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Abstract

In this paper, the stability problem of switched linear systems with a class of cyclic

switching signals is investigated. Firstly, a new concept of average cycle dwell time

(ACDT) is introduced to relax the conservativeness of cycle dwell time that is exten-

sively used in the literature. In addition, the ACDT is further extended to stable cyclic

switching sequence dependent average cycle dwell time (S-ACDT) and unstable cyclic

switching sequence dependent average cycle dwell time (U-ACDT). Secondly, the sta-

bility criteria for cyclic switched linear (or nonlinear) systems with ACDT or both

S-ACDT and U-ACDT are derived by resorting to a technique that uses multiple Lya-

punov functions. Both cyclic switched linear systems and cyclic switched nonlinear

systems which contain all stable subsystems or partly stable subsystems are studied.

Finally, a numerical example is given to demonstrate the feasibility of the proposed

techniques.

Keywords: Stability; Cyclic switched linear systems; Average cycle dwell time;

Stable (or unstable) cyclic switching sequence dependent average cycle dwell time

1. Introduction

Due to the fact that switched systems can provide natural mathematical models for

many complex practical systems with switching phenomena, switched systems theory
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has wide applications in daily life such as networked control systems [1] and complex

networks (see [2, 3]). Switched systems which consist of a group of subsystems and5

an arbitrary switching rule governing the switching among them, are a typical type of

hybrid systems (see [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]). During the

past decades, research results on switched systems mainly focus on stability, controller

synthesis and robustness (see [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]). A-

mong these issues, stability is a fundamental requirement of running switched systems,10

and therefore attracts a great deal of attention (see [33, 34]). In particular, stability

of a class of switched systems is studied by using the concept of dwell time in [35].

Next, the asymptotic stability analysis and state-feedback control design for a class

of discrete-time-switched piecewise-affine systems are investigated in [36], where the

dwell-time, smooth approximation technique and multiple Lyapunov functions are u-15

tilized. However, the obtained dwell time has some conservativeness, for example, a

switched system may be stabilized by a switching law which has a smaller dwell time

than the given value. Furthermore, to reduce this conservativeness, a large number of

results based on the average dwell time method have appeared (see [37, 38]). In partic-

ular, a standard H∞ filtering problem for a class of discrete-time two-dimensional (2-D)20

switched systems is considered in [39] to design a full-order filter, where the extend-

ed average dwell time technique is introduced under the restricted switching signal.

Subsequently, a quasi-synchronization problem for a class of discrete-time Lur’e-type

switched systems with parameter mismatches and transmission channel noises is stud-

ied in [40] to find the synchronization criteria, where the average dwell time constraints25

combined with the persistent dwell-time are considered simultaneously in [40] to relax

the limitation of dwell time requirements and to improve the flexibility of the persis-

tent dwell-time switching signal design. Nevertheless, the average dwell time method

requires all subsystems share a common average dwell time, which is also conserva-

tive to some extent. To overcome this issue, the concept of mode-dependent average30

dwell time is introduced in [4], where the mode-dependent average dwell time is al-

so extensively used to study stability issues of switched systems, and each subsystem

has its own average dwell time (see [41, 5, 42]). However, most of the above results

with constrained switching laws are obtained based on arbitrary switching rules and
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are somewhat conservative.35

As a typical class of switched systems, a cyclic switched system uses a cyclic

switching rule to govern the switching among its subsystems. The cyclic switching rule

here means that the order that each subsystem is activated in the cyclic switched system

is cyclic, but the activation time of same subsystem in different cycles can be different.

So far, cyclic switched systems have attracted many research interests in different field-40

s such as switched flow networks [43] and automotive transmission [44]. In addition,

theoretical results of cyclic switched systems have been obtained (see [45, 46, 47]).

In the above mentioned results, stability analysis of cyclic switched systems is also a

fundamental issue. Due to the characteristics of cyclic switched systems, paper [47]

proposed the concept of cycle dwell time in cyclic switched nonlinear systems and45

obtained finite time stable results. Here, the cycle dwell time method refers to the resi-

dence time Ti of a cyclic switching rule in any ith (i = 1,2, · · ·) cycle is not less than a

given scalar T ∗. Similar to dwell time method [35], the cycle dwell time method also

has some same conservativeness. That is, the mechanism of cycle dwell time is similar

to the idea (i.e., the dwell time requires that the dwell time of a switching signal in each50

mode is not less than a threshold) of dwell time, and a cyclic switched system may be

stabilized by an actual cyclic switching law which has a smaller cycle dwell time than

the given positive constant. Up to date, the theoretical research of switched systems

with a class of cyclic switching signals is still relatively few from the perspective of

stability. In addition, it is worth mentioning that how to find a more effective way to55

solve the stability problem of cyclic switched linear systems remain an open problem.

To the best of our knowledge, there is still much room for improvements.

In this paper, the stability problem for a class of cyclic switched linear system-

s is investigated with average cycle dwell time (ACDT), stable cyclic switching se-

quence dependent average cycle dwell time (S-ACDT) and unstable cyclic switching60

sequence dependent average cycle dwell time (U-ACDT). The contributions of the pa-

per are summarized as follows: First, the ACDT, S-ACDT and U-ACDT concepts

are proposed for the unique characteristics of cyclic switched systems. The proposed

ACDT, S-ACDT and U-ACDT methods are more flexible than the cycle dwell time

based method since ACDT or both S-ACDT and U-ACDT switching laws may con-65
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tain cyclic switching signals that occasionally have consecutive cyclic discontinuities

separated by less than a threshold. Second, based on the multiple Lyapunov function

method, the stability conditions of a class of cyclic switched nonlinear systems with

two different cases: 1) all subsystems are stable, 2) only part of subsystems are stable

are established based on the ACDT method and both S-ACDT and U-ACDT methods,70

respectively. Third, based on the aforementioned cyclic switched nonlinear systems,

the stability criteria of cyclic switched linear systems are also given in terms of linear

matrix inequalities, which can be checked numerically.

The remainder of the paper is organized as follows. In Section 2, related descrip-

tions and properties of cyclic switched linear systems are given. Section 3 gives the75

main results of this paper. An example is given in Section 4 to show the effectiveness

of the obtained results. Section 5 gives the conclusions of the paper.

Notation R and Z+ denote the sets of real and positive integer numbers, respec-

tively. Rn denotes the set of n dimensional real numbers, and Rm×n denotes the set of

m× n dimensional real matrices. ‖ · ‖ denotes the Euclidean norm on Rn. A function80

γ : R ≥ 0→ R ≥ 0 is of class K∞, i.e., γ ∈K∞ if: 1) it is continuous, 2) zero at zero,

3) strictly increasing and 4) γ grows unbounded as its argument grows unbounded.

2. Problem formulation and preliminaries

Consider the following cyclic switched linear system: ẋ(t) = Aσ(t)x(t),

x(t0) = x0,
(1)

where x(t) ∈ Rn is the state vector and x0 ∈ Rn is the initial state. σ : R→ Q =

{1,2, · · · ,m} represents the discrete cyclic switching signal taking values in the fi-85

nite set Q and m is the total number of subsystems. For any σ(t) = i ∈ Q, Ai ∈

Rn×n. Suppose that the switching happens at the time t1, t2, · · · , tk, tk+1 · · · . When

t ∈ [tk, tk+1) (∀k = 0,1, · · ·), we say the subsystem σ(tk) ∈ Q is activated. In addi-

tion, we assume that all subsystems can be activated.

Now, let us first introduce some concepts and properties, which will be used later.

Definition 1.[47, 45] A switching signal σ(t) of system (1) is cyclic if σ(tk) = σ(tk+m)
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Figure 1: Diagram of the cyclic period time.

and σ(tk+i) 6= σ(tk+ j), ∀k ∈ {0,1, · · ·}, i, j ∈ {0,1, · · · ,m−1} and j 6= i.

Definition 2. Given a cyclic switching signal σ(t) of system (1), an ordered cyclic

switching sequence is defined as Ξ= {σ(t(N−1)m),σ(t(N−1)m+1), · · · ,σ(t(N−1)m+m−1)},

where σ(t(N−1)m+i) 6= σ(t(N−1)m+ j),∀N ∈ {1,2, · · ·}, i, j ∈ {0,1, · · · ,m−1} and j 6= i.

Definition 3. A stable (or unstable) cyclic switching sequence of a given cyclic switch-

ing sequence Ξ is a subsequence of Ξ that all the stable (or unstable) subsystems are

activated in the cyclic switching sequence Ξ.

Remark 1. Definitions 1, 2 and 3 show that the switching signal of system (1) is

a cyclic switching signal and the switching sequence of system (1) under the cyclic

switching signal is a cyclic form. That is, each (stable (unstable)) subsystem within

the (stable (unstable)) cyclic switching sequence is not repeated in the same cycle and

each (stable (unstable)) subsystem within the (stable (unstable)) cyclic switching se-

quence is repeated in different cycles. For example, if system (1) has 4 subsystems,

the cyclic switching sequence Ξ of system (1) can be {1,2,3,4} or {2,4,3,1}. That is,

the activation order of each subsystem of system (1) under cyclic switching sequence

{1,2,3,4} is 1,2,3,4,1,2,3,4,1,2, · · · , and the activation order of each subsystem of

system (1) under cyclic switching sequence {2,4,3,1} is 2,4,3,1,2,4,3,1,2,4, · · · . In

addition, suppose subsystems 1, 2 are stable and subsystems 3, 4 are unstable. For

a given cyclic switching sequence Ξ = {2,4,1,3}, then the stable and unstable cyclic

switching sequence are {2,1} and {4,3}, respectively.

Definition 4.[47] The kth cyclic period time of the cyclic switching sequence Ξ defined

in Definition 2 is Tk := tkm−t(k−1)m (∀k = 1,2, · · ·), where Figure 1 gives an illustration

of the cyclic period time.

Remark 2. Definition 4 shows that the cyclic period time of the cyclic switching se-

5



quence Ξ in each cycle can be different, and the residence time of each subsystem

within the cyclic switching sequence Ξ in different cycles can also be different.

Definition 5. [48] The equilibrium x = 0 of system (1) is globally uniformly exponen-

tially stable under a cyclic switching signal σ(t) if for any initial condition x(t0) ∈ Rn,

there exist constants K > 0 and γ > 0 such that the solution of system (1) under σ(t)

satisfies

‖x(t)‖ ≤ K‖x(t0)‖e−γ(t−t0), t ≥ t0.

Next, the definitions of average cycle dwell time (ACDT), stable cyclic switching

sequence dependent average cycle dwell time (S-ACDT) and unstable cyclic switching

sequence dependent average cycle dwell time (U-ACDT) will be given for the first

time, which will be used to obtain the main results of the paper.

Definition 6. Consider a cyclic switching signal σ(t) of system (1). Let Nσ (t2, t1)

denote the number of switching cycles that the cyclic switching sequence has been

completed in the time interval [t1, t2] with t2 ≥ t1 ≥ 0. Then Tc is called the ACDT if

there exists a positive constant N0 such that

Nσ (t2, t1)≤ N0 +
t2− t1

Tc
, ∀t2 ≥ t1 ≥ 0,

where N0 is called the chatter bound of the cyclic switching sequence.

Remark 3. Definition 6 shows that if there exists a positive constant Tc such that a

cyclic switching signal has the ACDT characteristic, the ACDT method between any

two consecutive cyclic switching is no smaller than a positive constant Tc for all cyclic

switching sequences.

Definition 7. Consider a cyclic switching signal σ(t) of system (1). Let N−σ (t2, t1)

denote the number of switching cycles that the stable cyclic switching sequence has

been completed in the time interval [t1, t2] with t2 ≥ t1 ≥ 0, and T−σ (t2, t1) denote the

total activated time of all subsystems in the stable cyclic switching sequence over the

time interval [t1, t2]. Then T−c is called the S-ACDT if there exists a positive constant

N−0 such that

N−σ (t2, t1)≤ N−0 +
T−σ (t2, t1)

T−c
, ∀t2 > t1 > 0,
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where N−0 is called the chatter bound of the stable cyclic switching sequence.

Definition 8. Consider a cyclic switching signal σ(t) of system (1). Let N+
σ (t2, t1)

denote the number of switching cycles that the unstable cyclic switching sequence has

been completed in the time interval [t1, t2] with t2 ≥ t1 ≥ 0, and T+
σ (t2, t1) denote the

total activated time of all subsystems in the unstable cyclic switching sequence over the

time interval [t1, t2]. Then T+
c is called the U-ACDT if there exists a positive constant

N+
0 such that

N+
σ (t2, t1)≥ N+

0 +
T+

σ (t2, t1)
T+

c
,∀t2 > t1 > 0,

where N+
0 is called the chatter bound of the unstable cyclic switching sequence.90

Remark 4. Definition 7 (or Definition 8) shows that if there exists a positive constant

T−c (T+
c ) such that a cyclic switching signal has the S-ACDT (or U-ACDT) property,

the average time among the intervals associated with the stable cyclic switching se-

quence (or unstable cyclic switching sequence) is larger than (or less than) a positive

constant T−c (T+
c ). In fact, Definition 7 and Definition 8 can ensure that the running95

time of the stable cyclic switching sequence and the unstable cyclic switching sequence

of system (1) is long enough and short enough under S-ACDT and U-ACDT, respec-

tively. In addition, the S-ACDT and U-ACDT methods are extensions of the ACDT

method and allow stable cyclic switching sequence and unstable cyclic switching se-

quence in system (1) to have their own ACDT.100

In the next section, we will use these concepts to study the stability of cyclic

switched linear systems.

3. Main results

In this section, in order to obtain the main stability results of cyclic switched linear

systems, we first give the general lemmas of cyclic switched nonlinear systems with105

ACDT (or both S-ACDT and U-ACDT) cyclic switching schemes, and then give the

main theorems of cyclic switched linear systems with ACDT (or both S-ACDT and

U-ACDT) cyclic switching schemes.

Case 1: Suppose that each subsystem of cyclic switched linear (or nonlinear) sys-

tems is stable.110
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Firstly, we will present the stability conditions of cyclic switched nonlinear systems

with ACDT cyclic switching in Case 1.

Lemma 1. Consider the cyclic switched nonlinear system ẋ(t) = fσ(t)(x(t)),

x(t0) = x0,
(2)

and for each subsystem i ∈ Q, let αi > 0 and βi > 1 be given scalars. Suppose that

there exist continuous differentiable functions Vi(x(t)) : Rn→R≥ 0 (i ∈Q), and class

K∞ functions γ1i (i ∈Q) and γ2i (i ∈Q) such that

γ1i(‖x(t)‖)≤Vi(x(t))≤ γ2i(‖x(t)‖), (3)

V̇i(x(t))≤−αiVi(x(t)), (4)

and ∀σ(tk) = i ∈Q and ∀σ(t−k ) = j ∈Q with j 6= i, the following inequality holds

Vi(x(tk))≤ βiVj(x(t−k )). (5)

Then system (2) is globally uniformly exponentially stable for any cyclic switching

signal with ACDT Tc satisfying

Tc ≥
∑

m
i=1 lnβi

α− γ∗
(α > γ

∗ > 0), (6)

where α = min{α1,α2, . . . ,αm}, γ∗ is the global uniform exponential convergence rate

of system (2), and for any σ(t) = i ∈Q, each nonlinear function fi satisfies the locally

Lipschitz continuous condition with fi(0) = 0. In addition, the other notations are the

same as those of system (1).

Proof: Without loss of generality, let t0 = 0 and ∀t ∈ [tN+1
k , tN+1

k+1 ) = [tNm+k, tNm+k+1),

where the right superscript N +1 ∈ {1,2, · · ·} of tN+1
k denotes the number of (N +1)th

cycles of the cyclic switching sequence Ξ, the right subscript k ∈ {0,1, · · · ,m− 1} of

tN+1
k denotes the (k+1)th subsystem in the (N +1)th cyclic period. Then, according to

8



conditions (4)− (5), we have

Vσ(t)(x(t))

≤ β
σ(tN+1

k ) exp{−α
σ(tN+1

k )(t−tN+1
k )}V

σ((tN+1
k )−)(x((t

N+1
k )−))

= βσ(tk) exp{−ασ(tk)(t− tN+1
k )}V

σ(t−k )(x((t
N+1
k )−))

≤ ·· ·

≤
k

∏
i=1

βσ(ti) exp{−ασ(tk)(t−tN+1
k )−ασ(tk−1)(t

N+1
k −tN+1

k−1 )

−·· ·−ασ(t0)(t
N+1
1 − tN+1

0 )}Vσ(t0)(x(t
N+1
0 ))

≤ ·· ·

≤
k

∏
i=1

βσ(ti)(βσ(tm−1)βσ(tm−2) . . .βσ(t0))
N exp{−ασ(tk)(t−

tN+1
k )−ασ(tk−1)4tN+1

k −·· ·−ασ(t0)4tN+1
1 −

ασ(tm−1)4tN
m −·· ·−ασ(t0)4t1

1}Vσ(0)(x(0)),

where4t i
j = t i

j− t i
j−1, i ∈ {1,2, . . . ,N +1}, j ∈ {1,2, . . . ,m}, and t i

j is the jth moment

of the ith cycle.

From α = min{α1,α2, . . . ,αm}= min{ασ(t0),ασ(t1), . . . ,ασ(tm−1)} and βσ(tm−1)

βσ(tm−2) . . .βσ(t0) = βmβm−1 . . .β1, we have

Vσ(t)(x(t))

≤
k

∏
i=1

βσ(ti)(βmβm−1 . . .β1)
N exp{−α(t− tN+1

k )

−α4tN+1
k −·· ·−α4t1

1}Vσ(0)(x(0)).

Therefore, when t ∈ [tN+1
0 , tN+1

1 ) = [tNm, tNm+1) and under the ACDT switching, we

have

Vσ(t)(x(t))

≤ (βmβm−1 . . .β1)
N exp{−αt}Vσ(0)(x(0))

≤ (βmβm−1 . . .β1)
N0+

t
Tc exp{−αt}Vσ(0)(x(0))

= exp{N0

m

∑
i=1

lnβi}exp{(∑
m
i=1 lnβi

Tc
−α)t}Vσ(0)(x(0)).
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If there exists a positive constant γ∗ (α > γ∗ > 0), and Tc satisfying Tc ≥ ∑
m
i=1 lnβi
α−γ∗ ,

we have

Vσ(t)(x(t))≤ exp{N0

m

∑
i=1

lnβi}exp{−γ
∗t}Vσ(0)(x(0)).

Thus, Vσ(t)(x(t)) converges to zero with convergence rate γ∗ as t→∞. Then, global

uniform exponential stability can be deduced with the aid of (3). �

Remark 5. Lemma 1 shows the global uniform exponential stability conditions of115

cyclic switched nonlinear system (2) with all stable subsystems under the methods of

ACDT (Tc) and multiple Lyapunov functions. Compared with the average dwell time

(τa) method proposed in paper [37] for system (2) with arbitrary switching signals

(note that system (2) in paper [37] obtains the global uniform asymptotical stability

conditions under any switching signal with average dwell time τa ≥ ln µ

λ
, where param-120

eters λ > 0 and µ > 1 are the same for all subsystems), we obtain the global uniform

exponential stability conditions of system (2) under the cyclic switching signal with

ACDT Tc ≥ ∑
m
i=1 lnβi
α−γ∗ (min{α1,α2, . . . ,αm} = α > γ∗ > 0,∀i ∈Q,αi > 0,βi > 1). In

addition, compared with the ACDT method proposed for cyclic switching signals (see

automotive transmission [44] and switched flow networks [43] with cyclic switching125

in practical life), average dwell time method [37] is proposed for arbitrary switching

signals and is somewhat ideality and uncommon in practice. Obviously, the stability

conditions obtained by the ACDT switching law are the further extension of the stabil-

ity conditions designed by the average dwell time switching law. In fact, the switched

system with cyclic switching signal has infinite switchings, but the switching sequence130

forms a cycle and the cycle is repeated (see [45]). That is, since the cyclic switched

system has infinite switching times, the stability conditions obtained by the average

dwell time switching law have some conservative and computational burdens, where

the average dwell time is designed for all switching subsystems over the time inter-

val. For example, for a given cyclic switching sequence Ξ = {1,2,3,4} with 10 cyclic135

periods, the ACDT switching law and average dwell time switching law are designed

for 10 switching cycles and 40 subsystems, respectively. Obviously, the ACDT (Tc)

method designed for the number of switching cycles of the cyclic switching sequence

is a further extension of the average dwell time (τa) method designed for the number
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of discontinuous switching of the subsystem. Finally, compared with cycle dwell time140

method [47] (i.e., for any k = 1,2, · · · , the cycle dwell time method refers to the cyclic

period time Tk of a cyclic switching rule in any kth cycle is not less than a given pos-

itive constant T ∗) proposed for cyclic switched systems, the ACDT method requires

all switching cycles of the cyclic switching sequence Ξ to have a common ACDT, and

the actual ACDT method may contain a cyclic switching signal that occasionally has a145

consecutive cyclic period time separated by less than a given positive constant T ∗.

Secondly, based on Lemma 1, we will present the stability conditions of cyclic

switched linear systems with ACDT cyclic switching in Case 1.

Theorem 1. Consider cyclic switched linear system (1) with any initial state x(t0)∈Rn.

For each subsystem i ∈Q, let αi > 0 and βi > 1 be given scalars. Suppose that there

exist matrices Pi > 0 (i ∈Q) such that

AT
i Pi +PiAi ≤−αiPi, (7)

and ∀σ(tk) = i ∈Q and ∀σ(t−k ) = j ∈Q with j 6= i, the following inequality holds

Pi ≤ βiPj. (8)

Then system (1) is globally uniformly exponentially stable for any cyclic switching

signal with ACDT Tc satisfying (6) in Lemma 1, where the other notations are the

same as those of Lemma 1.

Proof: For each subsystem i∈Q, consider the following Lyapunov function candidate:

Vi(x(t)) = xT (t)Pix(t), i ∈Q (9)

where for each i ∈Q, Pi is a positive definite matrix satisfying (7) and (8).
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Then, from (1), (4) , (5) and (9), we have

V̇i(x(t))+αiVi(x(t))

= ẋT (t)Pix(t)+ xT (t)Piẋ(t)+αixT (t)Pix(t)

= xT (AT
i Pi +PiAi)x(t)+αixT (t)Pix(t)

= xT (AT
i Pi +PiAi +αiPi)x(t),

Vi(x(t))−βiVj(x(t))

= xT (t)Pix(t)−βixT (t)Pjx(t)

= xT (t)(Pi−βiPj)x(t).

Thus, if (7)-(8) hold, system (1) is globally uniformly exponentially stable for

cyclic switching signal with ACDT Tc satisfying condition (6) by Lemma 1. �

Remark 6. Theorem 1 gives the global uniform exponential stability criteria of cyclic150

switched linear system (1) with all stable submodes under linear matrix inequalities

and cyclic switching signal with ACDT Tc≥ ∑
m
i=1 lnβi
α−γ∗ (min{α1,α2, . . . ,αm}=α > γ∗>

0,αi > 0,βi > 1, i ∈Q).

Case 2: Suppose that there are stable (at least one stable subsystem) and unstable

subsystems in the cyclic switched linear (or nonlinear) system. Without loss of gener-155

ality, suppose that the first r (1≤ r < m,r ∈Z+) subsystems inside the cyclic switching

sequence are stable and the last m− r subsystems inside the cyclic switching sequence

are unstable.

Firstly, we will present the stability conditions of cyclic switched nonlinear systems

with S-ACDT and U-ACDT switching schemes in Case 2.

Lemma 2. Consider cyclic switched nonlinear system (2) with any initial state x(t0) ∈

Rn. For each subsystem i ∈ Q, let αi and βi be given scalars. Suppose that there

exist continuous differentiable functions Vi(x(t)) : Rn→ R≥ 0 (i ∈Q), and class K∞

functions γ1i (i ∈Q) and γ2i (i ∈Q) such that

γ1i(‖x(t)‖)≤Vi(x(t))≤ γ2i(‖x(t)‖), (10)

V̇i(x(t))≤ αiVi(x(t)), (11)
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and ∀σ(tk) = i ∈Q and ∀σ(t−k ) = j ∈Q with j 6= i, the following inequality holds

Vi(x(tk))≤ βiVj(x(t−k )). (12)

Then system (2) is globally uniformly exponentially stable for any cyclic switching

signal with S-ACDT T−c and U-ACDT T+
c satisfyingT−c ≥

∑
r
i=1 lnβi

α−−γ∗ (α− > γ∗ > 0),

∑
m
i=r+1 lnβi
−α+−γ∗ ≥T+

c >0 (α+ > 0,γ∗ > 0),
(13)

where βi > 1 (1≤ i≤ r, i ∈ Z+) and 0 < βi < 1 (r+1≤ i≤ m, i ∈ Z+); 0 >−α− =

max{α1,α2, . . . ,αr} (αi < 0,1≤ i≤ r, i∈Z+) and 0<α+ =max{αr+1,αr+2, . . . ,αm}

(αi > 0,r + 1 ≤ i ≤ m, i ∈ Z+); T−j and T+
j correspond to the total running time of

all stable and unstable subsystems in the jth ( j ∈ Z+) cycle, respectively. The other

notations are the same as those of Lemma 1.

Proof: Suppose t0 = 0, let ∀t = tN
m ∈ [tN

m−1, t
N
m ] = [tNm−1, tNm]. Then, according to

conditions (11)− (12) and Lemma 1, we have

Vσ(t)(x(t))

≤ (βσ(tm−1)βσ(tm−2) . . .βσ(t0))
N exp{ασ(tm−1)4tN

m + · · ·

+ασ(t0)4tN
1 } · exp{ασ(tm−1)4tN−1

m + · · ·+ασ(t0)4tN−1
1 }·

· · · · exp{ασ(tm−1)4t1
m + · · ·+ασ(t0)4t1

1}Vσ(0)(x(0)).

Furthermore, without loss of generality, we consider ασ(t0) = α1,ασ(t1) = α2,

. . . ,ασ(tm−1) = αm and βσ(tm−1)βσ(tm−2) . . .βσ(t0) = βmβm−1 . . .β1. That is, we have

Vσ(t)(x(t))

≤ (βmβm−1 . . .β1)
N exp{

N

∑
j=1

(α14t j
1 + · · ·+αm4t j

m)}Vσ(0)(x(0)).

From −α− = max{α1,α2, . . . ,αr} and α+ = max{αr+1,αr+2, . . . ,αm}, we have

Vσ(t)(x(t))

≤ (βmβm−1 . . .β1)
N exp{

N

∑
j=1

(α+T+
j −α

−T−j )}Vσ(0)(x(0)).

13



Therefore, under the S-ACDT T−c and the U-ACDT T+
c , we have

Vσ(t)(x(t))

≤ (βrβr−1 . . .β1)
N−0 +

∑
N
j=1 T−j
T−c · (βmβm−1 . . .βr+1)

N+
0 +

∑
N
j=1 T+j
T+c

· exp{
N

∑
j=1

(α+T+
j −α

−T−j )}Vσ(0)(x(0))

= exp{(N−0 +
∑

N
j=1 T−j
T−c

)(
r

∑
i=1

lnβi)}exp{(N+
0 +

∑
N
j=1 T+

j

T+
c

)

· (
m

∑
i=r+1

lnβi)}exp{
N

∑
j=1

(α+T+
j −α

−T−j )}Vσ(0)(x(0))

= exp{N−0 (
r

∑
i=1

lnβi)} · exp{N+
0 (

m

∑
i=r+1

lnβi)} · exp{
(∑r

i=1 lnβi)(∑
N
j=1 T−j )

T−c
}

· exp{
(∑m

i=r+1 lnβi)(∑
N
j=1 T+

j )

T+
c

} · exp{
N

∑
j=1

(α+T+
j −α

−T−j )}Vσ(0)(x(0))

= exp{N−0 (
r

∑
i=1

lnβi)+N+
0 (

m

∑
i=r+1

lnβi)}
N

∏
j=1

exp{(α++
∑

m
i=r+1 lnβi

T+
c

)T+
j

+(
∑

r
i=1 lnβi

T−c
−α

−)T−j }Vσ(0)(x(0)).

If there exists a positive constant γ∗ (α− > γ∗ > 0), and both T−c and T+
c satisfying

(13), we have

Vσ(t)(x(t))

≤ exp{N−0 (
r

∑
i=1

lnβi)+N+
0 (

m

∑
i=r+1

lnβi)} · exp{−γ
∗t}Vσ(0)(x(0)).

Thus, Vσ(t)(x(t)) converges to zero with convergence rate γ∗ as t→∞. Then, global160

uniform exponential stability can be deduced with the aid of (10). �

Remark 7. Lemma 2 shows the global uniform exponential stability conditions of

cyclic switched nonlinear system (2) with partly unstable subsystems under the meth-

ods of S-ACDT, U-ACDT and multiple Lyapunov functions. Obviously, according to

condition (13), Lemma 2 with Case 2 is a further extension of Lemma 1 with Case 1.165

Secondly, based on Lemma 2, we will present the stability conditions of cyclic

switched linear systems with S-ACDT and U-ACDT switching schemes in Case 2.
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Theorem 2. Consider cyclic switched linear system (1) with any initial state x(t0)∈Rn.

For each subsystem i ∈ Q, let αi and βi be given scalars. Suppose that there exist

matrices Pi > 0 (i ∈Q) such that

AT
i Pi +PiAi ≤ αiPi, (14)

and ∀σ(tk) = i ∈Q and ∀σ(t−k ) = j ∈Q with j 6= i, the following inequality holds

Pi ≤ βiPj. (15)

Then system (1) is globally uniformly exponentially stable for any cyclic switching

signal with S-ACDT T−c and U-ACDT T+
c satisfying (13) in Lemma 2, where the other

notations are the same as those of Lemma 2.

Proof: For each subsystem i∈Q, consider the following Lyapunov function candidate:

Vi(x(t)) = xT (t)Pix(t), i ∈Q (16)

where for each i ∈Q, Pi is a positive definite matrix satisfying (14) and (15).

Then, from (1), (11) , (12) and (16), we have

V̇i(x(t))−αiVi(x(t))

= ẋT (t)Pix(t)+ xT (t)Piẋ(t)−αixT (t)Pix(t)

= xT (AT
i Pi +PiAi)x(t)−αixT (t)Pix(t)

= xT (AT
i Pi +PiAi−αiPi)x(t),

Vi(x(t))−βiVj(x(t))

= xT (t)Pix(t)−βixT (t)Pjx(t)

= xT (t)(Pi−βiPj)x(t).

Thus, if (14)-(15) hold, system (1) is globally uniformly exponentially stable for

cyclic switching signal with S-ACDT T−c and U-ACDT T+
c satisfying condition (13)

by Lemma 2. �170

Remark 8. Theorem 2 gives the global uniform exponential stability criteria of cyclic

switched linear system (1) with partly stable and partly unstable submodes under linear
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matrix inequalities and cyclic switching signal with S-ACDT T−c (T−c ≥
∑

r
i=1 lnβi

α−−γ∗ ,α
− >

γ∗ > 0,0>−α− =max{α1,α2, . . . ,αr},αi < 0,βi > 1,1≤ i≤ r, i∈Z+) and U-ACDT

T+
c (

∑
m
i=r+1 lnβi
−α+−γ∗ ≥T+

c >0,γ∗ > 0,0 < α+ = max{αr+1,αr+2, . . . ,αm},αi > 0,0 < βi <175

1,r+1≤ i≤ m, i ∈ Z+). Obviously, Theorem 2 is a further extension of Theorem 1.

4. Numerical Example

In this section, a numerical example is presented to demonstrate the validity of the

obtained results.

Example 1. Consider a cyclic switched linear system consisting of four subsystems

with

A1 =

 2.5 −1

1.5 1.3

 , A2 =

 0.1 −3

1.7 0.17

 ,

A3 =

 −1 −0.2

2 −1.3

 , A4 =

 −2.4 0.2

−2 −2

 .

Our purpose here is to find a cyclic switching signal with S-ACDT and U-ACDT

such that the system is stable. Furthermore, to illustrate the advantages of the proposed180

S-ACDT and U-ACDT based switching, the results of cycle dwell time [47] based

switching are also obtained and compared with S-ACDT and U-ACDT switching.

First, one can easily see that the subsystems A1 and A2 are unstable, A3 and A4

are stable, and the calculation results (T−c ≥ 1.22964 and 0.32850 ≥ T+
c > 0) of S-

ACDT and U-ACDT switching schemes are obtained by setting the parameters (α1 =185

0.8,β1 = 0.8,α2 = 0.3,β2 = 0.9,α3 =−1.2,β3 = 1.8,α4 =−1.5 and β4 = 1.9) appro-

priately. Then, by applying the parameters obtained, we can obtain the state responses

and cyclic switching signal with S-ACDT, U-ACDT and cycle dwell time of the cyclic

switched linear system, as shown in Figures 2-3. Next, as can be seen from Figure 2

and Figure 3, a cyclic switching sequence with the S-ACDT and U-ACDT switching190

and the cycle dwell time switching is generated, i.e., the switching signal of the cyclic

switched linear system evolves in the following order: subsystem 1 → subsystem 2

→ subsystem 3 → subsystem 4 → subsystem 1→ subsystem 2→ ··· , which means
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Figure 2: State responses under S-ACDT and U-ACDT.
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Figure 3: State responses under cycle dwell time [47].
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the cyclic switching sequence stays in Ξ = {1,2,3,4}, where 1,2,3,4 in the ordinate

axis of Figure 2 or Figure 3 represent the subsystem 1, subsystem 2, subsystem 3 and195

subsystem 4, respectively. In addition, due to the existence of unstable and stable sub-

systems in the cyclic switched linear system, the curves of state x1(t) and state x2(t)

of the system show divergence and convergence phenomena when each subsystem is

activated in turn.

Second, from Figure 2, the cyclic switched linear system globally exponentially200

converges to the equilibrium point 0 under the cyclic switching sequence Ξ= {1,2,3,4}

with convergence rate γ∗ = 0.2 provided the S-ACDT T−c and U-ACDT T+
c satisfying

T−c ≥ 1.22964 and 0.32850≥ T+
c > 0. Furthermore, one can see from Figure 2 that the

state curves of the system under S-ACDT and U-ACDT switching schemes are more

smooth. However, Figure 3 shows that although the state responses of the system are205

ultimately stable under cycle dwell time switching, the state curves of the system will

fluctuate sharply. That is, the activation time of the unstable subsystem in Figure 3

under the cycle dwell time switching is longer than that of the unstable subsystem in

Figure 2 under S-ACDT and U-ACDT switching schemes.

Finally, as can be seen from Figure 2, the cyclic period time Tk (T−1 = 1.2 <210

1.22964,T+
1 = 0.1;T−2 = 1.15< 1.22964,T+

2 = 0.1;T−3 = 1.1< 1.22964,T+
3 = 0.1;T−4

= 2,T+
4 = 0.15;k = 1,2,3,4) can be different in different cycle periods. Obviously, the

proposed S-ACDT T−c may allows the actual dwell time of all stable subsystems in dif-

ferent cycle periods to be less than a constant 1.22964. However, for Figure 3, accord-

ing to the definition of cycle dwell time in [47], the dwell time of all stable subsystems215

in different cycle periods must not be less than T−c (T−c ≥ 1.22964). Therefore, the

proposed S-ACDT and U-ACDT switching schemes are more flexible and feasible in

numerical example than the cycle dwell time switching scheme.

5. Conclusions

The stability problem of cyclic switched linear systems with ACDT (or both S-220

ACDT and U-ACDT) switching schemes has been studied. Firstly, the ACDT, S-ACDT

and U-ACDT concepts have been introduced for the first time. Next, stability condi-

18



tions for cyclic switched linear (or nonlinear) systems with all stable or partly unstable

subsystems have been obtained. Finally, an example has been used to verified the

effectiveness of the proposed S-ACDT and U-ACDT schemes. In the future, the prob-225

lems of stabilization of cyclic switched control systems and stability of cyclic switched

time-delay systems deserve attention.
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