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Abstract
Exceptional points in non-Hermitian systems possess fascinating properties.We present an exactly
solvable attractor dynamics for the first time from the two-level time-dependent non-Hermitian
Hamiltonian. This allows the evolution from a pure ormixed initial state to the coalescence state by
varying the imaginary parameter along a specific diabatic passage. In contrast to a chaotic attractor
that is ultrasensitive to initial conditions, the designed attractor is insensitive to initial conditions. The
attractor-like behavior is applicable to several adiabatic processes.

1. Introduction

Non-Hermiticity is described by imaginary external parameters, which can be imaginary potentials [1–4] or
nonreciprocal couplings [5]. Non-Hermiticity leads to considerably unusual features, even in simple systems.
These include  phase transition [6–10], unidirectional and anomalous transport [11–15], asymmetric
reflectionless [16], and loss induced large nonlinearity [17, 18]. An exceptional point (EP) is an exclusive critical
point in non-Hermitian systems at which pairs of eigenstates coalesce and exotic features occur, such as invisible
defects [19–21], coherent absorption [22] and self sustained emission [23–27], loss-induced revival of lasing
[28], lasermode selection [29, 30], and  chaos [31]. In contrast to degenerate eigenstates, the coalesced state
is immune to tunneling between coalescence eigenstates, stabilizing the target quantum state [32].

EPs possess fascinating properties, for example, the states in a two-level system switchwhen circling an EP
after one circle;moreover, the geometric phase accumulated is circling direction dependent [33–35].When
dynamically encircling an EPnon-adiabatically, the energy transfer is nonreciprocal [36–38]. The dissipative
dynamics in a non-Hermitian systemhas been discussed through themaster equation approach [39–41]. These
observations indicate the possibility of exploring other EP-related dynamical effects. It is interesting to
investigate how a quantum state evolves when a system tends toward an EP.

In this work, we propose an exactly solvable time-dependent two-level system. The system can behave as an
attractorwhen it tends toward or crosses an EP. An attractor can be a point, curve, or surface in the phase space
of the system towhich orbits are attracted. Typical observations are an infinite number of unstable orbits
embedded in a chaotic attractor. The chaotic dynamics is sensitive to initial conditions; points on two arbitrarily
close trajectoriesmay exhibit distinct dynamics. Efforts have beenmade to obtain improved performance and
multiple uses [42]. A driven nonlinear dissipative systemmay exhibit chaotic behavior [43], which is extensively
investigated [44–46]. Recently, periodic or chaotic dynamics have been demonstrated for both the optical and
mechanicalmodes caused by optomechanical coupling-induced nonlinearity [47]. Here, an attractor dynamics
is presented for thefirst time from the two-level non-HermitianHamiltonian. The time evolution is studied
when the system approaches its EP.We show that both pure andmixed states evolve to the coalescence state by
varying the imaginary parameter along a specific diabatic passage. A chaotic attractor is ultrasensitive to the
initial conditions; therefore, we propose an attractor in a time-dependent non-Hermitian systemwithout
nonlinearity. The attractor is a limit circle, where the dynamics is insensitive to initial conditions, the evolution
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of any statefinally converges to one fixed orbit. Numerical simulation shows that the attractor dynamics is
applicable to several adiabatic processes.

2.Materials &methods

In aHermitian two-level system, the transition dynamics is governed by the Landau–Zener formula [48–51],
which gives the probability of a diabatic transition between two energy states. In a non-Hermitian system, the EP
is different from that in degenerate states, because two eigenstates coalesce into one. Before the construction of a
general theory for the dynamics of the time-dependent system,wefirst present an exactly solvable time-
dependent passage.

Any quantum state, being either pure ormixed, can be depicted by a densitymatrix ∣ ∣r = å ñáp i ji j ij, , where

{∣ }ñi denotes a complete orthonormal set, ∣ dá ñ =i j ij. For an arbitraryHamiltonian, eitherHermitian or non-
Hermitian, the time evolution of the densitymatrix obeys the equation

[ ] { } ( )r r r
¶
¶

= ++ -i
t

H H, , 1

wherewe denoteH±= (H±H†)/2.Here, the square brackets denote the commutator, and the curly brackets
denote the anticommutator. In principle, the dynamics of amixed state can be obtained from the solution of the
equation.However, exact analytical solutions are rare, particularly for a time-dependent non-Hermitian system
withH(t)≠H†(t).

We consider a simple two-level non-Hermitian system consisting of two coupled cavities,A andB. Energy is
constantly exchanged in space or time. TheHamiltonian is
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where ( )k t is the strength of the coupling and γ(t) is the gain or loss of each cavity. The diagonal terms describe
theMarkovian dissipation (gain) caused by the interaction between the two-level system and the environment
baths [52, 53], corresponding characterization in themaster equation is the Lindblad form superoperator [54].
All parameters are dependent of time t. The time-varying quantities γ(t) and ( )k t satisfy
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where ( )w = + -t n t2 1n
2 2, n= 0, 1, 2,L . Herewewould like to point out that one can always choose

arbitrary formof ( )g t and ( )k t for theoretical study, but only specific forms of them can lead to the analytical
exact solutions, which provide a clarification to explainwhy suchmodel can have the chaotic dynamics-like
behavior, also somenonlinear effect. The quantum-optical analogies in optical systems provide versatile
platforms for observing quantumphenomena. The equations ofmotion in the coupledmode theory [55] and
theMaxwell’s equations under paraxial approximation that describing spatial propagation of light are similar as
the temporal Schr ödinger equations [56]. No scheme has been proposed to realize a system forwhich both ( )k t
and ( )g t can changewith time in specific forms In practice, the two-level non-Hamiltonian system imitates

⎜ ⎟⎛
⎝

⎞
⎠

( )
( ) ( )g k

k g
=

-
H

i t
i t

, 4

which requires thatκ is independent of t; this systemhas been realized to study the special features of EPs [57],
such as the emergence ofmultiple EPs in coupled acoustic cavity resonators [58] and the properties associated
with encirclement of an EP [38]. This system can be also realized using optical waveguides or a series of varying
dichroic birefringent plates [59]. According to equation (1), we can do a unitary transformation

[ ] { } ( )† †r r r
¶
¶

= ++ -i
t

R RH R R RH R R, , 5AB, AB,

for the densitymatrix ρ ofHAB, where a unitarymatrix
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i
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changesHAB into
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t

0 1

0
, 7n

n
AB 2

Note that ( )w = + -t n t2 1n
2 2, (n= 0, 1, 2,K), and ( )w tn can be real or imaginary. For realωn, the systemhas

balanced gain and loss.Hn(t) becomes a Jordan-block at =  +t n2 1c ( ( )w =t 0n c
2 ) and two eigenvectors

coalesce to ( )1,0 T . This is the EP of the two level system. Equation (5)has an exact solution. For thematrix ( ) tn ,
the densitymatrix can be expressed as
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with the elements pij satisfying the coupled differential equations
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A special solution of the above equations is
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where ( )h tn is theHermite polynomial. The aforementioned solution remains valid for the originalHamiltonian
HAB under an inverse transformation of equation (6). The density operator ρn is the densitymatrix of the pure
state ( )x y,n n

T , which is the solution of a quantumharmonic oscillator ̈ ( )w+ =x t x 0n
2 . The eigen functions

behave distinctly in three regions. In the center region, the eigen function is a standingwave inside and an
evanescent wave outside. This solution governs the dynamics of the systemwhen it varies through the passage

( )w tn
2 . It also provides the exact evolvedwave function for a series of initial wave functions as the system varies

along a fixed passage. Thus, for a given ( )w tn
2 , the initial andfinal states are two points, namely [ ( ) ( )]x t y t,n n

T
1 1

and [ ( ) ( )]x t y t,n n
T

2 2 , on the curve { ( ) ( )}x t y t,n n , where t1 and t2 are the initial and final instants, respectively.

3. Results

3.1. Fixed point of evolution
From the above calculations, [ ( ) ( )]x t y t,n n is not the instantaneous eigenstate ofHn(t). Thus, the time evolution
dynamics is a diabatic process and not a adiabatic process. To characterize the process, we employ the
normalized Bloch vector (σx,σy,σz)which is defined as

( )

( )

( ∣ ∣ ) ( )

s

s

s

= + W

=- - W

= - W

x y x y

i x y x y

x y

,

,

, 12

x n n n n

y n n n n

z n n
2 2

* *

* *

with (∣ ∣ ∣ ∣ )W = +x y2 n n
2 2 . It directly indicates thatσx= 0 and s s+ = 1y z

2 2 , whichmeans that the trajectory of
the time evolution for any n is the samefixed longitude line on the Bloch sphere. This line is an asymptotic
attractor for any nontrivial initial state. The dynamics is insensitive to the initial states; both pure andmixed
states evolve to this orbit.

The solution demonstrates that [ ( ) ( )] [ ]x t y t, 0,0n n
T T as t→±∞ . This indicates that state probability

decays in the time evolution, similar to complete absorption, which occurs in certain non-Hermitian systems at
spectral singularity [24, 25, 27, 60, 61]. Inversely, the time-reversal process is similar to laser emission.However,
the rate of the probability increase differs, because the probability gain rate is a function of time square.We
demonstrate the features of the dynamics from two limit cases of n= 0 and n? 1.We show that in both cases,
the dynamics is diabatic process and the state [ ]1,0 T can be dynamically prepared. Preparation efficiency is n
dependent.
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When n= 0, we have
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At time t= tc=± 1, we have ( )w =t 00
2

c and

[ ( ) ( )] [ ] ( )= -x t y t e i, 1, , 14T T
0 c 0 c

1 2

which leads to the EP of thematrixH0(t). ThematrixH0(t) is defective and reduces to a 2× 2 Jordan block, its
instantaneous coalesced eigenstate is [ ]1,0 T . The evolved state [ ( ) ( )]x t y t, T

0 c 0 c is not the instantaneous coalesced
eigenstate. However, at the instant t= 0, we have the evolved state

[ ( ) ( )] [ ] ( )=x y0 , 0 1,0 , 15T T
0 0

which is the coalescing state. Thematrix ( ) s=H 0 x0 isHermitianwith eigenstates [ ]-2 1, 1 T1 2 . If the initial
state is [ ( ) ( )]x y0 , 0 T

0 0 at t= 0, the final state at t→∞ approaches a zero vector. On the other hand, there is an
initial state

∣ ( ) ( ) [ ] ( )f ñ = + -t t i t1 , , 16T
0 0

2 1 2
0

at t0→−∞ can evolve to state [ ]1,0 T at t= 0, but under infinite amplitude, the normalized state is

Figure 1.Effective Bloch dynamics of the non-Hermitian two-level system (7)with (a) n = 0 and (b) n = 1 fromdifferent initial states
(including pure andmixed states, which are identified by solid and dash lines, respectively). The red points in the two graphs indicate
the fixed point (1, 0) and (0, 1), respectively.
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∣ ( ) ∣∣ ( ) ∣ [ ] ( )f fñ ñ =0 0 1,0 . 17T

Moreover, this feature can be observed at any initial state. Because for an arbitrary state

∣ [ ]f q qñ = f-ecos , sin ,i T

theDirac inner product

∣ ( ) ( ) ( ) ( )f f q qá ñ = + + f-t t i t e1 cos sin , 18i
0 0

2 1 2
0

is always nonzerowhen t0→−∞ . This indicates that any state has the component of ∣ ( )f ñt0 . This is crucial for
the application of an attractor, i.e., any unknown state evolves to [ ]1,0 T . Thus, robust state preparation through
dynamical evolution is possible.

When n? 1, the range of oscillating regions can be estimated from the leftmost or rightmostmaximumof
the amplitude ( )x tn , wherewe have

( ) ( ) ( ) ( )= »  -
d

dt
x t x t x t0, , 19n n nb b 1 b

Figure 2.Effective Bloch dynamics of the non-Hermitian two-level system: (a)(23) and (b)(24) fromdifferent initial states (including
pure andmixed states, which are identified by solid and dash lines, respectively).
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From the recursion identities
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which leads to » t n2b .We note that at instance tb, the solution is the state [ ]1,0 T , i.e., ( )x tn b reaches the
maximum,whereas ( )y tn b as the velocity of xn vanishes.

Whenwe apply the solution to the dynamics of the state, similar things occurwhen n= 0. If the initial state is
[ ]1,0 T at t= tb, thefinal state at t→∞ approaches a zero vector. The inverse process occurs if we take an initial
state [ ( ) ( )]x t y t,n n0 0 at t0→−∞ . It can evolve to state [ ]1,0 T at t=− tb, but under infinite amplitude.
Comparedwith the n= 0 case, this diabatic process is faster. Figure 1 plots the expression of ( )x tn from the
normalized Bloch vector defined in equation (12) for different n values to demonstrate this point, which can be
seen as a time evolution process on the Bloch sphere for different initial points. Comparingwith the general time
evolution process on the Bloch sphere, themain difference is all different initial points evolve to the samefinal
point, which is the behavior of attractor dynamics. Similarly, we note that ( )w =t 1n

2
b , whereas ( )w =t 0n

2
c

with = +t n2 1c .
We conclude that a series of diabatic passages can dynamically prepare the coalescing state [ ]1,0 T from an

unknown (arbitrary/any) initial state, including themixed state. The duration timemonotonously depends on
n. That is, larger n leads to a faster process.

To demonstrate our conclusions, numerical simulations are performed for the evolutions of pure andmixed
states. For a small time incrementΔt, the Schrödinger equation for the densitymatrix becomes

( ) ( ) ([ ( ) ( )] { ( ) ( )}) ( )r r r r+ D » - - D+ -t t t i H t t i H t t t, , , 22

which is employed to compute the time evolution of the densitymatrix numerically. A normalized state is
depicted by a Bloch vector a, which is defined as ( · )sr = +I a1

2
, I is unitarymatrix andσ is the Paulimatrix.

Therefore, the trajectory of a in the Bloch sphere can describe the time evolution of a state.
We depict the dynamics of the initial states for n= 0 and n= 1 infigure. 1. All initial states coverage to the

analytical solution. Thefinal state is [ ]1,0 T for n= 0 and [ ]0,1 T for n= 1. These imply that when ( )În 0, 1 ,
there is a possibility that we can dynamically prepare any pure state from an unknown (arbitrary/any) initial
state. The numerical results display this tendency.

The dynamics of a  dimer always has twofixed points, except at the  transition point, where the two
fixed points coincide [40]. In exact  phase, the orbits are closed circles, which transformnonorthogonal pair
states to orthogonal states using complex birefringentmaterial [59]. In broken  phase, the orbits start from
thefixed source point to thefixed sink point. In this letter, the attractor has different dynamics. Only onefixed
point exists, and the pure states on the sphere surface and themixed states inside the sphere both evolve to the
fixed point.

3.2. Adiabatic process
Wehave proved that the specific forms of γ(t) and ( )k t inHAB can lead to the dynamics with similar phenomena
for complete absorption and laser emission, i.e., implication of an attractor. The natural question is whether
an adiabatic passage can accomplish the same task. For example, we consider two passages withκ real constant 1
and (i)

( ) ( )g =t t, 23

(ii)

( ) ( )g = -t t1 . 242

The choice of the particular functional forms in above two equations can be arbitrary.Here we just choose a
linear time-dependent form and a quadratic time-dependent form as two typical simple examples. Unlike
Hermitian systems, no theory has been established to describe the process. No information on tunneling
between the two coalescing levels is available. Nevertheless, the diabatic solution implies the possibility of
amplification. In this situation, numerical simulation is preferred to follow a quasi-adiabatic passage. Although
the position of the EP is different in the two cases, both can pass through (or reach) the EP during the time
evolution from a− t satisfiedκ2− γ2(− t)= 0 to t= 0. According to the simulation, the dynamics of these two
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cases are the same as we found before. This implies that when themodel approaches the EP during the time
evolution from the broken area (κ2− γ2(t)= 0 at the beginning of the evolution), afixed point always exists in
this dynamical process. The simulation result is shown infigure. 2. Although the speed of the evolution and the
position of the fixed point have changed, the asymptotic line, similar to the line infigure. 1, remains even in the
adiabatic process with different forms of ( )k t and ( )g t .

4.Discussion and conclusion

Wepropose a time-dependent non-Hermitian two-level system, inwhich the dynamics has an exactly solvable
passage. By varying the imaginary parameter along a specific diabatic passage, the two-level systembehaves as an
attractor that is insensitive to initial conditions. Comparingwith the earlier works involving non-Hermitian
attractors dynamics in a non-Hermitian one-dimensional chain [62] or a non-Hermitian kicked top [63],
attractor-like behavior is found for the first time in a non-Hermitian two-level system.Our results prove that
arbitrary pure andmixed states can evolve to the coalescence state.Moreover, the numerical results present two
other indications. (i)Except for the coalescing state, we can dynamically prepare several target states from an
unknown (arbitrary/any) initial state. (ii)The same phenomenon exists even in adiabatic passages with different
parameters of the cavity. Finally, the dynamic properties of ourmodelmay have applications on the state control
in the time evolution-like process likes the arbitrary control over pairs of polarization states in [59] or dynamic
encirclement of an EP [38], based on the possibility that any pure state can be dynamically prepared from an
unknown (arbitrary/any) initial state.
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