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Does the association between cognition and education differ 
between older adults with gradual or rapid trajectories of 
cognitive decline?
Benjamin David Williams a, Neil Pendleton a,b and Tarani Chandolaa

aCathie Marsh Institute for Social Research, University of Manchester, Manchester, UK; bInstitute of Brain, 
Behaviour and Mental Health, University of Manchester, Manchester, UK

ABSTRACT
Education is associated with improved baseline cognitive perfor-
mance in older adults, but the association with maintenance of 
cognitive function is less clear. Education may be associated with 
different types of active cognitive reserve in those following differ-
ent cognitive trajectories. We used data on n = 5642 adults aged 
>60 from the English Longitudinal Study of Aging (ELSA) over 5 
waves (8 years). We used growth mixture models to test if the 
association between educational attainment and rate of change in 
verbal fluency or immediate recall varied by latent class trajectory. 
For recall, 91.5% (n = 5164) of participants were in a gradual decline 
class and 8.5% (n = 478) in a rapid decline class. For fluency, 90.0% 
(n = 4907) were in a gradual decline class and 10.0% (n = 561) were 
in a rapid decline class. Educational attainment was associated with 
improved baseline performance for both verbal fluency and recall. 
In the rapidly declining classes, educational attainment was not 
associated with rate of change for either outcome. In the verbal 
fluency gradual decline class, education was associated with higher 
(an additional 0.05–0.38 words per 2 years) or degree level educa-
tion (an additional 0.04–0.42 words per 2 years) when compared to 
those with no formal qualifications. We identified no evidence of 
a protective effect of education against rapid cognitive decline. 
There was some evidence of active cognitive reserve for verbal 
fluency but not recall, which may reflect a small degree of domain- 
specific protection against age-related cognitive decline.
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Introduction

Education in childhood and early adulthood is thought to be one of the most important 
sources of cognitive reserve, defined here as the degree of disease or age-related change 
that can be tolerated by the brain before impairment becomes apparent. (Barulli & Stern, 
2013) This is demonstrated by the finding that educational attainment is associated with 
a reduced risk of a clinical diagnosis of dementia and higher cognitive performance on 
a range of measures.(Beydoun et al., 2014; Lipnicki et al., 2019; Meng & D’Arcy, 2012) 
However, the relationship between education and maintenance of cognition over time 
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has been more contested.(Foverskov et al., 2018; Greenfield & Moorman, 2019; Lenehan 
et al., 2015) Several theoretical concepts of the reserve have been developed, with 
contrasting hypotheses about the relationship between education and cognitive main-
tenance. One important question for understanding this relationship which has not seen 
a great deal of attention in the epidemiological literature is whether or not the association 
between education and cognitive decline depends upon the underlying trajectory of 
cognitive function.

Theories of reserve

In 2018 different groups proposed alternative theoretical frameworks for understanding 
reserve.(E. M. Arenaza-Urquijo & Vemuri, 2018; Cabeza et al., 2018; Stern et al., 2018) In this 
paper the framework of Stern et al. (2018) will be drawn upon. We will also refer to 
cognitive maintenance, defined not as any specific neural or disease process, but the 
common end result of these processes observed by longitudinal measurements of 
cognitive function. We use this term to capture all active or dynamic processes as distinct 
from brain (passive) reserve.

Brain reserve can be defined as “neurobiological capital (numbers of neurons, 
synapses, etc.)”.(Stern et al., 2018) Brain reserve is passive in the sense that, whilst it 
may be increased over the life-course, it is fixed at a given point in time. It may increase 
the time to the clinical expression of cognitive or functional impairment but does not 
directly affect any disease or aging processes. In a theoretical longitudinal study of 
cognitive function greater levels of brain reserve would increase baseline performance, 
but would not affect the rate of decline. Examples of brain reserve would include the 
higher gray matter volumes or improved white matter tract integrity observed in healthy 
individuals with higher levels of education. (E. Arenaza-Urquijo et al., 2013; Boller et al., 
2017; Chen et al., 2019; Teipel et al., 2009)

Cognitive reserve is defined as “the adaptability (i.e., efficiency, capacity, flexibility) of 
cognitive processes that helps to explain differential susceptibility of cognitive abilities”. 
(Stern et al., 2018) This is a theoretical construct for the sum of additive and emergent 
effects resulting from “networks of brain regions associated with performing a task and 
the pattern of interactions between these networks”.(Stern et al., 2018) This was pre-
viously associated with the term active reserve and emphasizes the dynamic functional 
capacity to respond to pathological or age-related changes. Unlike brain reserve, cogni-
tive reserve is predicted to affect the rate of cognitive decline as the brain responds to 
advancing pathological changes. However, there are different theories of cognitive 
reserve that lead to differing hypotheses about the trajectory of cognitive change over 
time.(Lenehan et al., 2015)

The two main theories of the cognitive reserve are neural cognitive reserve and neural 
compensation reserve. Neural cognitive reserve relates to the efficiency, capacity, and 
flexibility in the selection of primary networks responsible for performing a cognitive task. 
(Barulli & Stern, 2013) Neural compensation reserve is the recruitment of secondary 
networks to perform tasks after failure in the primary networks. If education contributes 
to neural cognitive reserve then there should be greater redundancy in the primary 
network to compensate for aging or pathological change.(Weiler et al., 2018) This greater 
efficiency in the primary networks should slow cognitive decline. If education instead 

2 B. D. WILLIAMS ET AL.



contributes to neural compensation, then it enables the recruitment of secondary net-
works to compensate for damaged primary networks.(Colangeli et al., 2016; Serra et al., 
2017) This theory predicts slow initial decline, which then accelerates rapidly as the 
secondary networks are overcome by the disease process.(Lenehan et al., 2015; Serra 
et al., 2017)

Education and cognitive function

Higher levels of education have been identified as a key modifiable protective factor 
against dementia.(Livingston et al., 2017) There is no debate that higher levels of 
education lead to later presentation of dementia. However, there is some ongoing 
debate about the nature of that protective effect. Earlier studies and the systematic 
reviews based on those studies largely found evidence that education improved cog-
nitive maintenance in support of the neural cognitive reserve hypothesis.(Valenzuela & 
Sachdev, 2006) More recent reviews questioned the findings of these studies on the 
basis of methodological limitations.(Lenehan et al., 2015) Later cohort studies, especially 
those with three or more measurement occasions, have typically found no association 
between education and rate of decline, and therefore little evidence that education 
contributes to cognitive maintenance.(Gottesman et al., 2014; Helmes & Van Gerven, 
2017; Lenehan et al., 2015; Lipnicki et al., 2019; Piccinin et al., 2013; Zahodne et al., 2011) 
Nonetheless, some authors continue to find that education appears to have at least 
some role in protecting against cognitive decline.(Foverskov et al., 2018; Greenfield & 
Moorman, 2019; Zahodne et al., 2015) Not all of these studies are limited by two or less 
measurement occasions. Additionally, some analyses, such as Greenfield and Moorman 
(2019) examine specific cognitive domains, whilst others such as Zahodne et al. (2015) 
use a measure of global cognitive function. Thus, neither the outcome used nor the 
number of measurement occasions appears to explain the continuing mixed results. Of 
those studies which continue to find an association between education and cognitive 
function in population samples, the effect of education has typically been small in 
comparison to the effect on baseline performance. It is possible that some measure-
ment instruments lack the sensitivity to detect small differences in change over time, 
even with the often large samples used.(Lipnicki et al., 2019; Zahodne et al., 2015) 
Different educational and social systems could result in varying effects on cognition; 
however, there is no obvious pattern of national characteristics that predict whether 
a study will find an association or not.

Some studies have observed that cognitive decline may be faster in individuals with 
dementia who have higher levels of education. (Barulli & Stern, 2013; Meng & D’Arcy, 
2012; Yu et al., 2012) This raises the possibility that one contributor to the conflicting 
findings regarding the association of education with cognitive change, is that different 
mechanisms of the reserve may be utilized in health and disease. A difference 
between healthy old age and dementia found in epidemiological or clinical studies 
is supported by evidence from functional magnetic resonance imaging studies show-
ing that different mechanisms of compensation are utilized depending on disease 
status.(Colangeli et al., 2016) It is not known whether this effect would also be seen in 
those with pre-clinical dementia pathology and observed in longitudinal population 
studies.
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Education, reserve, and population heterogeneity

Many of the major analyses of the association between education and cognition implicitly 
assume that all older adults in the analysis are from the same population, and therefore 
share the same underlying trajectory (or random effects around this).(Gottesman et al., 
2014; Tucker-Drob et al., 2009; Zahodne et al., 2011) It is likely that the samples for these 
studies were drawn from at least two latent sub-populations. Those with a pre-clinical 
dementia pathology (a high burden of tau, amyloid, TDP-43, and/or vascular pathology in 
the absence of functional impairment) and those without.(Braak & Del Tredici, 2015; 
Nelson et al., 2019; Riley et al., 2011) In analyses that assume a homogenous population 
when there are two or more sub-populations, the estimated longitudinal change will be 
biased away from both true trajectories. In particular, it is possible that an association 
between longitudinal change and education in the minority of participants may be 
obscured. This is important to consider given the evidence of a more rapid decline in 
cognitive function amongst more highly education patients with dementia.(Meng & 
D’Arcy, 2012) An association between education and cognition amongst those with 
a declining trajectory suggestive of pre-clinical dementia pathology may be lost if that 
subpopulation is not identified. Ideally, one would have a direct measurement of brain 
status such as measurements of pathological burden or gray matter volume.(Stern et al., 
2018) The cognitive reserve can then be tested as an interaction between the association 
of brain status and education on cognitive performance. In many longitudinal aging 
studies, measurements of brain status are not available or available only from a single 
occasion. However, one can identify a latent sub-population with a more rapid decline in 
cognitive function from a population sample. One common method used to identify 
latent subclasses with different rates of change over time is growth mixture modeling 
(GMM) or related longitudinal mixture models.(Muthen, 2004) These give the opportunity 
to test whether the more rapid rate of decline seen with greater education in clinical 
samples is also seen in those with probable pre-clinical dementia, in the absence of more 
direct measurements.

Hayden et al. and Pietrzak et al. combined genotypic and clinicopathological data with 
GMM and found that membership of a rapidly declining latent class was strongly asso-
ciated with a higher relative risk of amyloid beta pathology and apolipoprotein ε4 carrier 
status.(Hayden et al., 2011; Pietrzak et al., 2014) This suggests GMM is able to identify 
those in a pre-clinical disease state.(Riley et al., 2011) Several other studies have also used 
GMMs to address the issue of rates of change in cognitive function in population samples 
with latent sub-populations.(Hayden et al., 2011; Marioni et al., 2014; Muniz-Terrera et al., 
2010; Olaya et al., 2017; Pietrzak et al., 2014; Royall et al., 2014; Small & Bäckman, 2007)

Of the studies which have used GMM or closely related longitudinal mixture models to 
analyze cognitive trajectories and education, most have used education as a predictor of 
class membership.(Ding et al., 2019; Hayden et al., 2011; Lee et al., 2018; Marioni et al., 
2014; Min, 2018; Olaya et al., 2017; Pietrzak et al., 2014; Royall et al., 2014; Small & 
Bäckman, 2007; Tampubolon et al., 2017) The results of these studies have been conflict-
ing, some finding a strong association between the class of cognitive trajectory and 
education and others finding none. The often-implicit assumption underlying models 
where education predicts class membership are that education's effect on cognition is 
mediated via the process underlying the latent classes. Whilst there may be sub-classes of 
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cognitive function within healthy aging, the single greatest determinant of the class is 
likely to be a disease. This will include a range of pathologies, but in a population study by 
far the most substantial and frequently co-morbid are tau/amyloid pathology, vascular 
disease, and the more recently described limbic-predominant age-related TDP-43 ence-
phalopathy.(Nelson et al., 2019; Santos et al., 2017) If we assume that the latent class 
structure is driven principally by disease state, then by using education to predict class 
this implies that education affects unobserved (in most population studies) disease status. 
However, clinicopathological studies have generally found that education is not asso-
ciated with the quantity of tau and amyloid observed postmortem.(Brayne et al., 2010; 
Koepsell et al., 2008; Roe et al., 2007; Serrano-pozo et al., 2013) In the theoretical model 
used in this analysis (see Figure 1), the mechanism underlying the latent classes in 
cognitive function is driven by the presence or absence of pathology. The effect of 
education is allowed to vary by latent class. This tests whether there is evidence for 
differing mechanisms of cognitive reserve dependent on an underlying trajectory, which 
is assumed to be closely related to underlying pathology. Terrera et al. have previously 
utilized a similar theoretical model to examine the association between education and 
decline within the class using the mini-mental state exam (MMSE).(Folstein et al., 1975; 
Muniz-Terrera et al., 2010) They found 2 sharply declining classes and 1 high-performance 
group with a very slight decline over time. A lower level of education was associated with 
a more rapid decline in the high-performance class, but not in either of the two sharp 
decline classes. However, the MMSE is known to have a strong ceiling effect which can 
conceal the change in high-performance groups.

We sought to develop previous research by testing whether the association 
between decline in semantic fluency and immediate recall with education is moder-
ated by a latent class of change over time. Using latent class membership as an 
estimate of underlying disease status, this will test the hypothesis that different 
mechanisms of the cognitive reserve are utilized in different states. To do this, we 

Figure 1. Generalized structural equation model for the verbal fluency and immediate recall growth 
mixture models, including informative missingness modeling and the effect of covariates moderated 
by latent class membership. Figure 1 footnote: C = latent class of change over time; X = all time 
invariant covariates; Y1-y5 = the outcome at waves 1 through 5; D1-d4 = whether participants died or 
dropped out at each wave 2–5; I = latent intercept; S = latent linear rate of change; Q = latent 
quadratic rate of change
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utilized data from the English Longitudinal Study of Aging (ELSA), a large multi- 
disciplinary study of aging.

Materials and methods

Participants and procedure

ELSA has been described in detail previously.(Steptoe et al., 2013) The study sample was 
drawn from participants in Health Survey for England (HSE) years 1998, 1999, and 2001 
who were born before 1 March 1952 and living in a private household or those in their 
households who were new partners or ≤50 years old. This initial sample was nationally 
representative of the age-specific English population. Data was collected in biennial 
sweeps by an interview in the participants' homes. Core sample data from waves 1 
(2002) to 5 (2010) were utilized because the core cognitive battery was kept consistent 
through this time. Individuals born after 1941, who were therefore aged 60 or less at the 
first wave, were excluded. This eliminates at least one source of cohort effect (prenatal 
exposure to World War 2 rationing) and restricts the analysis to those more likely to show 
a greater degree of cognitive decline.

Of the full sample eligible for analysis of n = 5643 at wave 1, 103 were excluded due to 
missing data on gender, ethnicity, education, or baseline cognitive function. Dropout or 
death between waves 1 and 2 was 1256, 765 between waves 2 and 3, 634 between waves 
3 and 4, and 533 between waves 4 and 5. For verbal fluency, the latent trajectory class 
structure was initially driven by small numbers of extreme outlying observations. Outliers 
were identified by regressing each measurement occasion on the previous one. Results 
with standardized residuals >2.9 or <-2.9 were checked individually. They were coded as 
missing from the analysis if the results were inconsistent with the other results for those 
individuals (for example, a 0 despite normal performance on other tests or results far 
higher or lower than for the same individual both before and after that occasion). This 
removed 81 observations at wave 2, 111 observations from wave 3, 99 observations from 
wave 4, and 91 observations from wave 5.

Cognitive measures

The cognitive tests were performed by computer-assisted interview. Of the cognitive 
measures in ELSA orientation to time, delayed recall and prospective memory task were 
not utilized due to strong ceiling or floor effects.(Marmot et al., 2014) Immediate recall 
and verbal (semantic) fluency were utilized because the floor effects were much weaker 
(supplementary figures 1 and 2). To assess immediate recall 10 common words were 
played to participants which they were asked to repeat immediately after the presenta-
tion. The word lists used were randomly assigned and a standardized recording was used 
for all participants. Semantic (category) fluency was assessed by asking participants to 
name as many animals as they could in 1 minute.
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Education and covariates

Educational attainment was recorded as no formal qualifications (reference category in all 
analyses, school leaving at age 14 or later with no examinations completed), high school 
completion (O-levels or equivalent, school leaving at age 16 with qualifications), 6th form 
completion (A-levels of equivalent, leaving at age 18 with qualifications), non-degree level 
higher education (any education above A-level not leading to a degree) and under-
graduate degree or above. Age at baseline was centered for the analysis and wave of 
the study was used as the metric of time for all analyses. Gender and ethnicity (white and 
nonwhite) are treated as binary.

Statistical analysis

The models used in this analysis were composed of a growth mixture model and 
a simultaneously estimated informative missingness model. Separate models were esti-
mated for immediate recall and verbal fluency. For each GMM, linear growth was initially 
specified, and quadratic or cubic curves tested for improvement in model fit. Class-specific 
intercepts and slopes were specified. The latent intercept and slope were regressed on all 
covariates. The effect of each covariate was allowed to vary by class. This tests the primary 
hypothesis that the association between education and cognitive maintenance will vary 
by latent class. Pairwise interactions between gender, age, and educational attainment 
were tested for fluency and recall. Interactions meeting statistical significance were found 
between education and age for fluency and between education and gender for recall. 
These interactions were small in magnitude, minimally improved model fit, and added 
a large number of parameters to the model, whilst not altering the conclusions regarding 
our substantive question. They were not included in the final model. No interaction 
significantly predicted dropout. Other available potential pre-education confounders 
(parental smoking, family structure in childhood, and parental occupation) were tested, 
but were not significant associated with cognitive function, the results are not presented.

Missing data were handled using a not missing at random (NMAR) Beuncken’s model. 
This was jointly modeled with the GMM. With NMAR data there is a latent process driving 
loss to follow-up and resulting in nonrandom attrition. This is likely to result in inflated 
observed cognitive scores and upwardly biased estimates of latent cognitive function. 
Missingness is therefore incorporated into the estimation of the latent classes and 
a dependency is introduced between latent cognitive function and missingness. In 
practice, this is achieved by regressing missingness at each wave on observed covariates, 
the latent variables for the outcome (intercept and growth factors), and latent class. 
(Beunckens et al., 2008) We initially wished to model non-response and death separately, 
as they determined by separate, if correlated, processes. However, attempts to model 
death and dropout separately led to model under-identification. They were therefore 
modeled jointly using a single variable. After assessing model fit, the immediate recall 
model utilized only the intercept to predict missingness. In the verbal fluency model, both 
intercept and slope independently predicted missingness and were retained. The effect of 
each variable on missingness was fixed to be equal across all waves. Allowing the 
regression of missingness on covariates to vary by class did not improve fit for either 
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model. See (Figure 1) for the generalized representation of the structural equation model 
used.

We used a one step approach to determining the number of latent classes. In other 
words, the number of latent classes was estimated with covariates included. To deter-
mine the number of latent classes we used Rousseau and Mengersen’s over-fitting 
method.(Nasserinejad et al., 2017; Rousseau & Mengersen, 2011) This method requires 
setting a cutoff for the proportion of participants which makes up a substantively 
important latent class, for example, 5% of the participants (a posterior mode of 0.05). 
One then estimates an overfit model with a number of classes much larger than 
expected (up to 10 classes in the original paper).(Rousseau & Mengersen, 2011) The 
number of classes for the substantive analysis is then chosen by the number of classes 
in the overfit model which exceed the cutoff. A new model with the number of classes 
exceeding the cutoff can then be run and checked for global fit to the data, entropy, 
and substantive coherency. For example, if 4 out of 10 latent classes contained greater 
than 5% of the participants in the overfit model, a 4-class model would be chosen for 
the substantive analysis. That model would then be checked for global fit. If the model 
is a poor fit to the data, poorly differentiates between classes, or is substantively 
incoherent, then either the choice of posterior mode can be revisited or the model 
specification can be reviewed.

In our analysis, six classes were specified for our overfit model. Due to a large number 
of different parameters between classes, higher numbers of classes failed to converge. 
Our pre-specified cutoff for the posterior mode was ≥0.05 and the Dirichlet prior for the 
class proportion of (5,3) for fluency and (4,3) for recall (half the number of free parameters 
between classes). For both verbal fluency and immediate recall, this method identified 
two classes meeting the prespecified cutoff. Model fit for the two class models was then 
assessed using the Bayesian posterior predictive p value (PPPV), entropy, and whether the 
classes were substantively coherent. Other measures of global fit, such as the Bayesian 
information criteria, are not calculated for GMMs in MPlus 7.0. Weakly informative priors 
were used for all regression coefficients, missingness thresholds, and class-specific latent 
intercepts and means. Direct comparison of the composition of the classes for fluency and 
recall was not done due to the inability to export class membership from Bayesian mixture 
models in MPlus 7.0. The data were edited using Stata version 12 and the structural 
equation modeling performed using MPlus version 7.0.(L. K. Muthén & Muthén, 2014; 
StataCorp, 2011) MCMC estimation was utilized with the MPlus default Gibbs sampler and 
convergence criterion, 120,000 and 200,000 iterations were used for fluency and recall, 
respectively, of which the first 50% are treated as burn-in with no thinning.(B. Muthén & 
Asparouhov, 2011)

Results

The participant demographics can be seen in (Table 1), which compares participants in 
the first wave with those remaining at wave 5. As the study progressed the remaining 
participants were younger, more likely to be female, more likely to be white, and less likely 
to have no formal educational qualifications.

For a 1-class fluency model the PPPV was 0.078 (−12.8 to 78.5 credible interval for 
a difference between the observed and replicated chi-squared values), for the 2 class 
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model the PPPV was 0.148 (−28.6 to 93.6), and for a 3-class model 0.041 (−9.3 to 152.5). 
The entropy for the 2-class fluency model was 0.904 and for the 3-class model, it was 
0.617. For the 1-class immediate recall model, the PPPV was 0.078 (−12.3 to 78.2), for the 
2-class model 0.081 (−18.5 to 108.3), and for the 3-class model 0.011 (12.1 to 177.1). 
Entropy for the 2-class recall model was 0.872 and 0.826 for the 3-class model.

The final class proportions based on the estimated posterior probabilities for the 
fluency model were 90.0% (n = 4907) of the sample in a gradual decline class and 
10.0% (n = 561) in a rapid decline class. The final class proportions based on the estimated 
posterior probabilities for the recall model were 91.5% (n = 5164) of the sample in 
a gradual decline class and 8.5% (n = 478) in a rapid decline class. The descriptive statistics 
for the members of each class, including predicted cognitive score, are presented in (Table 
2). It can be seen that the proportions of each gender and educational category are similar 
across classes for recall and fluency. The mean age is somewhat higher in the rapidly 
declining classes.

Table 1. Demographics, verbal fluency, and recall for study participants illustrating the 
difference between respondents in wave 1 and those retained at wave 5 follow-up.

Wave 1 Wave 5

Variables n = 5643 n = 2455

Mean Age at W1 (s.d) 73.2 (7.2) 70.6 (5.7)
Verbal fluency (s.d) 17.5 (6.0) 17.9 (6.8)
Recall (s.d) 4.9 (1.8) 5.0 (1.9)
Female 3028 (53.7%) 1358 (55.3%)
Nonwhite ethnicity 129 (2.3%) 36 (1.5%)
Highest Qualification No formal qualification 3291 (58.3%) 1184 (48.2%)

Highschool 1073 (19.0%) 562 (22.9%)
Sixth Form 253 (4.5%) 129 (5.3%)
Non-degree Higher 566 (10.0%) 318 (13.0%)
Degree Level 460 (8.2%) 262 (10.7%)

Table 2. Descriptive statistics by latent class for verbal fluency and recall.
Verbal Fluency Recall

1. Gradual 
Decline

2. Rapid 
Decline

1. 
Stable

2. Rapid 
Decline

Gender 53.6% 54.0% 53.5% 54.9%
Nonwhite 2.4% 2.3% 2.3% 2.3%

Education No formal 
qual.

58.4% 60.4% 58.1% 60.0%

High school 19.2% 17.4% 19.1% 19.3%
Sixth Form 4.5% 4.6% 4.5% 4.2%
Higher non- 

degree
9.8% 10.2% 10.1% 9.2%

Degree 8.1% 7.4% 8.2% 7.3%
Age −0.07 0.74 −0.027 0.3

Mean Cognitive Score (animals named or 
words recalled)

Wave 1 17.6 15.7 4.9 4.6
Wave 2 18.2 14.2 5.1 5
Wave 3 18.2 11.3 5 5.2
Wave 4 18.3 7.4 5 4.6
Wave 5 18.2 4.3 5.2 2.2
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Verbal fluency
The coefficients from the GMM for verbal fluency are shown in (Table 3) and estimated 
mean curves in (Figure 2). In the first verbal fluency latent class (gradual decline or 
probable healthy cognitive aging), the latent intercept in a number of animals named 

Table 3. Estimates of verbal fluency latent class-specific parameters for baseline score and rates of 
change, with the effect of covariates on these.

Class 1 – Gradual Decline Class 2 – Rapid Decline

95% Credible Interval 95% Credible Interval

Coeff. Lower Upper Coeff. Lower Upper

Baseline Score 16.619 16.244 16.992 14.99 12.986 18.312
Linear Rate of Change −0.189 −0.347 −0.023 −1.539 −2.499 −0.654
Quadratic Rate of Change −0.098 −0.134 −0.066 −0.717 −0.956 −0.431
Age
Baseline Score −0.209 −0.181 −0.233 −0.334 −0.167 −0.452
Rate of Decline −0.045 −0.036 −0.053 0.08 0.216 −0.005
Female Gender
Baseline Score −0.255 −0.589 0.09 0.878 −1.48 2.887
Rate of Decline 0.062 −0.047 0.162 −0.456 −1.822 0.237
Nonwhite ethnicity
Baseline Score −6.371 −7.328 −5.427 −1.987 −4.995 1.272
Rate of Decline −0.093 −0.446 0.263 −0.67 −3.103 1.952
Highschool Education†
Baseline Score 2.137 1.72 2.545 3.182 0.956 5.426
Rate of Decline 0.05 −0.075 0.177 −0.105 −1.102 0.949
Sixth Form Education†
Baseline Score 2.946 2.252 3.636 0.695 −2.223 3.271
Rate of Decline 0.118 −0.101 0.344 0.496 −0.77 1.674
Higher Non-degree Education†
Baseline Score 3.404 2.873 3.929 2.077 −0.379 4.55
Rate of Decline 0.221 0.062 0.382 0.011 −1.215 0.82
Degree Level Education†
Baseline Score 4.564 3.979 5.117 1.793 −1.428 5.099
Rate of Decline 0.172 0.002 0.344 −0.104 −1.776 1.09

†Baseline no formal educational qualifications

Figure 2. Estimated mean curves of the two latent classes for verbal fluency and immediate recall 
comparing the effect of no formal qualifications (baseline) and degree-level education.

10 B. D. WILLIAMS ET AL.



per minute was 16.59 (95% Credible Interval 16.17 to 16.93). The linear rate of change was 
−0.21 (95% CI −0.39 – −0.05) with a quadratic rate of change of −0.12 (95% CI −0.16 to 
−0.09). In the rapid decline latent class, the latent intercept in a number of animals named 
per minute was 14.75 (95% CI 13.01 to 18.03). The linear rate of change was −2.20 (95% CI 
−3.36 to −1.21) with a quadratic rate of change of −0.59 (95% CI −0.87 to −0.31).

The association of education with latent intercept in the gradual decline fluency class 
showed essentially a dose–response relationship, with greater education associated with 
higher baseline fluency scores. In this class lower levels of educational attainment were 
not associated with change over time, but higher levels of educational attainment were 
associated with a modest decrease in the rate of decline.

In the rapid decline fluency class, level of education was significantly associated with 
intercept only for high school education. Sixth form, non-degree higher or degree level 
education was not associated with the intercept in this class. Although mostly non- 
significant, the point estimates showed a similar dose–response pattern to that seen in 
the gradual decline class. In the rapid decline fluency class, no level of educational 
attainment was associated with the rate of decline.

Immediate recall
The coefficients from the GMM for immediate recall are shown in (Table 4) and estimated 
mean curves in (Figure 2). The model for immediate recall in the gradual decline latent 
class estimated a latent intercept in a number of words correctly recalled of 4.27 (95% CI 

Table 4. Estimates of immediate recall latent class-specific parameters for baseline score and rates of 
change, with the effect of covariates on these.

Class 1 – Stable Class 2 – Rapid Decline

95% Credible Interval 95% Credible Interval

Coeff. Lower Upper Coeff. Lower Upper

Baseline Score 4.305 4.235 4.398 4.094 3.674 4.502
Linear Rate of Change 0.168 0.083 0.256 0.346 0.077 0.601
Quadratic Rate of Change −0.189 −0.249 −0.136 0.134 −0.049 0.334
Cubic Rate of Change 0.033 0.023 0.043 −0.101 −0.143 −0.063
Age
Baseline Score −0.083 −0.077 −0.089 0.006 0.038 −0.027
Rate of Decline −0.006 −0.003 −0.008 −0.02 −0.009 −0.03
Female Gender
Baseline Score 0.421 0.335 0.509 0.517 0.063 0.979
Rate of Decline 0.013 −0.017 0.043 −0.288 −0.443 −0.14
Nonwhite ethnicity
Baseline Score −0.838 −1.155 −0.53 −1.001 −3.056 0.899
Rate of Decline −0.087 −0.2 0.031 0.103 −0.679 1.049
Highschool Education†
Baseline Score 0.666 0.555 0.781 0.417 −0.18 0.989
Rate of Decline 0.016 −0.022 0.054 0.076 −0.104 0.26
Sixth Form Education†
Baseline Score 0.831 0.635 1.02 1.09 0.182 1.996
Rate of Decline 0.013 −0.052 0.08 −0.1 −0.433 0.192
Higher Non-degree Education†
Baseline Score 1.017 0.87 1.158 −0.062 −0.836 0.777
Rate of Decline −0.027 −0.073 0.021 −0.013 −0.279 0.225
Degree Level Education†
Baseline Score 1.43 1.283 1.579 1.585 0.842 2.313
Rate of Decline −0.04 −0.089 0.01 −0.26 −0.556 0.032

†Baseline no formal educational qualifications
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4.19–4.36). The linear rate of change was 0.16 (95% CI 0.03–0.29), the quadratic rate of 
change was −0.19 (95% CI −0.28 – −0.11) and the cubic rate of change was 0.03 (95% CI 
0.02–0.05). In the rapid decline class, the latent intercept was 4.09 (95% CI 3.67–4.50) 
words recalled correctly. The linear rate of change was 0.35 (95% CI 0.08–0.60), the 
quadratic rate of change was −0.13 (95% CI −0.05–0.33) and the cubic rate of change 
was −0.10 (95% CI −0.14 – −0.06).

The association with education for the latent intercept of recall in the gradual decline 
class showed a dose–response relationship, similar to fluency, with greater education 
associated with higher baseline recall scores. In the gradual decline class, no level of 
educational attainment was associated with change over time. In the rapid decline class, 
level of education was associated with intercept for sixth form and degree level attain-
ment but not high school or non-degree higher education. In the rapid decline class, no 
level of educational attainment was associated with the rate of decline.

Discussion

The aim of this analysis was to test whether the latent class of change over time 
moderates the association between educational attainment and decline in semantic 
fluency or immediate recall. By making the effect of education on cognition direct, and 
allowing that association to vary by class, this study provides a different perspective to 
that provided by prior research which has used education to predict class. We used 
a flexible modeling approach to test predictions produced by different theories of 
cognitive reserve whilst incorporating a novel method to account for non-random attri-
tion associated with cognitive trajectory.

For both verbal fluency and immediate recall, we identified classes of gradual decline 
and rapid decline in cognition. The verbal fluency rapid decline class was estimated to 
decline an initial rate around 10 times as fast as the probable healthy aging class, and this 
decline also accelerated more rapidly. For immediate recall, neither class shows much 
initial decline, but performance in the rapid decline class reduces very sharply in later 
waves. For neither cognitive measure was educational attainment associated with the rate 
of decline in cognitive function amongst the rapidly declining classes. There was 
a suggestion that those with the highest levels of education did have a slightly slower 
rate of decline for verbal fluency, but not immediate recall. The difference in the rate of 
decline in the verbal fluency gradual decline class was approximately equivalent to being 
4 years younger for both higher education and degree education.

Contingent upon the assumption that the latent classes did approximate underlying 
disease status, our results are consistent with brain reserve being the predominant form 
of reserve, with the suggestion of a small degree of neural compensation reserve for 
cognitively health older adults with the highest levels of educational attainment.(Lenehan 
et al., 2015) This may suggest that higher levels of education provide a small degree of 
protection against age related or very early pathological decline in cognition.(Kim et al., 
2019) However, our findings are largely consistent with the majority of analyses from 
a large number of aging studies across industrialized nations which find that education 
has either small or no association with change in cognition over time.(Gottesman et al., 
2014; Lenehan et al., 2015; Lipnicki et al., 2019; Piccinin et al., 2013; Zahodne et al., 2011) 
This analysis extends this previous work by demonstrating that this largely remains true 
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even after underlying population heterogeneity and informative dropout have been 
taken into account. This does not necessarily mean evidence against education contribut-
ing to neural compensation or neural cognitive reserve in individuals with rapid decline. 
Given that both models have empirical support but generate opposing predictions, it is 
possible both mechanisms are operating with a net result of minimal differences in 
cognitive maintenance by education. (Oh et al., 2018)

Our findings have both agreement and contrast with those of Muniz-Terrera et al. who 
used a very similar statistical methodology.(Muniz-Terrera et al., 2010) They found that 
lower levels of education predicted a faster decline in their high-performance class. Due 
to the strong ceiling effect of the MMSE, it can appear that those with lower levels of 
education decline faster. However, in our analysis using verbal fluency, with little to no 
ceiling effect, we similarly observed that those with higher or degree level education 
showed slightly better cognitive maintenance than those with no formal qualifications or 
secondary school level educational attainment. This is what would be expected if educa-
tion provides a small degree of neural reserve in older adults showing an only gradual 
decline. Unlike Muniz-Terrera et al. we did not observe the same effect for immediate 
recall of a 10-word list. This difference may stem from the choice of using specific 
cognitive tests, rather than a measure of global cognitive function. Our analysis supports 
the suggestion that the association between education and cognitive maintenance is 
likely to be domain specific.(Lavrencic et al., 2018; Ritchie et al., 2015; Rodriguez et al., 
2019)

It is plausible that educational attainment would be more closely associated with 
verbal skills than short-term memory alone.(McDaniel & Einstein, 2011) Simple span and 
immediate free recall short-term memory tasks have previously been found to be less 
strongly associated with education than other cognitive tasks.(Chen et al., 2019; O’Shea 
et al., 2018; Ritchie et al., 2015). There is little role for strategizing in immediate free recall 
tasks, with participants typically starting at the first or last letter depending on the length 
of the word list presented.(Tan et al., 2010) This means that there is comparatively limited 
scope to employ learned strategies as compared to more complex tasks. Additionally, as 
they do not require memory consolidation, they tend not to rely on hippocampal 
structures which may be larger and show greater connectivity in older adults with higher 
levels of education.(E. Arenaza-Urquijo et al., 2013; Kramer et al., 2007; Noble et al., 2012; 
O’Shea et al., 2018) As the hippocampus is a crucial site for the development of 
Alzheimer’s disease- or limbic-predominant age-related TDP-43 pathological changes, 
this may explain why the decline in immediate recall occurred somewhat later than that 
of semantic fleuncy.(Braskie & Thompson, 2013; Nelson et al., 2019) Semantic fluency itself 
relies upon a combination of predominantly frontal executive functions and predomi-
nantly temporal semantic memories of objects, and is thus more likely to benefit from the 
greater connectivity associated with higher educational attainment.(E. M. Arenaza-Urquijo 
et al., 2013; Hirni et al., 2013; Rascovsky et al., 2007; Reverberi et al., 2014; Sheldon & 
Moscovitch, 2012)

Several studies, including previous analysis of ELSA data, have found 3 or 4 latent 
classes of cognitive function.(Hayden et al., 2011; Olaya et al., 2017) Of those studies with 
3 or 4 classes, the pattern is frequently of 2–3 ordinal classes and 1 qualitatively different 
class (for example, the 3 stable classes with differing baseline performance and 1 declin-
ing class as seen in Olaya et al.).(Olaya et al., 2017; Royall et al., 2014) Allowing the effects 
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of education and age to vary within the class, rather than predict class, would be likely to 
result in the loss of the ordinal classes (whose differences in baseline performance are 
instead modeled as a function of education within the class) and the preservation of the 
qualitatively different trajectories.

Strengths and limitations

Though a limited range of measures was available, the relative lack of ceiling and floor 
effects in the measures used is an important strength of this analysis. Another important 
strength of this study is the fact that education is used to predict change within the class 
and not class itself. For the reasons described in the introduction, we feel the GMM used in 
this analysis more accurately represents the results of clinic-pathological studies in 
a population setting. Additionally, there are many strengths of the ELSA dataset in general 
including, but far from limited to, the large sample size, a representative general popula-
tion sample, and good duration of follow-up.(Steptoe et al., 2013) The large number of 
individuals with lower levels of educational attainment is of special relevance to this study 
as it provided a range of exposure to education. This is important not only for statistical 
power, but also reduces the chances of our results being due to sampling bias. Although 
we adjusted for the effect of nonwhite ethnicity, the ELSA sample reflects the older adult 
English population at the time of recruitment and thus is not highly diverse in terms of 
language or ethnicity. Nonetheless, the results of this analysis are likely to be general-
izable to similar populations of older adults in industrialized western nations. The inclu-
sion of an informative missingness model is an important strength of the analysis, as it 
relaxes the missing at random assumption for at least one missingness process. Over the 
follow-up period the regression estimates including the dropout model for the gradual 
decline classes showed an approximately 0.3-word decline in immediate recall and 
a 2-word decline for verbal fluency. This compares to the 0.3-word increase in immediate 
recall and 0.6-word increase in verbal fluency in the raw data. This suggests that the 
model was working as intended to counter the effect of nonrandom higher rates of 
attrition in the cognitively disadvantaged. One weakness of this analytic approach is 
that the classes identified are both classes of cognitive decline and missingness pattern. 
(Muthen et al., 2011) Whilst these processes are closely linked it would be preferable to 
model them separately. Unfortunately, Bayesian estimation using multiple-membership 
latent classes is not yet implementable within available software. The use of Bayesian 
estimation could be seen as a weakness, as Bayesian mixture modeling can be sensitive to 
prior specification. However, they tend to converge with frequentist estimation with 
weakly informative priors like those used here and provide an efficient means of estima-
tion for complex mixture models.(Depaoli et al., 2017; Helm et al., 2017)

A substantial limitation of the current analysis is the unavailability of a measure of brain 
status.(Stern et al., 2018) As explained in the 2018 whitepaper from the Reserve, Resilience 
and Protective Factors PIA Empirical Definitions and Conceptual Frameworks Workgroup, 
studies of the cognitive reserve should ideally have a sociobehavioural proxy for reserve 
(education in our case), cognitive performance outcomes and a measure brain status. 
ELSA does not contain measures of brain status. We were able to follow this insofar as we 
utilized mixture modeling to infer from the available data the subsample most likely to 
have substantial pathology, and then tested for an interaction between latent class and 

14 B. D. WILLIAMS ET AL.



education. Whilst this makes use of the available data to approximate the approach 
advocated by Stern et al., it does not replace direct functional or volumetric measure-
ments. Further research may wish to extend the current work by studying the relationship 
between education and observed cognitive function incorporating an additional latent 
class of change in a measurement of brain status.

In addition to measures of brain status, other important variables that are not present 
in the ELSA data are childhood intelligence or confirmation of self-reported educational 
attainment. Intelligence at age 11 may attenuate the associations between education 
and observed cognitive status and gray matter volumes.(Cox et al., 2016; Gow et al., 
2011) Measurement error in self-reported educational attainment has previously been 
found to underestimate the effect of education on performance in recall and fluency 
tasks.(Foverskov et al., 2018) With these important caveats, it seems relatively unlikely 
that the results have been unduly influenced by unmeasured confounding. What early 
life measures preceding education we had available did not alter the principle finding of 
no or minimal association between educational attainment and rate of decline for most 
participants. Other unmeasured confounders would be anticipated to bias results away 
from, rather than toward, the null hypothesis. Our analysis does not account for the 
various post-education pathways to later life cognition. This being the case, our results 
cannot say how much of the observed lack of association is caused by mediating 
pathways rather than being the direct effect of education itself. We considered the 
inclusion of a range of post-education mediators such as adult social status, cardiome-
tabolic risk factors, or cognitively stimulating activities. Many researchers of course do 
condition upon these covariates with the aim of estimating a direct effect of education 
and the life-course approach has much to commend it. However, their inclusion intro-
duces a large number of additional modeling assumptions, such as no interactions 
between mediators and no time-varying confounding affected by prior exposure, 
which is not necessarily sustainable. Ultimately, our research question was about 
estimating whether there is a total effect, not the many possible pathways this might 
take. It is also worth noting that it was not possible to elucidate cohort effects because 
of using both time and age in the model.(Bell & Jones, 2013) As well as study designs 
addressing the limitations above, our study, and the majority of studies using GMMs, 
have focused on episodic memory, fluency, or composite cognitive scores. Future 
research may wish to extend the use of these methods to explore the association of 
education, or other sources of cognitive reserve, with different cognitive or functional 
domains. In particular, further work may wish to test if education protects against 
a decline in social and occupational function independent of or partially mediated by 
cognitive scores.(Jokinen et al., 2016)

Conclusions

We identified two latent classes of verbal fluency and immediate recall in a representative 
sample of the English older adult population. One class showed a minimal decline and the 
other class rapid decline, which is likely to represent a population with or at risk of 
preclinical dementia. We developed previous analyses by relaxing the assumption of 
population heterogeneity, allowing the association between education and cognition to 
be moderated by latent class, and explicitly modeling data NMAR. There was no evidence 
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that educational attainment was associated with the rate of cognitive decline in the 
rapidly declining groups for either outcome. In older adults with the gradual decline, 
there was evidence of a small association with reduced rates of decline in verbal fluency 
for the highest levels of education, but no association was seen for recall.
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