfate,
physcion-glucuronide

(Zhang et al.,
2018a)

Physcion SD rats 10 mL/kg rhubarb
decoction

i.g. Glucuronidation, sulfation Physcion-1-O-glucoside-8-O-
glucuronide or physcion-8-O-
glucoside-1-O-glucuronide, physcion-
1, 8-O-diglucuronides

(Song et al.,
2010)

Physcion SD rats NA Liver microsomes Monohydroxylation,
oxidation in side chain,
demethylation

Emodin, 1,8-dihydroxy-3-
methoxyanthraquinone, 1,8-
dihydroxy-3-hydroxymethyl-6-
methoxyanthraquinone,
hydroxyphyscion, emodin acid,
ω-hydroxyemodin, 4-hydroxyemodin,
3-carbomethoxy-6-methoxy-1,8-
dihydroxyanthraquinone

(Song et al.,
2009a)

Physcion SD rats 0.16 mg/mL Liver microsomes Demethylation,
hydroxylation, reduction

Dihydroxy-1,8-dihydroxy-3-methoxy-
6-methyl-9-oxanthranol/1, 8-
dihydroxy-3-methoxy-6- methyl-10-
oxanthranol, emodinIsomer, hydroxy-
emodin, emodin, physcion

(Xu et al., 2018)

Physcion SD rats NA Intestinal bacteria Hydrolysis, hydroxylation,
acetylation, demethylation

2-Formyl-1,8-dihydroxy-3-
hydroxymethyl-6-
methoxyanthraquinone, 1,8-
dihydroxy-2-(acetoxy) methyl-3-
methoxyanthraquinone, 3-acetoxy
-1,8-dihydroxy-6-(acetyl)
methylanthraquinone

(Song et al.,
2011)

Physcion In vitro 0.1610 mg/mL Human intestinal
bacteria

demethylation,
dehydroxylation,
transhydroxylation

Chrysophanol isomer, physcion
isomer, aloe-emodin, emodin

(Huang et al.,
2019)

Physcion-O-
glucoside

In vitro 0.5 mL Intestinal bacteria Hydrolysis, reduction,
substitution reaction

physcion and then reduction and
acetoxyl derivatives

(Song et al.,
2012)

Rhein SD rats 8 g/kg Zhi-Zi-Da-
Huang decoction

i.g. glucuronidation, sulfation Rhein-1-O-sulfate, rhein-8-O-sulfate,
rhein-8-O-glucuronide, rhein-1-O-
glucuronide

(Zhu et al., 2015)

Rhein SD rats 10 mL/kg rhubarb
decoction

i.g. glucuronidation, sulfation rhein, rhein-1-O-glucoside (Song et al.,
2010)

Rhein SD rats NA Liver microsomes Hydrogenation, methylation 1,8-dihydroxy-3-carboxy-9-
oxanthranol, 1,8-dihydroxy-3-
carboxy-10-oxanthranol, 2-
methylrhein

(Song et al.,
2009a)

Rhein SD rats 0.1950 mg/mL Liver microsomes Hydroxylation, reduction rhein, rhein isomer, dihydroxyl-1,8-
dihydroxy-3-carboxyl-9-oxanthranol/
dihydroxyl-1,8-dihydroxy-3-carboxyl-
10-oxanthranol

(Xu et al., 2018)

Rhein SD rats NA Intestinal bacteria Hydrolysis, hydroxylation,
acetylation, demethylation

2-acetoxy -6-carboxy -1,8-
dihydroxyanthraquinone, 3-
acetoxy–1,8-dihydroxy-6-
hydroxymethyl-10-oxanthranol

(Song et al.,
2011)

Rhein In vitro 0.0350 mg/mL Human intestinal
bacteria

methylation, hydroxylation,
reduction

rhein, O-methyl-rhein, 1,8-dihydroxy-
3-carboxyl-9-oxanthranol, 1,8-
dihydroxy-3-carboxyl-10-oxanthranol,
hydroxy-rhein, chrysophanol isomer

(Huang et al.,
2019)

(Continued on following page)
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physcion-O-glucoside-O-glucuronide, chrysophanol-O-
glucuronide, and emodin-O-glucuronide were transformed to
glucuronidation forms (Wang D. et al., 2017) (Table 4).

Sulfonation
Sulfonation in the intestines and liver is the other main phase II
metabolic reaction of anthraquinones by sulfotransferase (SULT)
(Song, et al., 2010). Like glucuronidation, the sulfonation is
another detoxification process. Additionally, sulfonated
anthraquinones can be used as a remedy strategy for free
radical-related diseases such as AAPH (2,2′-azobis (2-

amidinopropane hydrochloride))-induced hemolysis (Shia
et al., 2009; Shia et al., 2010).

Aloe-emodin, chrysophanol, emodin, physcion, and rhein are
metabolized to sulfonation forms (Song, et al., 2010; Zhu et al.,
2015; Zhang, et al., 2018a; Huang et al., 2018). This can lead to a
decline in the oral bioavailability of anthraquinones (Teng et al.,
2007; Shia et al., 2009) (Table 4).

Methylation/Demethylation
Methylation is another metabolic reaction for anthraquinones in
both the intestines and the liver (Song Z. et al., 2009). Aloe-

TABLE 4 | (Continued) Metabolic pathways and metabolites of anthraquinones.

Compound Animal
species

Dose Administration
routines

Metabolic pathway Metabolites References

Rhein In vitro 1 ml Xiao-Cheng-Qi
Decoction solution
(1g/ml raw formula
herbs), including rhei
Radix et Rhizoma
(wine processed),
Aurantii Immaturus
Fructus and
Magnoliae officinalis
Cortex

Human intestinal
bacteria

Hydrolysis Rheinanthrone (Liu et al., 2018a)

Rhein-8-O-
glucoside

SD rats 0.025 mg/mL Liver microsomes Hydrolysis, hydroxylation,
reduction

Rhein-8-O-glucopyranoside,
dihydroxy-3-carboxyl-9-oxanthranol-
O-glucopyranoside/1, 8-dihydroxy-3-
carboxyl-10-oxanthranol-O-
glucopyranoside, rhein, emodin
isomer

(Xu et al., 2018)

Sennoside A Human 0.0250 mg/mL Intestinal bacteria Hydrolysis, methylation,
hydroxylation,
dehydroxylation, reduction

sennidine A-8-O-monoglucoside,
rheinanthrone, dehydroxy-
rheinanthrone, O-methyl-hydroxy-
rheinanthrone, rhein

(Huang et al.,
2019)

sennoside A In vitro 1 ml Xiao-Cheng-Qi
Decoction solution
(1g/ml raw formula
herbs), including rhei
Radix et Rhizoma
(wine processed),
Aurantii Immaturus
Fructus and
Magnoliae officinalis
Cortex

Human intestinal
bacteria

Hydrolysis Rheinanthrone (Liu et al., 2018a)

Sennoside B Human 0.0393 mg/mL Intestinal bacteria Hydrolysis, methylation,
hydroxylation,
dehydroxylation, reduction

Sennoside A, dehydroxy-
rheinanthrone, O-methyl-
rheinanthrone, sennidine B-8-O-
monoglucoside, sennidine A-8-O-
monoglucoside, aloe-emodin,
O-methyl-hydroxy-rheinanthrone,
O-methyl-rheinanthrone, rhein

(Huang et al.,
2019)

Sennoside C Human 0.0398 mg/mL Intestinal bacteria Hydrolysis, oxidation,
methylation,
dehydroxylation, reduction

sennoside C, sennidine C-8-
monoglucoside, sennidine C-8′-
monoglucoside, rheinanthrone-8-O-
monoglucoside, dehydroxy-
rheinanthrone, rhein, aloe-emodin,
O-methyl- rheinanthrone

(Huang et al.,
2019)

Sennoside D Human 0.0263 mg/mL Intestinal bacteria Hydrolysis, oxidation,
methylation,
dehydroxylation, reduction

Chrysophanol isomer, sennidine D-8-
O-monoglucoside or sennidine D-8′-
O-monoglucoside, O-methyl-
rheinanthrone, aloe-emodin, rhein

(Huang et al.,
2019)

NA: not available; i. g.: intragastrical administration; I.V.: intravenous injection.
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emodin (Song R. et al., 2009), chrysophanol (Huang et al., 2019),
emodin (Tian et al., 2012), rhein (Song R. et al., 2009; Huang et al.,
2019) and rheinanthrone (Huang et al., 2019) are methylated to
O-methyl-aloe-emodin, O-methyl-chrysophanol, 8-O-methyl-
emodin, O-methyl-rhein, and O-methyl-rheinanthrone,
respectively. O-methyltransferase may be involved in the
methylation process (Koyama et al., 2009; Huang et al., 2019).
Conversely, demethylation is an opposite reaction in
anthraquinone metabolic processes. The demethylation of
chrysophanol is transformed to dihydroxy-chrysophanol, while
physcion is transformed to emodin/isomer (Xu et al., 2018). Of
note, the rapid demethylation of physcion to emodin may be the
reason why the bioavailability of physcion is low (Song R. et al.,
2009).

Hydroxylation/Dehydroxylation
The hydroxylation of emodin is hydroxy-emodin and dihydroxy-
emodin. Chrysophanol can also be transformed to hydroxylation
forms as hydroxy-chrysophanol and dihydroxy-chrysophanol
(Xu et al., 2018). Hydroxylation is also the synthesis pathway
to form anthraquinone glycosides. Additionally, aleo-emodin is
transformed to aloe-emodin-8-O-glucoside-1-O-glucuronide or
aloe-emodin-1-O-glucoside-8-O-glucuronide, 2-hydroxyaloe-
emodin-ω-O-glucuronide through hydroxylation,
glucuronidation, hydrogenation, and oxidation (Song et al.,
2010). Cytochromosome P450s, including CYP1A2, CYP2C19,
CYP2B6, and CYP3A4, play major roles in the hydroxylation of
anthraquinones (He et al., 2015; Qin et al., 2018). In contrast,
emodin (Xu et al., 2018) and rheinanthrone (Huang et al., 2019)
are dehydroxylated to chrysophanol isomers, and dehydroxy-
rheinanthrone, respectively. Other hydroxylation and
dehydroxylation are listed in Table 4.

Oxidation/Reduction (Hydrogenation)
For oxidation, chrysophanol (Xu et al., 2018), emodin (Zhang
J. et al., 2018), physcion (Song R. et al., 2009), rheinanthrone
(Huang et al., 2019) and aloe-emodin anthrone (Huang et al.,
2019) are oxidized to ω-hydroxy-emodin, rhein and aloe-
emodin in the intestines and liver. Aloe-emodin (Song R.
et al., 2009; Song et al., 2010; Xu et al., 2018) is oxidized to
rhein. The oxidation reaction can decrease the bioavailability of
anthraquinones. The order of bioavailability of some
anthraquinones is: rhein > emodin > chrysophanol > aloe-
emodin. This may result from that sennosides A and B, aloe-
emodin and chrysophanol all being oxidized to rhein (Shia et al.,
2011a). CYP1A2, CYP2B6 and CYP3A4 are the major enzymes
for oxidation (Sun et al., 2018).

For reduction, aloe-emodin, chrysophanol, emodin, physcion,
rhein and rhein-8-O-glycopyranoside are hydrogenated (Xu
et al., 2018; Yu et al., 2018; Huang et al., 2019). (Table 4).

Acetylation
Chrysophanol, emodin, physcion and rhein can be acetylated into
acetyl-1,8-dihydroxy-anthraquinone, acetyl-1,3,8-trihydroxy-6-
methyl-9-oxanthranol and 1,8-dihydroxy-2-(acetoxy) methyl-
3-methoxyanthraquinone, respectively (Song et al., 2011; Xu
et al., 2018; Huang et al., 2019).

Esterification
Rhein is Esterified to Rhein Methyl Ester by intestinal Flora (Fan
et al., 2016).

Affecting Factors
Physiological Condition
Sex The glucuronidation of emodin shares the same rate in
human males and females, while the rates in females are faster
than the rates in male rats, guinea pigs, and dogs. However, at an
emodin concentration of 2.5 μM, male mice have a higher rate of
glucuronidation than females (Liu et al., 2010). In addition,
danthron and chrysophanol produced from emodin
metabolism are only present in male rats (Tian et al., 2012).
The bioavailability of rhein in female rats is higher than that in
males. The mechanism may be the different activation of UGTs
between the male and female (Zhang et al., 2015).

Disorders
The glucuronidation and hydrolysis of anthraquinones and their
glycosides are reduced in rats with ulcerative colitis. The
mechanism may be that colitis reduces the activities of
β-glucosidases and β-glucuronidases in the intestinal flora (Wu
W. J. et al., 2017). In alcohol-induced liver injury, the metabolism
of aloe-emodin, chrysophanol, physcion, aurantio-obtusin,
chrysoobtusin, emodin, obtusin and rhein increase. This may
result from that alcohol induces P450 (e.g., CTP2E1, CYP3A and
CYP1A) (Shao and Feng, 2015; Li P. et al., 2017). Furthermore,
the metabolism of rhein decreases under acute liver injury
because of the lower expression and activity of CYP450,
especially in males (Zhang et al., 2015).

Drugs
Drug–Drug Interactions Preparations with wine are very common
for Chinese medicines. Thus the role of wine (ethanol) in Chinese
medicines has attractedmore research interest. Studies have shown
that Rhei Radix et Rhizoma steamed with wine can accelerate the
hydrolysis of anthraquinone glycosides in rats. This results in
higher bioavailability of emodin, physcion and chrysophanol
(Zhang et al., 2019). Additionally, wine reduces the T1/2 of aloe-
emodin and emodin in Rhei Radix et Rhizoma (Wu Y. et al., 2017).
This may be consistent with the traditional Chinese medicine
theory of drug processing (known as Paozhi): wine promotes
blood circulation. It is very common for ethanol to be used for
drug processing of Chinese medicine to induce bioavailability,
enhance efficacy and/or decrease adverse drug reactions.

For anthraquinone compounds, piperine increases the AUC
and Cmax of emodin by inhibiting UGTs (Di et al., 2015).
Synergism can also occur between different anthraquinones.
Sennoside A is an active anthraquinone glucoside in rhubarb
(Rhei Radix et Rhizoma) for treating constipation. Rhein 8-O-
β-D-glucopyranoside, emodin, aloe-emodin and rhein can
enhance the purgative action of sennoside A by accelerating its
hydrolysis by inducing intestinal bacteria (Takayama et al., 2012).

Furthermore, the different classes of compounds in the same
herb may influence the PKs of anthraquinones. 2,3,5,4-
Tetrahydroxy-stilbene-2-O-β-D-glycoside (TSG), a compound
in Polygini Multiflori Radix (Heshouwu) (Li et al., 2016; Li H.
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et al., 2017) inhibits the mRNA expression of the UGT isoforms,
UGT1A8, UGT1A10, and UGT12B7, leading to a decrease in
glucuronidation of emodin (Ma et al., 2013; Yu et al., 2017).
Inhibiting emodin glucuronidation will increase the
bioavailability of emodin; however, it also leads to an
accumulation of emodin to induce liver damage (Ma et al.,
2015). Interestingly, TSG also accelerates metabolism to clear
emodin by enhancing the activity of CYP1A2 (Xing et al., 2019),
indicating that the interaction role of TSG in emodin
pharmacological and toxicological actions is complex and
needs to be further studied.

Rhei Radix et Rhizoma exerts purgative action for constipation.
However, hepatotoxicity and abdominal pain limit its clinical
application. When using Rhei Radix et Rhizoma combination
with Glycyrrhizae Radix et Rhizoma (Gancao) (Da-Huang-
Gancao Decoction in Chinese, Daiokanzoto in Japanese),
hepatotoxicity and abdominal pain were reduced. The
underlying mechanisms may be due to Glycyrrhizae Radix et
Rhizoma inducing P450 to accelerate the transformation of
emodin (Han et al., 2010). Furthermore, liquiritin and liquiritin
apioside in Glycyrrhizae Radix et Rhizoma can induce intestinal
bacteria to intensify the metabolism of sennoside A and enhance
purgative action (Matsui et al., 2011). Increasing research on the
intestinal flora may provide more insights into the novel role of
intestinal bacteria in the PKs of anthraquinones.

Dahuang Fuzi decoction is the combination of Rhei Radix et
Rhizoma, Aconiti Lateralis Radix Praeparata (Fuzi) and Asari
Radix et Rhizoma (Xixin). Drug extrusion by intestinal P-gp can
both reduce drug absorption and modulate the effects of
inhibitors and inducers of CYP3A/CYP3A4-mediated
metabolism. The study has shown that the compounds from
Aconiti Lateralis Radix Praeparata or Asari Radix et Rhizoma
may induce P-gp and CYP3A/CYP3A4, leading to a decrease in
AUC and Cmax for anthraquinones (Liu et al., 2015).

Xin et al. reported that San-Huang-Xie-Xin decoction
(SHXXD), including Rhei Radix et Rhizoma, Scutellariae Radix
and Coptidis Rhizoma (containing berberine), showed increases
in the Cmax and AUC of rhein compared with the single herb Rhei
Radix et Rhizoma (Xin et al., 2009). The mechanisms may be due
to the inhibited glucuronidation activity of UGTs for rhein by
other ingredients in SHXXD (Hou et al., 2014).

The metabolic pathways and metabolites of anthraquinones
are listed in Table 4.

EXCRETION

Excretion Routes and Form
Generally, anthraquinones are mainly excreted via the kidney
(Chen et al., 2014), recta (Zhang M. et al., 2018), and/or
gallbladder (Ma et al., 2005) via prototypes and/or metabolites.
They are excreted with urine (Ma et al., 2005), feces (Zhang
J. et al., 2018), and/or bile (Ma et al., 2005).

Anthraquinones excreted through bile may be reabsorbed and
utilized in the intestines to form a hepatointestinal circulation, so
they can be excreted for a long time (Yang B. et al., 2019). The
amount of chrysophanol excreted through urine is significantly

greater than that excreted through bile (Ma et al., 2005). The
urinary excretion of emodin is 1.5-folds that of feces (Sun et al.,
1986; Wu et al., 2008; Du et al., 2014). Regarding metabolite
elimination of anthraquinones, e.g., rhein, the metabolite of
emodin, exists in the plasma for a short time because of the
rapid excretion (Tian et al., 2012).

Glucuronic acid and sulfuric acid conjugates of rhein are
dominant in urine and fecal excreta. Only 20% of the
prototype rhein is excreted in urine and feces (Wan et al., 2013).

Affecting Factors
Physiological Condition
Species Physcion can be detectable in the urine of humans rather
than in that of rats. However, there is an opposite result for rhein
between humans and rats. In addition to differences in dosage
and detection instruments, this species diversity may result from
apparent distribution volume (Li et al., 2003).

Sex The excretion of danthron and rhein in male rats is faster
than that in female (Tian et al., 2012). The excretion of emodin
glucuronide is slower in male rats than that in female rats (LiuW.
et al., 2011).

Food Feeding increases the half times of elimination (T1/2) of
emodin and rhein, possibly because feeding stimulates an
increase in bile secretion to form hepato-intestinal circulation.
Additionally, feeding inhibits the activity and the saturation of the
related metabolic enzymes and consequently increases the T1/2 of
emodin and rhein (Gong et al., 2011).

Disorders
The mean residence times (MRTs) of anthraquinones, e.g., aloe-
emodin, chrysophanol, emodin, physcion, and rhein are
prolonged in microcirculation disorder (Dai et al., 2014; Yan
and Dai, 2014; Zhu et al., 2017). For ischemic cerebrovascular
disease, the elimination s of aloe-emodin, emodin, and rhein are
significantly decreased in thrombotic cerebral ischemia compared
with normal condition in rats (Feng et al., 2013). The T1/2 values
of chrysophanol and rhein are increased in acute pancreatitis, and
the plasma clearance rates (CL) are decreased (Gong et al., 2009;
Yang et al., 2012). Regarding liver disorders, the MRT of rhein is
shortened and elimination is accelerated in acute liver injury rats
(Zhang et al., 2015).However, in the other reports, the T1/2 values
of aloe-emodin, chrysophanol, emodin and rhein increase (Li P.
et al., 2017; Yang N. et al., 2019). The contradict results may result
from the different animal models. For alcoholic liver injury, the
T1/2 and MRT of emodin in rats are prolonged, and CL is
decreased (Zhu et al., 2016). In addition, studies have reported
that gastrointestinal disorders caused by alcoholic liver injury
may affect the excretion of drugs (Burkard et al., 2005; Luo et al.,
2014). The T1/2 of chrysophanol and rhein increases in rats with
ulcerative colitis (Wu W. J. et al., 2017). Under chronic renal
failure conditions, the elimination of rhein is accelerated in rats
due to urine alkalization and an increase in urine output (Wang
et al., 2009).

The T1/2 values of chrysophanol and rhein in Rhei Radix et
Rhizoma are increased in lipopolysacchoride (LPS)-induced
inflammation. However, the underlying mechanisms are
unkown (Li et al., 2013c).
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Drugs
Drug–Drug Interactions For drug compatibility, combination
with Scutellariae Radix increases the urinary excretion of
emodin in Rhei Radix et Rhizoma compared with oral
administration of Rhei Radix et Rhizoma alone in rats (Wu
et al., 2010; Li J. et al., 2018). Glycyrrhizae Radix et Rhizoma
increases the elimination rate of rhein in Rhei Radix et Rhizoma.
This may attenuate the hepatotoxicity of rhein in Rhei Radix et
Rhizoma (Han et al., 2010).

The compatibility of Rhei Radix et Rhizoma and Aconiti
Lateralis Radix Praeparata (Fuzi) is the basic herb pair applied
in many traditional Chinese prescriptions. Studies have shown
that Aconiti Lateralis Radix Praeparata decreases the clearance of
aloe-emodin, chrysophanol and rhein. Therefore, the safety of the
herb pair Rhei Radix et Rhizoma and Aconiti Lateralis Radix
Praeparata should be given more attention (Li et al., 2015).

For the formula Dahuang-mudan decoction (DMD), in which
Rhei Radix et Rhizoma is combined with Magnoliae Officinalis
Cortex, Aurantii Fructus Immaturus, and Natrii Sulfas, Zhang
reported that the prolonged elimination of aloe-emodin and
emodin, indicating a lower toxicity in this formula. The
underlying mechanisms may be due to competitive inhibition
between the chemical compounds in DMD and need to be further
investigated (Nong et al., 2019). An eight-herb formula Niu-
Huang-Jie-Du tablets (NHJDT), including Bovis Calculus
(Niuhuang), Rhei Radix et Rhizoma, Realgar (As2S2,
Xionghuang), Gypsum Fibrosum (CaSO4·2H2O, Shigao),
Platycodonis Radix (Jiegeng), and Borneolum Syntheticum
(D-borneoland, Bingpian), exerts heat-clearance and
detoxicification in Chinese medicine. The data showed that the

clearance of chrysophanol isomers in NHJDT increased in rats,
indicating that drug-drug interaction for excretion occured
between the ingredients in NHJDT. However, the mechanism
is still unknown (Liu Y. et al., 2018).

The elimination of anthraquinones is listed in Table 5.

DISCUSSION

Anthraquinones are naturally present inmedicinal plants, especially
Chinese medicines. They have attracted increasing research
attention because of their pharmacological and toxicological
effects. Thus, the approach to determining their PK plays a key
role in exploring their actions andmechanisms. In this study, 33 out
of 217 free anthraquinones and glycosides were studied for their PK
(Tables 1–5 and Supplementary Table S1; Figure 1). This may
result from well-investigated actions and/or detectable
concentrations either in plants or in vivo for the 33 compounds.
The other compounds without PK studies may be difficult to isolate
from natural plants, undetectable and/or weak bioactions.

Regarding the factors influencing the PK of anthraquinones, it
is suggested to consider all in vivo processes instead of absorption,
distribution, metabolism or elimination alone. For example, there
are multiple factors influencing the bioavailability of rhein. The
differences Tmax and AUC difference of rhein between females
andmales always invole complex factors, including different body
weights, apparent distribution volumes and fat ratios (which are
associated with absorption and distribution), phase Ⅰ and phase Ⅱ
metabolism (other anthraquinone glycosides, sennoside A/B,
aloe-emodin, can all be transformed into rhein and

TABLE 5 | The elimination of anthraquinones.

Pharmacokinetic
parameters

T1/2 (h) CL L/Kg·h References

Rats Dogs Rats Dogs

Aloe-emodin 0.27–162.12 2.02–14.73 0.002–166.76 61.63 (Feng et al., 2012; Yang et al., 2012; Li et al., 2013b: Zhang et al., 2013a; Feng
et al., 2014;

Alizarin 8.97 – – – (Gao et al., 2018)
Aurantio-obtusin 4.94–13.78 – 1.88 – (Zhang et al., 2014; Yang et al., 2015; Yang et al., 2019a)
Chrysophanol 0.36–20.99 1.95–15.18 0.001–44.74 146.61 (Yang et al., 2012; Feng et al., 2013; Feng et al., 2014; Jiang et al., 2015; Zhu et al.,

2017)
Chrysophanol-8-O-
β-D-glycoside

4.8 – – – (Ullah et al., 2018)

Chryso-obtusin 3.86–8.69 – 3.04 – (Zhang et al., 2014; Yang et al., 2019a)
Citreorosein 3.97 – – – (Cheng et al., 2020)
Emodin 0.10–53.99 1.72–18.73 0.006–56.4 17.12 (Song et al., 2009a:; Yang et al., 2012; Li et al., 2013b; Zhang et al., 2013a; Zhang

et al., 2013b; Feng et al., 2014; Zhu et al., 2014; Zhang et al., 2018c)
Emodin-8-O-β-D-glycoside 0.18–3.92 – – – (Zhang et al., 2018b; Cheng et al., 2020)
Munjistin 9.22–11.97 – – – (Gao et al., 2016; Gao et al., 2018)
Obtusifolin 1.87–11.12 – 21.10 – (Zhang et al., 2012; Yang et al., 2015; Yang et al., 2019a)
Obtusin 4.41–8.28 – 1.96 – (Zhang et al., 2014; Yang et al., 2019a)
Physcion 0.28–39.12 13.08 10.10–27.35 109.53 (Feng et al., 2013; Feng et al., 2014; Feng et al., 2017; Zhu et al., 2017)
Physcion-8-O-β-D-
glycoside

6.13–6.20 – – – (Ullah et al., 2018; Cheng et al., 2020)

Purpurin 8.07–9.52 – – – (Gao et al., 2016; Gao et al., 2018)
Questinol 8.90 – – – (Cheng et al., 2020)
Rhein 0.15–39.39 1.8–10.11 0.002–17.2 0.98 (Yang et al., 2012; Zhang et al., 2013a; Li et al., 2013b; Zhang et al., 2013b; Feng

et al., 2014; Zhu et al., 2014; Zhu et al., 2017; Zhang et al., 2018c)
Xanthopurpurin 8.1 – – – (Han et al., 2020)
1-desmethylobtusin 7.01 – 1.33 – (Zhang et al., 2014)

T1/2: half time of elimination; CL: plasma clearance rate.
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subsequently form a blood accumulation of rhein when multiple
anthraquinone-containing medicinal herbs are administered)
(Shia et al., 2011a; Zhang et al., 2015), and live and kidney
blood flow and glomerular filtration rates (which link with the
process of elimination) (Zhu et al., 2006).

In addition, with the increasing use of Chinese medicines, drug-
drug interactions for anthraquinones in Chinese formulae affect all
processes of PK. Even in a single herb, e.g., Polygoni Multiflori Radix
(Heshouwu) (Figures 1C,F), the drug-drug interactions between the
components are complicated. On the one hand, TSG inhibits UGTs
and decreases the elimination of emodin to enhance the effects and
toxicity of emodin (Ma et al., 2013; Yu et al., 2017). On the other hand,
TSG induces the activity of CYPs and accelerates the elimination of
emodin (Xing et al., 2019), which may attenuate the effects or toxicity
of emodin. Our previous studies found that the anticancer efficacy of
400 μg/mL of ethanol extract of PolygoniMultiflori Radix (containing
approximately 1.48 μM of emodin) (Li H. et al., 2018) was similar to
that of 100 μMemodin alone (YangN. et al., 2019). Given the different
anticancer effects of anthraquinones (Yang et al., 2018), it is strongly
suggested that there would be drug interactions between ingredients in
Polygoni Multiflori Radix in vivo. Actually, they are transformed each
other in vivo via intestinal flora, and/or liver enzymes (Li P. et al., 2017;
Xu et al., 2018; Huang et al., 2019). This may increase their efficacy
and/or toxicity. Therefore, it would be very important to rationally
investigate the in vivo processes of anthraquinone-containing Chinese
medicines in clinical settings.

Traditoinel Chiense medicine theory facilitates preparation and
formulae using drug interactions for rational drug use. These
methods are very commonly used for drug processing of Chinese
medicine (known as Paozhi) to induce bioavailability, enhance
efficacy and/or decrease adverse drug reactions. For example,
ethanol can accelerate metabolism including hydrolysis of
anthraquinones glycosides in Rhei Radix et Rhizoma. Thus
emodin, physcion and chrysophanol have higher bioavailability in
Rhei Radix et Rhizoma steamed with wine (Zhang et al., 2019).
Another interesting example of drug interactions is the ancient classic
formula Rhubarb Peony decoction (Da Huang Mu dan Tang) from
the Han Dynasty of China. The formula consists of five components,
Rhei Radix et Rhizoma, Moutan Radix Cortex, Persicae Semen,
Benincasae Semen (Dongguazi) and Natrii Sulfas, among which
Natrii Sulfas can decrease the Cmax of rhein during absorption
and metabolism. This results in the diminished toxicity of
rhubarb in Rhubarb Peony decoction (Zhang Y. X. et al., 2013).

It is worth noting that the metabolism of anthraquinones
extends to multiple processes and is transformed into multiple
products. For example, processed rhubarb aqueous extracts with
rat intestinal bacteria lead to the hydrolysis of 12 anthraquinone
glycosides to anthraquinone aglycones. Then, the latter are
subsequently transformed to reduction and acetoxyl
derivatives (Song et al., 2012). For the anthraquinone
glycoside-containing formula, Xiao-Cheng-Qi decoction
(XCQD) incubated with human intestinal bacteria in vitro
leads to the hydrolysis of six anthraquinone glycosides to
aglycones. The latter are transformed to rhein, which is
further hydrolyzed to rheinanthrones (Liu X. Y. et al., 2018)
(Figure 1 and Table 4).

The PK of anthraquinones may be illustrated in Figure 1.

CONCLUSION

Some anthraquinones and their glycosides, such as aloe-emodin,
chrysophanol, emodin, physcion, rhein and sennosides, have
attracted the most PK research interest due to their greater
biological activities and/or detectability. Anthraquinones are
mainly absorbed in the intestines and are mostly distributed in
blood flow-rich tissues and organs. They may have two absorption
peaks because of the hepato-intestinal circle, reabsorption in
organs/tissues and glycoside hydrolysis. Drug-drug interactions
influencing PKmay provide insights into drug compatibility theory
to enhance or reduce pharmacological/toxicological effects in
Chinese medicine formulae and deserve deep investigation.
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