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A principal hires an agent to repair a machine when it is down and maintain it when it is up, and earns

a flow revenue when the machine is up. Both the up and down times follow exponential distributions. If

the agent exerts effort, the downtime is shortened, and uptime is prolonged. Effort, however, is costly to

the agent and unobservable to the principal. We study optimal dynamic contracts that always induce the

agent to exert effort while maximizing the principal’s profits. We formulate the contract design problem as

a stochastic optimal control model with incentive constraints in continuous time over an infinite horizon.

Although we consider the contract space that allows payments and potential contract termination time to

take general forms, the optimal contracts demonstrate simple and intuitive structures, making them easy to

describe and implement in practice.
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1. Introduction

In this paper, we study a dynamic contract design problem over an infinite horizon, in which a

principal hires an agent to more efficiently operate a production process (“machine”), which changes

between two states: up and down. The state of the machine is public information. The “up” state

yields a constant flow of revenue to the principal. The machine is subject to random shocks which

causes it to go “down.” When it is “down,” the machine can be repaired to be “up” again. Without

the agent, the machine stays in the up and down states for exponentially distributed random time

periods with certain baseline rates. The agent has the expertise to improve maintenance and repair

procedures by reducing the instantaneous rate for breaking down, and increasing the instantaneous

rate to recover from the down state, if the agent exerts effort. Exerting effort is costly to the agent,

and the effort cost may be different for repairing or maintaining the machine. Whether and when

the agent puts in effort is the agent’s private information. The principal would like to induce the

agent’s effort, and is able to commit to a long term contract, which involves payments and potential

termination contingent on public information. We allow general forms of payments, including both
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instantaneous and flow payments. The principal is allowed to terminate the contract at any time,

including terminating the contract with a probability less than one when the machine changes

state. We also assume that the agent has limited liability. That is, the agent can decide to quit

and never owes money to the principal.1 Both players are risk neutral.

Although there is a wide literature on maintenance and repair, the majority of this literature is

focused on optimal maintenance and repair conducted by a central decision maker, and has largely

ignored the issues caused by agency. In many practical settings, however, maintenance and repair

is conducted by an agent. Maintenance outsourcing is quite common in airline, aerospace, defense

and mining industries, that often rely on complex, heavy and critical equipment (Tarakci et al.

2006). Instead of investing in the latest maintenance tools and facilities, and training in-house main-

tenance teams, firms outsource maintenance activities to specialized companies (McFadden and

Worrells 2012). It may be hard for firms to observe whether maintenance companies put sufficient

resources into providing best service, which gives rise to agency issues. Therefore, our paper makes

a contribution to the maintenance/repair literature by tackling agency issues. In particular, we

study a dynamic principal-agent framework, in which we obtain optimal contracts among history

dependent ones. Despite the complexity of history dependent contracts, we demonstrate that the

optimal contracts possess very simple structures that are easy to compute and implement. Further

distinguished from the existing service/maintenance contract literature, we allow the agent to have

limited liability and the ability to walk away at any point in time. Therefore, our contracts need to

satisfy participation constraints, which guarantee that the agent stays before contract termination.

The paper also contributes to the dynamic contract design literature by considering an envi-

ronment with two (machine) states. It is standard to formulate dynamic contract design problems

as continuous time stochastic optimal control problems with incentive compatibility constraints,

in which the agent’s “promised utility” (see, for example, Spear and Srivastava 1987) constitutes

the state space. Our state space, however, also needs to include the machine state, which yields

dynamics that do not appear to arise in traditional settings without such a multi-state environ-

ment. The paper studies all of the following three possible cases, although the main body of the

paper is focused on the third one: (1) the principal only needs the agent when the machine is down;

(2) the principal only needs the agent when the machine is up; and (3) the principal needs the

agent for both types of work.

The classical maintenance literature is focused on optimal scheduling in a centralized context

(see, for example, Pierskalla and Voelker 1976, Paz and Leigh 1994, McCall 1965, Barlow and

Proschan 1965, Gupta et al. 2001). Several papers consider maintenance outsourcing contracts

involving a maintenance agent and a customer. In particular, Murthy and Asgharizadeh (1998)

study a game-theoretic model in which an agent offers several options of contracts to a customer,
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including charging a fee for each repair during a given duration of time, or charging a lump sum

fee for repairing the machine whenever it breaks down. The customer decides whether to hire the

agent depending on the proposed contract. Murthy and Asgharizadeh (1999) extends the model to

include multiple customers. Asgharizadeh and Murthy (2000) further allows the agent to choose

the number of customers and the number of service channels besides a pricing strategy. Following

this line of work, Tarakci et al. (2006) develop incentive contracts to achieve channel coordination.

Kim et al. (2010) consider performance-based contracts for recovery services where the disruptions

occur infrequently when the agent is risk-averse. They compare two types of widely used contracts,

one based on sample-average downtime and the other based on cumulative downtime according

to the supplier’s ability to influence the frequency of disruptions. A clear distinction of our paper

is that we consider time-dependent dynamic contracts while the aforementioned papers either

consider static settings or repeated single-period settings. Other papers with static or repeated

single-period settings include Tarakci et al. (2009), Wang (2010), Pakpahan and Iskandar (2015),

Baker (2006), Cohen (1987), Tarakci et al. (2014). A common assumption in this literature is that

the agent decides on the effort level (or, equivalently, capacity level) only once, then sticks to this

level regardless of further outcomes. In many settings, an agent is often able to adjust effort choices

over time. If a contract ignores such possibilities, the agent may lose the incentive to stick to the

effort level as intended by the designer. Our model avoids this incentive issue because it is dynamic.

Plambeck and Zenios (2000) is the first paper to consider a dynamic principal-agent model of

maintenance contract design in a discrete-time setting with a finite time horizon. In each period,

if the machine is down, a risk-averse manager (agent) could choose between high and low effort

levels, which further determine the probabilities that the machine comes back up in the following

period. There is no moral hazard issue when the machine is up. More fundamentally, the agent

in their model has access to borrowing and lending at the same rate, which means that they do

not assume limited liability. Limited liability is a key assumption widely adopted in the dynamic

contract literature (see, for example, Biais et al. 2010, Green and Taylor 2016, Sun and Tian 2017).

Without it, the principal can essentially sell the entire enterprise to the agent, and therefore align

incentives in a rather trivial fashion. The long-term optimal contract in Plambeck and Zenios

(2000) is history-independent and renegotiation-proof. These nice properties rely critically on the

borrowing and lending interest rates being exactly the same, and the agent’s utility is additively

separable and exponential. Following their optimal contract, in case the machine performance is

bad for a period of time, the agent may have to borrow large amounts against future income,

resulting in a negative total future utility. We, on the other hand, assume limited liability, which

allows the agent to simply walk away (contract termination) instead of bearing a large debt.
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The origin of the continuous time dynamic contract literature is often credited to the seminal

paper Sannikov (2008), which considers a principal hiring an agent to control the drift of a Brownian

motion. Several papers have applied similar techniques in different settings with applications mostly

in corporate finance (see, for example, DeMarzo and Sannikov 2006, Biais et al. 2007, Fu 2015, to

name a few).

Instead of controlling the drift of a Brownian motion, in our model, the agent exerts effort to

change the arrival rates of Poisson processes. Previous literature has studied one-sided problems,

i.e., either decreasing or increasing the arrival rate of a Poisson process. Biais et al. (2010), for

example, considers a firm (principal) hiring a manager (agent) to exert private effort to decrease

the arrival rate of large losses, modeled as a Poisson process, when the two players have different

time discount rates. Myerson (2015) studies essentially the same model as in Biais et al. (2010),

except that the two players share the same time discount rate. In contrast, Sun and Tian (2017)

consider the case of increasing the arrival rate of a Poisson process by the agent’s private effort.

Varas (2017), Shan (2017), and Green and Taylor (2016) study similar models with a finite number

of arrivals and additional features, such as adverse selection issues or multiple players.

Because of limited liability, the optimal contract structures are different for decreasing ver-

sus increasing arrival rates. The common theme between the one-sided cases is that the optimal

dynamic contracts often involve letting the promised utility to take a constant jump upon an

arrival, which is upward for the case of increasing the arrival rate, and downward for decreasing the

arrival rate. Our paper generalizes the previous literature by studying contracts that induce the

agent to alternatively increase and decrease two different arrival rates over time (increase the rate

of repair, and decrease the rate of failure). The combined control problem is more complex, and

the optimal solution more intricate. In particular, the dynamics of the promised utility following

our optimal control policy is not a mere combination of one-sided control policies.

Specifically, whenever the machine is repaired from a down state, the agent needs to be at least

rewarded with an amount (denoted as βd). This amount βd is set to exactly compensate the agent’s

effort to repair when the machine is down, so that the agent is (barely) willing to exert effort.

The reward could take the form of either an increase in promised utility or a direct payment.

Similarly, whenever the machine breaks down from an upstate, the agent needs to be penalized

with an amount (denoted as βu), set to be exactly enough to induce the agent’s effort to maintain

when the machine is up. However, due to limited liability, the principal cannot charge the agent

money. Therefore the penalty βu takes the form of a reduction of promised utility. When the agent’s

promised utility is already lower than βu, we cannot reduce the promised utility by βu anymore

since the agent is protected by limited liability. Instead, in the optimal contract, the principal

applies random termination to incentivize the agent to exert effort when the promised utility is
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low. The exact optimal contract structure differ between the cases of βd ≥ βu and βd <βu. In both

cases, the optimal contracts possess interesting structures only if the revenue rate the principal

accrues when the machine is up is high enough.

If βd ≥ βu, the structure of the optimal contract is not quite surprising. The aforementioned

reward and penalties are always set at the minimum levels βd and βu respectively, and random

termination never happens. If βd < βu, however, the optimal contract has a much more complex

and delicate structure, and it has the following two intricate features.

First, it is possible that the principal rewards the agent with an amount more than the minimum

necessary to incentivize the effort, i.e, the incentive compatibility constraints are not always bind-

ing. This is in contrast to previous papers (see, for example, Sannikov 2008, Biais et al. 2010, Sun

and Tian 2017), where the incentive compatibility constraints are always binding in the optimal

contract.

Second, because of limited liability and incentive compatibility, the agent’s continuation utility

cannot be attained below a threshold when the machine is up. To mitigate this possibility, we need

to introduce random termination, where we randomly decide whether to terminate the agent or

let the continuation utility increase back up to the threshold for free. This random termination

also appears in Myerson (2015), in which the threshold is fixed at βu (using our paper’s notation).

In our paper, however, the threshold is endogenously determined and may be higher than βu. We

use a “smooth-pasting” technique to derive this threshold. This technique is classical in optimal

stopping problem (Dixit and Pindyck 1994) and has been used in optimal contract literature (see,

for example, Zhu 2013, Chen et al. 2017).

Overall, we consider the aforementioned two features as the most interesting and intricate results

of this paper. In particular, the first one appears new in the literature, while the second one

constitutes a major technical challenge in the analysis. Therefore, Section 4.2 contains the most

interesting results, while earlier sections allow readers to gradually ease into them.

Specifically, we introduce the model and derive the incentive compatibility constraints in Section

2. In Section 3, we derive simple incentive compatible contracts without termination. In Section

4.1 and 4.2, we characterize the optimal incentive compatible contract under the condition βd ≥ βu

and βd < βu, respectively. Section 4.3 summarizes all the results thus far. In certain settings, it

may be better for the principal not to always induce effort from the agent. Therefore, in Section

5, we numerically compare the optimal incentive compatible contracts and two other alternative

contracts that only induce effort for one of the machine states. Formal derivation and analysis of

these alternative contracts are in the e-companion.
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2. Model

Consider a principal operating a process (e.g. a “machine”) in a continuous time setting. At any

time t, the state of the machine, θt, is either up or down, denoted as u or d, respectively. The

principal receives a revenue at a positive rate R per unit of time when the machine is up. When

the machine is down, the revenue is zero.2 The machine remains in the up state for an expo-

nentially distributed random time with rate µ̄u > 0 before breaking down. Once down, it takes

an exponentially distributed random time with rate µ
d
> 0 to repair the machine back to state

u. There are many settings in which the above described situation arises. For example, factories

produce products to be sold for revenue when their equipment are working. Similarly, airlines only

generate revenue when their planes are functioning. (Obviously, most airlines have more than one

plane, and factories more than one machine. Our model can be considered as a building block for

multi-machine settings.)

The principal hires an agent to improve the process. Whenever the agent exerts effort (for

example, assigning sufficient personnel to this job), the instantaneous rate of breaking down from

state u is reduced to µu ∈ (0, µ̄u).3 Similarly, at state d, the agent’s effort increases the instantaneous

rate of recovering to µd > µ
d
. Effort is costly to the agent, and not observable to the principal.

Specifically, denote cu and cd to be the effort costs in states u and d, respectively. The corresponding

effort cost rate at time t is

c(θt) := cu1θt=u + cd1θt=d. (1)

At any point in time t, the public information includes all the time epochs the machines changes

state by time t. Formally, we denote a right-continuous counting process Nt to represent the total

number of public events, i.e., change of machine states, up to time t. Let FN be the filtration

generated by the initial state θ0 and the counting process N = {Nt}. Further denote an FN -

predictable ν = {νt} to represent the agent’s effort process, such that νt ∈ {0,1} for any time t.

Specifically, νt = 1 and νt = 0 represent that the agent exerts effort and shirks at time t, respectively.

Therefore, at any point in time t with the state of the machine θt and the effort level νt, the arrival

rate of process N is

µ(θt, νt) :=
[
µuνt + µ̄u(1− νt)

]
1θt=u +

[
µdνt +µ

d
(1− νt)

]
1θt=d. (2)

We assume that the agent has limited liability, and we mainly focus our attention on contracts

that always induce effort from the agent. (In Section 5 and the e-companion, we also consider

contracts that induce effort only in one of the machine states.) Therefore, the principal needs to

reimburse the aforementioned effort costs in real time as flow payments whenever effort is expected.
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As a result, the effort cost c(θt) becomes shirking benefit if the agent shirks at time t. This is a

standard treatment in the dynamic contracting literature (see, for example, Biais et al. 2010).

We further assume that the principal has the commitment power to a long-term contract based

on public information. Overall, a dynamic contract Γ = (L, τ, q) includes a payment process L, a

contract termination time τ , and a stochastic termination process q.

Specifically, denote an FN -adapted process L = {Lt}t≥0 to represent the cumulative payment

from the principal to the agent up to time t. The payment includes an instantaneous one, It,

and a flow with rate `t beyond the background payment c(θt) that reimburses effort, such that

dLt = It + `tdt. Limited liability implies It ≥ 0 and `t ≥ 0.

The contract not only includes payments, but also the possibility of terminating the agent at

a random time τ . We consider two ways of contract termination. First, at any point in time t

when the machine changes state (i.e., dNt = 1), we allow the principal to terminate the contract

randomly, with probability qt ∈ [0,1], where the probability qt depends on all of the information on

machine state changes until time t, i.e., FNt -measurable. Therefore, the contract contains an FN -

adapted process q= {qt}t≥0 for random contract termination. Second, we also allow the principal to

terminate the agent depending (deterministically) on history FNt without randomization. As will be

clear later in the paper, allowing random termination is crucial to construct optimal contracts for

certain model parameter settings. The principal and the agent are both risk-neutral and discount

future cash flows at rate r.4

The principal’s expected total discounted profit under a contract Γ and effort process ν is defined

as5

U(Γ, ν, θ0) =E
[∫ τ

0

e−rt(R1θt=udt− dLt− c(θt)dt) + e−rτvτ

∣∣∣∣θ0

]
, (3)

where vτ is the principal’s total discounted future profit after terminating the agent. This value

clearly depends on the state of machine θτ at the termination time τ . It is easy to verify (see

Lemma 4 in the Appendix) that vτ takes the following values for θτ = u and θτ = d, respectively,

vu :=
R

r
·

r+µ
d

r+ µ̄u +µ
d

, and vd :=
R

r
·

µ
d

r+ µ̄u +µ
d

. (4)

Given contract Γ that always reimburses effort cost before termination, and an effort process

ν, the agent’s expected total discounted utility is the cumulative payments minus the effort cost,

expressed as the following

u(Γ, ν, θ0) =E
{∫ τ

0

e−rt [dLt + (1− νt)c(θt)dt]
∣∣∣∣θ0

}
. (5)

Therefore, given either initial state θ0 = u or θ0 = d, we can define a game between the two

players, in which the principal designs an optimal contract Γ that maximizes utility U(Γ, ν, θ0),
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anticipating the agent’s effort process ν that maximizes u(Γ, ν, θ0). Throughout the paper, we focus

on studying contracts that induce the agent to always exert effort (so called “incentive compatible”

contracts).6 In the e-companion Section EC.1 we provide a sufficient condition on model parameters

such that it is indeed optimal for the principal to only focus on incentive compatible contracts.

Incentive Compatibility A contract Γ is incentive compatible (IC) if in equilibrium, the

agent has the incentive to always exert effort (to better maintain the machine so that the failure

rate from state u drops to µu, and to faster repair the machine so that it comes back up at rate

µd from state d), i.e. ν∗ := {νt = 1}∀t∈[0,τ ]. That is, the contract is incentive compatible if7

u(Γ, ν∗, θ0)≥ u(Γ, ν, θ0) , ∀FN -predictable effort process ν, θ0 ∈ {u,d}. (IC)

In this paper we focus on the class of incentive compatible contracts that always induce effort.

The contract design problem may be formulated as a stochastic optimal control problem, in

which the state is the agent’s promised utility at time t, defined as,

Wt(Γ, ν) =E
{∫ τ

t

e−r(s−t) [dLs + (1− νs)c(θs)ds]
∣∣∣∣Ft}1{t≤ τ}. (6)

It is clear that W0(Γ, ν) = u(Γ, ν, θ0) for θ0 consistent with F0. It is worth noting that the FN -

adapted process Wt is right-continuous, representing the agent’s continuation utility after observing

a potential arrival at time t and after a potential instantaneous payment It. In comparison, the

principal’s control processes, Lt and qt, are FN -predictable and left-continuous. The principal

schedules payments and stopping time through controlling the agent’s promised utility. Therefore

it is important to introduce process Wt− = lims↑tWs, the left-hand limit of Wt, which is left-

continuous and FN -predictable (assuming W0− = W0). At any time t, Wt− captures the agent’s

continuation utility before knowing about the potential arrival and instantaneous payment at time

t. Similarly, for the right-continuous state process θt, we define left-continuous process θt− = lims↑t θt

to represent the state of the machine right before time t for any t > 0.

The contract also needs to ensure the agent’s participation at any point in time. That is, the

agent’s promised utility needs to be non-negative (also called the individual rationality (IR) con-

dition), i.e.,8

Wt ≥ 0, ∀t≥ 0. (IR)

The following lemma provides the evolution of the agent’s promised utility Wt under any contract

Γ, which is often called the promise keeping (PK) condition in the dynamic contract literature. It

also provides an equivalent condition for (IC) in terms of the promised utility Wt.
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Lemma 1. For any contract Γ, there exists an FN -predictable process Ht such that for t∈ [0, τ ],

dWt =
{
rWt−− (1− νt)c(θt)− [(1− qt)Ht− qtWt−]µ(θt, νt)− `t

}
dt

+[(1−Xt)Ht−XtWt−]dNt− It, (PK)

in which Bernoulli random variable Xt takes value 1 with probability qt.

Furthermore, contract Γ satisfies (IC) if and only if

(1− qt)Ht− qtWt− ≤−βu, for θt− = u, and

(1− qt)Ht− qtWt− ≥ βd, for θt− = d, (7)

for all t∈ [0, τ ], where

βu :=
cu

µ̄u−µu

and βd :=
cd

µd−µd

. (8)

Finally, we need −Ht ≤Wt− for all t≥ 0 in order to satisfy (IR).

The (PK) condition is a standard result for the dynamics of the agent’s promised utilities over

time. The left-continuous, FN -predictable processHt captures the change of the continuation utility

Wt− before a potential instantaneous payment It at time t.

To facilitate understanding, it is helpful to consider a heuristic derivation based on discrete time

approximation. Consider a small time interval [t, t+ δ). Assume that the agent’s promised utility

Wt− evolves continuously to Wt+ over this interval, unless there is a change of machine state,

with probability µ(θt, νt)δ. With a change of state, the agent’s total future utility takes a jump

to either Wt− +Ht with probability 1− qt, or to 0 with probability qt (termination). Also taking

into consideration the shirking benefit (1− νt)c(θt)δ, flow payment `tδ, and time discount rate r

(for simplicity, ignore the instantaneous payment It), the above description of the discrete time

approximation of the promised utility implies the following,

Wt− =(1− νt)c(θt)δ+ `tδ+µ(θt, νt)δ [qt · 0 + (1− qt)(Wt−+Ht)] + [1− (µ(θt, νt) + r)δ]Wt+.

As δ approaches 0, replace it with dt, and rearrange terms, we observe that the smooth change

Wt+−Wt− equals

{
rWt−− (1− νt)c(θt)− `t− [(1− qt)Ht− qtWt−]µ(θt, νt)

}
dt,

which recovers the terms involving dt in (PK). The change of machine state (dNt = 1) results in

the agent’s total future utility changing by either Ht or −Wt− (termination), depending on the

outcome of the random variable Xt. Therefore, the change is [(1−Xt)Ht−XtWt−]dNt. Finally,
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this total change can be delivered by a direct instantaneous payment It in addition to the change

in the promised utility dWt. That is, dWt + It = [(1−Xt)Ht−XtWt−]dNt when dNt = 1.

The values βd and βu defined in equation (8) reflect the ratios between effort cost and improve-

ment in the repair or failure rates, which reveal the intuition behind the (IC) condition. For an

intuitive interpretation of these two important quantities, consider, for example, the up state. If

the principal could charge the agent an amount βu upon the machine breaking down, the agent

is then indifferent between exerting effort or not. This is because over a small time period δ, the

shirking benefit, cuδ, exactly compensates the additional expected charge, βu(µ̄u−µu)δ. Condition

(7) states that instead of directly charging the agent, an incentive compatible contract needs to

reduce the agent’s promised utility by at least βu. The term βd has a similar interpretation for the

down state. Following standard IC conditions in Sannikov (2008) and Biais et al. (2010), one would

only obtain the result that the magnitude of Ht is larger than βd or smaller than −βu. Our (IC)

condition in Lemma 1, however, generalizes the standard form due to the consideration of contract

termination. In Section 4.2, we show that the probability of random termination, qt, could indeed

be positive in the the optimal contract.

Later in the paper we show that the structure of the optimal contract, including whether and

when the incentive compatibility constraints (7) are binding, depends on whether βd ≥ βu or

βd < βu. The intuitive interpretation of these conditions follows the definition of βu and βd. For

example, if the costs of effort are the same in the two machine states (i.e., cd = cu), then βd ≥ βu

means that the agent is able to decrease the break down rate more than increase the recovery rate

(µ̄u−µu ≥ µd−µd
).

Finally, (IR) requires that the agent’s promised utility must be non-negative at all times, includ-

ing right after a downward jump of the promised utility. As explained above, (IC) requires that

in the up state a downward jump has to be at least βu. Therefore, when the state θt = u, we can

only satisfy constraint (7) when Wt− ≥ βu. When the machine is up and Wt− becomes too low

(say, lower than βu), however, the principal needs to randomize the promised utility to either 0

(termination), or back to a threshold. This is why we need the randomized termination process

qt for the optimal contract. Interestingly, as we will show in Section 4, random termination only

occurs if βd <βu. In fact randomization may even occur when Wt− >βu. If βd ≥ βu, on the other

hand, the optimal contract always guarantees Wt− ≥ βu when the machine is up.

In the next section, we first introduce two simple and stationary incentive compatible contracts,

which help us lay the foundation of the optimal incentive compatible contracts.

3. Benchmark contracts

Before introducing the optimal contract, it is worth studying simple incentive compatible contracts

in this section. These contracts are stationary in nature – the contract terms only depend on the
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state of the machine and its transitions, and not on time otherwise. This implies that they never

terminate the agent. In fact, if we do not allow contract termination, they are indeed optimal

incentive compatible contracts. In the next section, however, we show that optimal contracts that

allow termination are based upon, but outperform these simple ones. In particular, it is important

to distinguish between the two cases βd ≥ βu and βd <βu, which are studied separately in the two

subsections, respectively.

3.1. βd ≥ βu

The contract is indeed very simple: the principal pays an instantaneous bonus βd − βu when the

machine recovers from state d, followed by a flow payment with rate

`∗1 = µdβd + (r+µu)βu (9)

when the machine remains in state u. We denote Γ̄ to represent this contract.

In order to prove that Γ̄ is incentive compatible, it is important to derive the agent’s promised

utility following this contract. In fact, we claim that the promised utility remains a constant for

each machine state. Define w̄u and w̄d as these two promised utilities when the machine’s state is

d and u, respectively,

w̄d =
µdβd

r
, and w̄u = w̄d +βu. (10)

It is easy to verify that contract Γ̄ is incentive compatible. In fact, whenever the machine breaks

down, the promised utility changes from w̄u to w̄d, with a downward jump of exactly Ht =−βu.

Upon recovery from state d, the promised utility first takes an upward jump of βu, and then the

agent is given a direct payment of βd−βu resulting in Ht = βd. Therefore, incentive compatibility

constraints (7) are always binding, with aforementioned Ht and qt = 0. This further ensures that

the agent always exerts effort. Regarding the promise keeping constraint, for state θt = u, if we

set Wt = w̄u and dLt = `∗1dt, then (PK) becomes dWt =−βudNt. Similarly, for state θt = d, setting

Wt = w̄d, and dLt = (βd − βu)dNt, (PK) becomes dWt = βudNt. Therefore, contract Γ̄ and our

claimed promised utilities (10) indeed satisfy both (PK) and (IC) constraints.

Besides the mathematical arguments above, it is in fact intuitive that contract Γ̄ provides the

incentive for the agent to exert effort. When the machine is down, the prospect of an instantaneous

bonus followed by a flow payment provides the incentive for the agent to repair the machine faster.

When the machine is up, the flow payment incentivizes the agent to better maintain and prolong the

period of payment. In particular, the flow payment `∗1 has two components. The first component is

the interest payment rw̄u, so that the agent’s promised utility is kept at w̄u. The second component

is the information rent µuβu whenever there is no arrival (machine breaking down).
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Furthermore, because contract Γ̄ never terminates the agent, we have the following expressions

for the total discounted societal values (summation of the principal and the agent’s utilities) at

states u and d, respectively (see Lemma 4 in the Appendix for the derivations).

v̄d =
µd(R− cu)− (r+µu)cd

r(r+µd +µu)
and v̄u =

(r+µd)(R− cu)−µucd
r(r+µd +µu)

. (11)

Consequently, the principal’s utilities under contract Γ̄ for state u and d are, respectively,

U(Γ̄, ν∗,u) = Ūu := v̄u− w̄u and U(Γ̄, ν∗,d) = Ūd := v̄d− w̄d. (12)

Although this simple contract Γ̄ is incentive compatible, it is actually not optimal, because it

only uses the “carrot” of payments without the “stick” of termination. At the end of this section,

Proposition 7 shows that this simple contract is actually the optimal incentive compatible contract

if the principal is not allowed to terminate the agent. Besides introducing this simple contract to

build intuition, we would like to clarify the simple contract’s connection with the optimal contract.

According to the optimal contract, it is possible that the promised utilities eventually become

w̄u and w̄d for states u and d, respectively. From that point on, the optimal contract becomes

identical to the simple contract Γ̄, and the agent is never terminated. However, following the

optimal contract, it is also possible that the promised utilities never reach w̄u and w̄d before the

agent is terminated.

Finally, it is clear that the society is better off with contract Γ̄ compared with not hiring the

agent at all if v̄u and v̄d are at least as high as vu and vd defined in (4). In fact, when βd ≥ βu, one

can verify that v̄d ≥ vd readily implies v̄u ≥ vu. Furthermore,

v̄d ≥ vd (13)

is equivalent to

R≥ hd :=
(
r+µ

d
+ µ̄u

) µdcu + (r+µu) cd
µd∆µu + (r+µu)∆µd

. (14)

Intuitively, hiring the agent is beneficial only if the revenue rate R is high enough. In Section

4.1, we demonstrate that the structure of the the optimal contracts depends critically on whether

condition (13) holds.

3.2. βd <βu

The simple contract in this case, denoted as Γ̂, can be described in one sentence: it pays the agent

a flow payment with rate

`∗2 = (r+µu +µd)βu (15)
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at state u.

The promised utilities are the following two constants for the two machine states, respectively,

ŵd =
µdβu

r
, and ŵu = ŵd +βu. (16)

similar to w̄d and w̄u defined in (10). Similar to the analysis for Γ̄, we can verify that contract Γ̂

together with ŵd and ŵu satisfy (PK) and (IC). The expressions for the societal utility still follow

(11). The principal’s utilities under contract Γ̂ are, therefore,

U(Γ̂, ν∗,u) = Ûu := v̄u− ŵu and U(Γ̂, ν∗,d) = Ûd := v̄d− ŵd, (17)

for machine states u and d, respectively.

The overall feature of Γ̂ for the case of βd <βu is very similar to Γ̄ for the case of βd ≥ βu. Later

in Section 4.2.1, we show that the agent’s promised utility has a chance to eventually become ŵd

and ŵu following the optimal contract. After reaching that point, the optimal contract becomes

identical to Γ̂, and the agent is never terminated. At the end of Section 4.2, we present Proposition

7, which shows that this simple contract is actually the optimal incentive compatible contract if

terminating the agent is not allowed. Similar to `∗1, the flow payment `∗2 can also be decomposed

into two components, the interest payment rŵu, and the information rent µuβu. Finally, parallel

to the previous case, when βd <βu, we have

v̄u ≥ vu (18)

is equivalent to

R≥ hu :=
(
r+µ

d
+ µ̄u

) µucd + (r+µd)cu
µu∆µd + (r+µd)∆µu

, (19)

and readily implies v̄d ≥ vd.

Despite these similarities between Γ̄ and Γ̂, it is worth noting an important difference between

them. Under contract Γ̂ of the current case, the incentive compatibility constraint (7) is not binding.

In fact, both the downward jump upon breaking down and the upward jump upon recovery are both

βu (i.e.,Ht = βu

(
1θt−=d−1θt−=u

)
). In particular, when the machine recovers, the upward jump is

higher than what is required in constraint (7). Given our claim in the last paragraph, it means

that the incentive compatibility constraint may not be binding in the optimal contract. This may

appear surprising, given that we are not aware of other optimal dynamic contract with non-binding

incentive compatibility constraint in the literature. We will explain why this phenomenon arises in

our setting after introducing the optimal contract in Section 4.2.
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4. Optimal Contract

In this section, we study and characterize in detail the optimal contracts that induce the agent to

always exert effort before termination. Similar to the previous section, here we first study the case

βd ≥ βu before βd <βu, in Sections 4.1 and 4.2, respectively. In the end we summarize main results

for different cases in Section 4.3. It is worth noting that more interesting and intricate results of

this paper, including non-binding incentive compatible constraint.

4.1. The Case βd ≥ βu

The structure of the optimal contract in this case, although new, may not appear surprising to

readers already familiar with the continuous time contracting literature (Biais et al. 2010, Sun and

Tian 2017). However, this section provides a gentle preparation to the more complex and delicate

structure in the optimal contract for the case βd <βu next.

In Section 4.1.1, we first introduce the optimal contract under condition (13), which is equivalent

to (14). Section 4.1.2 further provides the principal’s value functions under the optimal contract

and the proof of optimality. Finally, Section 4.1.3 studies what happens when the condition (13)

does not hold.

4.1.1. Optimal IC contract when v̄d ≥ vd In this subsection, we develop a contract Γ∗1,

and leave the proof of optimality to the next subsection. The contract keeps track of the agent’s

promised utility. Figure 1 depicts two sample trajectories of the agent’s promised utility in the

proposed contract where the machine starts at state θ0 = d.

The promised utility starts from an initial promised utility W0 = w∗d ∈ (0, w̄d). While repairing

the machine, this utility keeps decreasing (the exact form to be specified later) until either the

machine is repaired or the utility reaches 0. If the machine has not recovered before the utility

Wt reaches 0, the principal terminates the agent. The dotted curve in Figure 1 represents this

situation, where the promised utility decreases to zero at time τ .

On the other hand, if the machine recovers at time t with Wt− > 0, the utility Wt takes an upward

jump of level min{βd, w̄u−Wt−} and the agent is paid (Wt−+βd− w̄u)+ instantaneously. See the

solid curve in Figure 1, which represents another sample trajectory. In the time interval [0, t1), the

promised utility is decreasing over time. At t1, it jumps up by βd because Wt1− < w̄u − βd. The

corresponding instantaneous payment is 0. Then the contract continues with the agent maintaining

the machine in the up state, while the promised utility keeps increasing until either it reaches w̄u,

or the machine breaks down. During (t1, t2), the promised utility is increasing over time. At time

t2, the machine breaks down and the promised utility drops by βu. Again, in (t2, t3), the agent

is repairing the machine with the promised utility decreasing over time. After t3, the machine
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Figure 1 Two sample trajectories of promised utility with µu = 6, µ̄u = 9, µd = 5, µ
d

= 2, cu = 0.8, cd = 1, r =

0.9,R = 7.5. In this case, w̄d = 0.74, w̄u = 1.01 and βu = 0.27 < βd = 0.33. The policy starts from

W0 =w∗d = 0.4685. The two dashed horizontal lines represent the level of w̄u and w̄d, respectively. The

upward jump level when the machine is repaired is βd and the downward drop level when the machine

breaks down is βu.

does not break down before the promised utility reaches w̄u at time t̂3, at which point the flow

payment `∗1 (defined in (9)) starts. After time t̂3, the agent’s promised utility jumps back and forth

between w̄u and w̄d. The contract becomes exactly the same as the simple contract Γ̄ introduced

in the previous subsection. In the following, we provide a formal definition of the proposed optimal

contract.

Definition 1. For a machine starting from state θ ∈ {u,d}, define contract Γ∗1(w) = (L∗, q∗, τ ∗)

as the following, where w ∈ [βu, w̄u] if the initial state is u, and w ∈ [0, w̄d] if the initial state is d.

i. The dynamics of the agent’s promised utility Wt follows

dWt =
[
r(Wt−− w̄d)dt+ min{w̄u−Wt−, βd}dNt

]
1θt−=d

+
[
(rWt−+µuβu)1Wt−<w̄udt−βudNt

]
1θt−=u, (DW1)

from the initial promised utility W0 =w.

ii. The payment to the agent follows dL∗t = `∗11Wt−=w̄u1θt−=udt+ (Wt−+βd− w̄u)+
1θt−=ddNt.

iii. The random termination probability is q∗t = 0, (i.e. there is no random termination) and the

termination time is τ ∗ = min{t :Wt = 0}.
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One can verify that the dynamics of Wt in the proposed optimal contract follows (PK), with

Ht = βd1θt−=d − βu1θt−=u, dLt = dL∗t and qt = q∗t . Also, in the proposed optimal contract, the

incentive compatible constraints (7) are binding, and the principal never randomly terminates the

agent. It is only possible to terminate the agent when the machine is down (note that we do not

terminate the agent exactly at the point when the machine goes down but when the promised

utility reaches zero, e.g., after a long enough down period). On the other hand, when the machine

is up, the agent’s promised utility is always greater than βu. This is because if the initial state of

the machine is up, the initial promised utility would be at least βu and keeps going up until the

first break down; after the agent has finished repair once, the promised utility would always jump

to a level above βd ≥ βu to start the up state.

It is worth noting that payment in Definition 1 involves both instantaneous payment and flow

payment. And payment only occur when the promised utility is high enough such that the optimal

contract becomes the benchmark Γ̄ defined in Section 3.1.

Remark 1 (Implementation). In practice, a principal can implement contract Γ∗1 by stationing

a meter that shows changing Wt (promised utility to the agent) over time. At time t, if the machine

is up, the meter keeps increasing at an ever-increasing speed µuβu + rWt− per period of time

(where µuβu is the information rent for keeping the machine running, and rWt− is the interest to

the agent), and stops at w̄u. When the machine is down, the meter keeps decreasing with a speed

−rWt− + rw̄d (where rw̄d is a constant punishment for not having finished repairing, and rWt−

is again the interest to the agent). The agent is terminated when the meter reaches 0. When the

machine breaks down, the meter jumps down βu. When the machine recovers, the meter jumps up

by βd, unless the jump is clipped by w̄u. The agent receives incentive payments of rw̄u +µuβu per

unit of time only when the meter reaches w̄u. In addition, the agent is continuously reimbursed

at rate cθ for his effort cost when the machine’s state is θ ∈ {d,u}. This form of payment can be

interpreted as a “base rate” of pay in addition to the aforementioned incentive pay, which is easy

to explain in practice.

4.1.2. Value functions and proof of optimality when v̄d ≥ vd In this section, we first

heuristically derive the dynamics of the principal’s utility, as a function of the agent’s promised

utility under the proposed optimal contract Γ∗1 defined in Definition 1. Later, in Proposition 2, we

prove that our derived value function is the actual optimal value function of the principal.

Specifically, let Jd(w) and Ju(w) represent the principal’s utility at time t when the agent’s

promised utility is w if the machine’s state is d and u, respectively. Following a standard heuris-

tic derivation (see Appendix D.1), we obtain the following system of differential equations. In

particular, for state d and w ∈ [0, w̄d], the differential equation is

(µd + r)Jd(w) =−cd + r(w− w̄d)J ′d(w) +µdJu(min{w+βd, w̄u})−µd(w+βd− w̄u)+. (20)
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For state u, the differential equation for w ∈ [βu, w̄u) is

(µu + r)Ju(w) =R− cu + (rw+µuβu)J ′u(w) +µuJd(w−βu) , (21)

with at w= w̄u,

(µu + r)Ju(w̄u) =R− cu +µuJd(w̄u−βu)− `∗1. (22)

The boundary conditions are

Ju(0) = vu and Jd(0) = vd, (23)

reflecting that the principal receives baseline revenues vd and vu (defined in (4)), upon terminating

the agent in states d and u, respectively.

For the interval [0, βu], we simply extend the function Ju(w) to be linear, that is,

Ju(w) = Ju(0) +
Ju(βu)−Ju(0)

βu

w, for w ∈ [0, βu]. (24)

As we have demonstrated, the agent’s promised utility never falls into the interior of this interval if

we follow the optimal contract according to Definition 1. However, having an extended definition of

Ju(w) for that interval is crucial for the the proof of optimality of the contract in Definition 1. This

is because the optimality proof needs to argue that contract Γ∗1 outperforms any other contract,

and a generic contract may bring the promised utility to this interval at state u.

Proposition 1. The system of differential equations (20)-(22) with boundary conditions (23) and

(24) has a unique solution: the pair of functions Ju(w) on [0, w̄u] and Jd(w) on [0, w̄d], both of

which are strictly concave with J ′u(w)≥−1 and J ′d(w)≥−1.

Following proposition 1, we can define w∗d and w∗u as unique maximizers of Jd(w) and Ju(w)

on [0, w̄d] and [0, w̄u], respectively. Next, we show that functions Jd(w) and Ju(w) are indeed the

value functions of the principal under contract Γ∗1(w), starting from a promised utility w at time

0 with the initial states θ0 = d and θ0 = u, respectively.

Proposition 2. For any state θ ∈ {u,d} and promised utility w ∈ [0, w̄θ], we have U(Γ∗1(w), ν∗, θ) =

Jθ(w). That is, functions Ju(w) and Jd(w) are equal to the principal’s total discounted utilities of

following contract Γ∗1 when the initial state of the machine is u and d, respectively.

Figure 2 provides a numerical example of the principal’s value functions Jd and Ju. To implement

the contract, the principal needs to designate the initial promised utility W0. The initial promised

utility should be w∗d if the machine starts at state θ0 = d and should be w∗u if the machine starts at

state θ0 = u. Note that due to concavity, if Ju(βu)≥ Ju(0), then w∗u ≥ βu. Otherwise, the optimal
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initial promised utility w∗u = 0, and, in this case, it is better not to hire the agent if the initial state

of the machine is u.

Furthermore, it is worth noting that Jd(w̄d) = Ūd and Ju(w̄u) = Ūu, where Ūd and Ūu, defined

in (12), are the principal’s utilities under the simple contract Γ̄ introduced in Section 3.1. This

implies that Γ∗1 always (weakly) outperforms Γ̄. The suboptimality of the benchmark contract Γ̄ is

the difference between the peak of the value function Jθ and Ūθ if the system starts from state θ.

Figure 2 Principal’s Value functions with µu = 6, µ̄u = 9, µd = 5, µ
d

= 2, cu = 0.8, cd = 1, r = 0.9, and R= 7.5.

In this case, w̄d = 0.74, w̄u = 1.01 and βu = 0.27<βd = 0.33. Ju(w∗u) = 2.388, vu = 2.031 and Ju(w̄u) =

Ūu = 1.012. Jd(w∗d) = 1.746, vd = 1.4 and Jd(w̄d) = Ūd = 0.632.

Finally, to show that the contract Γ∗1 is indeed optimal, in the next proposition, we first demon-

strate that functions Ju and Jd are upper bounds for the principal’s utility under any incentive

compatible contract Γ, if the machine starts at states u and d, respectively.

Proposition 3. For any incentive compatible contract Γ and any initial state θ ∈ {u,d}, we have

Jθ
(
u(Γ, ν∗, θ)

)
≥U(Γ, ν∗, θ), in which we extend the function Jθ(w) = Jθ(w̄θ)− (w− w̄θ) for w> w̄θ.

Therefore, we know that for any incentive compatible contract Γ and initial state θ,

U(Γ, ν∗, θ)≤ Jθ (u(Γ, ν∗, θ))≤ Jθ(w∗θ) =U (Γ∗1(w∗θ), ν
∗, θ) ,

where the first inequality follows from Proposition 3, the second inequality follows from the fact

that w∗θ is the maximizer of Jθ, and the third equality follows from Proposition 2. This implies the

following main result of this section.

Theorem 1. The optimal incentive contract is Γ∗1(w∗θ) if βd ≥ βu, condition (14) is satisfied and

the machine starts from state θ ∈ {u,d}. That is, U
(
Γ∗1(w∗θ), ν

∗, θ
)
≥ U(Γ, ν∗, θ) for any incentive

compatible contract Γ and state θ.
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4.1.3. v̄d < vd In this section, we consider the case if (13), or equivalently, (14), is violated.

That is, the revenue rate R when the machine is up is not very high. Consider the following

contract structure. If the machine starts at state d, the principal does not hire the agent. If the

machine starts at state u, on the other hand, the principal hires the agent only to maintain the

machine until it breaks down for the first time. During the maintenance period, the principal pays

a constant flow payment with rate (r+µu)βu. Furthermore, the agent’s corresponding promised

utility is maintained at βu, because

E

[∫ τ∗u

0

e−rt (r+µu)βudt

]
= βu,

where τ ∗u, the time in state u, follows an exponential distribution with rate µu.

Here is a formal definition of the proposed contract.

Definition 2. Define contract Γ∗u when the machine starts in state u as the following:

i. In state u, the agent’s promised utility Wt is maintained at βu, which drops to 0 as soon as

the state switches to d. In state d, Wt remains to be 0.

ii. The payment to the agent follows dL∗t = (r+µu)βudt at state u.

iii. Termination occurs when the state switches to d, that is, q∗ = 1 and τ ∗ = min{t : θt = d}.

It can be verified that the corresponding expected societal value starting from state u is

vu :=E

[∫ τ∗u

0

e−rt(R− cu)dt+ e−rτ
∗
uvd

]
=
R− cu +µuvd

r+µu

. (25)

Intuitively, the aforementioned contract structure is desirable only if it out performs not hiring the

agent at all starting from state u. That is,

vu ≥ vu, or, equivalently, R≥ gu, (26)

in which we define

gu :=
(
r+µ

d
+ µ̄u

)
βu. (27)

For βd ≥ βu, it is easy to verify that hd ≥ gu. (In particular, hd = gu if βd = βu.)

The next result formally states that such a contract is indeed optimal when condition (14) is

violated while (26) holds, that is,

gu ≤R<hd. (28)

Theorem 2. 1. Contract Γ∗u is incentive compatible.

2. The principal’s utilities following Contract Γ∗u are

U (Γ∗u, ν
∗,d) = vd and U (Γ∗u, ν

∗,u) = vu−βu.
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3. Assume that condition (28) holds.

(i) For any incentive compatible contract Γ, we have

vd ≥U(Γ, ν∗,d),

or, it is better not to hire the agent starting from state d.

(ii) Furthermore, if vu−βu ≥ vu, we have

U (Γ∗u, ν
∗,u)≥U(Γ, ν∗,u),

That is, Γ∗u is the optimal incentive compatible contract.

(iii) Finally, if vu−βu < vu, for any incentive compatible contract Γ, we have

vu ≥U(Γ, ν∗,u),

or, it is better not to hire the agent starting from state u as well.

Contract Γ∗u suggests that the principal hire the agent only if the machine starts in the up

state, and terminate the agent as soon as it breaks down. This is driven by the fact that we do

not allow shirking so far in the paper. If we allow shirking instead, the principal may benefit

from hiring the agent to exert effort only when the machine is up, while allowing the agent to

shirk when the machine is down. In Section EC.2 of the e-companion, we provide the optimal

contracts that motivate the agent to exert effort only when the machine is up (resp. down), and

call it “maintenance contract” (resp, “repair contract”). It is clear that contract Γ∗u is a particular

“maintenance contract.” Therefore, under condition (28), the optimal “maintenance contract”

always outperforms the contract Γ∗u. Generally speaking, the principal may prefer the maintenance

contract over a contract that always induces effort when, for example, when the agent’s cost of

effort to repair (cd) is so expensive that the principal is better off just hiring the agent to conduct

maintenance and not repair.

The next result further states that if condition (26) is violated, it is also better for the principal

to not hire the agent than motivating effort.

Theorem 3. If

R< gu, (29)

we have vθ ≥ U(Γ, ν∗, θ) for any incentive compatible contract Γ and state θ ∈ {u,d}, where gu is

defined in (27).

Theorem 3 is intuitive in the sense that when revenue rate R is not large enough compared to the

cost, it is not worthwhile for the principal to pay the cost and payment to induce the agent to

work.



Author: 21

4.2. The case βd <βu

If βd < βu, the contract Γ∗1 in Definition 1 is no longer incentive compatible. To see this, consider

the situation where the promised utility Wt− <βu−βd before the machine recovers. If the promised

utility still jumps up by βd upon the machine recovery at time t, then Wt < βu. At that point

constraint (7) cannot be satisfied. That is, the principal cannot incentivize the agent to exert

effort in maintaining the machine. As we will show in the following, the optimal contract needs

to involve random termination when the agent’s promised utility is low. Furthermore, when the

promised utility is high, the optimal contract involves a region where one of the incentive compatible

constraints in (7) is not binding. As we have alluded to in Section 3.2, this is quite peculiar, because,

as far as we know, IC constraints are always binding in optimal contracts studied in the continuous

time moral hazard literature (see, for example, Sannikov 2008, Biais et al. 2010, Shan 2017, Sun

and Tian 2017).

The structure of this section mirrors Section 4.1. In Sections 4.2.1 and 4.2.2, we first study

incentive compatible optimal contracts under condition (18). Finally, Section 4.2.3 studies what

happens when condition (18) is violated.

4.2.1. Optimal IC contract when v̄u ≥ vu We first illustrate the structure of the optimal

contract using Figure 3 before formally defining the optimal contract. Once again, the contract

keeps track of the agent’s promised utility Wt over time. The dynamics of Wt, however, are more

complicated than the optimal contract in Section 4.1.1. In particular, if Wt− ∈ (0, w̄d) in state

d, the promised utility keeps decreasing until either the machine is repaired, or the promised

utility reaches 0 and the agent is terminated. If Wt− ∈ [w̄d, ŵd] in state d, on the other hand, the

promised utility remains a constant until the machine is repaired. If, upon recovery to state u,

the promised utility is below βu, however, the incentive compatibility constraint (7) implies that

the machine cannot stay in state u at the current promised utility level. Instead, the principal

randomly terminates the contract or resets the promised utility to be at or above βu.

Figure 3 depicts two sample trajectories following the proposed contract starting at state θ0 = d

from an initial promised utility W0 = w∗d ∈ (0, ŵd). First, focus on the solid curve. The promised

utility decreases over time while the agent exerts effort to repair the machine, until time t1, when

the machine recovers. At this point, the promised utility jumps up by βd and the agent starts

maintaining the machine at state u. The promised utility keeps increasing until time t2, when the

machine breaks down. In the time interval (t2, t4), the promised utility behaves the same way as it

does in (0, t2), with the machine recovering at t3. When the machine breaks down again at time t4,

however, the promised utility is already so high that it will still be above w̄d after a downward jump

of βu. Because Wt− ≥ w̄d at state d, the promised utility is kept at this level as a constant, until
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the machine recovers at time t5. At this point in time the promised utility takes an upward jump

rWt5−/µd >βd, or, the IC constraint (7) at state d is not binding. After time t5, the machine stays

in state u while the promised utility increases to reach ŵu at time t̃5, at which point the contract

follows Γ̂ as defined in Section 3.2. Note that following this sample trajectory, the structure of the

optimal contract after time t4 behaves differently from the optimal contract Γ∗1 defined in Section

4.1 (because the promised utility remains constant even though the machine is down).

Now we focus on the other sample trajectory in Figure 3, the dotted curve. The machine is in

state d during time intervals [0, t̂1) and [t̂2, t̂3), and in state u during [t̂1, t̂2). The promised utility

decreases in state d and increases in state u. Right before the machine recovers for the second time,

at t̂3, the promised utility is below βu−βd. Therefore, even an upward jump of βd cannot raise the

promised utility above βu. In light of the discussion in the beginning of this section, the agent is

terminated with probability q∗
t̂3

= (βu−Wt̂3
)/βu. On the other hand, with probability 1− q∗

t̂3
, the

agent’s promised utility is reset to βu.

Figure 3 Two sample trajectories of promised utility with model parameters µu = 2,∆µu = 1, µd = 6,∆µd =

2, cu = 1, cd = 1.2, r= 0.8,R= 20. In this case, w̄d = 3, ŵd = 6, ŵu = 7 and βu = 1>βd = 0.6. The policy

starts from w∗d = 1.194. The solid curve represents a sample trajectories which brings the agent to the

point of never terminated. The dotted curve represents another sample trajectory in which the agent is

terminated due to a random draw at a point when the machine recovers.

It is clear that randomization needs to occur at state u if the promised utility is below the

threshold βu. In fact, the threshold below which the random termination occurs does not have to

be exactly βu. It can be at a more general level of β̂ ≥ βu. In the contract depicted in Figure 3, we
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have β̂ = βu, but this equality does not necessarily always hold, and we may have β̂ > βu. That is,

as long as the promised utility Wt is below β̂ in state u, the agent is randomly terminated with

probability q∗t = (β̂ −Wt)/β̂. If termination does not happen at the random draw, the promised

utility is reset to β̂.

Formally, we define the following contract, Γ∗
β̂
, and later show that the optimal contract follows

this definition with an appropriately chosen value of β̂ ≥ βu.

Definition 3. For any β̂ ∈ [βu, w̄u), define contract Γ∗
β̂
(w) = (L∗, q∗, τ ∗) for w ∈ [0, ŵθ] if the initial

state of the machine is θ ∈ {u,d}.

i. The dynamics of the agent’s promised utility Wt, follows

dWt =

{
r(Wt−− w̄d)1Wt−<w̄d

dt+

{
1Wt−∈(w̄d,ŵd]

rWt−

µd

+1Wt−∈(β̂−βd,w̄d]βd

+1Wt−<β̂−βd

[
(1−Xt)(β̂−Wt−)−XtWt−

]}
dNt

}
1θt−=d

+ [(rWt−+µuβu)dt1Wt−<w̄u −βudNt]1θt−=u, (DW2)

from an initial promised utility W0 =w.

ii. The payment to the agent follows dL∗t = `∗21θt−=u1Wt−=ŵudt.

iii. The random termination probability is q∗t = q̂(Wt−)1Wt−+βd<β̂
1θt−=ddNt, in which

q̂(w) =
β̂− (w+βd)

β̂
, (30)

and the termination time is τ ∗ = min{t :Wt = 0}.

It is worth noting that in contract Γ∗
β̂
(w), constraint (7) is not always binding. Specifically, if

Wt− > w̄d, following the definition we have q∗t = 0 and Ht = rWt−/µd > βd. Before we rigorously

prove the optimality of the contract, let us explain the intuition why constraint (7) is not always

binding in the optimal contract, in two steps. First, we explain that social efficiency can be achieved

in the optimal contract. Then we explain why achieving efficiency introduces slacks in the incentive

compatible constraint (7) when βd <βd.

The principal and agent having the same time discount rate implies that they have the same

total discounted valuation for any payments. Therefore, the societal value function is simply the

principal’s value function plus the agent’s promised utility. Consequently, a contract that maximizes

the principal’s value function must also maximize the societal value function. Under condition

(18), contract Γ̂ introduced in Section 3.2 achieves social efficiency (maximizes the societal value

functions at promised utility levels w̄u or w̄u). Therefore, social efficiency must also be achievable

at the same promised utility levels under the optimal contract.
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If we had to force incentive compatible constraints to be always binding, the upward jump in the

promised utility would be βd, smaller than the downward jump βu. Therefore, no matter where the

promised utility starts from, a downward jump of βu cannot be fully compensated by an upward

jump of βd. As a result, starting from any finite promised utility value, a sample trajectory (however

unlikely) with a sequence of very frequent state switches eventually drives the promised utility

down to 0. The existence of such sample trajectories implies that the agent would be terminated

with positive probability, and, hence, social efficiency would not be achievable. This contradicts

the arguments in the last paragraph that the optimal contract should be able to achieve social

efficiency. Therefore, in the optimal contract we cannot enforce IC constraints to be binding all

the time.

4.2.2. Value functions and proof of optimality when v̄u ≥ vu There are some important

distinctions in the approach to determine the principal’s value functions, in the case of βd < βu,

compared with the one in Section 4.1.2. This is because here we need to specify the threshold β̂

that defines when/if the agent will be randomly terminated.

First, let Jd(w) and Ju(w) represent the principal’s value functions for states u and d, respec-

tively. Following Definition 3 and similar heuristic derivation steps as in Appendix D.1, we obtain

the following system of differential equations. In particular, for state d, equation (20) in Section

4.1.2 becomes the following three equations

(µd + r)Jd(w) = µdJu

(
r+µd

r
w

)
− cd, w ∈ [w̄d, ŵd], (31)

−cd + r(w− w̄d)J ′d(w) = (µd + r)Jd(w)−µdJu(w+βd), w ∈ [β̂−βd, w̄d], and (32)

−cd + r(w− w̄d)J ′d(w) = (µd + r)Jd(w)−µd

[
q̂(w)Ju(0) +

(
1− q̂(w)

)
Ju(β̂)

]
, w ∈ [0, β̂−βd]. (33)

For state u, the differential equation is similar to (21) for w ∈ [β̂, ŵu]. That is,

−cu + (rw+µuβu)1w<ŵuJ
′
u(w) = (µu + r)Ju(w)−R−µuJd(w−βu) + `∗1w=ŵu , w ∈ [β̂, ŵu] (34)

Due to randomization, we may further extend function Ju(w) to the interval [0, β̂] as a linear

function with a slope a, that is,

Ju(w) = Ju(0) + aw, w ∈ [0, β̂]. (35)

The principal receives baseline revenues vd and vu, as defined in (4), upon termination in states d

and u, respectively, which implies the following boundary conditions

Ju(0) = vu and Jd(0) = vd. (36)

We first present the following result regarding general solutions to the aforementioned differential

equations.
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Lemma 2. For any a>−1, there exists a unique pair of functions Jaβ̂d and Jaβ̂u , in place of Jd and

Ju, respectively, that satisfy (31)-(36), in which slope “a” appears in (35).

Furthermore, functions Jaβ̂d (w) and Jaβ̂u (w) are twice continuously differentiable, except for

Jaβ̂u (w) at w= β̂.

It is straightforward to show that it is sufficient to focus only on the case a>−1. Intuitively, this is

because the slope a represents how much the the principal’s utility changes as the agent’s promised

utility increases. It can never be less than −1 because otherwise, decreasing the agent’s promised

utility by a direct monetary payment would generate a profit to the principal, which is impossible.

Next, we determine the threshold β̂ for a given slope a. The idea is to set β̂ such that function

Jaβ̂u (w) is differentiable at β̂ if possible, so that we achieve “smooth pasting”9 between (34) and

(35). For this purpose we define the following function for β̂ ∈ [βu, w̄u),

fa(β̂) :=
(
Jaβ̂u

′
(β̂−)−Jaβ̂u

′
(β̂+)

)
(rβ̂+µuβu). (37)

Function fa is a technical construction, and has good properties for us to study when the function

Jaβ̂u ’s left and right derivatives are the same at β̂. Clearly, we can achieve “smooth pasting” if there

exists a β̂ such that fa(β̂) = 0. The following result guarantees that there exists at most one such

β̂.

Lemma 3. For any a >−1, function fa(β̂) is increasing in β̂ on [βu, w̄u), and limβ↑w̄u− f(β̂)> 0.

Therefore, the following quantity βa is well defined,

βa :=

{
βu, fa(βu)≥ 0,

f−1
a (0), fa(βu)< 0,

(38)

in which f−1
a is the invervse function of fa.

Furthermore, as soon as the promised utility reaches ŵu in state u, the contract Γ∗
β̂

becomes

identical to Γ̂, and the agent will no longer be terminated. This implies the following boundary

conditions

J āβād (ŵd) = v̄d− ŵd and J āβāu (ŵu) = v̄u− ŵu , (39)

in which v̄d and v̄u are the societal value function when the agent is never terminated, as defined

in (11).

Now we are ready to uniquely determine the value a in equation (35) for the value function.

Proposition 4. There exists a unique ā > 0 such that

lim
w↑ŵu

J āβāu (w) = J āβāu (ŵu) = v̄u− ŵu and lim
w↑ŵd

J āβād (w) = J āβād (ŵd) = v̄d− ŵd, (40)
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where threshold βā is defined according to (38). Furthermore, functions J āβād (w) and J āβāu (w) are

both strictly concave, and,

lim
w↑ŵu

d

dw
J āβāu (w) = lim

w↑ŵd

d

dw
J āβād (w) =−1.

Similar to Proposition 2, the following result shows that J āβād (w) and J āβāu (w) specified in Propo-

sition 4 are indeed the principal’s total discounted utility under contract Γβā(w), as stated in the

next result.

Proposition 5. For any state θ ∈ {u,d} and promised utility w ∈ [0, w̄θ], we have

U(Γ∗βā(w), ν∗, θ) = J āβāθ (w). That is, values J āβād (w) and J āβāu (w) are equal to the principal’s total

discounted utilities of following contract Γ∗βā from the initial promised utility w when the initial

state of the machine is u and d, respectively.

Figures 4 depicts the principal’s value functions J āβād (w) and J āβāu (w), similar to Figure 2 of

Section 4.1. In particular, Figure 4(a) depicts a case where the threshold βā = βu, while Figure

4(b) depicts a case with βā >βu with smooth pasting in play.

Intuitively, in optimal control problems with a finite number of actions, randomization between

actions allows us to obtain a concave upper envelope of the value function. In our setting, ran-

domization between contract termination (setting the promised utility w to 0) and resetting the

promised utility to βu allows us to achieve a value function that is linear between 0 and βu, as we

see in Figure 4(a). If the resulting value function is concave, then we can show that the control

policy is indeed optimal. However, if the aforementioned randomization yields a value function such

that the left derivative at βu is smaller than the right derivative at this point, then the resulting

value function is not concave. Whenever a value function is non-concave, it must be sub-optimal.

This is because using randomization we should at least achieve its concave upper envelope. In our

setting, this implies that we can increase the point where we reset the promised utility, from βu to

somewhere above it, until the value function becomes concave. Smooth pasting captures the intu-

ition that the value function becomes “barely concave.” As we see in Figure 4(b), in this parameter

setting, randomization between 0 and βā (instead of βu) yields a value function that is smooth at

βā for state u.

Now we are ready to show that the contract Γ∗βā is indeed optimal. The following main result is

parallel to a combination of Proposition 3 and Theorem 1 of the previous subsection.

Theorem 4. For any incentive compatible contract Γ and initial state θ ∈ {u,d}, we have

J āβāθ

(
u
(
Γ, ν∗, θ

))
≥U(Γ, ν∗, θ), in which we extend the function J āβāθ (w) = J āβāθ (w̄θ)− (w− w̄θ) for

w> w̄θ.
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(a) Principal’s Value functions (b) Principal’s Value functions with smooth-pasting

Figure 4 (a): µu = 1.5,∆µu = 1, µd = 1.5,∆µd = 1, cu = 0.7, cd = 0.6, r = 0.6,R = 11. In this case, w̄d = 1.5,

ŵd = 1.75 and ŵu = 2.45 and βu = 0.7 > βd = 0.6. Ju(w∗u) = 8.195, vu = 5.602 and Ju(ŵu) = Ūu =

7.147. Jd(w∗d) = 5.414, vd = 2.546 and Jd(ŵd) = Ūd = 4.819. (b): µu = 8,∆µu = 4, µd = 6,∆µd = 5, cu =

4.8, cd = 3, r = 1.2,R = 16. In this case, ŵd = 3.33, ŵu = 4.33 and βu = 1.2 > βd = 0.6. ā = 0.501 and

βā = 1.259, w∗d = 0.222. Ju(w∗u) = 2.066, vu = 2.066 and Ju(ŵu) = Ūu =−4.095. Jd(w∗d) = 0.964, vd =

0.939 and Jd(ŵd) = Ūd =−3.829.

Therefore, denoting w∗θ to represent a maximizer of function J āβāθ , we have U
(
Γ∗βā(w∗θ), ν

∗, θ
)
≥

U(Γ, ν∗, θ) for any incentive compatible contract Γ and state θ. That is, the optimal incentive

compatible contract is Γ∗βā(w∗θ), if βu >βd, condition (19) holds, and the machine starts from state

θ ∈ {u,d}.

It is worth noting that J āβād (ŵd) = Ûd and J āβāu (ŵu) = Ûu where Ûd and Ûu, defined in (17), are

the principal’s utility under the simple contract Γ̂ of Section 3.2. This also implies that contract Γ∗
β̂

always (weakly) outperforms Γ̂. The difference between the peak of the value function J āβāθ and Ûθ

demonstrates the suboptimality of the benchmark contract Γ̂ if the machine starts from state θ. For

example, in Figure 4(a), the difference between the optimal contract and the benchmark contract

is captured in the difference between Ju(w∗u) = 8.195 and Ju(ŵu) = Ūu = 7.147, or Jd(w∗d) = 5.414

and Jd(ŵd) = Ūd = 4.819, when the machine starts from state u and d, respectively. In Figure 4(b),

we have Ju(w∗u) = 2.066 and Ju(ŵu) = Ūu = −4.095; Jd(w∗d) = 0.964 and Jd(ŵd) = Ūd = −3.829.

Therefore, in the case of Figure 4(b), the optimal contract is profitable, while the benchmark

contract is not.

Furthermore, as we can see from Figure 4(b), where the threshold βā >βu, the function J āβāu (w)

is monotonically decreasing, or, the maximizer w∗u = 0. That is, if the initial state of the machine

is u, it is better for the principal not to hire the agent than to motivate the agent’s full effort. This

is generally true, as confirmed in the following result.
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Proposition 6. If βā >βu, then we have the slope ā < 0.

In other words, if it is optimal to hire the agent at the initial state u, then the threshold βā in

contract Γ∗βā must be equal to βu. On the other hand, in Figure 4(b), we have w∗d > 0. Therefore,

when smooth pasting is at work (βā >βu), it is better not to hire the agent if the initial state is u.

However, it may still be beneficial to hire the agent if the initial state is d, although this benefit

tends to be small.

4.2.3. v̄u < vu Now we consider the case that (18), or, equivalently, (19), is violated. First,

similar to (25) in Section 4.1.3, we define the following societal value for the case where the agent

starts in state d, exerts effort to repair the machine and is terminated once the machine is repaired,

vd :=E

[
−
∫ τ∗d

0

e−rtcddt+ e−rτ
∗
vu

]
=
µdvu− cd
r+µd

. (41)

Here τ ∗d represents the time that the machine is in state d, which follows an exponential distribution

with rate µd when the agent exerts effort.

Similar to condition (26) in Section 4.1.3, we first consider the optimal contract under the

following condition,

vd ≥ vd, or, equivalently, R≥ gd, (42)

in which we define

gd :=
(
r+µ

d
+ µ̄u

)
βd. (43)

And we have gd < (=)hu for βd < (=)βu.

If the machine starts at state u, the principal does not hire the agent. On the other hand, if the

machine starts at state d, then the promised utility starts from an initial value W0 ≤ w̄d and keeps

decreasing according to dWt = r(Wt− − w̄d)dt until termination, when either Wt reaches 0 or the

machine recovers. If the machine recovers at a positive Wt−, then the agent is paid this promised

utility Wt− plus βd, which provides the incentive for the agent to exert effort to repair the machine.

Formally, we have the following definition of a contract.

Definition 4. Define contract Γ∗d(w) for w ∈ [0, w̄d] if the machine starts in state d as the follow-

ing.

i. In state d, the agent’s promised utility Wt follows

dWt = r(Wt−− w̄d)dt−Wt−dNt , (DWd)

starting from W0 =w. In state u, Wt remains 0.

ii. The payment to the agent follows dL∗t = (Wt−+βd)dNt.
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iii. The random termination probability is q∗t = 1{θt=u}, and the termination time is τ ∗ = {t :Wt =

0}.

According to Definition 4, termination may occur when the machine is down for a long enough

period, or at the time it recovers.

The next result formally establishes the optimality of the contract.

Theorem 5. 1. Contract Γ∗d(w) is incentive compatible.

2. The principal’s value functions under contract Γ∗d(w) are

U (Γ∗d(w), ν∗,u) =vu−w,

U (Γ∗d(w), ν∗,d) =(vd− vd)

(
1− w

w̄d

)1+
µd
r

−w+ vd,

3. Assume that condition (19) is violated while (42) holds, that is

gd ≤R<hu. (44)

For any incentive compatible contract Γ, we have

U (Γ∗d(w∗), ν∗,d)≥U(Γ, ν∗,d) and vu ≥U(Γ, ν∗,u),

where w∗ is a maximizer of U (Γ∗d(w), ν∗,d) as a function of w.

Contract Γ∗d suggests that the principal hires the agent only if the machine starts in the down

state, and terminates the agent as soon as the machine recovers. This is intuitive because βd <βu

implies that it is cheaper to motivate effort to repair than to maintain. The fact that the agent is

terminated as soon as the machine is up is, again, due to the fact Theorem 5 is focused on incentive

compatible contracts. If we allow shirking instead, the principal may benefit from hiring the agent

to exert effort only when the machine is down, while allowing the agent to shirk when the machine

is up. As mentioned in Section 4.1.3, we call this class of contract “repair contract,” which also

includes Γ∗d. Therefore, under condition (44), the optimal repair contract outperforms the contract

Γ∗d (the repair contract is analyzed in the e-companion).

Despite similarities, Theorem 5 is not quite the same as Theorem 2 for the previous case. Most

prominently, the value function in (130) is non-linear, while in (95) it is piece-wise linear.

If the maximizer w∗ = 0, Theorem 5 indicates that the principal should not hire the agent at

all. Similar to Theorem 3 in Section 4.1.3, the following result indicates that the principal is also

better off not hiring the agent if condition (42) is violated.

Theorem 6. If

R≤ gd, (45)

we have vθ ≥ U(Γ, ν∗, θ) for any incentive compatible contract Γ and state θ ∈ {u,d}, where gd is

defined in (43).
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4.3. A summary

It is helpful to summarize the main results that we obtained throughout this section. For the case of

βd ≥ βu, we have characterized model parameters into three regions that can be easily characterized

by focusing on the revenue rate R, fixing other model parameters.

• R > hd: The incentive compatible constraints in equation (7) are always binding, and the

dynamic contract Γ∗1 demonstrates rich structures.

• R ∈ [gu, hd]: The principal may hire the agent and motivate effort only to maintain the

machine.

• R< gu: No incentive compatible contract (including hiring an agent only to maintain or repair–

analyzed in the e-companion) performs better for the principal than not hiring the agent at

all. Furthermore, as we will demonstrate in the e-companion Section EC.1, for these model

parameters, not hiring the agent is the best strategy for the principal, even among contracts

that allow shirking.

Similarly, when βd <βu, we also characterize model parameters into three regions of revenue R.

• R > hu: The optimal contract follows Γ∗
β̂
(w), where the incentive compatible constraints in

equation (7) may not be always binding and the agent may need to be terminated randomly.

• R ∈ [gd, hu]: The principal may hire the agent and motivate effort only to repair the machine.

• R< gd: Not hiring the agent is the best strategy for the principal.

Finally, if we do not allow contract termination, the following Proposition shows that the simple

contracts Γ̄ and Γ̂ introduced in Section 3 are optimal.

Proposition 7. For any state θ ∈ {u,d} and incentive compatible contracts Γ such that τ =∞,

we have

• U(Γ̄, ν∗, θ)≥U(Γ, ν∗, θ) if βd ≥ βu,

• U(Γ̂, ν∗, θ)≥U(Γ, ν∗, θ) if βd <βu.

5. Numerical Comparison

So far, we have focused on analyzing optimal contracts that induce full effort from the agent before

termination. However, these contracts are not necessarily optimal if the principal does not need

to always induce full effort from the agent. In the e-companion, we provide sufficient conditions

based on principal’s value functions. One can use these conditions to verify if the optimal incentive

compatible contracts that induce full effort are, in fact, optimal, even if we allow shirking. When

the sufficient conditions are not satisfied, it may be preferable for the principal to hire the agent

just to maintain or just to repair, and to allow the agent to shirk (“maintenance contract” and

“repair contract” formally studied in the e-companion Section EC.2).



Author: 31

(a) Principal’s value start at d (b) Principal’s value start at u

Figure 5 Principal’s value under three contracts with µu = 2, µ̄u = 4, µd = 3, µ
d

= 1, cu = 2, cd = 1.2, r = 1,R ∈

[0,20] and βu = 1>βd = 0.6. Here gd and hu are defined in (43) and (19), respectively.

In the following, we numerically compare the performance of the full effort incentive compatible

contracts versus the repair only contract and maintenance only contract. In Figures 5 and 6, we vary

revenue rate R, while keeping all other parameters the same. For each choice of model parameters,

we calculate the principal’s value for the three contracts and the value without any agents when

the machine starts from state d and u, respectively. As R increases, the principal’s value under all

the three contracts increase.

Figure 5 depicts the case of βu >βd. When R≤ gd, according to Theorem 6, it is not worthwhile

to hire the agent when we only consider the full effort incentive compatible contracts. In the e-

companion, Propositions EC.4 and EC.7 show that even under the maintenance only contract and

repair only contract, the principal should not hire the agent when R≤ gd (note that gd < gu in this

case). This is consistent with what we see in Figure 5, where the four curves coincide when R< gd.

In fact, the region that they are all the same extends to R> gd, indicating that the optimal initial

promised utility w∗d or w∗u is 0 in the optimal contracts, which is equivalent to not hiring the agent

at all. Increasing R further, hiring the agent starts making sense. First, the repair only contract

outperforms the other two. In the e-companion, Theorem EC.2 implies that when R ∈ [gd, hu],

the repair only contract always outperforms the full effort contract Γ∗d. Intuitively, the repair only

contract outperforms the maintenance only contract because βu >βd implies that motivating effort

to maintain is more costly than motivating effort to repair. When R becomes large enough, on the

other hand, full effort contract outperforms the other two one-sided contracts.

Similarly, Figure 6 depicts the case βu <βd. The observations and underlying reasons are parallel

to Figure 5 and we do not repeat.



32 Author:

(a) Principal’s value start at d (b) Principal’s value start at u

Figure 6 Principal’s value under three contracts with µu = 1.5, µ̄u = 3.5, µd = 3.5, µ
d

= 1.5, cu = 0.6, cd = 2, r =

1,R ∈ [0,20] and βu = 0.3<βd = 1. Here gu and hd are defined in (27) and (14), respectively.

It is clear that a very interesting extension of our paper would be one that studies optimal

dynamic contracts that allow the agent to shirk. Unfortunately, this case seems to be very difficult

to analyze, and the optimal contracts may involve complex structures that renders them impractical

even for simple settings. Zhu (2013), for example, considers the optimal contract with shirking

under Brownian motion. The evolution of the promised utility involves a sticky Brownian motion

that is a mathematical construct with very little practical relevance. Therefore, we consider the

pursuit of optimal contracts that allow shirking outside the scope of this paper, and leave it for

future research.

6. Conclusion

We study an incentive design problem in continuous time over an infinite horizon. Specifically, a

principal hires an agent to exert effort in order to repair a machine when the machine is down,

and maintain the machine when it is up. The agent can adjust the effort level at any time, which

is not observable to the principal. Our paper contributes to the service/maintenance literature by

studying the optimal dynamic contract. Although we allow a general form of payment and random

termination in the contract design, the structure of the optimal contract is overall simple and

intuitive. In particular, payment over time and potential termination decisions are all based on

the evolution of the agent’s promised utility. Payment only occurs when the promised utility is

high enough. Intuitively, the principal pays the agent a flow when the machine is up, which can be

decomposed into an interest payment to maintain the promised utility, and an information rent.

In the case that βd >βu, the principal also needs to use an instantaneous payment upon machine

recovery to provide an appropriate incentive for the agent to repair the machine fast enough.



Author: 33

Our paper also contributes to the dynamic contract literature where an agent exerts effort to

either increase or decrease the arrival rates of Poisson processes. We instead combine both directions

(increase and decrease), which turns out to be a non-trivial generalization. In particular, we find

two new features in the optimal contract, which are new in the dynamic contract literature: (1) The

incentive compatibility constraints are not always binding. (2) When the agent’s promised utility

is low, the optimal contract needs to involve a random termination, if the agent is not terminated

from the random draw, the promised utility is brought back up to a certain threshold. Different

from Myerson (2015), which also involves random termination, our threshold is not fixed at one

level, but endogenously determined depending on model parameters.

Our general approach applies to other operational settings beyond maintenance/repair. For

example, consider a queuing control system where an agent needs to exert effort in order to increase

either the service rate or the arrival rate (e.g., by marketing efforts). In this case and the number

of customers in the queue could be considered as the state of the system, which is more than the

two states studied in our model. We believe that the techniques and results derived in our paper

serve as a necessary step for solving these more general problems.

Endnotes

1. Limited liability is commonly assumed in contract theory, especially dynamic contract theory.

Without it, the model and analysis becomes easy, or even trivial. For example, the principal could

simply sell the entire enterprise to the agent up front, at a price that equals the efficient social

surplus. This allows the principal to exact the entire surplus and leaves the agent with zero surplus.

2. It is without loss of generality to assume zero revenue rate when the machine is down. In fact,

our results hold as long as the revenue rate is lower when the machine is down.

3. We assume two levels of effort for simplicity. The results do not change if the effort level is

from an interval, and the effort cost is linear in effort level.

4. We assume equal discount rate between the two players, similar to Myerson (2015). This is

mostly for simplicity, although one may also argue that having access to a complete financial

market allows the two agents to hedge all risks and use the risk-free interest rate and risk-neutral

probabilities. Interestingly, one of the main findings of Myerson (2015), the infinite back-loading

issue when the two players share equal time discount, does not arise in our setting. We explain

this phenomenon and the underlying reasons in more detail in Section 4. If the two players have

different discount rates, the optimal contract structure appears to be much more intricate. We

leave that for future research.

5. Note that the expectation here, as well as in (5), is taken with respective to the stochastic

process generated from the effort process ν. This explains that in (3) we need to specify ν as an
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argument of the function. For ease of exposition, we omit the explicit dependence between the

expectation and ν in the main text of the paper.

6. Allowing shirking complicates the analysis for dynamic contracts substantially. See, for exam-

ple, Zhu (2013) for a reference of optimal contract design allowing shirking in a Brownian motion

framework.

7. All the inequalities in this paper are to be understood as almost surely.

8. If one only considers (IR) for time 0, the contract design is trivial. The principal can extract

the entire surplus of the first best outcome by offering zero utility to the agent.

9. The “smooth pasting” condition requires that the value function is differentiable at β̂. This

condition often arises in optimal stopping problems (Dixit and Pindyck 1994) and optimal contract

design (Zhu 2013, Chen et al. 2017).
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Appendix

A. Summary of Notations

Model parameters
R: flow revenue rate to the principal when the machine is up.

µ̄u and µu: base case and low break down rates of the machine, respectively.

µd and µ
d
: base case and high recovery rates of the machine, respectively.

cu and cd: cost of effort in maintaining and in repairing the machine, respectively, per unit of time.

r: principal and agent’s discount rates.

Contracts and utilities
ν and ν∗: generic and full effort process under the contracts.

I and `: instantaneous and flow payments, respectively.

L: payment process dLt = It + `tdt.

q: a stochastic firing probability at time t.

τ : termination time.

Γ: generic contract, Γ = (L, τ, q).

Γ̄ and Γ̂: simple contract introduced in Section 3.1 and 3.2, respectively.

Γ∗1 and Γ∗βā : optimal contracts for the case in Section 4.1.1 and 4.2.1, respectively.

u and U : agent’s and principal’s utilities, respectively.

Wt: agent’s promised utility.

Derived quantities
βu and βd : defined in Lemma 1.

vd, vu: defined in (4).

v̄d, v̄u: defined in (11).

w̄u and w̄d: defined in (10).

ŵu and ŵd: defined in (16).

w∗θ , θ ∈ {u,d}: maximizers of function Jθ(w).

Value functions
Jd, Ju: the principal’s value function of the optimal contract under state d and u, respectively.

Vd, Vu: the societal value function of the optimal contract under state d and u, respectively.
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B. Proofs in Section 2

B.1. Proof of Lemma 1
Since the proof would not depend on θ0, we omit the θ0 of the equations (3) and (5) throughout the proof. We
first define a 2-variate counting process {Nn

t ,N
f
t }t∈[0,τ ], in which dN f

t =XtdNt, and Nn
t =Nt−N f

t . If τ <∞,
the principal terminates the collaboration with the agent, while the collaboration continues throughout the
infinite time horizon if τ =∞. Also, dNt = dN f

t + dNn
t =XtdNt + (1−Xt)dNt.

For a generic contract Γ and effort process ν, we introduce the agent’s total expected utility conditional
on the information available at time t as the following FNt -adapted random variable,

ut(Γ, ν) = E
[∫ τ

0

e−rs(dLs + (1− νs)c(θs)ds)
∣∣∣∣FNt ]=

∫ t∧τ−

0

e−rs(dLs + (1− νs)c(θs)ds) + e−rtWt(Γ, ν).

(46)

Therefore, u0(Γ, ν) = u(Γ, ν).
Process {ut}t≥0 is an FN -martingale. Define processes

Mn,ν
t =Nn

t −
∫ t

0

µ(θs, νs)(1− qs)ds,and (47)

M f,ν
t =N f

t −
∫ t

0

µ(θs, νs)qsds, (48)

which are FN -martingales. Following the Martingale Representation Theorem, (see Brémaud 1981), there
exists a FN -predictable processes H(Γ, ν) = {Ht(Γ, ν)}t≥0 such that

ut(Γ, ν) = u0(Γ, ν) +

∫ t∧τ

0

e−rs[Hs(Γ, ν)dMn,ν
s −Ws−dM

f,ν
s ] , ∀t≥0 . (49)

Differentiating (46) and (49) with respect to t yields

dut = e−rt[Ht(Γ, ν)dMn,ν
t −Wt−dM

f,ν
t ] = e−rt(dLt + (1− νt)c(θt)dt)− re−rtWt(Γ, ν)dt+ e−rtdWt(Γ, ν),

which implies (PK).
Denote ũt(Γ, ν

′, ν) to be a FNt -measurable random variable, representing the agent’s total payoff following
an effort process ν′ before time t and ν after t, that is,

ũt(Γ, ν
′, ν) =

∫ t∧τ

0

e−rs(dLs + (1− νs)c(θs))ds) + e−rtWt(Γ, ν).

Therefore,

ũ0(Γ, ν′, ν) = u0(Γ, ν) = u(Γ, ν) , (50)

E
[
ũτ (Γ, ν

′, ν)|FN0
]

= u(Γ, ν′) , and (51)

E
[
ũt(Γ, ν, ν)|FN0

]
= u(Γ, ν) , ∀t≥ 0 . (52)

For any given sample trajectory {Ns}0≤s≤t and effort processes ν and ν∗.

ũt(Γ, ν, ν
∗) =ut(Γ, ν

∗) +

∫ t∧τ

0

e−rs(1− νs)c(θs)ds

=u0(Γ, ν∗) +

∫ t∧τ

0

e−rs[Hs(Γ, ν
∗)dMn,ν∗

s −Ws−dM
f,ν∗

s ] +

∫ t∧τ

0

e−rs(1− νs)c(θs)ds

=u0(Γ, ν∗) +

∫ t∧τ

0

e−rs[Hs(Γ, ν
∗)dMn,ν

s −Ws−dM
f,ν
s ] +

∫ t∧τ

0

e−rs(1− νs)c(θs)ds

+

∫ t∧τ

0

e−rs[(1− qs)Hs(Γ, ν
∗)− qsWs−](µ(θs, νs)−µ(θs,1))ds,
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where the first equality follows from (46), the second equality follows (49) and the third equality follows from
(47) and (48). Consider any two times t′ < t,

E
[
ũt(Γ, ν, ν

∗)|FNt′
]

=u0(Γ, ν∗) +

∫ t′∧τ

0

e−rs[Hs(Γ, ν
∗)dMn,ν

s −Ws−dM
f,ν
s ]

+

∫ t′∧τ

0

e−rs{(1− νs)c(θs) + [(1− qs)Hs(Γ, ν
∗)− qsWs−](µ(θs, νs)−µ(θs,1))}ds

+E
[∫ t∧τ

t′∧τ
e−rs{(1− νs)c(θs) + [(1− qs)Hs(Γ, ν

∗)− qsWs−](µ(θs, νs)−µ(θs,1))}
∣∣∣∣FNt′ ]

=ũt′(Γ, ν, ν
∗) +E

[∫ t∧τ

t′∧τ
e−rs(µ̄u−µu)(νs− 1)[−βu− (1− qs)Hs(Γ, ν

∗) + qsWs−]1θs=uds

∣∣∣∣FNt′ ]
+E

[∫ t∧τ

t′∧τ
e−rs(µd−µd

)(νs− 1)[−βd + (1− qs)Hs(Γ, ν
∗)− qsWs−]1θs=dds

∣∣∣∣FNt′ ] ,
(53)

where the second equality follows from equation (8).
If condition (7) holds for all s ≥ 0, then (53) implies that E [ ũt(Γ, ν, ν

∗)|FNt′ ] ≤ ũt′(Γ, ν, ν∗). Therefore,
{ũt}t≥0 is a super-martingale. Take t′ = 0, we have

u(Γ, ν∗) = ũ0(Γ, ν, ν∗)≥E
[
ũτ (Γ, ν, ν

∗)|FN0
]

= u(Γ, ν),

in which the first equality follows from (50) and the last equality from (51), while the inequality follows from
Doob’s Optional Stopping Theorem. Therefore, the agent prefers the effort process ν∗ to any other effort
process ν, which implies that Γ satisfies (IC) if condition (7) holds for all s≥ 0.

If, on the other hand, (1− qs)Hs(Γ, ν
∗)− qsWs− > −βu for s ∈ Ωu ⊂ [0, t] with θs− = u, where Ωu is a

positive measure set, define effort process ν to be such that

νs =

{
1 , (1− qs)Hs(Γ, ν

∗)− qsWs− ≤−βu

0 , (1− qs)Hs(Γ, ν
∗)− qsWs− >−βu

for s∈ [0, t] where θs− = u,

and νs = 1 for s > t where θs− = u and νs = 1 for θs− = d ∀s. Therefore, ũt(Γ, ν, ν
∗) = ũt(Γ, ν, ν), and

E
[∫ t∧τ

t′∧τ
e−rs(µ̄u−µu)(νs− 1)[−βu− (1− qs)Hs(Γ, ν

∗) + qsWs−]1θs=uds

∣∣∣∣FNt′ ]> 0,

while

E
[∫ t∧τ

t′∧τ
e−rs(µd−µd

)(νs− 1)[−βd + (1− qs)Hs(Γ, ν
∗)− qsWs−]1θs=uds

∣∣∣∣FNt′ ]= 0.

Equation (53) then implies that E
[
ũt(Γ, ν, ν

∗)|FN0
]
> ũ0(Γ, ν, ν∗), and, therefore,

u(Γ, ν∗) = ũ0(Γ, ν, ν∗)<E
[
ũt(Γ, ν, ν

∗)|FN0
]

=E
[
ũt(Γ, ν, ν)|FN0

]
= u(Γ, ν),

in which the last equality follows from (52). The same logic applies if we can consider the situation when
(1− qs)Hs(Γ, ν

∗)− qsWs− <βd for s∈Ωd ⊂ [0, t] with θs− = d and a positive measure set Ωd. Therefore, the
agent prefers effort process ν′ over ν∗, which implies that Γ does not satisfy (IC) if condition (7) does not
hold. Q.E.D.

B.2. Lemma 4 and its proof
Lemma 4. Define ν := {νt = 0}∀t. For θ0 ∈ {u,d}, we have

E
[∫ ∞

0

e−rtR1θt=udt

∣∣∣∣θ0, ν

]
= vθ0 . (54)

E
[∫ ∞

0

e−rt(R1θt=u− c(θt))dt
∣∣∣∣θ0, ν

∗
]

= v̄θ0 . (55)

where vθ0 and v̄θ0 are defined in equation (4) and (11), respectively.
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Proof. We first calculate (55) with θ0 = d which is the societal value when the machine starts with state d
and the agent always exerts effort. We define tk as the time of occurrence of the kth transition of the states,
and t0 = 0. Further define τk := tk − tk−1. Therefore τ2k+1 follows an exponential distribution with rate µu,
and τ2k+2 follows an exponential distribution with rate µd where k ∈N. Then

E
[∫ ∞

0

e−rt(R1θt=u− c(θt, ν∗t ))dt

∣∣∣∣d, ν∗]=

∞∑
k=0

{
E
[∫ t2k+1

t2k

e−rt(R− cu)dt

]
+E

[∫ t2k+2

t2k+1

e−rt− cddt

]}

=

∞∑
k=0

{
E
[∫ t2k+1

t2k

e−rtdt

]
(R− cu) +E

[∫ t2k+2

t2k+1

e−rtdt

]
· (−cd)

}
,

(56)

where

E
[∫ t2k+1

t2k

e−rtdt

]
=

E [e−rt2k ] (1−E [e−rτ2k+1 ])

r

=
E
[
e−r

∑2k
i=1 τ2k

]
(1−E [e−rτ2k+1 ])

r

=
αkβk(1−α)

r
,

where α = E [eτ1 ] =
µd

r+µd

and β = E [eτ2 ] =
µu

r+µu

. In the same way, E

[∫ t2k+2

t2k+1

e−rtdt

]
=
αk+1βk(1−β)

r
.

Furthermore, the expression of α and β yields
1−α
r

=
1

r+µd

and
1−β
r

=
1

r+µu

. Following equation (56),

E
[∫ ∞

0

e−rt(R1θt=u− c(θt))dt
∣∣∣∣d, ν∗]

=

∞∑
k=0

{αk+1βk

r+ νu
(R− cu) +

αkβk

r+ νd
(−cd)

}
=

α

1−αβ
1

r+ νu
(R− cu) +

1

1−αβ
1

r+ νd
(−cd)

=
µd(R− cu)− (r+µu)cd

r(r+µu +µd)
.

The same logical steps yields (55) for the case of θ0 = d, and also (54) and (55) for the case of θ0 = u.
Q.E.D.

C. Optimality Condition

The following lemma states conditions for functions Jd and Ju such that they are upper bounds of the
principal’s utility U(Γ) under any contract Γ. This verification result serves as an optimality condition for
later sections.

Lemma 5. Suppose Jd(w) : [0,∞)→ R and Ju(w) : [βu,∞)→ R are differentiable, concave, upper-bounded
functions, with J ′d(w) ≥ −1, J ′u(w) ≥ −1, and Jd(0) = vd. Consider any incentive compatible contract Γ,
which yields the agent’s expected utility u(Γ, ν∗) = W0, followed by the promised utility process {Wt}t≥0

according to (PK) and satisfy (IC). Define a stochastic process {Φt}t≥0 as

Φt :=R1θt=u + J ′θt(Wt−)(rWt−− [−qtWt−+ (1− qt)Ht]µ(θt, νt))− rJθt(Wt−)

+µ(θt, νt)qt[Jθ̂t(0)− Jθt(Wt−)] +µ(θt, νt)(1− qt)[Jθ̂t(Wt−+Ht)− Jθt(Wt−)]− c(θt) . (57)

where θt ∈ {u,d} and θ̂t = 1θt=d ·u+1θt=u ·d, and Ju is extended such that Ju(0) = vu. If the process {Φt}t≥0

is non-positive almost surely, then we have Jθ(u(Γ, ν∗, θ))≥U(Γ, ν∗, θ).
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Proof. We define the following function to represent the value function as a function of time t,

J(t) =

{
Jd(Wt−) if θt− = d ,

Ju(Wt−) if θt− = u .
(58)

Following the Itô’s Formula for jump processes (see, for example, Bass 2011, Theorem 17.5) and (PK), we
obtain

e−rτJ(τ) =e−r0J(0) +

∫ τ

0

[e−rtdJ(t)− re−rtJ(t)dt] = J(0) +

∫ τ

0

e−rt(−R1θt=udt+ c(θt)dt+ dLt) +

∫ τ

0

e−rtAt,

(59)

where

At =dJ(t)− rJ(t)dt+R1θt=udt− c(θt)dt− dLt
=J ′(t)[rWt−−µ(θt, νt)(−qtWt−+ (1− qt)Ht)− `t]dt− rJ(t)dt+ J(t+)− J(t) +R1θt=udt− c(θt)dt− dLt
=J ′(t)[rWt−−µ(θt, νt)(−qtWt−+ (1− qt)Ht)− `t]dt− rJ(t)dt+R1θt=udt− c(θt)dt− dLt
+[Jθt(Wt−− It)− Jθt(Wt−)](1− dNt) + [Jθ̂t(Wt−+ [(1−Xt)Ht−XtWt−]− It)− Jθt(Wt−)]dNt

=J ′(t)[rWt−−µ(θt, νt)(−qtWt−+ (1− qt)Ht)− `t]dt− rJ(t)dt+R1θt=udt− c(θt)dt− dLt
+[Jθt(Wt−− It)− Jθt(Wt−)](1− dNt) +

[
Jθ̂t(Wt−+ [(1−Xt)Ht−XtWt−]− It)− Jθ̂t(Wt−+ [(1−Xt)Ht−XtWt−])

]
dNt

+
[
Jθ̂t(Wt−+ [(1−Xt)Ht−XtWt−])− Jθt(Wt−)

]
dNt.

Further define

Bt := [Jθ̂t(Wt−+Ht)− Jθt(Wt−)](dNn
t −µ(θt, νt)(1− qt)dt) + [Jθ̂t(0)− Jθt(Wt−)](dN f

t −µ(θt, νt)qtdt).

Because function Jd(w) and Ju(w) are concave, J ′d(w)≥−1 and J ′u(w)≥−1, we have

At = dJ(t)− rJ(t)dt+R1θt=udt− dLt
≤ J ′(t)[rWt−−µ(θt, νt)(−qtWt−+ (1− qt)Ht)]dt− rJ(t)dt+R1θt=udt− dLt− J ′(t)`tdt− J ′θt(Wt−)It(1− dNt)

− J ′
θ̂t

(Wt−+ [(1−Xt)Ht−XtWt−])ItdNt +
[
Jθ̂t(Wt−+ [(1−Xt)Ht−XtWt−])− Jθt(Wt−)

]
dNt− c(θt)dt

≤ J ′(t)[rWt−−µ(θt, νt)(−qtWt−+ (1− qt)Ht)]dt− rJ(t)dt+R1θt=udt

+
[
Jθ̂t(Wt−+ [(1−Xt)Ht−XtWt−])− Jθt(Wt−)

]
dNt− c(θt)dt

= R1θt=udt+ J ′θt(t)[rWt−−µ(θt, νt)(−qtWt−+ (1− qt)Ht)]dt− rJθt(t)dt
+
[
Jθ̂t(Wt−+Ht)− Jθt(Wt−)

]
dNn

t +
[
Jθ̂t(0)− Jθt(Wt−)

]
dN f

t − c(θt)dt
=Bt + Φtdt .

Therefore, if Φt ≤ 0, we must have At ≤Bt almost surely. Taking the expectation on both sides of (59), we
immediately have

Jθ0(u(Γ, ν, θ0)) = J(0)≥E
[
e−rτJ(τ) +

∫ τ

0

e−rt(R1θt=udt− c(θt)dt− dLt)
∣∣∣∣θ0

]
= u(Γ, ν, θ0),

where we use the fact that
∫ τ

0
e−rtBtdt is a martingale and J(τ) = Jθτ (0) = vτ . Q.E.D.

To prove that a contract is optimal among all incentive compatible contracts, we only need to verify if Φt

defined in (57) is non-positive.

D. Proofs and derivations in Section 4.1

D.1. Heuristic derivation of equations (20)-(22)
If the machine’s current state is d, consider a small time interval [t, t + δ], during which the principal
reimburses the agent’s effort cost cdδ. With probability µdδ, the machine recovers after this interval and
changes to state u, the principal pays the agent (w+ βd− w̄u)+, and, correspondingly, the promised utility
jumps up to min{w+βd, w̄u}. With probability 1−µdδ, on the other hand, the machine stays in d, and the
promised utility evolves to w+ r(w− w̄d)δ. Therefore, we have

Jd(w) =− cdδ+ e−rδ
{
µdδ

[
− (w+βd− w̄u)+ + Ju(min{w+βd, w̄u})

]
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+ (1−µdδ)Jd(w+ r(w− w̄d)δ)
}

+ o(δ).

Subtracting Jd(w) and dividing δ on both sides, then letting δ approach 0, we obtain equation (20).
Similarly, consider the machine’s current state at u. and a small time interval [t, t+ δ], when the principal

collects revenue Rδ and the agent’s promised utility w≥ βu. With probability µuδ, the machine breaks down
and changes to state d, and the promised utility drops to w− βu. With probability 1− µuδ, on the other
hand, the machine stays in u, the promised utility evolves to w+ (rw+µuβu)δ if w< w̄u, and the principal
pays the agent `∗δ if w= w̄u while the promised utility stays at w̄u. Therefore,

Ju(w) =(R− cu)δ+ e−rδ
{
µuδJd(w−βu) + (1−µuδ)

[
Ju(w+ (rw+µuβu)δ1w<w̄u)− `∗1w=w̄u

]}
+ o(δ).

Following similar steps as before, we obtain equations (21) and (22).

D.2. Proof of Proposition 1
It is helpful to consider the societal value functions, defined below as the summation of the principal and
the agent’s utilities,

Vd(w) = Jd(w) +w and Vu(w) = Ju(w) +w. (60)

Following (20)-(24), we obtain the following system of differential equations for Vd and Vu,

(µd + r)Vd(w) = µdVu(min{w+βd, w̄u})− cd− r(w̄d−w)V ′d(w) , w ∈ [0, w̄d], (61)

(µu + r)Vu(w) =−cu +R+µuVd(w−βu) + (rw+µuβu)1w<w̄uV
′
u(w) , w ∈ [βu, w̄u], (62)

Vu(w) = Vu(0) +
Vu(βu)−Vu(0)

βu

w, (63)

Vu(0) = vu and Vd(0) = vd. (64)

Furthermore, as soon as the promised utility reaches w̄u at state u, contract Γ∗1 becomes identical to the
simple contract studied in Section 3.1. This implies the following boundary conditions

Vd(w̄d) = v̄d and Vu(w̄u) = v̄u, (65)

in which v̄d and v̄u are defined in (11). Equivalently, we prove that the system of differential equations (61)
and (62) with boundary conditions (63), (64) and (65) has a unique solution: the pair of functions Vu(w) on
[0, w̄u] and Vd(w) on [0, w̄d], both of which are increasing and strictly concave.

First, we prove that (61) and (62) with boundary conditions (64) and (65) has a unique solution: the pair
of functions Vu(w) on [βu, w̄u] and Vd(w) on [0, w̄d]. Next we write the proof for the two cases βd > βu and
βd = βu separately.

D.2.1. βd >βu Recall that function Vd and Vu satisfies the system of differential equations (61) and (62).
Case 1. w̄u ≤ βd. Since for w ∈ [0, w̄d], Vu(min{w+βd, w̄u}) = Vu(w̄u) = v̄u, we could rearrange equation

(61) as

(µd + r)Vd(w) = µdv̄u− cd− r(w̄d−w)V ′d(w).

The above equation in [0, w̄d) is a linear differential equation with boundary condition. The solution is

Vd(w) = v̄d + b1(w̄d−w)
r+µd
r forw ∈ [0, w̄d], (66)

with b1 = (vd− v̄d)w̄
(r+µd)/r
d < 0. (Followed by the condition (13). )

Then, (66) implies that V ′d(w) =−b1(r+µd)(w̄d−w)µd/r/r > 0, V ′′d (w) = b1(r+µd)µd(w̄d−w)µd−r/r/r2 <
0 for w ∈ [0, w̄d]. Hence, Vd is increasing and strictly concave in [0, w̄d]. Furthermore, it can be verified that
V ′d(w̄d−) = 0. Next, we show that Vu is also increasing and strictly concave in [βu, w̄u]. Rearranging equation
(62) in [βu, w̄u] as

(µu + r)Vu(w) =−cu +R+µu

(
V̄d + b1(w̄d−w+βu)

r+µd
r

)
+ (rw+µuβu)1w<w̄uV

′
u(w). (67)

The above equation in [βu, w̄u) is a linear differential equation with boundary condition. It is easy to verify
that limw→w̄u− V

′
u(w) = 0 with Vu(w̄u) = v̄u. Equation (67) implies that

V ′′u (w) =
µu(V ′u(w)−V ′d(w−βu))

rw+µuβu

forw ∈ [βu, w̄u), (68)
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and

V ′′′u (w) =
µu(V ′′u (w)−V ′′d (w−βu))− rV ′′u (w)

rw+µuβu

forw ∈ [βu, w̄u). (69)

Since V ′d(w̄d) = 0, then equation (68) implies that limw→wu− V
′′
u (w) = 0. Furthermore, with V ′d(w− βu)< 0

for w ∈ [βu, w̄u), we can show that there exists ε > 0 such that V ′′u (w)< 0 and V ′u(w)> 0 for w ∈ [w̄u− ε, w̄u).
Hence, Vu(w) is increasing and strictly concave in [w̄u − ε, w̄u). Assume there exists w̃ ∈ [βu, w̄u − ε) such
that V ′′u (w̃)≥ 0. There must be ŵ= max{w ∈ [βu, w̄u− ε)|V ′′u (w) = 0}, and V ′′u (w)< 0, ∀w> ŵ. However, this

contradicts V ′′′u (ŵ) =
−µuV

′′
d (ŵ−βu)

rw+µuβu

> 0 which is implied by equation (69). Therefore, we must have Vu to

be increasing and strictly concave in [βu, w̄u]. Furthermore, it can be verified that Vu(w) = v̄u for w ∈ [w̄u,∞)
and Vd(w) = v̄d for w ∈ [w̄d,∞) solves (61) and (62).

Case 2. w̄u >βd. Rearranging (61) as

(µd + r)Vd(w) = µdv̄u− cd− r(w̄d−w)V ′d(w), for w ∈ [w̄u−βd,∞) ,and (70)

(µd + r)Vd(w) = µdVu(w+βd)− cd− r(w̄d−w)V ′d(w), for w ∈ [0, w̄u−βd). (71)

We then show the result according to the following steps.
1. Demonstrate the solution of (70) as a parametric function V b

d , with parameter b.

2. Show that the solution of (71) and (62) are a pair of unique and twice continuously differentiable
equations for any b, called as V b

d and V b
u .

3. Show that for b < 0, V b
d and V b

u are concave and increasing.

4. Show that V b
d (0) is increasing in b, which implies that the boundary condition Vd(0) = vd uniquely

determines b, and therefore the solution of the original system of differential equations.
Step 1. The solution to the linear ordinary differential equation (70) on [w̄u−βd, w̄d] must have the following
form, for any scalar b.

V b
d (w) = v̄d + b(wd−w)

r+µd
r forw ∈ [w̄u−βd, w̄d], (72)

Also define V b
d (w) = v̄d for w ∈ [w̄d,∞], which satisfies (70), so that V b

d is continuously differentiable on
[w̄u−βd,∞).

Step 2. Using (72) as the boundary condition, we show that the system of differential equations (71)
and (62) has a unique pair of solutions (called V b

d and V b
u , on (0, w̄d), (βu, w̄u)), which are continuously

differentiable. In fact, the system of differential equations (71) and (62) are equivalent to a sequence of initial
value problems over the intervals [w̄d− (k+ 1)(βd−βu), w̄d− k(βd−βu)] for Vd and [w̄u− k(βd−βu), w̄u−
(k − 1)(βd − βu)) for Vu, k = 1,2, .... This sequence of initial value problems satisfy the Cauchy-Lipschitz
Theorem and, therefore, bear unique solutions. Also define V b

u (w) = v̄u for w ∈ [w̄u,∞), which satisfies (62),
so that V b

u is continuously differentiable on [w̄u,∞). Also, computing V ′b (w̄u−βd) from (72), and comparing it
with (71), we see that V b

d is continuously differentiable at w̄u−βd, and therefore V b
d and V b

u are continuously
differentiable [0,∞) and [βu,∞), respectively. Furthermore, we could derive the expressions for V b′′

d and V b′′

u

following (71) and (62), respectively,

V b′′

u (w) =
µu(V b′

u (w)−V b′

d (w−βu))

rw+µuβu

,and (73)

V b′′

d (w) =
µd(V b′

u (w+βd)−V b′

d (w))

r(wd−w)
. (74)

Step 3. Next, we argue that for b < 0, V b
d and V b

u are concave and increasing. Equation (72) implies that
V b
d is increasing and strictly concave on [w̄u − βd, w̄d], and therefore V d′′

b (w)< 0 in this interval. We could
firstly prove that V b

u is strictly concave and increasing in [w̄u +βu−βd, w̄u) in the same way in Case 1. Next,
we want to show that V b

d is strictly concave in [w̄u +βu− 2βd, w̄u−βd).
In the following, we prove two lemmas to establish the result.

Lemma 6. For any w ≤ w̄u, if V b
u is strictly concave in [w + βu − βd, w̄u) and V b

d is strictly concave in
[w−βd, w̄d), then V b

d is strictly concave in [w+βu− 2βd, w̄d).
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Proof. V b
d is strictly concave in [w−βd, w̄d) implies that V b′′

d (w)< 0 in this interval. Assume that there exists
w̃b ∈ [w+βu−2βd,w−βd) such that V b′′

d (w̃b)≥ 0, then following step 2, V b
d twice continuously differentiable

implies that there must exist ŵb = max{w ∈ [w+ βu− 2βd,w− βd)|V b′′

d (w) = 0}, and V b′′

d (w)< 0, ∀w > ŵb.
Equation (74) implies that

V b′

u (ŵb +βd) = V b′

d (ŵb) . (75)

Furthermore, since V b
u is strictly concave in [w+βu−βd, w̄u) and ŵb+βd ≥w+βu, we have V b′′

u (ŵb+βd)<
0. Then equation (73) implies that V b′

u (ŵb + βd) − V b′

d (ŵb + βd − βu) < 0. With equation (75), we have
V b′

d (ŵb)<V
b′

d (ŵb +βd−βu) which contradicts with V b′′

d (w)< 0, ∀w> ŵb. Q.E.D.

Lemma 7. For w ≤ w̄u + βu − βd, if V b
d is strictly concave in [w − βd, w̄d] and V b

u is strictly concave in
[w, w̄u], then V b

u is strictly concave in [w+βu−βd, w̄u).

The proof of Lemma 7 follows the same steps as the proof of Lemma 6.
With Lemmas 6 and 7, we prove that if V b

u is strictly concave in [w + βu − βd, w̄u) and V b
d is strictly

concave in [w − βd, w̄d), then V b
u is strictly concave in [w + 2βu − 2βd, w̄u) and V b

d is strictly concave in
[w+ βu − 2βd, w̄d). Hence, by induction, we can prove that V b

d is strictly concave and increasing in [0, w̄d)
and V b

u is strictly concave and increasing in [βu, w̄u).
Step 4. Finally, we show that V b

d (0) is strictly increasing in b for b < 0, which allows us to uniquely
determine b that satisfies V b

d (0) = vd. For given b1 < b2 < 0, define Xd(w) := V b1
d (w)−V b2

d (w) and Xu(w) :=
V b1
u (w)−V b2

u (w). Equations (61) and (62) imply that

(µd + r)Xd(w) = µdXu(w+βd)− r(w̄d−w)X ′d(w) , and

(rw+µuβu)1w<w̄uX
′
u(w) =−µuXd(w−βu) + (µu + r)Xu(w).

Equation (72) implies that Xd(w) = (b1− b2)(w̄d−w)
r+µd
r for [w̄u + βu− βd, w̄u), which is strictly concave

and increasing. Following the same logic as in step 3, we can prove that Xd is strictly concave and increasing
on [0, w̄d] and Xu is strictly concave and increasing on [βu, w̄u]. Hence,

V b1
d (0)−V b2

d (0) =Xd(0)<Xd(w̄d) = 0.

Because V 0
d (0) = v̄d > vd, and limb→−∞ V

b
d (0)<V b

d (w̄u−βd) =−∞, there must exist a unique b∗ < 0 such that
V b∗
d (0) = v̄d, and V b∗

d (w) and V b∗
u (w) are strictly concave and increasing on [0, w̄d] and [βu, w̄u], respectively.

D.2.2. βd = βu Let βd = βu = β, then equations (61) and (62) become

(µd + r)Vd(w) = µdVu(w+β)− cd− r(w̄d−w)V ′d(w), for w ∈ [0, w̄d), and (76)

(µu + r)Vu(w) =−cu +R+µuVd(w−β) + (rw+µuβ)1w<w̄uV
′
u(w), for w ∈ [β, w̄u), (77)

since w+β ≤wu for w ∈ [0, w̄d). Let w̌=w−β in equation (77), we have

(µu + r)Vu(w̌+β) =−cu +R+µuVd(w̌) + (rw+ (r+µu)β)V ′u(w̌+β), for w̌ ∈ [0, w̄d). (78)

Differentiate (78) with respect to w̌ on both sides, we obtain

µuV
′
u(w̌+β) = µuV

′
d(w̌) + (rw+ (r+µu)β)V

′′

u (w̌+β), for w̌ ∈ [0, w̄d). (79)

Equations (76), (78) and (79) together imply that

(µu + r)[r(w̄d−w)V ′d(w) + cd + (µd + r)Vd(w)] (80)

=µd(−cu +R) +µdµuVd(w) + (rw+ (r+µu)β)[r(w̄d−w)V ′′d (w) +µdV
′
d(w)], for w ∈ [0, w̄d) ,

Differentiate (80) with respect to w on both sides, we obtain

[µur(w̄d−w)− (rw+ (r+µu)β)(µd− r)]V ′′d (w) (81)

=(rw+ (r+µu)βu)r(w̄d−w)V ′′′d (w), for w ∈ [0, w̄d).

Further, we define:

z(w) :=
[µur(w̄d−w)− (rw+ (r+µu)β)(µd− r)]

(rw+ (r+µu)βu + cu)r(w̄d−w)
, for w ∈ [0, w̄d) .
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Then equation (81) is equivalent to

V ′′′d (w)

V ′′d (w)
= z(w) ,

Solving the differential equation, we obtain V ′′d (w) =C0e
∫
z(w). With the boundary condition Vd(0) = vd < v̄d,

we could calculate C0 with C0 < 0. Hence, Vd is strictly concave and increasing in [0, w̄d). In the same way
we used in the step 4 of the case βd >βu, we could establish that Vu is also strictly concave and increasing
in [βu, w̄u).

Second, combining with boundary condition (63), we further prove that Vu is increasing and concave in
[0, w̄u]. Following condition (13), (18) and βd ≥ βu, we have

R≥ (r+ µ̄u +µ
d
)βu. (82)

Following (62), we have

V ′u(βu+) =
(µu + r)Vu(βu) + cu−R−µuvd

rβu +µuβu

≥ 0,

which implies that

Vu(βu)≥ R− cu +µuvd
µu + r

=

[
(r+µu)vu +

∆µuR

r+µ
d

+ µ̄u

− cu

]
/(r+µu)≥ vu, (83)

where the second inequality follows from (82). Also, this implies that V ′u(βu−) =
Vu(βu)−vu

βu
≥ 0 and,

(r+ µ̄u)βu(V ′u(βu−)−V ′u(βu+)) = (r+ µ̄u)(Vu(βu)− vu)− (µu + r)Vu(βu)− cu +R+µuvd
≥∆µuvu− (r+ µ̄u)vu− cu +R+µuvd
≥R+µuvd− (r+µu)vu− cu

=R+
[µuµd

− (r+µu)(r+µ
d
)]R

r(r+ µ̄u +µ
d
)

− cu

=
∆µuR

(r+ µ̄u +µ
d
)
− cu ≥ 0, (84)

where the first inequality follows from (83) and the last inequality follows from (82). Finally, (84) implies
that V ′u(βu−)≥ V ′u(βu+). Q.E.D.

Furthermore, equations (61) and (62) imply that

V ′′u (w) =
µu(V ′u(w)−V ′d(w−βu))

rw+µuβu

, for w ∈ [βu, w̄u),

V ′′d (w) =
µd(V ′u(w+βd)−V ′d(w))

r(wd−w)
, for w ∈ [0, w̄u−βd), and

V ′′d (w) =
−V ′d(w)

r(wd−w)
, for w ∈ [w̄u−βd, w̄u).

Then the concavity of Vd and Vu implies that

V ′u(w)<V ′d(w−βu), for w ∈ [βu, w̄u), and (85)

V ′u(w+βd)<V ′d(w), for w ∈ [0, w̄d). (86)

D.3. Proof of Proposition 2
Following (58) and (59), we obtain that under contract Γ∗1 in Definition 1,

e−rτJ(τ) = J(0) +

∫ τ

0

e−rt(−R1θt=udt+ c(θt)dt+ dLt) +

∫ τ

0

e−rtA∗t , (87)

where

A∗t = dJ(t)− rJ(t)dt+R1θt=udt− dLt− c(θt)dt
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= J ′(t)[rWt−−µ(θt,1)H∗t − `∗t ]dt− rJ(t)dt+ J(t+)− J(t) +R1θt=udt− c(θt)dt− c(θt)dt− dL∗t
=
{
J ′u(t)(rWt−+µuβu)1Wt−<w̄u − rJu(Wt−)− cu

}
dt1θt=u + {J ′d(Wt−)r(Wt−− w̄d)dt− rJd(Wt−)− cd}dt1θt=d

+ [Ju(min{Wt−+βd, w̄u})− Jd(Wt−)]dNt1θt=d + [Jd(Wt−−βu)− Ju(Wt−)]dNt1θt=u +R1θt=udt− dL∗t
= {R− cu + J ′u(Wt−)(rWt−+µuβu)1Wt−<w̄u − rJu(Wt−)dt+µu(Jd(Wt−−βu)− Ju(Wt−))

+ (rw̄u +µuβu)1Wt−=w̄u}1θt=udt

+{J ′d(Wt−)r(Wt−− w̄d)− rJd(Wt−)dt+µd(Ju(min{Wt−+βd, w̄u})− Jd(Wt−))−µd(Wt−+βd− w̄u)+− cd}1θt=ddt+B∗t
= B∗t ,

in which the last equality follows from (20) and (21), and

B∗t = [Ju(min{Wt−+βd, w̄u})−Jd(Wt−)−(Wt−+βd−w̄u)+](dNt−µddt)1θt=d+[Jd(Wt−−βu)−Ju(Wt−)](dNt−µudt)1θt=u.

Taking the expectation on both sides of (87), we immediately have

Jθ0(w) = J(0) = E
[
e−rτJ(τ) +

∫ τ

0

e−rt(R1θt=udt− c(θt)dt− dL∗t )
∣∣∣∣θ0

]
= u(Γ∗1(w), ν∗, θ0),

where u(Γ∗1, ν
∗, θ0) = w and we apply the fact that

∫ τ
0
e−rtB∗t dt is a martingale and J(τ) = Jθτ (0) = vτ .

Q.E.D.

D.4. Proof of Proposition 3
From Proposition 1, we know that Jd(w) and Ju(w) are concave, J ′d(w)≥−1, and J ′u(w)≥−1. Recall Lemma
5, to show that Jd(w) and Ju(w) are upper bounds of principal’s utility under any incentive compatible
contract, we only need to show that Φt ≤ 0 holds almost surely if νt = 1. From (57), we have

Φt = Φu
t 1θt=u + Φd

t1θt=d,

where

Φu
t :=R+ J ′u(Wt−)rWt−+µuqt[Wt−J

′
u(Wt−) +Jd(0)− Ju(Wt−)]

+µu(1− qt)[−HtJ
′
u(Wt−) +Jd(Wt−+Ht)− Ju(Wt−)]− rJu(Wt−)− cu,

and

Φd
t :=J ′d(Wt−)rWt−+µdqt[Wt−J

′
d(Wt−) +Ju(0)− Jd(Wt−)]

+µd(1− qt)[−HtJ
′
d(Wt−) +Ju(Wt−+Ht)− Jd(Wt−)]− rJd(Wt−)− cd.

We have Φt ≤ 0 if Φd
t ≤ 0 and Φu

t ≤ 0. First, we prove that Φu
t ≤ 0 by considering the following optimization

problem,

max
qt,Ht

qt[Wt−J
′
u(Wt−) +Jd(0)− Ju(Wt−)] + (1− qt)[−HtJ

′
u(Wt−) +Jd(Wt−+Ht)− Ju(Wt−)],

s.t. 0≤ qt ≤ 1, −qtWt−+ (1− qt)Ht ≤−βu.

In the following, we verify that the optimal solution is

q∗t = 0 and H∗t =−βu. (88)

by the KKT conditions. Define the following dual variables for the binding constraints

xu =−(J ′u(Wt−)− J ′d(Wt−−βu))≥ 0,

in which the inequality follows from (85), and

yu = (Wt−−βu)

(
Jd(Wt−−βu)− Jd(0)

Wt−−βu

− J ′d(Wt−−βu)

)
≥ 0,

where the inequality follows from the concavity of Jd and the fact that Wt− ≥ βu for any incentive compatible
contract. One can verify that

[Wt−J
′
u(Wt−) +Jd(0)− Ju(Wt−)]− [−H∗t J ′u(Wt−) +Jd(Wt−+H∗t )− Ju(Wt−)] =−yu− (H∗t +Wt−)xu,

(89)
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(1− q∗t )(J ′u(Wt−)− J ′d(Wt−+H∗t )) = (q∗t − 1)xu. (90)

Therefore, (88) implies that

Φu
t ≤R+ J ′u(Wt−)rWt−+µu[βuJ

′
u(Wt−) +Jd(Wt−−βu)− Ju(Wt−)]− rJu(Wt−)− cu = 0,

where the equality follows from (21).
Following similar logic, we prove that Φu

t ≤ 0 by considering the following optimization problem,

max
qt,Ht

qt[Wt−J
′
d(Wt−) +Ju(0)− Jd(Wt−)] + (1− qt)[−HtJ

′
d(Wt−) +Ju(Wt−+Ht)− Jd(Wt−)],

s.t. 0≤ qt ≤ 1, −qtWt−+ (1− qt)Ht ≥ βd,Wt−+Ht ≥ βu,

and verify that the optimal solution is

q∗t = 0 and H∗t = βd. (91)

by the KKT conditions. Again define the following dual variables for the binding constraints

xd = J ′d(Wt−)− J ′u(Wt−+βd)≥ 0, and

yd = (Wt−+βd)(
Ju(Wt−+βd)− Ju(0)

Wt−−βd

− J ′u(Wt−+βd))≥ 0.

We can verify that

[Wt−J
′
d(Wt−) +Ju(0)− Jd(Wt−)]− [−HtJ

′
d(Wt−) +Ju(Wt−+H∗t )− Jd(Wt−)] =−yd + (H∗t +Wt−)xd,

(92)

(1− q∗t )(J ′d(Wt−)− J ′u(Wt−+H∗t )) = (1− q∗t )xd. (93)

Therefore, (91) implies that

Φu
t ≤ J ′d(Wt−)rWt−+µd[−βdJ

′
d(Wt−) +Ju(Wt−+βd)− Jd(Wt−)]− rJd(Wt−)− cd = 0,

where the equality follows from (20). Q.E.D.

D.5. Proof of Theorem 2
First, it is easy to verify that contract Γ∗u is incentive compatible. Next, we define two functions Jd(w) and
Ju(w) as

Jd(w) = vd−w. (94)

and

Ju(w) =

{
vu−w, for w ∈ [βu,∞),
vu + (vu− vu−βu)w/βu, for w ∈ [0, βu).

(95)

Under condition (28), Jd and Ju are concave, J ′d(w)≥−1, and J ′u ≥−1. Hence, following Lemma 5, we
have Jd(w) and Ju(w) are upper bounds of the principal’s utility under state d and u, respectively if Φt ≤ 0,
where Φt is defined by (57). Furthermore,

Φt = Φu
t 1θt=u + Φd

t 1θt=d,

where

Φu
t =R− rWt−+µu[−qtWt−+ (1− qt)Ht]− r(vu−Wt−) +µuqtvd +µu(1− qt)(vd−Wt−−Ht)−µu(vu−Wt−)− cu

=R− cu− rvu +µuvd−µuvu = 0,

where the first equality follows from J ′u(Wt−) =−1 for Wt− ≥ βu,and the third equality follows from (25).
Therefore,

Φd
t =−rWt−+µd[−qtWt−+ (1− qt)Ht]− r(vd−Wt−) +µdqtvu +µd(1− qt)Ju(Wt−+Ht)−µd(vd−Wt−)− cd

=−cd− (r+µd)vd +µdqtvu +µd(1− qt)Vu(Wt−+Ht)

≤−cd− (r+µd)vd +µdvu ≤ 0,

where the first inequality follows by taking qt = 0 and Ht = βd, and the second inequality follows from (28).
Next, we can easily verify that the performance of Γ∗u is

U(Γ∗u, ν
∗,d) = Jd(0) = vd

and

U(Γ∗u, ν
∗,u) = Ju(βu) = vu−βu

Starting from state d, it is optimal to let W0 = 0, hence vd ≥U(Γ, ν∗,d). Starting from state u, if vu−βu ≥
vu, it is optimal to let W0 = βu and if vu − βu < vu, it is optimal to let W0 = 0. Hence, U(Γ∗(βu).ν∗,u)≥
U(Γ, ν∗,u) if vu−βu ≥ vu and vu ≥U(Γ, ν∗,u) if vu−βu < vu. Q.E.D.
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D.6. Proof of Theorem 3
It suffices to show that if (29) is satisfied, then the principal’s value functions Ju(w) = vu−w and Jd(w) =
vd−w satisfy the optimality condition Φt ≤ 0 where Φt is defined by (57). In fact,

Φt = Φu
t 1θt=u + Φd

t 1θt=d,

where

Φu
t =R− rWt−+µu[−qtWt−+ (1− qt)Ht]− r(vu−Wt−) +µuqtvd +µu(1− qt)(vd−Wt−−Ht)−µu(vu−Wt−)− cu

=R− cu− rvu +µuvd−µuvu =R− cu− (r+µu)
(r+µ

d
)R

r(r+µ
d

+ µ̄u)
+µu

µ
d
R

r(r+µ
d

+ µ̄u)

=
∆µuR

r+µ
d

+ µ̄u

− cu =
∆µu

r+µ
d

+ µ̄u

(R− (r+µ
d

+ µ̄u)βu)< 0,

and

Φd
t =−rWt−+µd[−qtWt−+ (1− qt)Ht]− r(vd−Wt−) +µdqtvu +µd(1− qt)(vu−Wt−−Ht)−µd(vd−Wt−)− cd

=−cd− rvd +µdvu−µdvd =−cd− (r+µd)
µ

d
R

r(r+µ
d

+ µ̄u)
+µd

(r+µ
d
)R

r(r+µ
d

+ µ̄u)

=
∆µdR

r+µ
d

+ µ̄u

− cd =
∆µd

r+µ
d

+ µ̄u

(R− (r+µ
d

+ µ̄u)βd)< 0,

where the inequalities follow from (29). Q.E.D.

E. Results and Proofs in Section 4.2

E.1. Proof of Lemma 2
Using (35) and (36) as boundary conditions, (33) is a linear differential equation with boundary condition.
The solution is

Jaβ̂d (w) = aw+
µdvu− cd
µd + r

+C1(w̄d−w)
r+µd
r , for w ∈ [0,min{β̂−βd, w̄d}], (96)

with

C1 =−

[
∆µdR

r+µ
d

+µ̄u
− cd

]
w̄
− r+µd

r
d

r+µd

< 0, (97)

in which the inequality follows from (18). Therefore, we can solve Jaβ̂u for
[
β̂,min{β̂−βd, w̄d}+βu

]
using

(34), (35) and (96). By induction, we can solve Jaβ̂d in [0, w̄d] and Jaβ̂u in [0, w̄u]. These are a sequence of initial
value problems satisfying the Cauchy-Lipschitz Theorem, and, therefore, bear unique solutions. Furthermore,

Jaβ̂u is C2
(

[0, w̄u] \ {β̂}
)

and Jaβ̂d is C3
(

[0, w̄d] \ {β̂−βd}
)

. For w ∈ [w̄u, ŵu], (31) and (34) together imply

that

(rw+µuβu)1w<ŵuJ
′
u(w) = (µu + r)Ju(w)−R− µuµd

µd + r
Ju

(
r+µd

µd

(w−βu)

)
+

µucd
µd + r

+ `∗1w=ŵu . (98)

If we define w0 := w̄u and wn := (µdwn−1)/(r+µd)+βu for n= 1,2,3..., then ŵu = limn→∞wn. Furthermore,
(98) is equivalent to a sequence of initial value problems over the intervals [wn,wn+1], n = 1,2, .... This
sequence of initial value problem again satisfy the Cauchy-Lipschitz Theorem and bear unique solutions.
Furthermore, if β̂ < w̄d +βd, then Jaβ̂u is C2 ([0, ŵu)\{β̂}), Jaβ̂d is C3 ([0, ŵd)\{β̂−βd, w̄d}) and if β̂ ≥ w̄d +βd,

then Jaβ̂u is C2([0, ŵu) \ {β̂, (µdβ̂)/(r + µd) + βu}), Jaβ̂d is C3([0, ŵd) \ {β̂ − βd, w̄d, β̂ + (µdβu)/(r + µd)}).
Then, we could derive the expressions for Jaβ̂

′′

u , Jaβ̂
′′

d and Jaβ̂
′′′

d following (31), (33) and (34), respectively,

Jaβ̂
′′

u (w) =
µu

(
Jaβ̂

′

u (w)− Jaβ̂
′

d (w−βu)
)

rw+µuβu

, for w ∈ (β̂, ŵu), (99)
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Jaβ̂
′′

u (w) =
µu

(
Jaβ̂

′

u (w)− Jaβ̂′u

(
r+µd

µd
(w−βu)

))
rw+µuβu

, for w ∈ [w̄u, ŵu), (100)

Jaβ̂
′′

d (w) =
µd

(
Jaβ̂

′

u (w+βd)− Jaβ̂
′

d (w)
)

r(w̄d−w)
, for w ∈ [0, w̄d) \ {β̂−βd}, (101)

Jaβ̂
′′

d (w) = Jaβ̂
′′

u

(
w+

rw

µd

)
, for w ∈ (w̄d, ŵd), and (102)

Jaβ̂
′′′

d (w) =
µd

(
Jaβ̂

′′

u (w+βd)− Jaβ̂
′′

d (w)
)

+ rJaβ̂
′′

d (w)

r(w̄d−w)
, for w ∈ [0, w̄d) \ {β̂−βd}. (103)

Q.E.D.

E.2. Proof of Lemma 3
Following (34), we can calculate for β̂ ∈ [βu, w̄u):

Jaβ̂
′

u (β̂+) =
(r+µu)Ju(β̂)−µuJd(β̂−βu)−R+ cu

rβ̂+µuβu

=
(r+µu)(vu + aβ̂)−µu

[
a(β̂−βu) +

µdvu−cd
µd+r

+C1(w̄d− β̂+βu)
r+µd
r

]
−R+ cu

rβ̂+µuβu

= a+
(r+µu)vu−µu

[
µdvu−cd
µd+r

+C1(w̄d− β̂+βu)
r+µd
r

]
−R+ cu

rβ̂+µuβu

, (104)

where C1 follows (97). Furthermore, following equation (37) and (104), we have for β̂ ∈ [βu, w̄u),

fa(β̂) =−(r+µu)vu +µu

[
µdvu− cd
µd + r

+C1(w̄d−β+βu)
r+µd
r

]
+R− cu, (105)

and fa(β̂) is increasing in [βu, w̄u] because C1 < 0. Therefore,

lim
β̂↑w̄u−

fa(β̂) =−(r+µu)vu +µu

[
µdvu− cd
µd + r

]
+R− cu

=
r∆µu +µu∆µd +µd∆µu

(µd + r)(r+µ
d

+ µ̄u)
R− µucd

µd + r
− cu ≥ 0,

where the last inequality follows from the condition (19). Q.E.D.

E.3. Proof of Proposition 4
We show the result following three steps.

1. Show that Jaβad is strictly concave in [0, ŵd), and Jaβau is concave in [0, ŵu) and strictly concave in
[βa, ŵu).

2. Show that for any w≥ 0, derivatives d
dw
Jaβau (w) and d

dw
Jaβad (w) are increasing in a.

3. There exists unique ā > −1 such that (40) is satisfied, and the corresponding functions J āβād (w) and
J āβāu (w) are both concave with derivatives greater than or equal to −1.

Step 1. For any a > −1, if βa = βu, then Jaβau is C2([0, w̄u) \ {βu}) and Jaβad is C3([0, w̄d) \ {βu − βd}).
Otherwise, if βa >βu, then Jaβau is C2([0, ŵu)) and Jaβad is C3([0, w̄d)\{w̄d}). Following (96) and (97), we have

Jaβad (w) is strictly concave with J
aβ′a
d (w)>a in the interval [0, βa−βd). We claim that J

aβ′′a
d ((βa−βd)+)< 0.

If βa >βu, then this result directly follows by smooth pasting. Otherwise, if βa = βu, equation (101) implies
that

J
aβ′′a
d ((βu−βd)+) =

µd

(
J
aβ′a
u (βu+)− Jaβ

′
a

d (βu−βd)
)

r(w̄d−w)
< 0,
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where the inequality follows from a− Jaβ
′
a

u (βu+)≥ 0 which is implied by the definition of βa and J
aβ′a
d (βu−

βd)>a. Next, we prove that Jaβau (w) is strictly concave in [βa,min{βa +βu−βd, w̄u}]. First, following (99),
we have

Jaβ
′′
a

u (βa+) =
µu

(
J
aβ′a
u (βa+)− Jaβ

′
a

d (βa−βu)
)

rβa +µuβu

< 0,

where the inequality follows from J
aβ′a
u (βa+) ≤ a and J

aβ′a
d (βa − βu) > a. Assume that there exists w ∈

(βa,min{βa +βu−βd, w̄u}] such that J
aβ′′a
u (w)≥ 0, then Jaβau being twice continuously differentiable implies

that there must exist ŵ = min{w ∈ (βa,min{βa +βu−βd, w̄u}]|J
aβ′′a
u (w) = 0}, such that J

aβ′′a
u (w) < 0 for

w< ŵ. Equation (99) implies that

Jaβ
′
a

u (ŵ) = J
aβ′a
d (ŵ−βu).

Since Jaβad is concave in the interval [0,min{βa− βd, w̄d}], equation (101) implies that J
aβ′a
u (ŵ+ βd− βu)<

J
aβ′a
d (ŵ−βu), which further implies that

Jaβ
′
a

u (ŵ+βd−βu)<Jaβ
′
a

u (ŵ),

which contradicts with J
aβ′′a
u (w)< 0 for w< ŵ. Hence, Jaβau is strictly concave in [βa,min{βa +βu−βd, w̄u}].

Next we prove two lemmas.

Lemma 8. For any w≥ 0, if Jaβad is strictly concave in [0,w+βa−βd] and Jaβau is concave in [βa,w+βa +
βu−βd] for any w≥ 0, then Jaβad is also strictly concave in [0,w+βa +βu− 2βd].

Proof. Assume that there exists w ∈ [w+βa−βd,w+βa +βu−2βd] such that J
aβ′′a
d (w)≥ 0, then the fact

that Jaβad is twice continuously differentiable implies that there must exist w̃ = min{w ∈ (w+ βa − βd,w+

βa +βu− 2βd]|Jaβ
′′
a

d (w̃) = 0}, such that J
aβ′′a
d (w)< 0 for w< w̃. Equation (103) implies that

J
aβ′′′a
d (ŵ) =

µdJ
aβ′′a
u (w+βd)

r(w̄d− ŵ)
< 0,

where the inequality follows from Jaβau being concave in [0,w+βa+βu−βd]. This contradicts with J
aβ′′a
d (w̃) =

0 and J
aβ′′a
d (w)< 0 for w< w̃. Q.E.D.

Lemma 9. For any w ≥ 0, if Jaβau is strictly concave in [0,w] and Jaβad is concave in [0,w − βd] for any
w≥ 0, then Jaβau is also strictly concave in [w,w+βu−βd].

The proof for Lemma 9 follows the same logic as Lemma 8, and is omitted here. Equipped with Lemmas
8 and 9, we prove that if Jaβau is strictly concave in [βa,w + βa + βu − βd] and Jaβad is strictly concave in
[0,w + βa − βd], then Jaβau is strictly concave in [βa,w + βa + 2βu − 2βd] and Jaβad is strictly concave in
[0,w+ βa + βu − 2βd]. Hence, by induction, Jaβau is strictly concave in [βa, w̄u) and Jaβad is strictly concave
in [0, w̄d).

We have J
aβ′a
d (w̄d−) > J

aβ′a
u (w̄u) from (99) and J

aβ′a
d (w̄d+) = J

aβ′a
u (w̄u) from (31). Hence, J

aβ′a
d (w̄d−) >

J
aβ′a
d (w̄d+). Finally, we prove that J

aβ′′a
u (w+) < 0 for w ∈ [w̄u, ŵu). If there exists w ∈ [w̄u, ŵu) such that

J
aβ′′a
u (w+) ≥ 0, then there must exist w̌ = min{w ∈ [w̄u, ŵu)|Jaβ

′′
a

u (w+) = 0}, such that J
aβ′′a
u (w+) < 0 for

w< w̌. Finally, (100) implies that

Jaβ̂
′

u (w̌)− Jaβ̂′u

(
r+µd

µd

(w̌−βu)+

)
= 0,

which contradicts with

Jaβ̂
′

u (w̌) = Jaβ̂
′

u

(
r+µd

µd

(w̌−βu)+

)
+

∫ w̌

r+µd
µd

(w̌−βu)

Jaβ̂
′′

u (x)dx< Jaβ̂
′

u

(
r+µd

µd

(w̌−βu)

)
,

where the inequality follows from w̌ > r+µd

µd
(w̌− βu) and J

aβ′′a
u (w+)< 0 for w < w̌. Following (102), J

aβ′′a
d is

also strictly concave in [w̄d, ŵd).
Step 2. We show that for any w≥ 0, dJaβau /dw and dJaβad /dw are increasing in a. To do so, we define

gd(w) :=
dJaβad

da
(w+) and gu(w) :=

dJaβau

da
(w+).

It suffices to prove that gd(w) and gu(w) are well-defined and strictly increasing in w.
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• For w ∈ [0, βa), we have gu(w) = w, which is strictly increasing in w. For w ∈ [0, βa − βd], gd(w) = w
which is also strictly increasing in w.

• For w= βa, we have

gu(βa+) = lim
ε↓0

Ja+εβau (βa)− Jaβau (βa)

ε
+
J
aβa+ε
u (βa)− Jaβau (βa)

ε
· dβa
da

= lim
ε↓0

Ja+εβau (βa)− Jaβau (βa)

ε
= βa = gu(βa−),

where the second equality follows from J
aβa+ε
u (βa) = Jaβau (βa) because βa+ε ≥ βa for any ε≥ 0.

• For Jaβau (w) on [βa, w̄u] and Jaβad (w) on [βa−βd, w̄d], taking derivatives with respect to a on both sides
of (32) and (34), we know that gd(w) and gu(w) satisfies the following system of equations:

(µd + r)gd(w) = µdgu(w+βd)− r(w̄d−w)g′d(w) , w ∈ [0, w̄d], and (106)

(µu + r)gu(w) = µugd(w−βu) + (rw+µuβu)g′u(w). w ∈ [βa, w̄u] (107)

In the following, we prove that gd(w) and gu(w) are also strictly increasing on [βa−βd, w̄d] and [βa, w̄u],
respectively. Following equation (107), we have

g′u(βa+) =
(µu + r)gu(βa)−µugd(βa−βu)

rw+µuβu

=
(µu + r)βa−µu [βa−βu]

rw+µuβu

≥ (µu + r)βu

rw+µuβu

> 0,

where the second inequality follows from βa ≥ βu. Then we claim that gu(w) is strictly increasing in
[βa, βa + βu − βd]. If not, then there exists w ∈ (βa, βa + βu − βd] such that g′u(w) ≥ 0. Therefore, we
must have ŵ= min{w ∈ (βa, βa +βu−βd]|g′u(w) = 0} and g′u(w)> 0 for w< ŵ. Equation (107) implies
that

(r+µu)gu(ŵ) = µugd(ŵ−βu).

The fact that gd(w) is increasing in [0, βa − βd] implies that (µd + r)gd(w− βu)< µdgu(ŵ− βu + βd),
which further implies that

(r+µu)gu(ŵ) = µugd(ŵ−βu)<µu

µd

µd + r
gu(ŵ−βu +βd),

which contradicts g′u(w)> 0 for w< ŵ. We establish the final results by proving the next two claims.

Lemma 10. If gd is strictly increasing in [0,w+ βa − βd] and gu is strictly increasing in [0,w+ βa +
βu−βd] for any w≥ 0, then gd is also increasing in [w+βa−βd,w+βa +βu− 2βd].

Proof. If there exists w ∈ (w+ βa − βd,w+ βa + βu − 2βd] such that g′d(w)≤ 0, then we must have
w̃= min{w ∈ (w+βa−βd,w+βa+βu−2βd]|g′d(w) = 0} such that g′d(w)> 0 for w< w̃. Differentiating
(106), we obtain that

g′′d(ŵ) =
µd(g′u(ŵ+βd)− g′d(ŵ))

r(w̄d−w)
> 0,

where the inequality holds because gu is increasing on [0,w+ βa + βu− βd]. However, this contradicts
g′d(ŵ) = 0 and g′d(w)> 0 for w< w̃. Q.E.D.

Lemma 11. If gu is strictly concave in [0,w] and gd is concave in [0,w−βd] for any w≥ 0, then gu is
also strictly concave in [w,w+βu−βd].

The logic of the proof of Lemma 11 is similar to that of Lemma 10, and is therefore omitted here.
Following Lemmas 10 and 11, we can prove by induction that gu is strictly concave in [βa, w̄u) and gd
is strictly concave in [0, w̄d).



Author: 51

• For Jaβau (w) on [w̄u, ŵu) and Jaβad (w) on [w̄d, ŵd], taking derivatives with respect to a on both sides of
(31) and (98), we know that gd(w) and gu(w) satisfies the following system of equations,

(µd + r)gd(w) = µdgu

(
w+

rw

µd

)
for w ∈ [w̄d, ŵd], and (108)

(µu + r)gu(w) =
µuµd

µd + r
gu

(
r+µd

µd

(w−βu)

)
+ (rw+µuβu)1w<ŵug

′
u(w) for w ∈ [w̄u, ŵu]. (109)

Since (108) implies that g′d(w) = g′u

(
w+ rw

µd

)
for w ∈ [w̄d, ŵd], we just need to show that g′u(w) > 0

for w ∈ [w̄u, ŵu). We have proved that g′u(w)> 0 for w ∈ [0, w̄u]. If there exists w ∈ (w̄u, ŵu) such that
g′u(w)≤ 0, then there must be w̌= min{w ∈ (w̄u, ŵu)|g′u(w) = 0}, such that g′u(w)> 0 for w> w̌. Then,
(109) implies that

(µu + r)gu(w̌) =
µuµd

µd + r
gu

(
r+µd

µd

(w̌−βu)

)
.

However, this contradicts with

gu(w̌) = gu

(
r+µd

µd

(w̌−βu)

)
+

∫ w

r+µd
µd

(w̌−βu)

g′u(x)dx> gu

(
r+µd

µd

(w̌−βu)

)
.

Step 3. Since for any w ≥ 0, derivatives
d

dw
Jaβau (w) and

d

dw
Jaβad (w) are increasing in a, with boundary

condition (36), Jaβau (w) and Jaβad (w) are also increasing in a. For a approaching −1, we have lim
w↑w̄u

Jaβau (w)<

vu − ŵu ≤ v̄u − ŵu. For a approaching ∞, we have lim
w↑w̄u

Jaβau (w)→∞. Hence, there exists a unique a > 0,

denoted as ā, such that limw↑w̄u J
aβa
u (w) = v̄u− ŵu. Following (31), we have lim

w↑ŵd

Jaβad (w) = v̄d− ŵd.

Then, (31) and (98) imply that Jaβad (ŵd) = v̄d − ŵd, Jaβau (ŵu) = v̄u − ŵu, lim
w↑w̄u

Jaβ
′
a

u (w) = −1, and

lim
w↑ŵd

J
aβ′a
d (w) = −1. Hence, (40) is satisfied and the corresponding functions J āβāu on [0, ŵu] and J āβād on

[0, ŵd] are strictly concave. Further, the derivatives of Jaβau and Jaβad are greater than or equal to −1.
Finally, following (99), (101), (102) and the concavity of Jaβad and Jaβau , we have

Jaβ
′
a

u (w)<J
aβ′a
d (w−βu), for w ∈ (β, ŵu), (110)

Jaβ
′
a

u (w+βd)<J
aβ′a
d (w), for w ∈ [0, w̄d) \ {βā−βd},

Jaβ
′
a

u (βā+), Jaβ
′
a

u (βā−)<J
aβ′a
d (βā−βd), and (111)

J
aβ′a
d (w) = Jaβ

′
a

u

(
w+

rw

µd

)
for w ∈ (w̄d, ŵd]. (112)

Q.E.D.

E.4. Proof of Proposition 5
Following definition (58) and equation (59), we obtain that under contract Γ∗βa in Definition 3,

e−rτJ(τ) = J(0) +

∫ τ

0

e−rt(−R1θt=udt+ c(θt)dt+ dLt) +

∫ τ

0

e−rtA∗t , (113)

where

A∗t = dJ(t)− rJ(t)dt+R1θt=udt− c(θt)dt− dLt
= J ′(t)[rWt−−µ(θt,1)H∗t − `∗t ]dt− rJ(t)dt+ J(t+)− J(t) +R1θt=udt− dL∗t − c(θt)dt
=
{
J ′u(t)(rWt−+µuβu)1Wt−<ŵu − rJu(Wt−)− cu

}
dt1θt=u +

{
J ′d(Wt−)r(Wt−− w̄d)1Wt−<w̄d

dt− rJd(Wt−)− cd
}
dt1θt=d

+

{[
Ju

(
Wt−+

rWt−

µd

)
− Jd(Wt−)

]
1Wt−≥w̄d

+ [Ju(Wt−+βd)− Jd(Wt−)]1Wt−∈[βa−βd,w̄d)

+[(Ju(βa)− Jd(Wt−))(1−Xt) + (Ju(0)− Jd(Wt−))Xt]1Wt−<βa−βd

}
dNt1θt=d
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+ [Jd(Wt−−βu)− Ju(Wt−)]dNt1θt=u +R1θt=udt− dL∗t
= {R+ J ′u(Wt−)(rWt + cu +µuβu)1Wt−<w̄u − rJu(Wt−)dt+µu(Jd(Wt−−βu)− Ju(Wt−))

+ (rw̄u +µuβu + cu)1Wt−=w̄u}1θt=u− cudt
+
{
J ′d(Wt−)r(Wt−− w̄d)1Wt−<w̄d

− rJd(Wt−)− cd + [µdq
∗
t (Ju(0)− Jd(Wt−)) +µd(1− q∗t )(Ju(βa)− Jd(Wt−))]1Wt−<βa−βd

+ µd [Ju (Wt−+βd)− Jd(Wt−)]1Wt−∈[βa−βd,w̄d) +µd

[
Ju

(
Wt−+

rWt−

µd

)
− Jd(Wt−)

]}
1θt=ddt+B∗t

= B∗t ,

in which the last equality follows from (32), (33), (34) and

B∗t ={
[
Ju

(
Wt−+

rWt−

µd

)
− Jd(Wt−)

]
1Wt−≥w̄d

(dNt−µddt) + [Ju(Wt−+βd)− Jd(Wt−)]1Wt−∈[βa−βd,w̄d)(dNt−µddt)

+ [(Ju(0)− Jd(Wt−))(XtdNt−µdq
∗
t dt) + (Ju(βa)− Jd(Wt−))((1−Xt)dNt−µd(1− q∗t )dt)]1Wt−<βa−βd}1θt=d

+ [Jd(Wt−−βu)− Ju(Wt−)](dNt−µudt)1θt=u.

Taking the expectation on both sides of (113), we obtain

Jθ0(w) = J(0) = E
[
e−rτJ(τ) +

∫ τ

0

e−rt(R1θt=udt− c(θt)dt− dL∗t )
]

= u(Γ∗βā(w), ν∗, θ0),

where u(Γ∗βā , ν
∗, θ0) = w, and we apply the fact that

∫ τ

0

e−rtB∗t dt is a martingale and J(τ) = Jθτ (0) = vτ .

Q.E.D.

E.5. Proof of Theorem 4
From Proposition 4, we know that Jd(w) and Ju(w) are concave, J ′d(w)≥−1 and J ′u(w)≥−1. Given Lemma
5, we only need to show Φt ≤ 0 holds almost surely if νt = 1. From (57), we have

Φt = Φu
t 1θt=u + Φd

t1θt=d,

where

Φu
t : =R+ J ′u(Wt−)rWt−+µuqt[Wt−J

′
u(Wt−) +Jd(0)− Ju(Wt−)]

+µu(1− qt)[−HtJ
′
u(Wt−) +Jd(Wt−+Ht)− Ju(Wt−)]− rJu(Wt−)− cu,

and

Φd
t : = J ′d(Wt)rWt−+µdqt[Wt−J

′
d(Wt−) +Ju(0)− Jd(Wt−)]

+µd(1− qt)[−HtJ
′
d(Wt−) +Ju(Wt−+Ht)− Jd(Wt−)]− rJd(Wt−)− cd.

We have Φt ≤ 0 if Φd
t ≤ 0 and Φu

t ≤ 0. First, we prove that Φu
t ≤ 0 by considering the following optimization

problem,

max
qt,Ht

qt[Wt−J
′
u(Wt−) +Jd(0)− Ju(Wt−)] + (1− qt)[−HtJ

′
u(Wt−) +Jd(Wt−+Ht)− Ju(Wt−)]

s.t. 0≤ qt ≤ 1, −qtWt−+ (1− qt)Ht ≤−βu.

In the following, we verify that the optimal solution is

q∗t = 0 and H∗t =−βu. (114)

using the KKT conditions. Define the following dual variables for the binding constraints

xu =−(J ′u(Wt−)− J ′d(Wt−−βu))≥ 0,

in which the inequality follows from (116), and

yu = (Wt−−βu)(J ′u(Wt−)− J ′d(Wt−−βu))−Wt−J
′
u(Wt−)− Jd(0) +βuJ

′
u(Wt−) +Jd(Wt−−βu)

= (Wt−−βu)

(
Jd(Wt−−βu)− Jd(0)

Wt−−βu

− J ′d(Wt−−βu)

)
≥ 0,
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where the inequality follows from the concavity of Ju. One can verify

[Wt−J
′
u(Wt−) +Jd(0)− Ju(Wt−)]− [−H∗t J ′u(Wt−) +Jd(Wt−+H∗t )− Ju(Wt−)] =−yu− (H∗t +Wt−)xu,

(115)

(1− q∗t )(J ′u(Wt−)− J ′d(Wt−−H∗t )) = (q∗t − 1)xu. (116)

Therefore, (114) implies that

Φu
t ≤R+ J ′u(Wt−)rWt−+µu[βuJ

′
u(Wt−) +Jd(Wt−−βu)− Ju(Wt−)]− rJu(Wt−)− cu = 0,

where the equality follows from (34).
Following similar logic, we prove that Φd

t ≤ 0 by considering the following optimization problem,

max
qt,Ht

qt[Wt−J
′
d(Wt−) +Ju(0)− Jd(Wt−)] + (1− qt)[−HtJ

′
d(Wt−) +Ju(Wt−+Ht)− Jd(Wt−)],

s.t. 0≤ qt ≤ 1, −qtWt−+ (1− qt)Ht ≥ βd, Wt +Ht ≥ βu.

In the following, we verify that the optimal solution is

q∗t = 0 and H∗t =
rWt−

µd

if Wt− ≥ w̄d, (117)

q∗t = 0 and H∗t = βd if Wt− ∈ [βa−βd, w̄d], and (118)

q∗t =
βa−βd−Wt−

βa
and H∗t =−Wt−+βa if Wt− <βa−βd, (119)

using the KKT conditions.
• If Wt− ≥ w̄d, define the following dual variable for the binding constraint

yd = Ju(Wt−+H∗t )− Ju(0)− (Wt−+H∗t )J ′d(Wt−)

=
(r+µd)Wt−

µd

Ju

(
(r+µd)Wt−

µd

)
− Ju(0)

(r+µd)Wt−
µd

− J ′u
(

(r+µd)Wt−

µd

)≥ 0,

where the inequality follows from the concavity of Ju. One can verify

[Wt−J
′
d(Wt−) +Ju(0)− Jd(Wt−)]− [−H∗t J ′d(Wt−) +Ju(Wt−+H∗t )− Jd(Wt−)] =−yd, (120)

(1− q∗t )(J ′d(Wt−)− J ′u(Wt−+H∗t )) = J ′d(Wt−)− J ′u
(

(r+µd)Wt−

µd

)
= 0, (121)

where (121) follows from (112).

• If Wt− ∈ [βa−βd, w̄d], define the following dual variables for the binding constraints,

xd = J ′d(Wt−)− J ′u(Wt−+βd)≥ 0,

in which the inequality follows from (111), and

yd = (Wt−+βd)(J ′d(Wt−)− J ′u(Wt−+βd))−Wt−J
′
d(Wt−)− Ju(0)−βdJ

′
u(Wt−) +Ju(Wt−+βd)

= (Wt−+βd)

(
Ju(Wt−+βd)− Ju(0)

Wt−+βd

− J ′u(Wt−+βd)

)
≥ 0,

where the inequality follows from the concavity of Ju. One can verify

[Wt−J
′
d(Wt−) +Ju(0)− Jd(Wt−)]− [−H∗t J ′d(Wt−) +Ju(Wt−+H∗t )− Jd(Wt−)] =−yd + (Wt−+H∗t )xd,

(122)

(1− q∗t )(J ′d(Wt−)− J ′u(Wt−+H∗t )) = (1− q∗t )xd. (123)

• If Wt− <βa−βd and βa = βu, define the following dual variables for the binding constraints

xd = J ′d(Wt−)− Ju(βu)− Ju(0)

βu

= J ′d(Wt−)− a> 0
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in which the inequality follows from (96), and

α= (1− q∗t )(a− J ′u(βu))≥ 0,

in which the inequality follows from the definition of βa. One can verify

[Wt−J
′
d(Wt−) +Ju(0)− Jd(Wt−)]− [−H∗t J ′d(Wt−) +Ju(Wt−+H∗t )− Jd(Wt−)] = (Wt−+H∗t )xd,

(124)

(1− q∗t )(J ′d(Wt−)− J ′u(Wt−+H∗t )) = (1− q∗t )xd +α. (125)

• If Wt− <βa−βd and βa >βu, define the following dual variable for the binding constraint

xd = J ′d(Wt−)− a> 0

in which the inequality follows from (96). One can verify

[Wt−J
′
d(Wt−) +Ju(0)− Jd(Wt−)]− [−H∗t J ′d(Wt−) +Ju(Wt−+H∗t )− Jd(Wt−)] = (Wt−+H∗t )xd,

(126)

(1− q∗t )(J ′d(Wt−)− J ′u(Wt−+H∗t )) = (1− q∗t )xd. (127)

where (127) follows from J ′u(βa) = a.
Therefore, (117), (118) and (119) together imply that

Φd
t ≤−rJd(Wt−)− cd +µd

[
Ju

(
Wt−+

rWt−

µd

)
− Ju(Wt−)

]
1Wt−≥w̄d

+ [J ′d(Wt−)rWt−+µd[−βdJ
′
d(Wt−) +Ju(Wt−+βd)− Jd(Wt−)]]1Wt−∈[βa−βd,w̄d]

+ [J ′d(Wt−)rWt−+µdq
∗
t [Wt−J

′
d(Wt−) +Ju(0)− Jd(Wt−)]

+µd(1− q∗t )[(βa−Wt−)J ′d(Wt−) +Ju(βa)− Jd(Wt−)]1Wt−<βa−βd = 0,

where the equality follows from (31), (32) and (33). Q.E.D.

E.6. Proof of Proposition 6
For any ā≥ 0, (105) implies that fa(βu)≥ 0. Therefore, the definition of βa implies that βā = βu. Hence, if
βā >βu, then ā < 0 . Q.E.D.

E.7. Proof of Theorem 5
First, it is easy to verify that Γ∗d(w) is incentive compatible. Following definition 4, we obtain the following
equation for the principal’s value function at state d,

(µd + r)Jd(w) = r(w− w̄d)J ′d(w) +µdvu−µd(w+βd)− cd,w ∈ [0, w̄d] , (128)

with boundary condition Jd(0) = vd. By solving this differential equation, we obtain that under state d,

Jd(w) = (vd− vd)

(
1− w

w̄d

)1+
µd
r

−w+ vd . (129)

For state u, the societal value function is a constant,

Ju(w) = vu−w, (130)

Following similar logic to the one we use in the proof of proposition 2, we can show that the principal’s
utilities following contract Γ∗d(w) are Jd(w) and Ju(w) in states d and u, respectively. Under condition (44),
Jd and Ju are concave, J ′d(w)≥−1, and J ′u ≥−1. Hence, it suffices to prove that Φt ≤ 0 where Φt is defined
in (57). To this end, we let

Φt = Φu
t 1θt=u + Φd

t 1θt=d ,

where

Φu
t =R− rWt−+µu[−qtWt−+ (1− qt)Ht]− r(vu−Wt−) +µuqtvd +µu(1− qt)Jd(Wt−+Ht)−µu(vu−Wt−)− cu

=R− cu− (r+µu)vu +µuqtvd +µu(1− qt)Vd(Wt−+Ht)
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≤R− cu− (r+µu)vu +µuvd ≤ 0,

where the first equality follows from taking qt = 0 and vd ≤ Vd(Wt− +Ht)≤ vd, and the second inequality
from the opposition of (18). Therefore,

Φd
t = J ′d(Wt−)(rWt−−µd[−qtWt−+ (1− qt)Ht])− rJd(Wt−) +µdqtvu +µd(1− qt)(vu−Wt−−Ht)−µdJd(Wt−)− cd.

We prove that Φd
t ≤ 0 by considering the following optimization problem,

max
qt,Ht

J ′d(Wt−)[qtWt−− (1− qt)Ht] + qtvu + (1− qt)(vu−Wt−−Ht),

s.t. 0≤ qt ≤ 1, qtWt−+ (1− qt)Ht ≥ βd,

and verify that its optimal solution is

q∗t = 0 and H∗t = βd , (131)

following the KKT conditions. Define the following dual variable for the binding constraint

α= J ′d(Wt−) + 1≥ 0 ,

in which the inequality follows from J ′d(Wt−)≥−1. One can verify

J ′d(Wt−)(Wt−+H∗t ) +Wt−+H∗t = (Wt−+H∗t )α, and (132)

(1− q∗t )(J ′d(Wt−) + 1) = (1− q∗t )α. (133)

Therefore, (131) implies that

Φd
t ≤ J ′d(Wt−)(rWt−−µdβd)− rJd(Wt−) +µd(vu−Wt−−βd)−µdJd(Wt−)− cd

= J ′d(Wt−)r(Wt−− w̄d)− (r+µd)Jd(Wt−) +µd(vu−Wt−−βd)− cd = 0,

where the second equality follows from (128). In summary, we have U(Γ∗d(w), ν∗,d)≥ U(Γ, ν∗,d) and vu ≥
U(Γ, ν∗,u). Q.E.D.

E.8. Proof of Theorem 6
The proof of this theorem follows the same logic as the proof of Theorem 3, and is omitted here.

F. Proofs in Section 4.3

F.1. Proof of Proposition 7
F.1.1. βd ≥ βu According to Lemma 1, under any incentive compatible contract without termination,
the agent’s promised utility satisfies equation (PK) with qt = 0, Ht ≥ βd if θt = d and Ht ≤−βu if θt = u.
Rearranging equation (PK) and replacing ν with ν∗, qt = 0 and Xt = 0, we obtain that

dWt = {(rWt−−µdHt)dt+HtdNt}1θt=d + {(rWt−−µuHt)dt+HtdNt}1θt=u− dLt.

For any contract that starts at state d and agent’s utility Wt− < w̄d, we have rWt−−µdHt ≤ rWt−−µdβd =
r(Wt−− w̄d)< 0. This implies that before the machine recovers, the utility Wt keeps decreasing. Therefore,
starting from any promised utility below w̄d when the machine’s state is d, there is a positive probability
that the promised utility decreases to 0 before the machine is repaired, which contradicts the requirement
of τ =∞.

Similarly, for any contract that starts at state u and agent’s utility Wt− < w̄u, there is a positive probability
that the agent is terminated. This is because at state u, in order to incentivize the agent, the utility needs
to drop by at least βu when the machine breaks down, which implies that it is possible that the utility at
state d is smaller than w̄u−βu = w̄d.

Furthermore, Propositions 2 and 3 imply that Jd(w) is decreasing for w> w̄d and Ju(w) is decreasing for
w > w̄u, and are optimal value functions starting from the agent’s initial utility w and with initial state d
and u, respectively. Therefore, the initial w for the required optimal contract should be w̄d and w̄u with the
initial state d and u, respectively. The corresponding optimal contract is the simple contract Γ̄.
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F.1.2. βd < βu At state d, the machine should start the promised utility with Wt− ≥ w̄d, and, at state
u, the machine should start the promised utility with Wt− ≥ w̄u.

Furthermore, at state d, the promised utility starts with Wt− ∈ [w̄d, ŵd). If the upward jump −Ht >
rWt−/µd, then (PK) implies that rWt− − µdHt < 0, and the agent is terminated with positive probability.
On the other hand, if Ht ≥−rWt−/µd, since Wt < ŵd, we have rWt−/µd < βu. If the machine recovers and
then breaks down soon afterwards, then the upward jump of the promised utility is rWt−/µd, while the
downward jump is at least βu. Hence, in a cycle of up and down, the continuation utility can decrease by at
least βu− rWt−/µd. Therefore, after a finite number of such cycles, the promised utility at state d will drop
below w̄d. Again, the agent is then terminated, with a positive probability.

Hence, in order to ensure τ =∞, the starting promised utility at state d needs to be greater than ŵd, and
at state u greater than ŵu. Furthermore, Propositions 4 and 5 imply that Jd(w) is decreasing for w> ŵd and
Ju(w) is decreasing for w > ŵu. Therefore, the initial promised utility w for the required optimal contract
should be ŵd and ŵu for initial states d and u, respectively. The corresponding optimal contract is the simple
contract Γ̂. Q.E.D.
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E-companion: Optimal One Sided Contracts
The main body of the paper studies the optimal contract when the agent is responsible for

both maintaining and repairing the machine (call it “combined contract”) and these contracts

induce full effort from the agent before termination. Results in Section 4 indicate that for a set

of given model parameters, it is fairly easy to obtain optimal incentive compatible contracts and

the corresponding value functions. In this e-companion, we first provide sufficient conditions based

on computed corresponding value functions, which can be used to verify if the optimal incentive

compatible contracts that obtain full effort from the agent are, in fact, optimal, even if we allow

shirking.

When the sufficient conditions are not satisfied, it may be preferable for the principal to hire

the agent just to maintain or just to repair, and to allow the agent to shirk. In Section EC.2 and

EC.3 of this e-companion, we consider two one sided contracts where the agent is only responsible

for one of the two duties. A “maintenance contract” only induces the agent to exert effort when

the machine is up in order to decrease the arrival rate of failures. Similarly, a “repair contract”

only induces the agent to exert effort when the machine is down to increase the rate of recovery.

Studying these two types of contracts is relevant because as we showed in Section 5, one of these

two contracts may outperform the optimal combined contract.

As it turns out, these two contract design problems are not special cases of the model studied

in the main body of the paper. To see this, consider the example of maintenance contracts. In this

setting, the machine recovers with a rate of µ
d

without the agent’s effort. In the optimal combined

contract, the agent’s promised utility is increased by at least βd when the state changes from down

to up, in which βd = cd/
(
µd−µd

)
. In the maintenance contract setting, we cannot simply set

cd = 0 and µd = µ
d
, because the corresponding βd would not be well defined. In fact, the principal

does not need to reward the agent when the state changes from down to up. Consequently, how

the promised utility should change in this case is not immediately clear.

EC.1. Incentive Compatibility where agents are responsible for both
maintenance and repair

Following the optimality condition presented in Lemma EC.4, we first obtain the following suffi-

cient condition for optimality of maintaining incentive compatibility in the problem where agents

are responsible for both maintenance and repair. Since the sufficient condition is based on the

principal’s value functions, it is convenient to summarize the definition of value functions under

different parameter regions:

• βd ≥ βu, R≥ hd: Principal’s value function Jd(w) and Ju(w) are defined by (20)-(24) in Section

4.1.2. (hd is defined in (14))
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• βd ≥ βu, R ∈ [gu, hd): Principal’s value function Jd(w) and Ju(w) are defined by (94)-(95) in

the proof of theorem 2. (gu is defined in (27))

• βd ≥ βu, R< gu: Principal’s value function Jd(w) = vd−w and Ju(w) = vu−w.

• βd <βu, R≥ hu: Principal’s value function Jd(w) and Ju(w) are defined by (31)-(36) in Section

4.2.2 with ā defined in proposition 4. (hu is defined in (19))

• βd < βu, R ∈ [gd, hu): Principal’s value function Jd(w) and Ju(w) are defined by (129)-(130)

in the proof of theorem 5. (gd is defined in (43))

• βd <βu, R< gd: Principal’s value function Jd(w) = vd−w and Ju(w) = vu−w.

Proposition EC.1. It is optimal to always induce full effort from the agent before contract ter-

mination if function Jd(w) and Ju(w) summarized above satisfy the following two conditions,

ϕd(w) := rJd(w) +µ
d
Jd(w)− rwJ ′d(w)−µ

d
max
−h≤w

{−hJ ′d(w) +Ju(w+h)} ≥ 0, for w≥ 0, (EC.1)

and

ϕu(w) := rJu(w) + µ̄uJu(w)−R− rwJ ′u(w)− µ̄u max
−h≤w

{−hJ ′u(w) +Jd(w+h)} ≥ 0, for w≥ 0.

(EC.2)

It is worth noting that Proposition EC.1 is a parallel result to condition (54) in Biais et al. (2010),

Proposition 8 in DeMarzo and Sannikov (2006) and Proposition 6 in Varas (2017). However, our

conditions are more complex than the corresponding conditions in the literature, involving solving

a single dimensional maximization problem in both (EC.1) and (EC.2). This complexity is due to

the key difference between our paper and the aforementioned continuous time dynamic contracting

papers: in all the other papers, the agent is only responsible for one task whereas in ours, the agent

is responsible for two tasks. This induces complexity because the principal’s value function will

further depend on the machine’s states u and d.

Specifically, imagine, for the moment, that we replace the term Ju(w−h) in (EC.1) by Jd(w−h),

so that there would be only one state. (the down state) It is easy to verify that in this case,

concavity of the value function Jd(w−h) implies that the optimal h in this maximization problem

should be 0. (The intuitive interpretation is that there is no change in the agent’s promised utility

associated with arrivals during the period when the agent is allowed to shirk.) Consequently, the

expression ϕd(w) would be greatly simplified to be a monotone function, which yields a sufficient

condition only involving evaluating the value function at its boundaries. In our case, however,

concavity of functions Jd(w) and Ju(w) do not guarantee that the optimal h takes value 0. (That

is, in general contracts allowing shirking, the agent’s promised utility still needs to include jumps

as the machine changes states when the agent shirks.) This exactly explains the reason why our
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verification conditions are more complex than those in the aforementioned literature, and highlights

the distinct feature of our set-up with two machine states.

Fortunately, the principal’s value functions Jd(w) and Ju(w) defined in the previous sections

are, in fact, quite easy to compute. Therefore, conditions (EC.1) and (EC.2) can be easily verified

numerically for any model parameter settings. From Sections 4.1 and 4.2, we learn that the optimal

incentive compatible contracts take three forms depending on model parameters. Specifically, the

three regions can be characterized by dividing the value of revenue rate R into three intervals, fixing

all other model parameters. The following result indicates that if the value of R belongs to the

lowest interval, sufficient conditions (EC.1) and (EC.2) are guaranteed to hold. If R is moderate,

on the other hand, sufficient conditions (EC.1) and (EC.2) do not hold. Therefore, we only need

to check conditions (EC.1) and (EC.2) if revenue R is high enough.

Corollary EC.1. (i) If βd ≥ βu and condition (29) holds, or, if βd <βu and condition (45) holds,

then conditions (EC.1) and (EC.2) hold.

(ii) If βd ≥ βu and condition (28) holds, or, if βd <βu and condition (44) holds, then conditions

(EC.1) and (EC.2) do not hold.

Corollary EC.1(i) implies that if R is in the lowest interval, then not hiring the agent is not

only the optimal incentive compatible contract, but also the best strategy among all contracts.

In this case the principal’s value function is a linear function with slope −1, which allows us to

easily verify conditions (EC.1) and (EC.2). In comparison, Corollary EC.1(ii) implies that if R

takes moderate values (in the middle interval defined in (28) or (44)), the principal may be better

off allowing shirking at some point in time before terminating the contract.

Note that the intervals defined in (28) and (44) are empty when βu = βd. That is, the middle

interval only occurs if the ratios between effort cost and repair rate and maintenance rate improve-

ment are not balanced, or, between the two types of efforts (repairing and maintaining) one of them

is more favored than the other. In this case, the optimal incentive compatible contract dictates the

principal to hire the agent only if the machine starts in the favored state, and to terminate the

agent as soon as the state changes. If we allow shirking instead, the principal may benefit from

hiring the agent to exert effort when the machine is in the favored state, while allowing the agent

to shirk when the machine is in the other state and wait for the favored state to come back. This,

again, provides us the motivation to study the optimal one-sided contracts.

EC.2. Optimal Maintenance Contract

In this section, we consider the contract design problem where the agent only has the expertise of

maintenance work which means when the machine is up, he could decrease the rate that machine
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breaks down from µ̄u to µu and when the machine is down, agent does not work and the machine

recovers with rate µ
d
. Correspondingly, we need to change the arrival rate of process N in (2) as

µm(θt, νt) = [µuνt + µ̄u(1− νt)]1θt=u +µ
d
1θt=d,

and the effort cost rate (1) at t as

cm(θt) = cu1θt=u.

With these new definitions, we need to change the agent’s expected total utility (5) by sub-

stituting c(θt) with cm(θt). Without the agent, the principal’s total discounted future profit for

states u and d are vu and vd, respectively where vu and vd are defined in equation (4). The

principal’s expected total discounted profit under a contract Γm and effort process ν = {νt}∀t∈[0,τ ]

such that νt = 0 when θt = d is still defined as (3). Denote the full effort process as νm := {(νm)t =

1θt=u}∀t∈[0,τ ]. A maintenance contract Γm is incentive compatible if u(Γm, νm, θ0)≥ u(Γm, ν, θ0) for

any effort process ν = {νt}∀t∈[0,τ ] such that νt = 0 when θt = d. Furthermore, the following result is

parallel to Lemma 1.

Lemma EC.1. In the maintenance setting, for any contract Γm, there exists Ft-predictable pro-

cesses Ht such that for t∈ [0, τ),

dWt ={rWt−− (1− νt)cm(θt)− [(1− qt)Ht− qtWt−]µm(νt, θt)}dt− dLt + [(1−Xt)Ht−XtWt−]dNt,
(PKm)

in which Bernoulli random variable Xt takes value 1 with probability qt. Furthermore, contract Γm

is incentive compatible if and only if

−qtWt−+ (1− qt)Ht ≤−βu for θt− = u, ∀t∈ [0, τ ]. (EC.3)

Finally, we need −Ht ≤Wt− for all t≥ 0 in order to satisfy (IR).

Similar to the combined contract, constraint (EC.3) implies that any incentive compatible main-

tenance contract must satisfy the condition Wt− ≥ βu when θt− = u.

Next, we propose a maintenance contract and prove its optimality following similar approaches

in Sections 4.1 and 4.2. The general idea is that the promised utility increases at rate rWt−+µuβu

in state u, and drops βu whenever the machine breaks down. In state d, the promised utility stays

at a constant, and takes an upward jump of rWt−/µd
when the machine recovers, which collects

the expected interest accrued during state d. At the end of an up state, if a downward jump brings

the promised utility to below the following threshold,

wm :=
µ
d

µ
d

+ r
βd,
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the upward jump at the end of the down state cannot bring it back to βu anymore. Because the

promised utility has to be higher than βu in state u in order to induce full effort, if the promised

utility jumps down to below wm, then the principal should randomly terminate the agent, or reset

it back to wm. Similar to before, payment starts when the promised utility reaches the upper

threshold

w̄m :=
µ
d

+ r

r
βd.

The exact dynamics is represented in the following definition.

Definition EC.1. The contract Γ∗m(w) = (L∗, q∗, τ ∗) is defined as the following.

i. The dynamics of the agent’s promised utility Wt follows

dWt =


(rWt−+µuβu)dt−βudNt, θt = u, βu ≤Wt− ≤ w̄m
−XtWt−+ (1−Xt) (wm−Wt−) , θt = d, Wt− <wm(
rWt−/µd

)
dNt, θt = d, Wt− ≥wm

, (DWm)

from an initial promised utility W0 =w.

ii. The payment process follow dL∗t =
(

2µ
d

+ r
)
βu1Wt−=w̄m1θt=udt.

iii. The random termination probability process for Wt− <wm is q∗t = q̂(Wt−), in which

q̂(w) := 1−w/wm,

and the termination time is τ ∗ = min{t :Wt = 0}.

Furthermore, the following set of differential equations define the principal’s value functions Jmd

and Jmu .

(µ
d

+ r)Jmd (w) = µ
d
Jmu

(
µ
d

+ r

µ
d

w

)
, w≥wm, (EC.4)

Jmd (w) = q̂(w)Jmd (0) + (1− q̂(w))Jmd (wm) , w <wm, and (EC.5)

− cu + (rw+µuβu)1w<w̄mJ
m′

u (w) = (µu + r)Jmu (w) +
(

2µ
d

+ r
)
βu1w=w̄m

−R−µuJ
m
d (w−βu), w ∈ [βu, w̄m] . (EC.6)

with boundary conditions

Jmd (0) = vd, Jmd (w̄m−βu) =
µ
d
(R− cu)

r
(
r+µu +µ

d

) − (w̄m−βu), (EC.7)

Jmu (0) = vu, Jmu (w̄m) =
(r+µ

d
)(R− cu)

r
(
r+µu +µ

d

) − w̄m. (EC.8)

Similar to Proposition 1, the next proposition establishes the concavity of the principal’s value

functions.



ec6 e-companion to Author:

(a) Societal’s Value functions (b) Principal’s Value functions

Figure EC.1 Value functions with µu = 5,∆µu = 1, µd = 2,∆µd = 1, cu = 0.1, cd = 1.3, r= 0.5,R= 10.

Proposition EC.2. The system of differential equations (EC.4)-(EC.6) with boundary conditions

(EC.7) and (EC.8) has a unique solution: the pair of functions, Jmu (w) on [0, w̄m], and Jmd (w) on

[0, w̄m−βu], both of which are strictly concave and Jm
′

u (w)≥−1, Jm
′

d (w)≥−1.

The next result shows that Jmd and Jmu are indeed the principal’s value function if the initial

promised utility is w starting from states d and u, respectively.

Proposition EC.3. For promised utility w ∈ [0, w̄m−βu], we have U(Γ∗m(w), νm,d) = Jmd (w). For

promised utility w ∈ [0, w̄m], we have U(Γ∗m(w), νm,u) = Jmu (w).

Furthermore, we can find wm∗d and wm∗u as the maximizers of Jmu and Jmd respectively, and start

the promised utility from them.

Similar to Section 4.1 and 4.2, we define the societal value functions as the summation of the

principal and the agent’s utilities, V m
d (w) = Jmd (w) + w and V m

u (w) = Jmu (w) + w. Figure EC.1

provides a numerical example of societal value functions V m
d and V m

u and the principal’s value

functions Jmd and Jmu .

From Section EC.1, we know that for the combined contract, the sufficient conditions that

guarantee the optimality of the full effort contract are relatively complicated. For the maintenance

contract setting, we can show that, the following simple condition is necessary and sufficient for

the principal to want to hire and induce full effort from the agent,

R≥
(
r+µ

d
+ µ̄u

)
βu = gu. (EC.9)

The next theorem shows that under condition (EC.9), functions Jmd and Jmu are upper bounds for

the principal’s utility under any maintenance contract Γm.
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Theorem EC.1. Under condition (EC.9), for any contract Γm and any initial state θ ∈ {u,d} that

satisfies (EC.3), we have Jθ
(
u(Γ∗m, ν, θ)

)
≥ U(Γm, ν, θ), in which we extend the function Jmd (w) =

Jmd (w̄m−βu)− (w− w̄m +βu) for w> w̄m−βu and Jmu (w) = Jmu (w̄m)− (w− w̄m) for w> w̄m.

We have U
(
Γ∗m(wm∗θ ), νm, θ

)
≥U(Γm, ν, θ) for any contract Γm and state θ. That is, the optimal

contract is Γ∗m(wm∗θ ) and the machine starts from state θ ∈ {u,d}.

It is worth noting that Theorem EC.1 shows that contract Γ∗m defined in Definition EC.1 is

optimal among any maintenance contract Γm. This result is stronger than Theorem 1 and 4,

which only show that contracts Γ∗1 and Γ∗
β̂

in Sections 4.1.1 and 4.2.1 are optimal among incentive

compatible contracts.

The next proposition shows that if condition (EC.9) is violated, then the principal is better off

not hiring the agent, even if we take contracts that allow shirking into consideration.

Proposition EC.4. Assuming condition (EC.9) does not hold, that is,

R<
(
r+µ

d
+ µ̄u

)
βu = gu. (EC.10)

We have vθ ≥U(Γm, νm, θ) for any maintenance contract Γm and state θ ∈ {d,u}.

Figure EC.2 depicts two sample trajectories of the agent’s promised utility according to Γ∗m(wm∗u )

where the machine starts at state θ0 = u. In state u, the promised utility increases over time until

the machine breaks down or the promised utility reaches w̄m. According to the solid curve in Figure

EC.2, the machine changes states at times t1, t2, t3, t4, and t5. Between [0, t1], the promised utility

increases over time while the agent is maintaining the machine. At time t1, the machine breaks

down and the promised utility drops by βu. Once the machine is in state d, the agent does not

need to work, and the promised utility remains a constant, until the machine recovers at time t2.

Whenever the machine recovers at time t, the utility Wt− takes an upward jump of
rWt−

µ
d

. This

upward jump happens at time t2 following the solid curve. After t2, the promised utility increases

again while the agent maintains the machine, until time t̂3 when the promised utility reaches w̄m.

At this point, the flow payment starts. After time t3, the agent’s promised utility is jumping back

and forth between w̄m when the machine is up and w̄m−βu when the machine is down.

Now we focus on the other sample trajectory in Figure EC.2, the dotted curve. The machine

is in state u during time intervals [0, t̃1], [t̃2, τ ] and in state d during [t̃1, t̃2]. The promised utility

increases in state u and stays at a constant in state d. Right after the machine breaks down at

time τ , the promised utility jumps to below wm. Consequently, even an upward jump of
rWt−

µ
d

cannot raise the promised utility to above βu. Therefore, at time t̃3 the agent is terminated with

probability q̂(Wt̃3−). On the other hand, with probability 1− q̂(Wt̃3−), the agent’s promised utility

is reset to βu (the “*” in the figure) and continues increasing.
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Figure EC.2 Two sample trajectories of promised utility with model parameters µu = 5,∆µu = 1, µd = 2,∆µd =

1, cu = 0.1, cd = 1.3, r= 0.5,R= 10. The policy starts from wm∗u = 0.146. The solid curve represents

a sample trajectory which brings the agent to the point of never to be terminated. The dotted curve

represents another sample trajectory in which the agent is terminated due to a random draw at a

point when the machine breaks down.

EC.3. Optimal Repair Contract

In this section, we consider the contract design problem where the agent only has the expertise to

repair. That is, when the machine is down, the agent is able to decrease the recovery rate from

µ
d

to µd with effort. When the machine is up, on the other hand, the agent does not work and

the machine breaks down with rate µ̄u. Correspondingly, we need to change the the arrival rate of

process N in (2) as

µr(θt, νt) = µ̄u1θt=u + [µdνt +µ
d
(1− νt)]1θt=d,

and the effort cost rate (1) at t as

cr(θt) = cd1θt=d.

With these new definitions, we need to change the agent’s expected total utility (5) by substituting

c(θt) with cr(θt). Without the agent, the principal’s total discounted future profit for states u and

d are vu and vd, respectively, where vu and vd are defined in (4). The principal’s expected total

discounted profit under a contract Γr and effort process ν = {νt}∀t∈[0,τ ] such that νt = 0 when θt = u

is still defined as (3). Denote the full effort process as νr := {(νr)t = 1θt=d}∀t∈[0,τ ]. A contract Γr

is incentive compatible if u(Γr, νr, θ0)≥ u(Γr, ν, θ) for any effort process ν = {νt}∀t∈[0,τ ] such that

νt = 0 when θt = u. Again, the following result is parallel to Lemma 1.
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Lemma EC.2. In a repair setting, for any contract Γr, there exists Ft-predictable processes Ht

such that

dWt ={rWt−− (1− νt)cr(θt)− [(1− qt)Ht− qtWt−]µr(νt, θt)}dt− dLt + [(1−Xt)Ht−XtWt−]dNt, t∈ [0, τ)
(PKr)

in which Bernoulli random variable Xt takes value 1 with probability qt. Furthermore, contract Γr

is incentive compatible if and only if

−qtWt−+ (1− qt)Ht ≥ βd for θt = d, ∀t∈ [0, τ ]. (EC.11)

Finally, we need −Ht ≤Wt− for all t≥ 0 in order to satisfy (IR).

In the following, we directly propose a repair contract and prove the optimality following the

similar approach in Section 4.1 and 4.2.

Definition EC.2. The contract Γ∗r(w) = (L∗, q∗, τ ∗) is defined as

i. The dynamics of the agent’s promised utility Wt, follows

dWt =

[
r(Wt−− w̄d)dt+ min

{
µ̄u

µ̄u + r
w̄d−Wt−, βd

}
dNt

]
1θt=d +

rWt−

µ̄u

dNt1θt=u (DWr)

from an initial promised utility W0 =w.

ii. The payment to the agent follows dL∗t = (Wt−+βd− µ̄u/(µ̄u + r)w̄d)+dNt1θt=d.

iii. The random termination probability q∗t = 0 and the termination time τ ∗ = min{t :Wt = 0}.

Furthermore, the principal’s value functions are determined by the following set of differential

equations

(µd + r)Jrd(w) =−cd + r(w− w̄d)Jr
′

d (w) +µdJ
r
u

(
min

{
w+βd,

µ̄uw̄d

µ̄u + r

})
−µd

(
w+βd−

µ̄uw̄d

µ̄u + r

)+

,

(EC.12)

(µ̄u + r)Jru(w) =R+ µ̄uJ
r
d

(
r+ µ̄u

µ̄u

w

)
, (EC.13)

with boundary conditions

Jrd(0) = vd, Jrd (w̄d) =
µdR− (r+ µ̄u)cd
r (r+ µ̄u +µd)

− w̄d, (EC.14)

Jru(0) = vu, Jru

(
µ̄u

µ̄u + r
w̄d

)
=

(r+µd)R− µ̄ucd
r(r+ µ̄u +µd)

− µ̄uw̄d

µ̄u + r
. (EC.15)

Similar to Proposition 1, the next Proposition establishes the concavity of the principal’s value

functions.

Proposition EC.5. The system of differential equations (EC.12) and (EC.13) with boundary

conditions (EC.14) and (EC.15) has a unique solution: the pair of functions, Jru(w) on

[
0,
µ̄uw̄d

µ̄u + r

]
,

and Jrd(w) on [0, w̄d], both of which are strictly concave and Jr
′

u (w)≥−1, Jr
′

d (w)≥−1.
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The next result shows that Jrd(w) and Jru(w) are indeed the principal’s value function if the

initial promised utility is w starting from states d and u, respectively.

Proposition EC.6. For promised utility w ∈ [0, w̄d], we have U(Γ∗r, νr, θ) = Jrd(w). For promised

utility w ∈
[
0,
µ̄uw̄d

µ̄u + r

]
, we have U(Γ∗r(w), νr, θ) = Jru(w).

Furthermore, we can find wr∗d and wr∗u as the maximizers of Jrd(w) and Jru(w) respectively, and

start the promised utility from them.

Similar to Section 4.1 and 4.2, we define the societal value functions as the summation of the

principal and the agent’s utilities, V r
d (w) = Jrd(w)+w and V r

u (w) = Jru(w)+w. Figure EC.3 provides

a numerical example of societal value functions V r
d and V r

u and the principal’s value functions Jrd

and Jru.

From Section EC.1, we know that for the combined contract, the sufficient conditions that

guarantee the optimality of the full effort contract are relatively complicated. For the repair contract

setting, we can show that, the following simple condition is necessary and sufficient for the principal

to want to hire and induce full effort from the agent,

R≥ (r+µ
d

+ µ̄u)βd = gd (EC.16)

The next theorem shows that under condition (EC.16), functions Jrd and Jru are upper bounds for

the principal’s utility under any (not necessarily incentive compatible) contract Γr.

Theorem EC.2. Under condition (EC.16), for any repair contract Γr and any initial state θ ∈

{u,d} that satisfies (EC.11), we have Jθ
(
u(Γ∗r, ν, θ)

)
≥U(Γr, ν, θ), in which we extend the function

Jd(w) = Jd(w̄d)− (w− w̄d) for w> w̄d and Ju(w) = Ju

(
µ̄uw̄d

µ̄u + r

)
−
(
w− µ̄uw̄d

µ̄u + r

)
for w>

µ̄uw̄d

µ̄u + r
.

We have U
(
Γ∗r(w

r∗
θ ), νr, θ

)
≥ U(Γr, ν, θ) for any repair contract Γr and state θ. That is, the

optimal contract is Γ∗r(w
r∗
θ ) when the machine starts from state θ ∈ {u,d}.

Therefore, Γ∗r is, in fact, the optimal contract among any repair contract Γr. Similar to Propo-

sition EC.4, the next proposition shows that if condition (EC.16) is violated, then the principal is

better off not hiring the agent.

Proposition EC.7. Assuming condition (EC.16) does not hold, that is,

R< (r+µ
d

+ µ̄u)βd = gd. (EC.17)

We have vθ ≥U(Γr, νr, θ) for any repair contract Γr and state θ ∈ {d,u}.

Figure EC.4 depicts two sample trajectories of the agent’s promised utility according to contract

Γ∗r(w
r∗
u ), where the machine starts at state θ0 = u. In state u, the agent does not need to work,
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(a) Societal’s Value functions (b) Principal’s Value functions

Figure EC.3 Value functions with µu = 5,∆µu = 1, µd = 2,∆µd = 1, cu = 1.3, cd = 0.9, r= 0.8,R= 16.

and the promised utility always remains a constant, until the machine breaks down, at time t1 on

the solid curve and at t̂1 on the dotted curve. Whenever the machine breaks down, the utility Wt−

takes an upward jump of level
r

µ̄u

Wt−, after which the machine is in state d and the agent starts to

exert effort. In this state, the promised utility keeps decreasing until either the machine recovers,

as depicted by the solid curve between time t1 and t2, or the promised utility decreases to zero

and the contract terminates, as depicted by time τ on the dotted curve. If the machine recovers at

time t with Wt− > 0, the utility takes an upward jump of level min

{
µ̄u

µ̄u + r
w̄d−Wt−, βd

}
, and the

agent is paid

(
Wt−+βd−

µ̄uw̄d

(µ̄u + r)

)+

instantaneously, as what happens at time t4 or t6 following

the solid curve. After the first payment, the promised utility remains constant µ̄uw̄d/(µ̄u + r) at

state u and w̄d at state d.

EC.4. Proofs

This section collects all the proofs in this e-companion.

EC.4.1. Proofs in Section EC.1

To discuss the optimality of the full effort incentive compatible contract under any contracts that

even allow shirking, we need to consider a larger contract space in which the principal does not

need to induce full effort from the agent. First, the principal’s utility is revised to be

U(Γ, ν, θ0) =E
[∫ τ

0

e−rt(R1θt=udt− dLt) + e−rτvτ

∣∣∣∣θ0

]
, (EC.18)

and the agent’s utility is changed to be

u(Γ, ν, θ0) =E
[∫ τ

0

e−rt [dLt− νtc(θt)dt]
∣∣∣∣θ0

]
. (EC.19)



ec12 e-companion to Author:

Figure EC.4 Two sample trajectories of promised utility with model parameters µu = 5,∆µu = 1, µd = 2,∆µd =

1, cu = 1.3, cd = 0.9, r= 0.8,R= 16. The policy starts from wr∗u = 0.4525. The solid curve represents

a sample trajectory which brings the agent to the point of never terminated. The dotted curve

represents another sample trajectory in which the agent is terminated.

A more general version of Lemma 1 is presented in the following:

Lemma EC.3. For any contract Γ, there exists an FN -predictable process Ht such that for t∈ [0, τ ],

dWt = {rWt−+ νtc(θt)− [(1− qt)Ht− qtWt−]µ(θt, νt)− `t}dt+ [(1−Xt)Ht−XtWt−]dNt− It,
(EC.20)

in which Bernoulli random variable Xt takes value 1 with probability qt. Furthermore, the necessary

and sufficient condition for the effort process ν to maximize agent’s utility (EC.19) given Γ is that

νt = 1 if and only if − qtWt−+ (1− qt)Ht ≤−βu, `t ≥ cu, for θt = u,and

− qtWt−+ (1− qt)Ht ≥ βd, `t ≥ cd, for θt = d (EC.21)

for all t∈ [0, τ ].

Correspondingly, a more general optimality condition (compared to Lemma 5) is presented in the

following,

Lemma EC.4. Suppose Jd(w) : [0,∞) → R and Ju(w) : [0,∞) → R are differentiable, concave,

upper-bounded functions, with J ′d(w)≥−1, J ′u(w)≥−1, and Jd(0) = vd. Consider any contract Γ,

which yields the agent’s expected utility u(Γ, ν) =W0, followed by the continuation utility process

{Wt}t≥0 according to (PK). Define a stochastic process {Φt}t≥0 as

Φt :=R1θt=u +J ′θt(Wt−)(rWt−− [−qtWt−+ (1− qt)Ht]µ(θt, νt))− rJθt(Wt−)
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+µ(θt, νt)qt[Jθ̂t(0)−Jθt(Wt−)] +µ(θt, νt)(1− qt)[Jθ̂t(Wt−+Ht)−Jθt(Wt−)]− νtc(θt) .
(EC.22)

where θt ∈ {u,d} and θ̂t = 1θt=d ·u+1θt=u ·d. Also, νt = 0 if constraints (EC.21) are not satisfied at

time t and νt = 1 if constraints (EC.21) are satisfied at time t. If the process {Φt}t≥0 is non-positive

almost surely, then we have Jθ(u(Γ, ν, θ))≥U(Γ, ν, θ).

EC.4.1.1. Proof of Proposition EC.1 We have shown that Jd(w) and Ju(w) summarized

at the beginning of Section EC.1 are upper bounds of the societal utility of any incentive compatible

contracts starting from states d and u, respectively, under different conditions. Or, equivalently,

they satisfy that J ′d(w) ≥ −1, J ′u(w) ≥ −1, and boundary conditions Jd(0) = vd and Ju(0) = vu,

and that Φt defined in (57) (or equivalently (EC.22) with νt = 1) is non-positive almost surely.

Hence, to prove that they are upper bounds of any contracts, we need to further verify that if

Φt defined in (EC.22) is non-positive almost surely when νt = 0. Hence, following (EC.22), the

following conditions

rJd(Wt−)≥−µ
d
Jd(Wt−) + rWt−J

′
d(Wt−) +µ

d
[qtWt−− (1− qt)Ht]J

′
d(Wt−) +µ

d
(qtJu(0)+(1− qt)Ju(Wt−+Ht)),

Wt− ≥ 0,

and

rJu(Wt−)≥−µ̄uJu(Wt−) + rWt−J
′
u(Wt−) + µ̄u[qtWt−+ (1− qt)Ht]J

′
u(Wt−) + µ̄u(qtJd(0)+(1− qt)Jd(Wt−−Ht)),

Wt ≥ 0,

for any −Ht ≤Wt− and qt ∈ [0,1] imply that it is optimal to induce effort from the agent before

contract termination. They are further equivalent to

rJd(w)≥−µ
d
Jd(w) + rwJ ′d(w) +µ

d
max

q∈[0,1],−h≤w
{[qw− (1− q)h]J ′d(w) + (qJu(0) + (1− q)Ju(w+h))} ,w≥ 0,

(EC.23)

and

rJu(w)≥−µ̄uJu(w) + rwJ ′u(w) + µ̄u max
q∈[0,1],−h≤w

{[qw− (1− q)h]J ′u(w) + (qJd(0) + (1− q)Jd(w+h))} ,w≥ 0,

(EC.24)

respectively. In the following, we first consider the optimization problem in (EC.23),

max
q∈[0,1],−h≤w

{[qw− (1− q)h]J ′d(w) + (qJu(0) + (1− q)Ju(w+h))}

= max
q∈[0,1],−h≤w

{q[wJ ′d(w) +Ju(0)] + (1− q)[−hJ ′d(w) +Ju(w+h)]}

= max
q∈[0,1]

{
q[wJ ′d(w) +Ju(0)] + (1− q) max

−h≤w
[−hJ ′d(w) +Ju(w+h)]

}
.
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Because max
−h≤w

[−hJ ′d(w) +Ju(w+h)]≥ [wJ ′d(w) +Ju(0)], we know that the optimal solution to the

above optimization problem should be q∗ = 0. Similarly, the optimal solution in the optimization

problem in (EC.24) should also be q∗ = 0. Plugging q∗ = 0 into (EC.23) and (EC.24) yields (EC.1)

and (EC.2), respectively. Q.E.D.

EC.4.1.2. Proof of Corollary EC.1 If βd ≥ βu and condition (29) holds, or, if βd <βu and

condition (45) holds, then Jd(w) = vd−w and Ju(w) = vu−w. In these cases, we have

ϕd(w) = (r+µ
d
)(vd−w) + rw−µ

d
[h+ vu−w−h]

= (r+µ
d
)(vd−w) + rw−µ

d
(−w+ vu)

= (r+µ
d
)vd−µd

vu = 0,

and

ϕu(w) = (r+ µ̄u)(vu−w)−R+ rw− µ̄u[h+ vd−w−h]

= (r+ µ̄u)(vu−w)−R+ rw− µ̄u(vd−w)

= (r+ µ̄u)vu−R− µ̄uvd = 0.

Hence, conditions (EC.1) and (EC.2) hold in these situations.

If βd ≥ βu and condition (28) holds, then Jd(w) and Ju(w) follow (94) and (95). Then we have

ϕd(w) = (r+µ
d
)(vd−w) + rw−µ

d
max
−h≤w

{−hJ ′d(w) +Ju(w+h)}

= (r+µ
d
)(vd−w) + rw−µ

d
(βu−w+ vu−βu)

= (r+µ
d
)vd−µd

vu

= µ
d
(vu− vu)< 0 ,

where the second equality follows from h∗ = βu−w and the inequality follows from (28).

If βd <βu and condition (44) holds, then Jd(w) and Ju(w) follow (129) and (130). Then we have

ϕu(w) = (r+ µ̄u)(vu−w)−R+ rw− µ̄u max
h≤w
{−hJ ′u(w) +Jd(w+h)}

= (r+ µ̄u)(vu−w)−R+ rw− µ̄u(w̄d−w+ vd− w̄d)

= (r+ µ̄u)vu−R− µ̄uvd

= µ̄u(vd− vd)< 0 ,

where the second equality follows from h∗ = w̄d −w and the inequality follows from (44). Hence,

in the above two scenarios, the sufficient conditions (EC.1) and (EC.2) do not hold. Q.E.D.
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EC.4.2. Proofs in Section EC.2

EC.4.2.1. Proof of Proposition EC.2 First, we could rearrange (EC.4)-(EC.6) as the fol-

lowing

(µ
d

+ r)Jmd (w) = µ
d
Jmu

(
µ
d

+ r

µ
d

w

)
, w ∈ [0, w̄m−βu] . (EC.25)

and

−cu + (rw+µuβu)1w<w̄mJ
m′
u (w) = (µu + r)Jmu (w)−R−µuJ

m
d (w−βu) +

[(
2µ

d
+ r
)
βu

]
1w=w̄m ,

(EC.26)

w ∈ [βu, w̄m] ,

Jmu (w) = Jmu (0) +
Jmu (βu)−Jmu (0)

βu

w , w ∈ [0, βu] .

Then, the corresponding differential equations for V m
d (w) and V m

u (w) are

(µ
d

+ r)V m
d (w) = µ

d
V m
u

(
µ
d

+ r

µ
d

w

)
, w ∈ [0, w̄m−βu], (EC.27)

(rw+µuβu)1w<w̄mV
m′

u (w) = (µu + r)V m
u (w) + cu−R−µuV

m
d (w−βu), w ∈ [βu, w̄m] , (EC.28)

V m
u (w) = aw+ vu, w ∈ [0, βu]. (EC.29)

From equation (EC.27), we observe that V m′
d (w) = V m′

u

(
µ
d

+ r

µ
d

w

)
and V m′′

d (w) =

µ
d

+ r

µ
d

V m′′

u

(
µ
d

+ r

µ
d

w

)
. Hence, V m

d is increasing and strictly concave if and only if so is V m
u .

Combining (EC.27) and (EC.28), we obtain

(rw+µuβu + cu)1w<w̄mV
m′

u (w) = (µu + r)V m
u (w)−

µuµd

µ
d

+ r
V m
u

(
µ
d

+ r

µ
d

(w−βu)

)
− (R− cu) ,

(EC.30)

w ∈ [βu, w̄m] .

We then show the result according to the following steps.

1. Show that the solution to (EC.30) is unique and twice continuously differentiable except at

w= β for any a> 0. Call it Va.

2. Argue that V m
u is left-continuous at w̄m, which is limw→w̄m− Vu(w) = Vu (w̄m).

3. For any a> 0, show that Va is concave.

4. Show that limw→w̄m− Va(w) is increasing in a for a > 0, which implies that the bound-

ary condition Va(w̄m) =
(r+µ

d
)(R− cu)

r(r+µu +µ
d
)

uniquely determines a, and therefore the solution

to the original differential equation. Furthermore, limw→w̄m− Vu(w) = Vu (w̄m) implies that

limw→w̄m− V
′
u(w) = 0. Hence, the solution Vu is increasing and concave.
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Step 1. Define w0 := 0 and wn :=
µ
d

µ
d

+ r
wn−1 + βu for n = 1,2,3.... Then, we can verify that

limn→∞wn = w̄m. Applying (EC.29) as the boundary condition, we show that differential equation

(EC.30) has a unique solution (call it Va(w), on the interval (βu, w̄m)), which is continuously

differentiable. In fact, differential equation (EC.30) is equivalent to a sequence of initial value

problems over the intervals [wn,wn+1), n= 1,2, .... This sequence of initial value problems satisfy

the Cauchy-Lipschitz Theorem and, therefore, bear unique solutions.

Furthermore, we could derive the expression of V ′′a (w) following (EC.30), as

V ′′a (w) =
µu

[
V ′a(w)−V ′a

(
r+µ

d
µ
d

(w−βu)
)]

rw+µuβu

, for w ∈ (βu, w̄m) . (EC.31)

Step 2. The sequence of initial value problems in step 1 do not attain w̄m, so we first argue that

Vu is left-continuous at w̄m. According to the contract Γ∗r, if the contract starts with W0 = w̄m− ε
with sufficiently small ε > 0, the probability that Wt eventually reaches w̄m approaches 1 as ε

approaches 0. Therefore, we have limε→0+ Va (w̄m− ε) = Va(w̄m).

Step 3. Next, we show that if a> 0, Va is increasing and concave on [0, w̄m). Equation (EC.30)

implies that

V ′a+(βu) = a+
cu− ∆µuR

r+µ
d

+µu

(r+ µ̄u)βu

<a,

where the inequality follows from (EC.9). Also, equation (EC.31) implies that V ′′a+(βu)< 0. Then,

we claim that V ′′a (w)< 0 for w ∈ (βu, w̄m). We proceed the proof by contradiction. Assuming that

there exists w̌ ∈ (βu, w̄m) such that V ′′a (w̌)≥ 0, because Va is twice continuously differentiable on

(βu, w̄m), there must exist w̃ = max{w ∈ (βu, w̄m)|V ′′a (w) = 0}, and V ′′a (w)< 0,∀w < w̃. Equation

(EC.31) implies that V ′a(w̃) = V ′a

(
r+µ

d

µ
d

(w̃−βu)

)
. However, this contradicts

V ′a(w̃) = V ′a

(
r+µ

d

µ
d

(w̃−βu)

)
+

∫ w̃

r+µ
d

µ
d

(w̃−βu)

V ′′a (x)dx< V ′a

(
r+µ

d

µ
d

(w̃−βu)

)
,

in which the inequality follows from the fact that for any w ∈ (βu, w̄m), we must have w >
r+µ

d

µ
d

(w−βu). Hence, Va should be concave on the interval [0, w̄m).

Step 4. Finally, we show that lim
w↑w̄m

Va(w) is strictly increasing in a for a > 0, which allows us

to uniquely determine a that satisfies Va (w̄m) =
(r+µ

d
)(R− cu)

r(r+µu +µ
d
)

. For any 0< a1 < a2, it can be

seen that Va1
(w)<Va2

(w), V ′a1
(w)<V ′a2

(w), for w ∈ [0, βu) from (EC.29). We claim that V ′a1
<V ′a2

for w ∈ (βu, w̄m). Otherwise, because Va1
− Va2

is continuously differentiable, there must exist

w′ = max
{
w
∣∣V ′a1

(w) = V ′a2
(w),w ∈ (βu, w̄m)

}
and V ′a1

(w) < V ′a2
(w) for w < w′. Equation (EC.30)

implies that

(r+µu)(Va1
(w′)−Va2

(w′)) =
µ
d
µu

µ
d

+ r

[
Va1

(
µ
d

+ r

µ
d

(w′−βu)

)
−Va2

(
µ
d

+ r

µ
d

(w′−βu)

)]
.
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However, this contradicts

0>Va1
(w′)−Va2

(w′)−

[
Va1

(
µ
d

+ r

µ
d

(w′−βu)

)
−Va2

(
µ
d

+ r

µ
d

(w′−βu)

)]
=

∫ w′

µ
d

+r

µ
d

(w′−βu)

V ′a1
(x)−V ′a2

(x)dx .

Therefore, we must have V ′a1
(w)−V ′a2

(w)< 0 for w ∈ (βu, w̄m), which implies that Va1
(w)−Va2

(w)<

0 for w ∈ (0, w̄m). This implies that lim
w↑w̄m

Va(w) is strictly increasing in a for a > 0. Because

lim
a↓0

lim
w↑w̄m

Va(w)≤ vu and lim
a↑∞

lim
w↑w̄m

Va(w)> lim
a↑∞

Va(βu) =∞, there must exist a unique ā > 0 such that

lim
w↑w̄m

Vā(w) = V̄u. Further, with equation (EC.30), we are able to verify that lim
w↑w̄m

V ′u(w) = 0. Hence,

the solution V1 is concave and increasing on [0, w̄m] and strictly concave on (βu, w̄m). Q.E.D.

EC.4.3. Proof of Proposition EC.3

Following Itô’s Formula for jump processes (see, for example, Bass 2011, Theorem 17.5) and

(DWm), we obtain

e−rτJ(τ) =e−r0J(0) +

∫ τ

0

[e−rtdJ(t)− re−rtJ(t)dt] = J(0) +

∫ τ

0

e−rt(−R1θt=udt+ cm(θt)dt+ dLt) +

∫ τ

0

e−rtAt.

(EC.32)

Following definition (EC.3) and equation (EC.32), we obtain, under contract Γ∗r,

e−rτJ(τ) = J(0) +

∫ τ

0

e−rt(−R1θt=udt+ cm(θt)dt+ dLt) +

∫ τ

0

e−rtA∗t , (EC.33)

where

A∗t =dJ(t)− rJ(t)dt+R1θt=udt− dLt− cm(θt)dt

=
{
J ′u(Wt−)(rWt−+µuβu)1Wt−<w̄m − rJu(Wt−)− cu

}
dt1θt=u− rJd(Wt−)dt1θt=d

+

[
Ju

(
µ
d

+ r

µ
d

Wt−

)
−Jd(Wt−)

]
1Wt−≥wmdNt1θt=d

+
[
Jd(Wt−−βu)−Ju(Wt−)

]
1Wt−−βu≥wmdNt1θt=u +R1θt=udt− dL∗t

+[(Jd(0)−Ju(Wt−))(1−Xt) + (Jd(wm)−Ju(Wt−))Xt]1Wt−−βu<wm

=
{
R− cu +J ′u(Wt−)(rWt−+µuβu)1Wt−<w̄m − rJu(Wt−) +µu(Jd(Wt−−βu)−Ju(Wt−))

−
[(

2µ
d

+ r
)
βu

]
1Wt−=w̄m

}
1θt=udt

+

{
−rJd(Wt−)dt+µ

d

[
Ju

(
µ
d

+ r

µ
d

Wt−

)
−Jd(Wt−)

]}
1Wt−≥wm1θt=ddt+B∗t

=B∗t ,

in which the last equality follows from (EC.25) and (EC.26), and

B∗t =

[
Ju

(
µ
d

+ r

µ
d

Wt−

)
−Jd(Wt−)

]
1Wt−≥wm(dNt−µd

dt)1θt=d
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+
{[

(Jd(0)−Ju(Wt−))(XtdNt−µuq̂t(Wt−−βu)dt)

+ (Jd(wm)−Ju(Wt−))((1−Xt)dNt−µu(1− q̂(Wt−−βu))dt)
]
1Wt−−βu<wm

+
[
Jd(Wt−−βu)−Ju(Wt−)

]
(dNt−µudt)1Wt−−βu≥wm

}
1θt=u.

Taking the expectation on both sides of (EC.33), we obtain

Jd(w) = J(0) =EΓ(w),ν∗
[
e−rτJ(τ) +

∫ τ

0

e−rt(R1θt=udt− cm(θt)dt− dL∗t )
]
,

where we apply the fact that
∫ τ

0
e−rtB∗t dt is a martingale. Q.E.D.

EC.4.4. Proof of Theorem EC.1

First, we provide a parallel result of Lemma EC.3,

Lemma EC.5. For any contract Γm, there exists an FN -predictable process Ht such that for t ∈

[0, τ ],

dWt = {rWt−+ νtcm(θt)− [(1− qt)Ht− qtWt−]µ(θt, νt)− `t}dt+ [(1−Xt)Ht−XtWt−]dNt− It,
(EC.34)

in which Bernoulli random variable Xt takes value 1 with probability qt. Furthermore, the necessary

and sufficient condition for the effort process ν to maximize agent’s utility given Γm is that

νt = 1 if and only if − qtWt−+ (1− qt)Ht ≤−βu, `t ≥ cu, for θt = u (EC.35)

for all t∈ [0, τ ].

Correspondingly, a general optimality condition (parallel to Lemma EC.4) is presented in the

following,

Lemma EC.6. Suppose Jd(w) : [0,∞) → R and Ju(w) : [0,∞) → R are differentiable, concave,

upper-bounded functions, with J ′d(w)≥−1, J ′u(w)≥−1, and Jd(0) = vd. Consider any contract Γ,

which yields the agent’s expected utility u(Γ, ν) =W0, followed by the continuation utility process

{Wt}t≥0 according to (EC.34). Define a stochastic process {Φt}t≥0 as

Φt :=R1θt=u +J ′θt(Wt−)(rWt−− [−qtWt−+ (1− qt)Ht]µ(θt, νt))− rJθt(Wt−)

+µ(θt, νt)qt[Jθ̂t(0)−Jθt(Wt−)] +µ(θt, νt)(1− qt)[Jθ̂t(Wt−+Ht)−Jθt(Wt−)]− νtcm(θt) .
(EC.36)

where θt ∈ {u,d} and θ̂t = 1θt=d ·u+1θt=u ·d. Also, νt = 0 if constraints (EC.35) are not satisfied at

time t and νt = 1 if constraints (EC.35) are satisfied at time t. If the process {Φt}t≥0 is non-positive

almost surely, then we have Jθ(u(Γ, ν, θ))≥U(Γ, ν, θ).
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From Proposition EC.2, we know that Jmd (w) and Jmu (w) are concave and Jm
′

d (w)≥−1, Jm
′

u (w)≥
−1. Then to prove Theorem EC.1, we only need to show that Φt ≤ 0 holds almost surely. First, if

θt = d, then νt = 0. Following (EC.36), we have

Φt :=J ′d(Wt−)(rWt−+ [qtWt−− (1− qt)Ht])− rJd(Wt−)

+µ
d
qt[Ju(0)−Jd(Wt−)] +µ

d
(1− qt)[Ju(Wt−+Ht)−Jd(Wt−)] . (EC.37)

We need to consider the following optimization problem,

max
qt,Ht

qt[Wt−J
′
d(Wt−) +Ju(0)−Jd(Wt−)] + (1− qt)[−HtJ

′
d(Wt−) +Ju(Wt−+Ht)−Jd(Wt−)],

s.t. 0≤ qt ≤ 1(yd, zd),Wt−+Ht ≥ βu,−Ht ≤Wt−.

In the following, we verify that its optimal solution is

q∗t = 0, H∗t =
rWt−

µ
d

if Wt− ≥wm, and (EC.38)

q∗t = 1−
Wt−(µ

d
+ r)

βuµd

, H∗t = βu−Wt− if Wt− <wm. (EC.39)

by the KKT conditions.

• If Wt− ≥
µ
d
βu

µ
d

+ r
, define the following dual variable for the binding constraint

yd =Wt−J
′
d(Wt−) +Ju(0) +H∗t J

′
d(Wt−)−Ju(Wt−+H∗t )

=
µ
d

+ r

µ
d

Wt−

J ′u
(
µ
d

+ r

µ
d

Wt−

)
−
Ju

(
µ
d

+r

µ
d
Wt−

)
−Ju(0)

µ
d

+r

µ
d
Wt−

≥ 0,

where the inequality follows from concavity. One can verify that

[Wt−J
′
d(Wt−) +Ju(0)−Jd(Wt−)]− [−H∗t J ′d(Wt−) +Ju(Wt−+H∗t )−Jd(Wt−)] =−yd,

(EC.40)

(1− q∗t )(J ′d(Wt−)−J ′u(Wt−+H∗t )) = 0, (EC.41)

where (EC.41) follows from J ′d(Wt−)−J ′u

(
µ
d

+ r

µ
d

Wt−

)
= 0.

• If Wt− <
µ
d
βu

µ
d

+ r
, one can verify that

[Wt−J
′
d(Wt−) +Ju(0)−Jd(Wt−)]− [H∗t J

′
d(Wt−) +Ju(Wt−−H∗t )−Jd(Wt−)] = 0, (EC.42)

(1− q∗t )(J ′d(Wt−)−J ′u(Wt−−H∗t )) = 0, (EC.43)

where (EC.42) follows from

Ju(0)−Ju(βu) +βuJ
′
d(Wt−) = βu

[
J ′d(Wt−)− Ju(βu)−Ju(0)

βu

]
= 0,

and (EC.43) follows from J ′d(Wt−)−J ′u(βu) = 0.
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Therefore, (EC.38) and (EC.39) implies that in (EC.37),

Φt ≤− rJd(Wt−) +

{
J ′d(Wt−)rWt−+µ

d

[
−rWt−

µ
d

J ′d(Wt−) +Ju

(
r+µ

d

µ
d

Wt−

)
−Jd(Wt−)

]}
1Wt−≥wm

+
{
J ′d(Wt−)rWt−+µ

d
q∗t [Wt−J

′
d(Wt−) +Ju(0)−Jd(Wt−)]

+µ
d
(1− q∗t )[(Wt−−βu)J ′d(Wt−) +Ju(βu)−Jd(Wt−)]

}
1Wt−<wm = 0.

where the last equality follows from equation (EC.25),(EC.26) and J ′u(Wt−) = −1 for Wt− ≥ w̄m
and J ′d(Wt−) =−1 for Wt− ≥ w̄m−βu.

If θt = u and νt = 1, then following (EC.36), we have

Φt :=R+J ′u(Wt−)(rWt−+ [qtWt−− (1− qt)Ht]µu)− rJu(Wt−)

+µuqt[Jd(0)−Ju(Wt−)] +µu(1− qt)[Jd(Wt−+Ht)−Ju(Wt−)] . (EC.44)

We need to consider the following optimization problem,

max
qt,Ht

qt[Wt−J
′
u(Wt−) +Jd(0)−Ju(Wt−)] + (1− qt)[−HtJ

′
u(Wt−) +Jd(Wt−+Ht)−Ju(Wt−)],

s.t. 0≤ qt ≤ 1, −qtWt−+ (1− qt)Ht ≤−βu.

In the following we verify that the optimal solution is

q∗t = 0 and H∗t =−βu (EC.45)

by the KKT conditions. Define the following dual variables for the binding constraints

xu =−(J ′u(Wt−)−J ′d(Wt−−βu))

=−

(
J ′d

(
µ
d
Wt−

µ
d

+ r

)
−J ′d(Wt−−βu)

)
≥ 0,

where the inequality follows from the concavity of Jd, and

yu = (Wt−−βu)(J ′u(Wt−)−J ′d(Wt−−βu))−Wt−J
′
u(Wt−)−Jd(0) +βuJ

′
u(Wt−) +Jd(Wt−−βu)

= (Wt−−βu)(
Jd(Wt−−βu)−Jd(0)

Wt−−βu

−J ′d(Wt−−βu))≥ 0.

where the inequality follows from the concavity of Ju. One can verify

[Wt−J
′
u(Wt−) +Jd(0)−Ju(Wt−)]− [−H∗t J ′u(Wt−) +Jd(Wt−+H∗t )−Ju(Wt−)] =−yu− (H∗t +Wt−)xu,

(EC.46)

(1− q∗t )(J ′u(Wt−)−J ′d(Wt−+H∗t )) = (q∗t − 1)xu. (EC.47)

Therefore, (EC.45) implies that in (EC.44),

Φt ≤R+J ′u(Wt−)rWt−+µu[βuJ
′
u(Wt−) +Jd(Wt−−βu)−Ju(Wt−)]− rJu(Wt−)− cu = 0.
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where the equality follows from (EC.6).

If θt = u and νt = 0, then following (EC.36), we have

Φt :=R+J ′u(Wt−)(rWt−+ µ̄u[qtWt−− (1− qt)Ht])− rJu(Wt−)

+ µ̄uqt[Jd(0)−Ju(Wt−)] + µ̄u(1− qt)[Jd(Wt−+Ht)−Ju(Wt−)] . (EC.48)

We need to consider the following optimization problem,

max
qt,Ht

qt[Wt−J
′
u(Wt−) +Jd(0)−Ju(Wt−)] + (1− qt)[−HtJ

′
u(Wt−) +Jd(Wt−+Ht)−Ju(Wt−)],

s.t. 0≤ qt ≤ 1(y, z), −Ht ≤Wt−(x).

In the following, we verify that the optimal solution is

q∗t = 0 and H∗t =− rWt−

µ
d

+ r
(EC.49)

following the KKT conditions. Define the following dual variable for the binding constraint

y=−H∗t J ′u(Wt−) +Jd(Wt−+H∗t )−Wt−J
′
u(Wt−)−Jd(0)

= Jd(
µ
d
Wt−

µ
d

+ r
)−Jd(0)−

µ
d
Wt−

µ
d

+ r
J ′d(

µ
d
Wt−

µ
d

+ r
)≥ 0,

where the inequality follows from the concavity of Jd. One can verify

[Wt−J
′
u(Wt−) +Jd(0)−Ju(Wt−)]− [−H∗t J ′u(Wt−) +Jd(Wt−+H∗t )−Ju(Wt−)] =−y, (EC.50)

(1− q∗t )(J ′u(Wt−)−J ′d(Wt−+H∗t )) = 0, (EC.51)

Therefore, (EC.49) implies that in (EC.48),

Φt ≤R+J ′u(Wt−)

(
rWt−+

rWt−

µ
d

+ r

)
− rJu(Wt−) + µ̄u

[
Jd(

µ
d
Wt−

µ
d

+ r
)−Ju(Wt−)

]

=R+

(
r+

rµ̄u

µ
d

+ r

)
Wt−J

′
u(Wt−)− (r+ µ̄u−

µ̄uµd

µ
d

+ r
)Ju(Wt−)

≤R+

(
r+

rµ̄u

µ
d

+ r

)(
Wt−

Ju(Wt−)−Ju(0)

Wt−
−Ju(Wt−)

)

=R−

(
r+

rµ̄u

µ
d

+ r

)
vu = 0,

where the second inequality follows from the concavity of Ju and the last equality follows from (4).

Q.E.D.
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EC.4.5. Proof of Proposition EC.4

It suffices to show that if (EC.9) is not satisfied, then the following principal’s value functions

Ju(w) = vu−w, and Jd(w) = vd−w.

satisfies the optimality condition Φt ≤ 0, where Φt is defined in (EC.36). If θt = d, then νt = 0 and

Φt =−rWt−−µd
[qtWt−− (1− qt)Ht]− (r+µ

d
)(vd−Wt−) +µ

d
qtvu +µ

d
(1− qt)(vu−Wt−−Ht)

=−(r+µ
d
)vd +µ

d
vu = 0,

and when θt = u and νt = 1, then

Φt =R− rWt−− cu−µu[qtWt−− (1− qt)Ht]− r(vu−Wt−) +µuqtvd +µu(1− qt)(vd−Wt−−Ht)−µu(vu−Wt−)

=R− cu− rvu +µuvd−µuvu =R− cu− (r+µu)
(r+µ

d
)R

r(r+µ
d

+ µ̄u)
+µu

µ
d
R

r(r+µ
d

+ µ̄u)

=
∆µuR

r+µ
d

+ µ̄u

− cu =
∆µu

r+µ
d

+ µ̄u

(R− (r+µ
d

+ µ̄u)βu)< 0,

where the inequalities follow from the fact that (EC.9) is not satisfied. If θt = u and νt = 0, then

Φt =R− rWt−− µ̄u[qtWt−− (1− qt)Ht]− (r+ µ̄u)(vu−Wt−) + µ̄uqtvd + µ̄u(1− qt)(vd−Wt−−Ht)

=R− (r+ µ̄u)vu + µ̄uvd = 0.

Q.E.D.

EC.5. Proofs in Section EC.3

EC.5.1. Proof of Proposition EC.5

First, based on (EC.12) and (EC.13), we write the differential equations for V r
d and V r

u as the

following,

(µd + r)Vd(w) =−cd− r(w̄d−w)V ′d(w) +µdVu

(
min

{
w+βd,

µ̄uw̄d

r+ µ̄u

})
, for w ∈ [0, w̄d] ,

(EC.52)

(µ̄u + r)Vu(w) =R+ µ̄uVd

(
r+ µ̄u

µ̄u

w

)
, for w ∈

[
0,
µ̄uw̄d

r+ µ̄u

]
. (EC.53)

Combining equations (EC.52) and (EC.53) yields

r(w̄d−w)V ′d(w) + (r+µd)Vd(w) =−cd +µd

R+ µ̄uVd

(
min

{
µ̄u+r
µ̄u

(w+βd), w̄d

})
r+ µ̄u

 . (EC.54)
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Rearrange equation (EC.54) as

(r+µd)Vd(w)− rV ′d(w)(w− w̄d) + cd−
µdR

r+ µ̄u

=
µdµ̄u

r+ µ̄u

Vd(w̄d), for w ∈
[
µ̄uw̄d

r+ µ̄u

−βd,∞
)
, and

(EC.55)

(r+µd)Vd(w)− rV ′d(w)(w− w̄d) + cd−
µdR

r+ µ̄u

=
µdµ̄u

r+ µ̄u

Vd

(
µ̄u + r

µ̄u

(w+βd)

)
, for w ∈

(
0,
µ̄uw̄d

r+ µ̄u

−βd

)
.

(EC.56)

We then show the result according to the following steps.

1. Demonstrate the solution of (EC.55) as a parametric function Vb, with parameter b.

2. Show that the solution of (EC.56) (which we call Vb) is unique and twice continuously differ-

entiable for any b.

3. Show that Vb is convex and decreasing for b > 0 and concave and increasing for b < 0.

4. Show that Vb(0) is increasing in b for b < 0, which implies that the boundary condition Vb(0) =

vd uniquely determines b, and therefore the solution of the original differential equation.

Step 1. The solution to the linear ordinary differential equation (EC.55) on

[
µ̄uw̄d

r+ µ̄u

, w̄d

)
must

have the following form, for any scalar b,

Vb(w) =
µdR− (r+ µ̄u)cd
r (r+ µ̄u +µd)

+ b(w̄d−w)
r+µd
r , for w ∈

[
µ̄uw̄d

r+ µ̄u

−βd, w̄d

)
. (EC.57)

Also define Vb(w) =
µdR− (r+ µ̄u)cd
r (r+ µ̄u +µd)

for w ∈ [w̄d,∞), which satisfies (EC.55), so that Vb is con-

tinuously differentiable on

[
µ̄uw̄d

r+ µ̄u

−βd,∞
)

.

Step 2. Using (EC.57) as the boundary condition, we show that differential equation (EC.56) has

a unique solution, (which we call Vb(w)) on

(
0,
µ̄uw̄d

r+ µ̄u

−βd

)
, which is continuously differentiable.

In fact, differential equation (EC.56) is equivalent to a sequence of initial value problems. This

sequence of initial value problems satisfy the Cauchy-Lipschitz Theorem and, therefore, bear unique

solutions. Also, computing V ′b

(
µ̄uw̄d

r+ µ̄u

−βd

)
from (EC.57), and comparing it with (EC.56), we see

that Vb is continuously differentiable at
µ̄uw̄d

r+ µ̄u

−βd, and therefore on [0,∞).

Furthermore, deriving expressions for V ′′b (w) following (EC.56) and (EC.57), respectively, con-

firms that Vb is twice continuously differentiable on [0,∞). In particular, (EC.56) implies that

V ′′b (w) =
µd

[
V ′b

(
µ̄u+r
µ̄u

(w+βd)
)
−V ′b (w)

]
r(w̄d−w)

. (EC.58)

Step 3. Next, we argue that in order to satisfy the boundary condition Vb(0) = vd, we must have

b < 0. Equivalently, we show that if b > 0, Vb must be convex and decreasing, which violates Vb(0) =

vd <Vb(w̄d). In fact, if b > 0, (EC.57) implies that Vb is decreasing and convex on

[
µ̄uw̄d

r+ µ̄u

−βd, w̄d

)
,

and therefore V ′′b (w)> 0 in this interval. Then, we show that V ′′b (w)> 0 for w ∈ [0, w̄d). We prove
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this by contradiction. If there exists w̌ ∈ [0, w̄−βd), such that V ′′b (w̌)≤ 0, then Vb being twice con-

tinuously differentiable implies that there must exist w̃= max

{
w ∈

[
0,
µ̄uw̄d

r+ µ̄u

−βd

)∣∣∣∣V ′′b (w) = 0

}
such that V ′′b (w)> 0 for all w > w̃. Equation (EC.58) implies that V ′b

(
µ̄u + r

µ̄u

(w̃+βd)

)
= V ′b (w̃).

However, we this contradicts with

V ′b

(
µ̄u + r

µ̄u

(w̃+βd)

)
= V ′b (w) +

∫ µ̄u+r
µ̄u

(w̃+βd)

w̃

V ′′b (x)dx> V ′b (w̃) .

Therefore, we must have V ′′b (w) > 0 and Vb is decreasing on [0, w̄d) if b > 0. If b = 0, Vb(w) is a

constant following (EC.56) and (EC.57), which also contradicts the boundary condition. Therefore

we must have b < 0.

The same logic implies that for b < 0, Vb must best be increasing and strictly concave on [0, w̄d).

Step 4. Finally, we show that Vb(0) is strictly increasing in b for b < 0, which allows us

to uniquely determine b that satisfies Vb(0) = vd. For any b1 < b2 < 0, it can be verified that

Vb1(w)<Vb2(w), V ′b1(w)>V ′b2(w), for w ∈
[
µ̄uw̄d

r+ µ̄u

−βd, w̄d

)
from (EC.57). We claim that V ′b1 >V

′
b2

for w ∈ [0, w̄]. Otherwise, because Vb1 − Vb2 is continuously differentiable, there must exist w′ =

max

{
w

∣∣∣∣V ′b1(w) = V ′b2(w),w ∈
[
0,
µ̄uw̄d

r+ µ̄u

−βd

)}
such that V ′b1(w) > V ′b2(w) for w > w′. Equation

(EC.56) implies that

µdµ̄u

r+ µ̄u

[
Vb1

(
µ̄u + r

µ̄u

(w′+βd)

)
−Vb2

(
µ̄u + r

µ̄u

(w′+βd)

)]
= (r+µd)(Vb1(w′)−Vb2(w′)).

However, this contradicts

0>Vb1

(
µ̄u + r

µ̄u

(w′+βd)

)
−Vb2

(
µ̄u + r

µ̄u

(w′+βd)

)
= Vb1(w′)−Vb2(w′) +

∫ µ̄u+r
µ̄u

(w′+βd)−w′

0

V ′b1(w′+x)−V ′b2(w′+x)dx .

Therefore, we must have V ′b1(w)− V ′b2(w)> 0 for w ∈ [0, w̄d), which further implies that Vb1(w)−

Vb2(w)< 0 for w ∈ [0, w̄d). As a result, Vb(0) is strictly increasing in b for b < 0. Because lim
b↑0

Vb(0)≤

vd and lim
b↓−∞

Vb(0) > Vb(w̄1 − βd) = −∞ , there must exist a unique b∗ < 0 such that Vb∗(0) = vd.

Hence, the solution Vb∗ is strictly concave and increasing in

[
0,
µ̄uw̄d

r+ µ̄u

]
. Q.E.D.

EC.5.2. Proof of Proposition EC.6

Following definition (EC.2) and equation (EC.32), we obtain, under contract Γ∗r,

e−rτJ(τ) = J(0) +

∫ τ

0

e−rt(−R1θt=udt+ cr(θt)dt+ dLt) +

∫ τ

0

e−rtA∗t , (EC.59)

where

A∗t =dJ(t)− rJ(t)dt+R1θt=udt− cr(θt)dt− dLt
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=− rJu(Wt−)dt1θt=u + {J ′d(Wt−)r(Wt−− w̄d)dt− rJ0(Wt−)dt}1θt=d +R1θt=udt− dL∗t

+

[
Ju

(
min

{
µ̄uw̄d

µ̄u + r
,Wt−+βd

})
−Jd(Wt−)

]
dNt1θt=u +

[
Jd

(
µ̄u + r

µ̄u

)
−Ju(Wt−)

]
dNt1θt=u

=

{
R− rJu(Wt) + µ̄u

(
Jd

(
µ̄u + r

µ̄u

Wt−

)
−Ju(Wt−)

)}
1θt=udt

+

{
J ′d(Wt−)r(Wt−− w̄d)− rJd(Wt−)dt+µd

(
Ju

(
min

{
Wt−+βd,

µ̄uw̄d

µ̄u + r

})
−Jd(Wt−)

)
−µd

(
Wt−+βd−

µ̄uw̄d

µ̄u + r

)+

− cd

}
1θt=ddt+B∗t

=B∗t ,

in which the last equality follows from (EC.12), (EC.13) and

B∗t =

[
Ju

(
Wt−+βd−

(
Wt−+βd−

µ̄uw̄d

µ̄u + r

)+
)
−Jd(Wt−)−

(
Wt−+βd−

µ̄uw̄d

µ̄u + r

)+
]

(dNt−µddt)1θt=d

+

[
Jd

(
µ̄u + r

µ̄u

Wt−

)
−Ju(Wt−)

]
(dNt− µ̄udt)1θt=u.

Taking the expectation on both sides of (EC.59), we immediately have

Jd(w) = J(0) =EΓ(w),ν∗
[
e−rτJ(τ) +

∫ τ

0

e−rt(R1θt=udt− cr(θt)dt− dL∗t )
]
,

where we apply the fact that

∫ τ

0

e−rtB∗t dt is a martingale. Q.E.D.

EC.5.3. Proof of Theorem EC.2

Again, we provide a parallel result of Lemma EC.3,

Lemma EC.7. For any contract Γr, there exists an FN -predictable process Ht such that for t ∈

[0, τ ],

dWt = {rWt−+ νtcr(θt)− [(1− qt)Ht− qtWt−]µ(θt, νt)− `t}dt+ [(1−Xt)Ht−XtWt−]dNt− It,
(EC.60)

in which Bernoulli random variable Xt takes value 1 with probability qt. Furthermore, the necessary

and sufficient condition for the effort process ν to maximize agent’s utility given Γm is that

νt = 1 if and only if − qtWt−+ (1− qt)Ht ≥ βd, `t ≥ cd, for θt = d (EC.61)

for all t∈ [0, τ ].

Correspondingly, a more general optimality condition (parallel to Lemma EC.4) is presented in the

following,
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Lemma EC.8. Suppose Jd(w) : [0,∞) → R and Ju(w) : [0,∞) → R are differentiable, concave,

upper-bounded functions, with J ′d(w)≥−1, J ′u(w)≥−1, and Jd(0) = vd. Consider any contract Γ,

which yields the agent’s expected utility u(Γ, ν) =W0, followed by the continuation utility process

{Wt}t≥0 according to (EC.60). Define a stochastic process {Φt}t≥0 as

Φt :=R1θt=u +J ′θt(Wt−)(rWt−− [−qtWt−+ (1− qt)Ht]µ(θt, νt))− rJθt(Wt−)

+µ(θt, νt)qt[Jθ̂t(0)−Jθt(Wt−)] +µ(θt, νt)(1− qt)[Jθ̂t(Wt−+Ht)−Jθt(Wt−)]− νtcr(θt) .
(EC.62)

where θt ∈ {u,d} and θ̂t = 1θt=d ·u+1θt=u ·d. Also, νt = 0 if constraints (EC.61) are not satisfied at

time t and νt = 1 if constraints (EC.61) are satisfied at time t. If the process {Φt}t≥0 is non-positive

almost surely, then we have Jθ(u(Γ, ν, θ))≥U(Γ, ν, θ).

From Proposition EC.5, we know that Jrd(w) and Jru(w) are concave and Jr
′

d (w)≥−1, Jr
′

u (w)≥
−1. In order to show Theorem EC.2, we only need to show that Φt ≤ 0 holds almost surely. First,

if θt = u, then νt = 0 and following (EC.62), we have

Φt :=R+J ′u(Wt−)(rWt−+ µ̄u[qtWt−− (1− qt)Ht])− rJu(Wt−)

+ µ̄uqt[Jd(0)−Ju(Wt−)] + µ̄u(1− qt)[Jd(Wt−+Ht)−Ju(Wt)] . (EC.63)

We need to consider the following optimization problem,

max
qt,Ht

qt[WtJ
′
u(Wt−) +Jd(0)−Ju(Wt−)] + (1− qt)[−HtJ

′
u(Wt−) +Jd(Wt−+Ht)−Ju(Wt−)],

s.t. 0≤ qt ≤ 1,−Ht ≤Wt−.

In the following, we verify that the optimal solution is

q∗t = 0 and H∗t =
rWt−

µ̄u

, (EC.64)

using the KKT conditions. Define the following dual variable for the binding constraint

y=−H∗t J ′u(Wt−) +Jd(Wt−+H∗t )−Wt−J
′
u(Wt−)−Jd(0)

= Jd

(
(r+ µ̄u)Wt−

µ̄u

)
−Jd(0)− (r+ µ̄u)Wt−

µ̄u

J ′d

(
(r+ µ̄u)Wt−

µ̄u

)
≥ 0,

where the inequality follows from the concavity of Jd. One can verify

[Wt−J
′
u(Wt−) +Jd(0)−Ju(Wt−)]− [−H∗t J ′u(Wt−) +Jd(Wt−+H∗t )−Ju(Wt−)] =−y, (EC.65)

(1− q∗t )(J ′u(Wt−)−J ′d(Wt−+H∗t )) = 0. (EC.66)

Therefore, (EC.64) implies that in (EC.63),

Φt :=R− rJu(Wt) + µ̄u

[
Jd

(
Wt +

rWt

µ̄u

)
−Ju(Wt)

]
= 0 .
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where the equality follows from (EC.13).

If θt = d and νt = 1, then following (EC.62), we have

Φt :=J ′d(Wt−)(rWt−+µd[qtWt−− (1− qt)Ht])− rJd(Wt−)

+µdqt[Ju(0)−Jd(Wt−)] +µd(1− qt)[Ju(Wt−+Ht)−Jd(Wt−)] . (EC.67)

We need to consider the following optimization problem,

max
qt,Ht

qt[Wt−J
′
d(Wt−) +Ju(0)−Jd(Wt−)] + (1− qt)[−HtJ

′
d(Wt−) +Ju(Wt−+Ht)−Jd(Wt−)],

s.t. 0≤ qt ≤ 1,−qtWt−+ (1− qt)Ht ≥ βd.

In the following, we verify that the optimal solution is

q∗t = 0 and H∗t = βd. (EC.68)

using the KKT conditions. Define the following dual variables for the binding constraints,

xd = J ′d(Wt−)−J ′u(Wt−+βd) = J ′u

(
µ̄uWt−

r+ µ̄u

)
−J ′u(Wt−+βd)≥ 0.

where the inequality follows from the concavity of Ju, and

yd = (Wt−+βd)(J ′d(Wt−)−J ′u(Wt−+βd))−Wt−J
′
d(Wt−)−Ju(0)−βdJ

′
u(Wt−) +Ju(Wt−+βd)

= (Wt−+βd)

(
Ju(Wt−+βd)−Ju(0)

Wt−−βd

−J ′u(Wt−+βd)

)
≥ 0,

where the inequality follows from the concavity of Ju. One can verify

[Wt−J
′
d(Wt−) +Ju(0)−Jd(Wt−)]− [−HtJ

′
d(Wt−) +Ju(Wt−+H∗t )−Jd(Wt−)] =−yd− (H∗t +Wt−)xd,

(EC.69)

(1− q∗t )(J ′d(Wt−)−J ′u(Wt−+H∗t )) = (1− q∗t )xd. (EC.70)

Therefore, (EC.68) implies that in (EC.63),

Φt ≤ J ′d(Wt−)rWt−+µd[−βdJ
′
d(Wt−) +Ju(Wt−+βd)−Jd(Wt−)]− rJd(Wt−)− cd = 0,

where the equality follows from (EC.12).

If θt = d and νt = 0, then following (EC.63), we have

Φt :=J ′d(Wt−)(rWt−+µ
d
[qtWt−− (1− qt)Ht])− rJd(Wt−)

+µ
d
qt[Ju(0)−Jd(Wt−)] +µ

d
(1− qt)[Ju(Wt−+Ht)−Jd(Wt−)] . (EC.71)

We need to consider the following optimization problem,

max
qt,Ht

qt[Wt−J
′
d(Wt−) +Ju(0)−Jd(Wt−)] + (1− qt)[−HtJ

′
d(Wt−) +Ju(Wt−+Ht)−Jd(Wt−)],
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s.t. 0≤ qt ≤ 1,−Ht ≤Wt−.

In the following, we verify that the optimal solution is

q∗t = 0 and H∗t =− rWt−

µ̄u + r
. (EC.72)

using the KKT conditions. Define the following dual variable for the binding constraint

yd =Wt−J
′
d(Wt−) +Ju(0) +H∗t J

′
d(Wt−)−Ju(Wt−+H∗t )

=
µ̄uWt−

µ̄u + r

J ′u( µ̄uWt−

µ̄u + r

)
−
Ju

(
µ̄uWt−
µ̄u+r

)
−Ju(0)

µ̄uWt−
µ̄u+r

≥ 0 .

where the inequality follows from the concavity of Ju. One can verify

[Wt−J
′
d(Wt−) +Ju(0)−Jd(Wt−)]− [−H∗t J ′d(Wt−) +Ju(Wt−+H∗t )−Jd(Wt−)] =−yd, (EC.73)

(1− q∗t )(J ′d(Wt−)−J ′u(Wt−+H∗t )) = 0, (EC.74)

where (EC.74) follows from J ′d(Wt−) − J ′u

(
µ̄uWt−

µ̄u + r

)
= 0. Therefore, (EC.72) implies that in

(EC.71),

Φt :=J ′d(Wt−)

(
rWt−+

rµ
d
Wt−

µ̄u + r

)
− rJd(Wt−) +µ

d

[
Ju

(
µ̄uWt−

µ̄u + r

)
−Jd(Wt−)

]
=J ′d(Wt−)

(
rWt−+

rµ
d
Wt−

µ̄u + r

)
− rJd(Wt−) +µ

d

[
R

µ̄u + r
− r

r+ µ̄u

Jd(Wt−)

]
=
µ
d
R

µ̄u + r
+
r(µ

d
+ µ̄u + r)

µ̄u + r
(Wt−J

′
d(Wt−)−Jd(Wt−))

≤
µ
d
R

µ̄u + r
+
r(µ

d
+ µ̄u + r)

µ̄u + r

(
Wt−

Jd(Wt−)− vd
Wt−

−Jd(Wt−)

)
=0 .

where the inequality follows from the concavity of Jd(w) and the last equality follows from equation

(4). Q.E.D.

EC.5.4. Proof of Proposition EC.7

It suffices to show that if (EC.9) is not satisfied, then the following principal’s value functions,

Ju(w) = vu−w, and Jd(w) = vd−w,

satisfy the optimality condition Φt ≤ 0, where Φt is defined by (EC.62). If θt = u, then νt = 0 and

Φt =R− rWt−− µ̄u[qtWt−− (1− qt)Ht]− (r+ µ̄u)(vu−Wt−) + µ̄uqtvd + µ̄u(1− qt)(vd−Wt−−Ht)

=R− (r+ µ̄u)vu + µ̄uvd = 0.
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When θt = d and νt = 0, then

Φt =−rWt−−µd
[qtWt−+ (1− qt)Ht]− (r+µ

d
)(vd−Wt−) +µ

d
qtvu +µ

d
(1− qt)(vu−Wt−−Ht)

=−
(
r+µ

d

)
vd +µ

d
vu = 0.

When θt = d and νt = 1, then

Φt =−rWt−− cd−µd[qtWt−− (1− qt)Ht]− (r+µd)(vd−Wt−) +µdqtvu +µd(1− qt)(vu−Wt−−Ht)

=−cd− (r+µd)vd +µdvu =−cd− (r+µd)
µ
d
R

r(r+µ
d

+ µ̄u)
+µd

(r+µ
d
)R

r(r+µ
d

+ µ̄u)

=
∆µdR

r+µ
d

+ µ̄u

− cd =
∆µd

r+µ
d

+ µ̄u

(R− (r+µ
d

+ µ̄u)βd)< 0,

where the inequalities follow from the fact that (EC.16) is not satisfied. Q.E.D.
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