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Abstract

In this paper, the stability problem of switched linear systems with a class of cyclic
switching signals is investigated. Firstly, a new concept of average cycle dwell time
(ACDT) is introduced to relax the conservativeness of cycle dwell time that is exten-
sively used in the literature. In addition, the ACDT is further extended to stable cyclic
switching sequence dependent average cycle dwell time (S-ACDT) and unstable cyclic
switching sequence dependent average cycle dwell time (U-ACDT). Secondly, the sta-
bility criteria for cyclic switched linear (or nonlinear) systems with ACDT or both
S-ACDT and U-ACDT are derived by resorting to a technique that uses multiple Lya-
punov functions. Both cyclic switched linear systems and cyclic switched nonlinear
systems which contain all stable subsystems or partly stable subsystems are studied.
Finally, a numerical example is given to demonstrate the feasibility of the proposed
techniques.

Keywords: Stability; Cyclic switched linear systems; Average cycle dwell time;

Stable (or unstable) cyclic switching sequence dependent average cycle dwell time

1. Introduction

Due to the fact that switched systems can provide natural mathematical models for

many complex practical systems with switching phenomena, switched systems theory
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has wide applications in daily life such as networked control systems [[1] and complex
networks (see [2, 3]]). Switched systems which consist of a group of subsystems and
an arbitrary switching rule governing the switching among them, are a typical type of
hybrid systems (see [4} 15, 16, [7} 18, 9} (10} [11} [12} [13], [14} [15 [16} [17, [18]]). During the
past decades, research results on switched systems mainly focus on stability, controller
synthesis and robustness (see [[19} 20,2122} |23} 1241 125|126} 127, 28,129,130} |31} 132]). A-
mong these issues, stability is a fundamental requirement of running switched systems,
and therefore attracts a great deal of attention (see [33| 134]]). In particular, stability
of a class of switched systems is studied by using the concept of dwell time in [35].
Next, the asymptotic stability analysis and state-feedback control design for a class
of discrete-time-switched piecewise-affine systems are investigated in [36]], where the
dwell-time, smooth approximation technique and multiple Lyapunov functions are u-
tilized. However, the obtained dwell time has some conservativeness, for example, a
switched system may be stabilized by a switching law which has a smaller dwell time
than the given value. Furthermore, to reduce this conservativeness, a large number of
results based on the average dwell time method have appeared (see [37,138]). In partic-
ular, a standard H.. filtering problem for a class of discrete-time two-dimensional (2-D)
switched systems is considered in [39] to design a full-order filter, where the extend-
ed average dwell time technique is introduced under the restricted switching signal.
Subsequently, a quasi-synchronization problem for a class of discrete-time Lur’e-type
switched systems with parameter mismatches and transmission channel noises is stud-
ied in [40] to find the synchronization criteria, where the average dwell time constraints
combined with the persistent dwell-time are considered simultaneously in [40] to relax
the limitation of dwell time requirements and to improve the flexibility of the persis-
tent dwell-time switching signal design. Nevertheless, the average dwell time method
requires all subsystems share a common average dwell time, which is also conserva-
tive to some extent. To overcome this issue, the concept of mode-dependent average
dwell time is introduced in [4], where the mode-dependent average dwell time is al-
so extensively used to study stability issues of switched systems, and each subsystem
has its own average dwell time (see [41, 5, 42]). However, most of the above results

with constrained switching laws are obtained based on arbitrary switching rules and
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are somewhat conservative.

As a typical class of switched systems, a cyclic switched system uses a cyclic
switching rule to govern the switching among its subsystems. The cyclic switching rule
here means that the order that each subsystem is activated in the cyclic switched system
is cyclic, but the activation time of same subsystem in different cycles can be different.
So far, cyclic switched systems have attracted many research interests in different field-
s such as switched flow networks [43] and automotive transmission [44]. In addition,
theoretical results of cyclic switched systems have been obtained (see [45} 46, 47]).
In the above mentioned results, stability analysis of cyclic switched systems is also a
fundamental issue. Due to the characteristics of cyclic switched systems, paper [47]]
proposed the concept of cycle dwell time in cyclic switched nonlinear systems and
obtained finite time stable results. Here, the cycle dwell time method refers to the resi-
dence time T; of a cyclic switching rule in any i’ (i = 1,2,---) cycle is not less than a
given scalar T*. Similar to dwell time method [35]], the cycle dwell time method also
has some same conservativeness. That is, the mechanism of cycle dwell time is similar
to the idea (i.e., the dwell time requires that the dwell time of a switching signal in each
mode is not less than a threshold) of dwell time, and a cyclic switched system may be
stabilized by an actual cyclic switching law which has a smaller cycle dwell time than
the given positive constant. Up to date, the theoretical research of switched systems
with a class of cyclic switching signals is still relatively few from the perspective of
stability. In addition, it is worth mentioning that how to find a more effective way to
solve the stability problem of cyclic switched linear systems remain an open problem.
To the best of our knowledge, there is still much room for improvements.

In this paper, the stability problem for a class of cyclic switched linear system-
s is investigated with average cycle dwell time (ACDT), stable cyclic switching se-
quence dependent average cycle dwell time (S-ACDT) and unstable cyclic switching
sequence dependent average cycle dwell time (U-ACDT). The contributions of the pa-
per are summarized as follows: First, the ACDT, S-ACDT and U-ACDT concepts
are proposed for the unique characteristics of cyclic switched systems. The proposed
ACDT, S-ACDT and U-ACDT methods are more flexible than the cycle dwell time
based method since ACDT or both S-ACDT and U-ACDT switching laws may con-
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tain cyclic switching signals that occasionally have consecutive cyclic discontinuities
separated by less than a threshold. Second, based on the multiple Lyapunov function
method, the stability conditions of a class of cyclic switched nonlinear systems with
two different cases: 1) all subsystems are stable, 2) only part of subsystems are stable
are established based on the ACDT method and both S-ACDT and U-ACDT methods,
respectively. Third, based on the aforementioned cyclic switched nonlinear systems,
the stability criteria of cyclic switched linear systems are also given in terms of linear
matrix inequalities, which can be checked numerically.

The remainder of the paper is organized as follows. In Section 2, related descrip-
tions and properties of cyclic switched linear systems are given. Section 3 gives the
main results of this paper. An example is given in Section 4 to show the effectiveness
of the obtained results. Section 5 gives the conclusions of the paper.

Notation R and Z™ denote the sets of real and positive integer numbers, respec-
tively. R” denotes the set of n dimensional real numbers, and R™*" denotes the set of
m x n dimensional real matrices. || -|| denotes the Euclidean norm on R”. A function
Y:R>0—R>0is of class %, i.e., ¥y € & if: 1) it is continuous, 2) zero at zero,

3) strictly increasing and 4) y grows unbounded as its argument grows unbounded.

2. Problem formulation and preliminaries

Consider the following cyclic switched linear system:

ey

x(l()) = X0,

where x(r) € R” is the state vector and xo € R” is the initial state. 6 :R — 2 =
{1,2,--- ,m} represents the discrete cyclic switching signal taking values in the fi-
nite set 2 and m is the total number of subsystems. For any o(t) =i € 2, A; €
R™ " Suppose that the switching happens at the time #1,t,--- ,f5,fx1---. When
t € [tr,ter1) (Vk=0,1,---), we say the subsystem o(#;) € 2 is activated. In addi-
tion, we assume that all subsystems can be activated.

Now, let us first introduce some concepts and properties, which will be used later.

Definition 1.[47,/45] A switching signal o (¢) of system (1) is cyclic if () = 0(txam)



Figure 1: Diagram of the cyclic period time.

and 6 (fxy;) # 0(teyj), Yk e {0,1,---},i,j €{0,1,--- ;m—1} and j # i.

Definition 2. Given a cyclic switching signal o (¢) of system (1), an ordered cyclic
switching sequence is defined as & = {6 (t(v—_1)m), O ({(N=1yms1) "+ s Ot N=1)mtm—1) }5
where 6 (ty_1)m+i) 7 O(tv—1ym+j), YN € {1,2,--- },i,j €{0,1,--- ;m— 1} and j # i.
Definition 3. A stable (or unstable) cyclic switching sequence of a given cyclic switch-
ing sequence E is a subsequence of X that all the stable (or unstable) subsystems are
activated in the cyclic switching sequence =.

Remark 1. Definitions 1, 2 and 3 show that the switching signal of system (1) is
a cyclic switching signal and the switching sequence of system (1) under the cyclic
switching signal is a cyclic form. That is, each (stable (unstable)) subsystem within
the (stable (unstable)) cyclic switching sequence is not repeated in the same cycle and
each (stable (unstable)) subsystem within the (stable (unstable)) cyclic switching se-
quence is repeated in different cycles. For example, if system (1) has 4 subsystems,
the cyclic switching sequence & of system (1) can be {1,2,3,4} or {2,4,3,1}. That is,
the activation order of each subsystem of system (1) under cyclic switching sequence
{1,2,3,4} is 1,2,3,4,1,2,3,4,1,2,---, and the activation order of each subsystem of
system (1) under cyclic switching sequence {2,4,3,1}is 2,4,3,1,2,4,3,1,2,4,---. In
addition, suppose subsystems 1, 2 are stable and subsystems 3, 4 are unstable. For
a given cyclic switching sequence E = {2,4,1,3}, then the stable and unstable cyclic
switching sequence are {2,1} and {4,3}, respectively.

Definition 4.[47]] The k™ cyclic period time of the cyclic switching sequence Z defined
in Definition 2 is Ty := tgm — Lk —1)m (Vk=1,2,---), where Figure 1 gives an illustration
of the cyclic period time.

Remark 2. Definition 4 shows that the cyclic period time of the cyclic switching se-



quence Z in each cycle can be different, and the residence time of each subsystem
within the cyclic switching sequence E in different cycles can also be different.

Definition 5. [48]] The equilibrium x = 0 of system (1) is globally uniformly exponen-
tially stable under a cyclic switching signal o (¢) if for any initial condition x(zp) € R”",
there exist constants K > 0 and ¥ > 0 such that the solution of system (1) under o ()

satisfies
x(2)| < K|lx(t0)[le 71 70), £ > 1.

Next, the definitions of average cycle dwell time (ACDT), stable cyclic switching
sequence dependent average cycle dwell time (S-ACDT) and unstable cyclic switching
sequence dependent average cycle dwell time (U-ACDT) will be given for the first
time, which will be used to obtain the main results of the paper.

Definition 6. Consider a cyclic switching signal o(r) of system (1). Let Ng(t2,11)
denote the number of switching cycles that the cyclic switching sequence has been
completed in the time interval [t;,#,] with #, > #; > 0. Then T, is called the ACDT if

there exists a positive constant Ny such that

n—1

No-(l‘z,ll)SN()—F ,Vth >1, >0,

¢
where Nj is called the chatter bound of the cyclic switching sequence.

Remark 3. Definition 6 shows that if there exists a positive constant 7. such that a
cyclic switching signal has the ACDT characteristic, the ACDT method between any
two consecutive cyclic switching is no smaller than a positive constant 7, for all cyclic
switching sequences.

Definition 7. Consider a cyclic switching signal o(z) of system (1). Let Ny (t2,1)
denote the number of switching cycles that the stable cyclic switching sequence has
been completed in the time interval [t;,5,] with #, > #; > 0, and T, (t2,#;) denote the
total activated time of all subsystems in the stable cyclic switching sequence over the
time interval [t1,72]. Then T, is called the S-ACDT if there exists a positive constant

N, such that

T (tp,t
Ny (t2,11) gNO‘Jr%, Vi, > 1 >0,

c
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where Nj; is called the chatter bound of the stable cyclic switching sequence.
Definition 8. Consider a cyclic switching signal o(z) of system (1). Let Nt (t2,1)
denote the number of switching cycles that the unstable cyclic switching sequence has
been completed in the time interval [t;,;] with 1, > 11 > 0, and TS (¢2,11) denote the
total activated time of all subsystems in the unstable cyclic switching sequence over the
time interval [f,%]. Then T, is called the U-ACDT if there exists a positive constant
NO+ such that

TS (12,11)

N;(tz,tl)ZNS—+ +
T

Vi, >t >0,

where NO+ is called the chatter bound of the unstable cyclic switching sequence.
Remark 4. Definition 7 (or Definition 8) shows that if there exists a positive constant
T (T;) such that a cyclic switching signal has the S-ACDT (or U-ACDT) property,
the average time among the intervals associated with the stable cyclic switching se-
quence (or unstable cyclic switching sequence) is larger than (or less than) a positive
constant 7, (7,). In fact, Definition 7 and Definition 8 can ensure that the running
time of the stable cyclic switching sequence and the unstable cyclic switching sequence
of system (1) is long enough and short enough under S-ACDT and U-ACDT, respec-
tively. In addition, the S-ACDT and U-ACDT methods are extensions of the ACDT
method and allow stable cyclic switching sequence and unstable cyclic switching se-
quence in system (1) to have their own ACDT.

In the next section, we will use these concepts to study the stability of cyclic

switched linear systems.

3. Main results

In this section, in order to obtain the main stability results of cyclic switched linear
systems, we first give the general lemmas of cyclic switched nonlinear systems with
ACDT (or both S-ACDT and U-ACDT) cyclic switching schemes, and then give the
main theorems of cyclic switched linear systems with ACDT (or both S-ACDT and
U-ACDT) cyclic switching schemes.

Case 1: Suppose that each subsystem of cyclic switched linear (or nonlinear) sys-

tems is stable.



Firstly, we will present the stability conditions of cyclic switched nonlinear systems
with ACDT cyclic switching in Case 1.

Lemma 1. Consider the cyclic switched nonlinear system

x(t) = fou (x(1)),

x(t()) = X0,

@)

and for each subsystem i € 2, let @; > 0 and f; > 1 be given scalars. Suppose that
there exist continuous differentiable functions V;(x(¢)) : R” — R> 0 (i € £), and class

e functions 7; (i € 2) and py; (i € 2) such that

Nl <Vitx(1)) < yai(lx@)1)), 3)
Vi(x(t)) < —aVi(x(r), @

and Vo (1) =i€ 2and Vo(t, ) = j € 2 with j # i, the following inequality holds
Vilx(1e)) < BiVj(x(z ). Q)

Then system (2) is globally uniformly exponentially stable for any cyclic switching

signal with ACDT T, satisfying

" Inp;
7> BB gy s, ©)
a—v
where o0 = min{ oy, @, ..., 0}, " is the global uniform exponential convergence rate

of system (2), and for any o (¢) =i € 2, each nonlinear function f; satisfies the locally
Lipschitz continuous condition with f;(0) = 0. In addition, the other notations are the
same as those of system (1).

Proof: Without loss of generality, let o = 0 and V¢ € [t,iv “,t,iv ++11) = [tNmrks INm-tEE1 )5
where the right superscript N +1 € {1,2,---} of £ *! denotes the number of (N + 1"
cycles of the cyclic switching sequence E, the right subscript k € {0,1,--- ,m — 1} of

ty *+1 denotes the (k+ 1)" subsystem in the (N + 1) cyclic period. Then, according to



conditions (4) — (5), we have

Vo (x(1))
N+1 N+1
Sﬁc(tf’“)exp{*ac(tf(v“)(titk )}VG((tN“) >( ((tk ) ))

= Bo(r) eXp{— o) (1 =1 1)}V o (x (B H7)

k
< HBO'(ti)eXp{_ac(tk)(t AR B (AR AR

== Oy (0 =15 ) Ve (x5 )

k
Hﬁ l‘, (ﬁa tm 1 ﬁc tm 2 ﬁc t() ) exp{_ao'(tk)(t_
i=1

t]iv+1) aG(tk,l)At]]cv+1 _..._a(y(to)Athl»l_
Vg (1) DNy =+ = Ol ) At }V(0) (1(0)),

where At’ = t’ —1

tie{l2,. N4}, je {LZ,...,m},andt} is the j/* moment

of the i cycle.

From o = min{oy, 0, ..., 0, } = min{ @y, 0o (s,)s - > Ao, 1)} a0 Bos,, )
ﬁ G (tn—2) ﬁo‘ (to) ﬁmﬁmfl .. ~ﬁ1, we have
Voo (x(1))

k
[1 () (BuBn—1... B1)" exp{—a(t —1p ")

— AR = — ay PV () (x(0)).
Therefore, whent € [z, ARR t{v “) [tNm,tNm-+1) and under the ACDT switching, we
have
Vo) (x(1))

< (BuBur---B1)" exp{—at}Ve g (x(0))
< (BuBn—1 -+ BNt Te exp{ —at} Vi o) (x(0))

fexp{NoZmﬁl}exp{ EELOB — 03031, x(0)).
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If there exists a positive constant y* (& > y* > 0), and T, satisfying T, > Z%lil;ﬁi,

we have
Voo (x(1)) < exp{No ilnﬁi}exp{wr}vc<o> (x(0)).

Thus, Vi) (x(¢)) converges to zero with convergence rate y* as t — co. Then, global
uniform exponential stability can be deduced with the aid of (3). B
Remark 5. Lemma 1 shows the global uniform exponential stability conditions of
cyclic switched nonlinear system (2) with all stable subsystems under the methods of
ACDT (T) and multiple Lyapunov functions. Compared with the average dwell time
(17,) method proposed in paper [37] for system (2) with arbitrary switching signals
(note that system (2) in paper [37] obtains the global uniform asymptotical stability
conditions under any switching signal with average dwell time 7, > lnT“, where param-
eters A > 0 and u > 1 are the same for all subsystems), we obtain the global uniform
exponential stability conditions of system (2) under the cyclic switching signal with
ACDT T, > % (min{ay,00,...,0n} =a >y >0Vic 2,0;> 0,8 > 1). In
addition, compared with the ACDT method proposed for cyclic switching signals (see
automotive transmission [44] and switched flow networks [43] with cyclic switching
in practical life), average dwell time method [37] is proposed for arbitrary switching
signals and is somewhat ideality and uncommon in practice. Obviously, the stability
conditions obtained by the ACDT switching law are the further extension of the stabil-
ity conditions designed by the average dwell time switching law. In fact, the switched
system with cyclic switching signal has infinite switchings, but the switching sequence
forms a cycle and the cycle is repeated (see [45]). That is, since the cyclic switched
system has infinite switching times, the stability conditions obtained by the average
dwell time switching law have some conservative and computational burdens, where
the average dwell time is designed for all switching subsystems over the time inter-
val. For example, for a given cyclic switching sequence & = {1,2,3,4} with 10 cyclic
periods, the ACDT switching law and average dwell time switching law are designed
for 10 switching cycles and 40 subsystems, respectively. Obviously, the ACDT (7)
method designed for the number of switching cycles of the cyclic switching sequence

is a further extension of the average dwell time (7,) method designed for the number

10
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of discontinuous switching of the subsystem. Finally, compared with cycle dwell time
method [47] (i.e., for any k = 1,2, -- -, the cycle dwell time method refers to the cyclic
period time 7, of a cyclic switching rule in any k" cycle is not less than a given pos-
itive constant T*) proposed for cyclic switched systems, the ACDT method requires
all switching cycles of the cyclic switching sequence E to have a common ACDT, and
the actual ACDT method may contain a cyclic switching signal that occasionally has a
consecutive cyclic period time separated by less than a given positive constant 7*.
Secondly, based on Lemma 1, we will present the stability conditions of cyclic
switched linear systems with ACDT cyclic switching in Case 1.
Theorem 1. Consider cyclic switched linear system (1) with any initial state x(#) € R".
For each subsystem i € 2, let o; > 0 and f; > 1 be given scalars. Suppose that there

exist matrices P, > 0 (i € 2) such that
Al P+ PA; < —aiP, (7)
and Vo (1) =i€ 2and Vo(t, ) = j € 2 with j # i, the following inequality holds
P, < BiP;. (8)

Then system (1) is globally uniformly exponentially stable for any cyclic switching
signal with ACDT 7. satisfying (6) in Lemma 1, where the other notations are the
same as those of Lemma 1.

Proof: For each subsystem i € 2, consider the following Lyapunov function candidate:
Vi(x(t)) =x" (t)Pix(t), i€ 2 ©)

where for each i € 2, P, is a positive definite matrix satisfying (7) and (8).

11
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Then, from (1), (4) , (5) and (9), we have

Vi(x(r)) 4+ 04Vi(x(2))
&1 (1) Px() +x" (1) P (t) + oux" (1) Pix(r)
x" (AT P+ PA)x(1) + aux (1) Pix(1)

T (A,.TP,~ +PA; + a;P)x(t),
Vi(x(r)) — BiVj(x(z))

xT(t) x(1) = i (6) Pyx(t)
X1 (0) (P — BiPy)x(1).

Thus, if (7)-(8) hold, system (1) is globally uniformly exponentially stable for
cyclic switching signal with ACDT T, satisfying condition (6) by Lemma 1. l
Remark 6. Theorem 1 gives the global uniform exponential stability criteria of cyclic
switched linear system (1) with all stable submodes under linear matrix inequalities
and cyclic switching signal with ACDT T, > B’ (
0,0;>0,8>1,i€ 2).

min{a;,0p,...,0,} =0 >y >

Case 2: Suppose that there are stable (at least one stable subsystem) and unstable
subsystems in the cyclic switched linear (or nonlinear) system. Without loss of gener-
ality, suppose that the first 7 (1 < r < m,r € Z™) subsystems inside the cyclic switching
sequence are stable and the last m — r subsystems inside the cyclic switching sequence
are unstable.

Firstly, we will present the stability conditions of cyclic switched nonlinear systems
with S-ACDT and U-ACDT switching schemes in Case 2.

Lemma 2. Consider cyclic switched nonlinear system (2) with any initial state x(¢) €
R". For each subsystem i € 2, let ¢; and B; be given scalars. Suppose that there
exist continuous differentiable functions V;(x(7)) : R* - R>0 (i € 2), and class #e

functions y; (i € 2) and P, (i € 2) such that

Ni(llx(@I]) < Vilx(2)) < yailllx(@)1]), (10)
Vi(x(1)) < aiVi(x(1)), (1n

12



andVo () =i € 2andVo(r, ) = j € 2 with j # i, the following inequality holds
Vi(x(n)) < Bivi(x(1 ) (12)

Then system (2) is globally uniformly exponentially stable for any cyclic switching
signal with S-ACDT 7, and U-ACDT 7" satisfying
_ Y InpB; _
T->==—"= (o~ >y >0),
T (13)

moInp
Lo WP > 7050 (at >0,y >0),

where ;i >1 (1<i<rni€eZ ) and0<Bi<1(r+1<i<m,i€Z");0>—-a =
max{a, ,...,0} (0 <0,1<i<rieZ")and 0 < ot =max{ 041, 012,-., 0}
(a; >0,r+1<i<micZ"), T;” and T;r correspond to the total running time of
all stable and unstable subsystems in the j* (j € Z*) cycle, respectively. The other
notations are the same as those of Lemma 1.

Proof: Suppose to = 0, let V¢ =¥ € [tN | tN] = [tyy—1,tnm]. Then, according to

conditions (11) — (12) and Lemma 1, we have

Vo(n (x(1))
< (Bt 1)Bo(ty o) -+ ﬁﬁ(lo))Nexp{ac(zmq)AlZ e
+ Qo) A1) } - exp{ oy, ) Dt e+ Ol At}
ceeexp{ () O O ) A V(o) ((0)).
Furthermore, without loss of generality, we consider O (1) = O, Olgs(1y) = Ol

s Qo () = Om and ﬁc(tmfl )BG(tm—Z) ce. ﬁo(to) = ﬁmﬁmfl .. .B] . That is, we have

Vo) (x(1))
N i _
< (BuBm—1---B)V exp{ ) (1 At + -+ 04 AL, o 0) (x(0)).
j=1
From —a~ = max{@;, @, ...,0} and &« = max{011,012,...,0y,}, we have
Vo) (x(2))
N
< (BuBni1--- B exp{ Y (" T " T;) I 0) (x(0)).
j=1

13
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Therefore, under the S-ACDT 7, and the U-ACDT Tj, we have

Vo) (x(1))
0—_'_):1/\’]:17 N++):/ ! J

< (BBr-1---B1) o (BuBuet . Brir) O

~exp{ Zl (T —a ™ T;7)}Vo(0) (x(0))
=

N — NT+

T:

— 1 1

= exp{ (Ng +=2—)( Zlnﬁ, )yexp{(Ng+="—+")
1. i=1 Tc

Z In f3;) }€XP{Z o’ T = T;) V(o) (x(0))

i=r+1
:eXp{No_(ZlnBi)}'eXP{NO Z InB;)}-ex {( ﬁ’)( =17

i=1 i=r+1 T.

m In : T+ N
(X741 [;3( } exp g (0 T} — 0T} ) Vi) (x(0))

}

-exp{

N " Inp;
= exp{N, Zlnﬁ, + Ny ( Z In )} [ [exp{(a® + M)Ti

+
i=r+1 j=1 TL
Y. InB;

+H(ET = )T o) (x(0)).

If there exists a positive constant ¥* (¢~ > y* > 0), and both 7~ and 7" satisfying
(13), we have

Vo) (x(2))

SeXp{N6(ZrllnBi)+NJ( f‘, Infi)} - exp{ =71}V 0 (x(0))-

i=1 i=r+1

Thus, Vi) (x(¢)) converges to zero with convergence rate y* as t — co. Then, global
uniform exponential stability can be deduced with the aid of (10). B
Remark 7. Lemma 2 shows the global uniform exponential stability conditions of
cyclic switched nonlinear system (2) with partly unstable subsystems under the meth-
ods of S-ACDT, U-ACDT and multiple Lyapunov functions. Obviously, according to
condition (13), Lemma 2 with Case 2 is a further extension of Lemma 1 with Case 1.

Secondly, based on Lemma 2, we will present the stability conditions of cyclic

switched linear systems with S-ACDT and U-ACDT switching schemes in Case 2.

14
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Theorem 2. Consider cyclic switched linear system (1) with any initial state x(fp) € R".
For each subsystem i € 2, let o; and f3; be given scalars. Suppose that there exist

matrices P, > 0 (i € 2) such that
Al P+ PA; < o4, (14)
andVo (1) =i € 2and Vo(t, ) = j € 2 with j # i, the following inequality holds
P; < BiP;. (15)

Then system (1) is globally uniformly exponentially stable for any cyclic switching
signal with S-ACDT 7, and U-ACDT T, satisfying (13) in Lemma 2, where the other
notations are the same as those of Lemma 2.

Proof: For each subsystem i € 2, consider the following Lyapunov function candidate:
Vi(x(t)) =x" (t)Pix(t), i€ 2 (16)

where for each i € 2, P, is a positive definite matrix satisfying (14) and (15).
Then, from (1), (11), (12) and (16), we have

Vilx(t)) — ouVi(x(t))
il (1) Pee(r) + T () Pei(r) — oo (1) Pex(r)
xT(ATP.+ PA)x(r) — aix” (1)Px(2)

4

xT (AT P+ PA; — o;P)x(2),

Vi(x(1)) = BiV;j(x(1))

2T (1)Pox() — Bix (1) Pyx ()
(

(1) (P — BiPy)a(r).

Thus, if (14)-(15) hold, system (1) is globally uniformly exponentially stable for
cyclic switching signal with S-ACDT 7, and U-ACDT T," satisfying condition (13)
by Lemma 2. B
Remark 8. Theorem 2 gives the global uniform exponential stability criteria of cyclic

switched linear system (1) with partly stable and partly unstable submodes under linear
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T np
e >

matrix inequalities and cyclic switching signal with S-ACDT T, (T >

Y >0,0>—a =max{a,,...,0},0;<0,8;>1,1<i<rieZ")and U-ACDT
YL, Inpi

T (% >TF>0,7*>0,0 <ot =max{0p41,012,...,0,},0 > 0,0 < f; <

lL,r+1<i<m,ie Z*). Obviously, Theorem 2 is a further extension of Theorem 1.

4. Numerical Example

In this section, a numerical example is presented to demonstrate the validity of the
obtained results.

Example 1. Consider a cyclic switched linear system consisting of four subsystems

with
25 -1 0.1 -3
A= , Ay =
1.5 1.3 1.7 0.17
-1 =02 24 0.2
Az = , Ag=
2 —-1.3 -2 =2

Our purpose here is to find a cyclic switching signal with S-ACDT and U-ACDT
such that the system is stable. Furthermore, to illustrate the advantages of the proposed
S-ACDT and U-ACDT based switching, the results of cycle dwell time [47] based
switching are also obtained and compared with S-ACDT and U-ACDT switching.

First, one can easily see that the subsystems A; and A, are unstable, A3 and A4
are stable, and the calculation results (7,7 > 1.22964 and 0.32850 > Tj > 0) of S-
ACDT and U-ACDT switching schemes are obtained by setting the parameters (o} =
0.8,01=08,0=0.3,4,=0.9,03 =—1.2,83=1.8,04 = —1.5 and B4 = 1.9) appro-
priately. Then, by applying the parameters obtained, we can obtain the state responses
and cyclic switching signal with S-ACDT, U-ACDT and cycle dwell time of the cyclic
switched linear system, as shown in Figures 2-3. Next, as can be seen from Figure 2
and Figure 3, a cyclic switching sequence with the S-ACDT and U-ACDT switching
and the cycle dwell time switching is generated, i.e., the switching signal of the cyclic
switched linear system evolves in the following order: subsystem 1 — subsystem 2

— subsystem 3 — subsystem 4 — subsystem 1— subsystem 2— ---, which means

16
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Figure 2: State responses under S-ACDT and U-ACDT.
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Figure 3: State responses under cycle dwell time [47].
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the cyclic switching sequence stays in £ = {1,2,3,4}, where 1,2,3,4 in the ordinate
axis of Figure 2 or Figure 3 represent the subsystem 1, subsystem 2, subsystem 3 and
subsystem 4, respectively. In addition, due to the existence of unstable and stable sub-
systems in the cyclic switched linear system, the curves of state x; () and state x, ()
of the system show divergence and convergence phenomena when each subsystem is
activated in turn.

Second, from Figure 2, the cyclic switched linear system globally exponentially
converges to the equilibrium point 0 under the cyclic switching sequence £ ={1,2,3,4}
with convergence rate y* = 0.2 provided the S-ACDT T, and U-ACDT 7' satisfying
1.7 > 1.22964 and 0.32850 > TCJr > 0. Furthermore, one can see from Figure 2 that the
state curves of the system under S-ACDT and U-ACDT switching schemes are more
smooth. However, Figure 3 shows that although the state responses of the system are
ultimately stable under cycle dwell time switching, the state curves of the system will
fluctuate sharply. That is, the activation time of the unstable subsystem in Figure 3
under the cycle dwell time switching is longer than that of the unstable subsystem in
Figure 2 under S-ACDT and U-ACDT switching schemes.

Finally, as can be seen from Figure 2, the cyclic period time 7; (I} = 1.2 <
1.22964, T, =0.1;T, =1.15<1.22964,T," =0.1;T; =1.1 < 1.22964,T," =0.1; T,
=2, T4Jr =0.15;k = 1,2,3,4) can be different in different cycle periods. Obviously, the
proposed S-ACDT 7. may allows the actual dwell time of all stable subsystems in dif-
ferent cycle periods to be less than a constant 1.22964. However, for Figure 3, accord-
ing to the definition of cycle dwell time in [47]], the dwell time of all stable subsystems
in different cycle periods must not be less than 7~ (7.~ > 1.22964). Therefore, the
proposed S-ACDT and U-ACDT switching schemes are more flexible and feasible in

numerical example than the cycle dwell time switching scheme.

5. Conclusions

The stability problem of cyclic switched linear systems with ACDT (or both S-
ACDT and U-ACDT) switching schemes has been studied. Firstly, the ACDT, S-ACDT

and U-ACDT concepts have been introduced for the first time. Next, stability condi-
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tions for cyclic switched linear (or nonlinear) systems with all stable or partly unstable
subsystems have been obtained. Finally, an example has been used to verified the
effectiveness of the proposed S-ACDT and U-ACDT schemes. In the future, the prob-
lems of stabilization of cyclic switched control systems and stability of cyclic switched

time-delay systems deserve attention.
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