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a b s t r a c t 

How do the temporal dynamics of neural activity encode highly coordinated visual-motor behaviour? To capture 
the millisecond-resolved neural activations associated with fine visual-motor skills, we devised a co-registration 
system to simultaneously record electroencephalogram and handwriting kinematics while participants were per- 
forming four handwriting tasks (writing in Chinese/English scripts with their dominant/non-dominant hand). The 
neural activation associated with each stroke was clearly identified with a well-structured and reliable pattern. 
The functional significance of this pattern was validated by its significant associations with language, hand and 
the cognitive stages and kinematics of handwriting. Furthermore, the handwriting rhythmicity was found to be 
synchronised to the brain’s ongoing theta oscillation, and the synchronisation was associated with the factor of 
language and hand. These major findings imply an implication between motor skill formation and the interplay 
between the rhythms in the brain and the peripheral systems. 
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. Introduction 

Fine motor skills remain amongst the most awe-inspiring abilities of
umans, and neuroscientists and robotics engineers strive to understand
nd replicate these processes ( Akkaya et al., 2019 ; Sejnowski, 2020 ).
andwriting, shaped by decades of training and exercise, is a repre-

entative example of highly efficient fine motor control in humans. Yet
his skill is highly complex due to the involvement of visual integra-
ion, spatial skills, short- and long-term memory and language process-
ng ( Danna and Velay, 2015 ; Palmis et al,. 2017 ; Rapp and Fischer-
aum, 2015 ). Therefore, handwriting provides an ideal research venue
or the study of neural mechanisms associated with fine motor control
hrough investigation of its interactions with other cognitive processes.

The development of cognitive models and the study of the
euroanatomical substrates of handwriting have a long history
 Exner, 1881 ; van Galen, 1991 ). In most models, handwriting is seen
s a series of hierarchical and modular neural cognitive subprocesses
hat form a closed loop ( Ellis, 1982 ; Margolin, 1984 ; Rapp and Fischer-
aum, 2015 ; van Galen, 1991 ). First, the grapheme (e.g., which letter
o write) is identified. Then, the brain evokes a motor programme from
ong-term memory that encodes the sequence of strokes forming the
haracter, which then commands the downstream effectors to draw the
onsecutive strokes ( Kadmon harpaz et al., 2014 ; Palmis et al., 2017 ;
apcsak and Beeson, 2002 ). Finally, perception of the writing outcome,

ncluding vision and proprioception, serves as an online feedback guid-
nce to maintain the legibility and aesthetics of the written content
 Danna and Velay, 2015 ; Hepp-Reymond et al., 2009 ). Decades of train-
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ng and exercise fully automatise the handwriting process and equip it
ith specialised and distributed neural networks ( Dufor and Rapp, 2013 ;
ongcamp et al., 2014 ; Planton et al., 2013 ; Vinci-Booher et al., 2019 ).

The question of how the various cognitive subprocesses described
bove are implemented and orchestrated remains unanswered. How
hese subprocesses are then encapsulated into a precisely controlled se-
ies of movements is also unknown. To answer these two questions, we
rgue that the fast timescale temporal dynamics of the neural activities
ssociated with elementary handwriting processes must first be identi-
ed and characterised. However, most handwriting and brain research
as been based on functional magnetic resonance imaging, which does
ot allow the study of rich temporal dynamics. In addition, no studies
elying on electrophysiological measurements have yet examined the
etailed neural activation patterns associated with elementary processes
n handwriting movements, although some studies have looked into
he power spectrum of neurophysiological activities aggregated over a
ong duration of neural signal during handwriting ( Kao et al., 2002 ;
se Askvik et al., 2020 ). To study these elementary neural processes,
e first need to define and capture the behavioural events associated
ith them so that the neural activation pattern can be characterised.
his characterisation will enable experimental studies of its relation-
hips with other cognitive processes or constructs to answer the first
uestion. 

Answering the second question regarding efficiency may involve a
heoretical perspective on the coupling of dynamical systems. As stud-
es have shown, precision in the fine motor control of handwriting
ncompasses both spatial and temporal aspects ( Plamondon, 1995b ;
mber 2021 
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eulings et al., 1986 ; Tucha et al., 2008 ), implying the existence of
eneral laws governing the spatiotemporal coordination of this skill.
everal models have proposed computational principles that allow effi-
ient coordination of the effectors to generate complex handwriting pat-
erns ( Athènes et al., 2004 ; Edelman and Flash, 1987 ; Hollerbach, 1981 ;
lamondon, 1995a ). The general principle is that handwriting patterns,
lthough complex, can be generated by a dynamical system governed by
 few parameters, thus substantially reducing the computational load on
he neural circuits. Previous work has demonstrated that the coupling
f two non-linear oscillators, along with a few modulation parameters,
s sufficient to generate a variety of patterns resembling handwriting
 André et al., 2014 ; Athènes et al., 2004 ; Hollerbach, 1981 ). The oscil-
ator model is biologically plausible, as it coincides with the biophys-
cal properties of spring muscle ( Latash, 2018 ; Zatsiorsky and Prilut-
ky, 2012 ). It is also supported by the intrinsic rhythmicity of hand-
riting, which starts from an early age ( Nutt, 1917 ; Pagliarini et al.,
017 ). In support of this, temporal coupling between oscillatory brain
ctivities and the electromyogram during handwriting has been evi-
enced ( Butz et al., 2006 ; Saarinen et al., 2020 ). More generally, a
ehavioural activity displaying a rhythmicity can be coupled with the
rain – which also displays prominent oscillations – through neural en-
rainment ( Lakatos et al., 2019 ). Neural entrainment has been exten-
ively shown to have functional significance, e.g., in modulating atten-
ion and speech intelligibility ( Ding and Simon, 2014 ; Ghitza, 2012 ;
erlin et al., 2010 ; Kösem et al., 2018 ; Riecke et al., 2018 ; Zalta et al.,
020 ; Zion Golumbic et al., 2013 ; Zoefel and VanRullen, 2015 ). This
trongly suggests that the entrainment between the ongoing neural dy-
amics and handwriting production is thus a plausible mechanism,
hich may be related to the cost efficiency of a skilled handwriting
rocess. To investigate this question, it is important to first lay out pos-
ible scenarios about the relationship between handwriting behavioural
vents and the brain activity. If an efficient brain-behaviour coupling is
chieved, as would be expected in skilled handwriting, the handwriting
ctivity may be able to utilize the ongoing brain resource in a way that
ittle additional energy is incurred. This may be manifested by a synchro-
isation between the spontaneous brain oscillations and handwriting
hythmicity, which forms the first scenario. The second scenario is that
he handwriting behavioural events generate separate neural activity
hat is additive to the spontaneous activity, thus substantially changing
ts power, and such additive effect would be associated with cognitive
actors such as demand on handwriting. 

Based on the two above mentioned rationales, we explored the neu-
al dynamic activation associated with elementary handwriting pro-
esses and the association between ongoing oscillatory brain activity
nd handwriting processes. To capture the relevant neural activation,
e developed an electroencephalography (EEG) and handwriting move-
ent co-registration system. We instructed the participants to continu-

usly write scripts on a tablet in a natural manner. From the handwrit-
ng stream, we defined and precisely marked the key events of the basic
troke-writing units, which allowed us to examine their neural corre-
ates. We found that the derived neural activations showed a rich and
ighly reliable dynamic pattern, which was associated with language,
and, cognitive stages and kinematics of handwriting. Our analysis of
he oscillatory dynamics of the identified neural activation revealed a
ynchronisation between the brain activity and handwriting movements
ainly located in the brain’s 4 Hz theta band. The synchronisation effect
as further shown to be associated with factors of language and hand,
hich implied an interesting link between the brain-behaviour coupling

n rhythmicity and complex visual-motor behaviour. 

. Materials and method 

.1. Participants 

The participants were 11 healthy right-handed university students
six men, M age = 29.9 ( ± 2.9) years) recruited in Hong Kong. One partic-
2 
pant was excluded due to poor signal quality (impedance > 200kOhm).
ll participants were native Chinese speakers from mainland China and
ere fluent in English (They started learning English as second language

rom primary school). Their handwriting activities in schools and life
ere highly dominated by Chinese and they barely had handwriting

xperience with left hands. All participants had normal or corrected-
o-normal vision and had no history of mental diseases. The research
as approved by the Human Research Ethics Committee (HREC) of the
niversity of Hong Kong. Written consent was obtained from each par-

icipant. 

.2. Instrumentation and setup 

Handwriting movements were recorded using a digitising tablet
HUAWEI MediaPad M5 Pro; screen resolution: 2560 × 1600 pixels; di-
gonal size: 10.8 inches; aspect ratio: 16:10) equipped with an active
tylus with 4096 levels of pressure sensitivity. The tablet was placed
n landscape orientation on an angle-adjustable tablet holder on a desk
ith the angle set to 40°. Participants were required to write on the

ablet while their handwriting trajectories and EEG signals were simul-
aneously recorded at sampling rates of 60 Hz and 1000 Hz, respectively.
EG signals were collected using a 32-channel amplifier (BrainAmp,
rain Products GmbH, Germany) referenced to the ground electrode.
EG electrodes were placed on the cap according to the 10–20 interna-
ional system. 

The synchronisation between EEG amplifier and tablet was imple-
ented via a desktop computer running a customised Python routine.

pecifically, the tablet was connected to the desktop computer through
 USB port so that the Python routine could monitor events broadcasted
y the tablet via Android Logcat command-line tool. Once capturing a
ey event from the tablet, the Python routine will send this event to the
EG amplifier through a parallel port. During the handwriting process,
ur self-developed tablet app generated several important event logs for
ach point in the handwriting trajectory: x, y coordinates; a timestamp;
orce; and state codes for pen-down (touching the screen), pen-move,
nd pen-up (leaving the screen). Only the time marker for the first pen-
own event of writing each sentence was sent to the online EEG stream
or synchronisation ( Fig. 1 A). The remaining pen-down events (corre-
ponding to the initial points of each single stroke) in the sentence were
erived offline according to the event logs generated by the tablet. The
ntegrated experimental setup is illustrated in Fig. 1 . 

.3. Stimulus and task design 

The data were recorded in a sound-attenuated room. The partici-
ants were seated in a comfortable posture squarely facing the tablet on
he desk with a sight distance of approximately 35 cm. They were asked
o take dictation sentence by sentence, using the stylus to write on a
esignated area of the tablet screen ( Fig. 1 B). The experiment was di-
ided into four tasks, each of which contained 30 non-repeated trials of
entence dictation: (1) writing in Chinese with the dominant hand (DC),
2) writing in English with the dominant hand (DE), (3) writing in Chi-
ese with the non-dominant hand (NDC) and (4) writing in English with
he non-dominant hand (NDE). The four tasks were pseudo-randomised
cross participants and ensured hand alternation between adjacent tasks
o avoid fatigue. The Chinese characters and English words used in the
ictation sentences were simple and common ones. All participants were
equired to get familiar with the sentences before the experiment. 

To ensure homogeneity and fluency in the handwriting processes,
he participants were instructed to (1) write stroke by stroke carefully
nd avoid using a scribbled writing style, (2) write a new character if an
rror occurred, instead of crossing out the erroneous one, and (3) stop
riting when there was no space left. There was no time limit for each

rial, and the participants could begin writing whenever they felt ready.
n example of a dictation task trial is shown in Fig. 1 B. 
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Fig. 1. Illustration of the experimental setup and task. (A) Co-registration and 
synchronisation of handwriting movements and EEG traces. The two streams 
were synchronised by sending the time marker of the first pen-down event of 
each trial (the first large red dot) to the online EEG stream. The remaining pen- 
down events for all strokes within the same trial (indicated by the remaining 
small red dots) were derived offline according to event logs generated by the 
tablet. (B) Dictation task procedure (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.). 
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.4. Neural activation associated with a single stroke 

The EEG signals were pre-processed and analysed using a MATLAB
nd EEGLAB plugin ( Delorme and Makeig, 2004 ). The raw EEG data
ere first down-sampled to 250 Hz and filtered by an EEGLAB in-built
andpass FIR filter (zero-phase, non-causal, filter order: 827 data points,
orresponding to 3.3 s) within 1 and 45 Hz. Independent component
nalysis was applied and the MARA algorithm ( Winkler et al., 2011 )
as used to automatically identify and remove artifacts using a default

ut-off probability of 0.5. 

.4.1. Temporal pattern of writing ERPs 
The pen-down time points (see the red dots in Fig. 1 A), which rep-

esent the initial point of writing each stroke, were used to generate an
verage ERP for each of the four different tasks separately (i.e., writing
n Chinese/English with the dominant/non-dominant hand). The ERP
poch ranged from − 500 to 1000 ms after the time point of the pen-
own event. As the pen-down event corresponded to the beginning of
riting a stroke, it was assumed that there was motor preparation ac-

ivity before time zero. Therefore, − 500–− 200 ms prior to pen-down
vent was used for baseline correction. This ERP was referred to as
he ‘writing ERP’ throughout the article. A hand-related brain asym-
etrical pattern was supposed to be observed in the writing ERPs from
ifferent hands. After exploring the parameters that best revealed this
and-related asymmetrical pattern, we filtered the ERP at the band of
0 Hz–30 Hz and obtained the scalp map between − 55 ms and − 25 ms
or the comparison of left and right-hand patterns. The asymmetry pat-
ern can also be revealed in other time windows and larger frequency
ands, but not in the original unfiltered ERP as it is overwhelmed by the
igh-amplitude, low-frequency ERP components. 
3 
.4.2. Time-frequency representation of writing ERPs 
In addition to ERPs, a time-frequency analysis was conducted to

xamine the neural activity pattern in the frequency domain. Wavelet
ransformation (based on Morse wavelet with the symmetry parameter
gamma) equal to 3 and the time-bandwidth product equal to 60) was
pplied across the electrodes to every single-trial from − 500 to 1000 ms
fter the pen-down time point. The wavelet coefficients from 1 Hz to
5 Hz were averaged across the single trials in their complex form. The
oduli of the averaged complex values were obtained and visualised to

eveal the dynamic neural activation across different frequencies, which
annot be visualised by the average ERP. 

.4.3. Reliability of writing ERPs 
To examine the reliability of the stroke-associated neural activation

haracterised by ERPs, we applied the split-half correlation approach.
he Pearson’s correlation coefficients of the average ERPs from odd-
umbered and even-numbered trials were first computed for each par-
icipant and task. The obtained values were then corrected by using the
pearman–Brown formula to adjust for the reduced correlation due to
alf splitting. The mean split-half reliability for each task conditions was
btained by averaging across all participants ( Kappenman et al., 2014 ).

.5. Validation of writing ERPs 

.5.1. Modulation of writing ERPs by cognitive factors 
To examine whether the amplitude of the writing ERPs depended

n language and hand across the four tasks, we applied Linear Mixed
odel (LMM) to the average amplitudes of single trials across all tasks

nd participants. We tested the effects separately on two brain regions
the central region covering the motor cortices and the posterior re-
ion covering the visual cortices) in three different time windows (pre-,
eri ‑ and post-writing). The central region included the electrodes Fz,
z, FC1 and FC2 while the posterior region involved Oz, O1 and O2.
he three time windows were − 200–− 50 ms, 0–50 ms and 200–300 ms,
epresenting the neural activation before, during and after the event of
riting a stroke, respectively. The LMM was conducted using the lme4
 Bates et al., 2015 ) and lmerTest ( Alexandra et al., 2017 ) packages in
 ( RCoreTeam, 2020 ), with language, hand and their interaction spec-

fied as fixed effects, and the participants’ intercept as random effects.
o rule out the possibility that language and hand effects were caused
y stroke length, the stroke length was also specified as an independent
ariable in the following model. 

Amplitude ∼ 1 + language + hand + language ∗ hand + stroke-
Length + (1|participant) 

.5.2. Cross-validation of the effects of cognitive factors on modulating 
riting ERPs 

To validate the cross-individual robustness of the language and hand
ffects revealed by the linear mixed model, we further conducted a cross-
alidation statistical analysis that trains the LMM based on a subset of
ata to predict the held-out data. Two ways of splitting the data for
ross-validation were conducted: one is splitting all participants into two
alves and the other is splitting the trials into two halves. The details of
pplying these two ways of cross-validation are described as follows. 

For the participant-based data splitting, we split the participants into
wo halves for training and testing the performance of the model. To sep-
rately evaluate the effects of each factor (e.g., language, hand) based on
his cross-validation approach, we conducted the cross-validation anal-
sis on the following five models that were organised in a way that one
ew factor (or interaction) is appended to the previous model: 

Model 1: Amplitude ∼ 1 + (1|participant) 
Model 2: Amplitude ∼ 1 + language + (1|participant) 
Model 3: Amplitude ∼ 1 + language + hand + (1|participant) 
Model 4: Amplitude ∼ 1 + language + hand + language ∗ hand + (1|par-

ticipant) 
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c  
Model 5: Amplitude ∼ 1 + language + hand + language ∗ hand + stroke-
Length + (1|participant) 

The cross-validation procedures were conducted as follows. First, we
tted all five models on half of participants and then used the other half
o evaluate the performance of these models. As the total number of
alid participants is 10 in this study, there are 252 combinations ( 𝐶 

5 
10 )

or the selection of training set. Then, we calculated the prediction er-
or from the held-out participants using the fitted models. The predic-
ion error was calculated as the mean squared error (MSE) between the
redicted values and real values. It is worth to note that before cal-
ulating MSE, the prediction error for each participant was demeaned
ecause the random effect in intercept cannot be predicted by the fit-
ed models. To evaluate the effect of a specific factor (or interaction),
e statistically compared the prediction errors from the two adjacent
odels (e.g., to evaluate language effect, we compared Model 1 and
odel 2 ) following the procedures below: (1) calculating the prediction

rrors from all 252 combinations for each model; (2) statistically com-
aring the difference between the two arrays of prediction errors. The
nderlying hypothesis is that if one model is statistically better than the
ther, it should generate a statistically lower MSE. As the 252 values
btained from each model are not normally distributed, we conducted
on-parametric Wilcoxon test to compare the adjacent models to de-
ermine the significance of each factor (or interaction). The results of
tatistical significance based on Wilcoxon test were reported. 

For the second way of splitting training and testing sets, the proce-
ures applied were entirely the same as the first way except for the way
f splitting data. In this analysis, we randomly selected half trials from
ach participant to serve as training set and used the remaining half tri-
ls as testing set. Since there are a huge number of combinations to half
plit the trials, we decided to use 252 randomly drawn combinations to
e consistent with the first splitting-participants approach. 

In addition, we also investigated whether the order of introducing
actors influences the results of factor effects by changing the language
actor in Model 2 into hand. The results showed that the order did not
ffect the statistical conclusion, so here we reported the results based
n the above five models. 

.5.3. Modulation of writing ERPs by cognitive stage 
To examine to what degree writing ERPs reflect different stages dur-

ng the writing of a complex character, we applied LMM to the DC task
o test the effect of the stroke order on the amplitude of writing ERPs.
his analysis served to demonstrate the existence of the effect of differ-
nt handwriting stages on the writing ERP, we tested the effect on all
lectrodes in the time window (200 to 300 ms) in which the effect was
redominantly shown. The strokes were labelled based on whether they
ere the initial stroke of a Chinese character during participants’ actual
riting. The LMM lmer model was specified as follows. 

Amplitude ∼ 1 + strokeType + (1|participant) 

.5.4. Cross-validation of the effect of cognitive stage on writing ERPs 
In this analysis, we applied the splitting-participants approach to

ross validate the effect of cognitive stage (initial versus non-initial
trokes). The procedures applied here were the same as the one de-
cribed for cross-validation of cognitive factors in 2.5.2, except that only
wo models were involved here because there was only one factor being
xamined. The two models were specified as below and we conducted
his cross-validation analysis on each single electrode. 

Model 1: Amplitude ∼ 1 + (1|participant) 
Model 2: Amplitude ∼ 1 + strokeType + (1|participant) 

Different from the models for examining cognitive factors, there is
nly one single factor involved in the model for examining the effect
f cognitive stage. In this sense, we also investigated to what degree
his effect exists at the single participant level. To this end, we applied
4 
ndependent two sample t -test between initial and non-initial strokes
ithin each participant on every electrode. The consistency at single
articipant level may also reflect the robustness of the effect of cognitive
tage across participants. 

.6. Synchronisation between theta oscillation and handwriting 

To examine the synchronisation between brain oscillation and hand-
riting movements, we first bandpass-filtered (zero-phase, non-causal,
lter order: 415 points) the EEG data at 3–5 Hz and generated the writ-

ng ERPs time-locked to pen-down events as described above to visu-
lly observe the difference between conditions. Next, we calculated the
hase and amplitude of theta oscillation (4 Hz) surrounding every pen-
own event (from − 200 to 800 ms) using Fourier transform on Fz elec-
rode (closest to the centre of theta). The phase distribution of theta
cross the trials and participants was visualised on a polar axis to show
he distribution bias. The bias (non-uniformity) of the phase distribu-
ion within a single task and between different tasks was tested by the
ayleigh test and Harrison–Kanji tests, respectively, using the CircStat

oolbox ( Philipp, 2009 ). Visualisation of the phase distribution was im-
lemented using the CircHist toolbox ( Zittrell, 2019 ). The two-tailed
 -test was used to test the difference in theta amplitude (averaged from
ingle trials) between tasks. 

We estimated the source activations of the theta oscillation based
n the grand averaged ERPs (from − 500 ms to 1000 ms) that were
andpass-filtered at 3 to 5 Hz across the four tasks, using Brainstorm
 Tadel et al., 2011 ). The default ICBM152 anatomy was used to com-
ute the head model, and the noise variance was regarded as identical.
 default EEG electrode position set for 32 channels was used for source
stimation. The electrode positions were automatically calibrated to the
urface of the head model. The OpenMEEG BEM algorithm (cortex sur-
ace) and the Minimum Norm Imaging algorithm (current density) were
sed to compute the forward modelling and physiologically plausible
EG sources, respectively. 

.7. Encoding of handwriting kinematics in the ongoing neural signal 

In addition to analyses at the level of ERP, we further investigated
he association between handwriting kinematics and ongoing neural ac-
ivity by calculating the cross-correlation between the two time series:
he kinematic variables associated with each point in the handwriting
rajectory and the continuous EEG signal down-sampled to the hand-
riting sampling rate during writing each sentence. We included three
inematics variables: velocity, pen-touch force and length of unfinished
troke (LUS). At each time point during writing a stroke, there is a re-
ained segment of a stroke to be finished. LUS was defined as the length

f the unfinished segment of the current stroke at every time point. LUS
as analysed here because it carries information related to the length of
 stroke and the cognitive activity at different time points of writing a
troke would be different. On this basis, we expected the neural activa-
ion (including planning and online coordination) to be dependant on
troke length. The cross-correlation was calculated for each electrode
eparately, with a maximum lag of 800 ms. The calculation was con-
ucted on each sentence, and the results were averaged across all sen-
ences. To further evaluate the statistical significance of the cross corre-
ations, we also calculated the cross correlation results from a surrogate
ata. The surrogate data was generated by temporally reversing the EEG
ata and thus is not expected to have any association with the kinematic
treams. 

. Results 

.1. Basic kinematic characteristics of handwriting 

Table 1 summarises the descriptive statistics of the basic kinematic
haracteristics of stroke writing. Differences related to language and
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Fig. 2. Writing ERPs and their time-frequency representations time-locked to first points of strokes (red dots as shown on the characters/letters). (A)–(D) Grand 
averaged ERPs for different electrodes in four different tasks, and scalp topographies averaged from three different time windows: − 200–− 50 ms, 0–50 ms and 
200–300 ms. (E)–(H) Time-frequency representations of the writing ERPs averaged across all electrodes. (I) Hand-related asymmetrical pattern of motor activity 
component (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.). 

Table 1 

Descriptive statistics for stroke characteristics in each task 
(mean (standard deviation)). 

Stroke 
characteristic 

DC DE NDC NDE 

N = 2033 
( ± 95.44) 

N = 1261 
( ± 46.43) 

N = 2126 
( ± 76.38) 

N = 1365 
( ± 152.67) 

Length 
(pixel) 

73.14 
( ± 11.33) 

110.65 
( ± 16.23) 

77.92 
( ± 9.54) 

114.62 
( ± 16.24) 

Duration 
(ms) 

186.97 
( ± 25.27) 

325.68 
( ± 76.56) 

286.64 
( ± 70.14) 

515.03 
( ± 93.60) 

Mean velocity 
(pixel/ms) 

0.40 
( ± 0.10) 

0.35 
( ± 0.07) 

0.29 
( ± 0.07) 

0.23 
( ± 0.03) 

Max force 
(n.a.) 

0.53 
( ± 0.12) 

0.58 
( ± 0.09) 

0.43 
( ± 0.09) 

0.43 
( ± 0.07) 

Note: DC: dominant hand, Chinese; DE: dominant hand, English; 
NDC: non-dominant hand, Chinese; NDE: non-dominant hand, 
English; N is the number of strokes identified; Duration is the 
time taken to write a stroke. Max force represents the pressure 
of touch and is normalised between 0 (no touch) and 1 (full 
touch) used in Android system. 
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and are clearly shown: the average stroke length and duration is longer
n English than in Chinese, and the velocity and maximum force are
trongly dependant on hand due to the difference in dexterity. 

.2. Neural activation associated with single strokes 

Based on the assumption that writing a stroke is the basic action
nit during handwriting, we expected to find a specific neural activa-
ion pattern encompassing the writing process of each stroke. This ac-
ivation was presumed to include motor preparation, execution and vi-
ual processing, and to be consistent from stroke to stroke and subject
o variation related to the stroke properties. Fig. 2 A–D shows the event-
elated potentials (ERPs) averaged from the single-trial EEG segments
ime-locked to pen-down events, i.e., the first points of each stroke, to-
ether with the scalp topographies averaged from three time windows
arked in green. In line with our assumption, conspicuous ERP wave-

orms were found for all conditions. The ERP featured a sharp spike at
round 12 ms after the pen-down event and pre- and post-event activ-
5 
ties covering the peri ‑event time from approximately − 200–+ 300 ms.
he most positive-directed ERPs were observed over the posterior region
Oz, O1 and O2) and the most negative-directed ERPs were located in
he centro-frontal regions (Fz, FC1, FC2, and Cz). This neural activation
ill be termed as “writing ERP ” hereafter. 

As temporal ERP provides a limited representation of activation pat-
erns in different frequency bands, we further used wavelet analysis to
how the time-frequency representation of the writing ERP. The results
ere averaged across all electrodes, and the grand average patterns are

hown in Fig. 2 E–H. Three predominant clusters of transient oscillatory
ctivity in the beta (13–30 Hz), alpha (8–12 Hz), and theta (3–7 Hz)
ands can be clearly identified. The beta cluster, localised around the
ime of the pen-down event, corresponds to the spike activity shown
n the temporal ERPs. The activity shown in this spike activity displays
 clear hand-related asymmetry ( Fig. 2 I) consistent with previously re-
orted pattern ( Ouyang et al., 2011 ), which validates the neural origin
f the writing ERP. The theta cluster is longer lasting and much stronger
or the dominant hand, suggesting a critical role of theta oscillation dur-
ng dexterous handwriting-a mechanism we will analyse in depth later.

The split-half reliability values of the single-trial writing ERPs for
he four task conditions (dominant hand, Chinese [DC]; dominant hand,
nglish [DE]; non-dominant hand, Chinese [NDC]; and non-dominant
and, English [NDE]) were 0.86 ( ± 0.07), 0.80 ( ± 0.10), 0.86 ( ± 0.13)
nd 0.86 ( ± 0.10), respectively, showing a very high level of consistency
cross trials. To visualise the cross-trial consistency, the single trial writ-
ng ERPs from one participant in a DC task are shown in Fig. 3 . 

.3. Validation of the writing ERPs 

If the writing ERPs indeed represent the neural activation of the vi-
ual, motor, and cognitive processes underlying handwriting, it should
e modulated by factors that affect these processes. To test this, we ap-
lied linear mixed model to test the effects of language, hand, their inter-
ction and stroke length on the amplitudes of the writing ERPs at three
ifferent time windows. The stroke length was included as an indepen-
ent variable in the model in order to exclude the confounding effects of
ow-level physical features on factors of language and hand. The results
 Table 2 ) confirmed that the factors of language and hand had signifi-
ant modulation effects on the amplitude of the writing ERP even after
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Table 2 

Fixed effects estimated using linear mixed model (LMM). 

[ − 200 to − 50 ms] [0 to 50 ms] [200 to 300 ms] 

CI (95%) CI (95%) CI (95%) 

b SE L H t CV b SE L H t CV b SE L H t CV 

Posterior region (Oz, O1 and O2) 

(Intercept) − 0.17 .22 − 0.60 .25 − 0.79 × . 18 .33 − 0.46 .82 .55 × . 65 .26 .13 1.16 2.46 ∗ ×
Language .06 .14 − 0.22 .34 .44 − 0.29 .19 − 0.66 .07 − 1.58 − 0.28 .16 − 0.59 .03 − 1.76 # ̂ 

Hand .08 .13 − 0.18 .33 .58 − 0.15 .17 − 0.49 .18 − 0.91 − 0.52 .14 − 0.80 − 0.24 − 3.59 ∗ ∗ ∗ ˆ 
Language ∗ hand − 0.07 .09 − 0.24 .10 − 0.80 .12 .12 − 0.11 .34 1.00 .30 .10 .10 .49 3.00 ∗ ∗ ˆ 
Stroke length .00 .00 .00 .00 .97 .00 .00 .00 .00 1.24 .00 .00 .00 .00 6.98 ∗ ∗ ∗ # ̂ 

Centro-frontal region (Fz, Cz, FC1 and FC2) 

(Intercept) .26 .14 − 0.01 .53 1.85 × - 0.70 .19 − 1.07 − 0.32 − 3.62 ∗ ∗ ∗ × - 0.62 .17 − 0.97 − 0.28 − 3.57 ∗ ∗ ∗ ×
Language .11 .09 − 0.07 .29 1.24 # ̂ .23 .12 − 0.00 .46 1.95 # ̂ .43 .10 .23 .63 4.19 ∗ ∗ ∗ # ̂ 

Hand − 0.05 .08 − 0.21 .12 − 0.55 # ̂ .35 .11 .14 .56 3.22 ∗ ∗ .48 .09 .30 .67 5.12 ∗ ∗ ∗ 

Language ∗ hand − 0.14 .06 − 0.25 − 0.03 − 2.49 ∗ ˆ − 0.21 .07 − 0.35 − 0.07 − 2.85 ∗ ∗ ˆ − 0.32 .06 − 0.45 − 0.19 − 4.96 ∗ ∗ ∗ # ̂ 

Stroke length − 0.00 .00 − 0.00 .00 − 3.74 ∗ ∗ ∗ # ̂ − 0.00 .00 − 0.00 − 0.00 − 6.73 ∗ ∗ ∗ # ̂ − 0.00 .00 − 0.00 − 0.00 − 6.06 ∗ ∗ ∗ # ̂ 

Note: b : co-efficient in the linear mixed model; SE: standard error; CI: confidence interval. L: low; H: high; t : t statistics, ∗ ∗ ∗ : p < .001; ∗ ∗ : p < .01; ∗ : p < .05 (from the original linear mixed model); CV: results of 
significance from cross-validation analysis; #: significant ( p < .05) for participant-based splitting approach; ̂ : significant ( p < .05) for trial-based splitting approach; ×: not applicable for cross-validation analysis. 
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Fig. 3. Single-trial writing ERPs from one participant in a dominant hand, Chi- 
nese task (middle). The single trials are from two representative electrodes (Oz 
and Cz), located in the posterior (top) and centro-frontal regions (bottom). The 
single trials were sorted by the force of pen-down action and were smoothed by 
averaging every 20 successive trials. 
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he stroke length effect had been regressed out. Hand showed signifi-
ant effects in the peri ‑ and post-event (pen-down) time windows in the
entro-frontal region, and in the post-event window in the posterior re-
ion. Language showed a significant effect in the post-event window in
he centro-frontal region. Besides, we also observed the interaction ef-
ects between language and hand across the entire course in the centro-
rontal region and in the post-event window in the posterior region. The
ifference in spatial distribution and time course between language and
and effects suggests the differential cognitive engagement between the
actors of language and hand. 

Due to the small number of participants, we conducted additional
ross-validation analyses (see Method) to examine if the factor effects
re significant when the model is trained on half of the dataset and is
sed to predict the held-out data. We conducted two ways of splitting
he data (see Method). The statistical significance of the effects based
n the cross-validation tests are reported in the column ‘CV’ in Table 2 .

To examine the degree to which writing ERPs reflect different cogni-
ive stages, we compared the neural activations generated by the initial
nd non-initial strokes of Chinese characters containing multiple strokes
 Fig. 4 ). Initial strokes should entail more cognitive preparation (e.g.,
rapheme retrieval and motor planning), compared with subsequent
trokes for the same character. As shown in Fig. 4 , the ERP amplitudes
ere larger for initial strokes over a large portion in the time course
nd spatial locations. The results showed that the difference in average
mplitudes in the time window of 200–300 ms between two stages was
ignificant over the majority of the electrodes (see Supplementary In-
ormation, SI) and it displayed the strongest effect over posterior region
Oz: t = − 10.60, p < .001; O1: t = − 10.69, p < .001; O2: t = − 10.15, p
 .001). The cross-validation test also confirmed the significant effect
f cognitive stage on modulating writing ERPs (see SI), and this effect
as robust at single participant level (see SI). These results suggest that
riting ERPs are indicative of different cognitive stages in handwriting.
7 
.4. Entrainment of theta oscillation to handwriting 

The descriptive differences in theta power between conditions as
hown in the grand average ( Fig. 2 E–H) may originate from three differ-
nt data scenarios at single-trial level: (1) the power of the single-trial
heta oscillation was larger or (2) the single-trial theta oscillation was
ore phase-synchronised to the pen-down event or (3) a combination

f both. As different scenarios may be supported by fundamentally dif-
erent neural mechanisms, we sought to further unveil the data charac-
eristics with greater details. To this end, we first examined the writing
RPs in the theta band (3–5 Hz). As shown in Fig. 5 A–D, the theta scalp
opographies have a typical frontal location ( Cavanagh and Frank, 2014 ;
ropotov, 2009 ), and the theta oscillation appears longer lasting for the
ominant hand, echoing with the results in Fig. 2 E-H. 

To examine the phase synchronisation of the single-trial theta oscil-
ation to the process of writing single strokes, we calculated the phase
t 4 Hz from Fz from the single trials surrounding the pen-down events
 − 200 ms–800 ms). The phase distribution of theta (4 Hz) is shown
n Fig. 5 E–H. Statistical testing (Rayleigh’s test) showed that the dis-
ribution bias was significant for all task conditions (DC: Z = 262.40,
 < .001; DE: Z = 64.36, p < .001; NDC: Z = 14.42, p < .001; NDE:
 = 15.59, p < .001). The bias of phase distribution is stronger in dom-
nant hand conditions with a higher probability in the range of 180° to
70° (Kuiper’s test showed a significant difference between the domi-
ant and non-dominant hands. DC vs NDC: Kuiper statistics = 6.37, p <
001; DE vs NDE: Kuiper statistics = 2.90, p < .001). Interestingly, sig-
ificant difference between Chinese and English only exist in dominant
and (DC vs. DE: Kuiper statistics = 2.91, p < .001; NDC vs NDE: Kuiper
tatistics = 0.98, p > .05). The individual results of the statistical tests
Rayleigh’s and Kuiper’s tests) are shown in Supplementary Information.

Then, we examined the difference in the amplitude of single-trial
heta oscillation across the four conditions. The average theta ampli-
ude of each task as well as the mean and SEM across participants are
hown in Fig. 5 I. The t -test found no significant difference in the aver-
ge amplitude between the dominant and non-dominant hands (DC vs
DC: t (9) = 0.47, p = .647; DE vs NDE: t (9) = 1.07, p = .313) or between
hinese and English (DC vs DE: t (9) = − 0.68, p = .512; NDC vs NDE:
 (9) = − 1.30, p = .226). 

We further conducted source localisation of the theta oscillation. The
esult shows that the neural sources of theta oscillation were distributed
redominantly within BA6 (the premotor cortex and supplementary mo-
or area), an area engaged in the planning and control of complex and
oordinated movements ( Nachev et al., 2008 , 2007 ). 

.5. Encoding of handwriting kinematics in the ongoing neural signal 

Finally, we characterised the cross-correlations between continuous
eural activity and three handwriting kinematics streams during writing
ach sentence. The results illustrated in Fig. 6 reveal clear structures in
he cross-correlograms, and the magnitude is substantially higher than
he results from surrogate data (light green areas behind the curves).
he clear temporal structures in cross-correlogram support the close as-
ociation between the neural and behavioural streams. The association
ppears to be centred in the centro-frontal regions, just as the 4 Hz theta
scillation identified above. 

. Discussion 

The aim of this work was to investigate and present the basic char-
cteristics of dynamic neural activity associated with stroke production
uring handwriting as a manifestation of complex fine motor control in
veryday life, and to examine their cognitive associations. Based on the
EG-handwriting co-registration system, we identified a highly reliable
nd structured neural activation pattern with centro-frontal distribution
ime-locked to single stroke production during handwriting. We termed
his activation “writing ERP ”. This study is the first to identify such
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Fig. 4. Grand averaged writing event-related potentials (ERPs) generated from the pen-down events of initial and non-initial strokes of Chinese characters in a 
dominant hand, Chinese task, together with scalp topographies for three different time windows: − 200–− 50 ms, 0–50 ms and 200–300 ms. 

Fig. 5. Theta oscillation during the fine motor control of stroke writing. (A)–(D) Writing ERPs bandpass-filtered in the theta band during the four tasks. (E)–(H) 
Phase distribution of theta oscillation measured in probability. The black line denotes the average phase angle, and the black arc denotes the 95% confidence interval 
of average phase angle. (I) Mean and standard error of the mean for theta oscillation amplitude across the four tasks. (J) Neural source estimation of theta oscillation 
in writing ERPs at the pen-down time point (time zero). Note: DC, dominant hand, Chinese; DE, dominant hand, English; NDC, non-dominant hand, Chinese; NDE, 
non-dominant hand, English. 
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Fig. 6. Cross-correlations between continuous 
neural signals and three types of kinematic sig- 
nal (velocity, force and length of the unfin- 
ished stroke [LUS]) during writing each sen- 
tence. Different traces represent different elec- 
trodes. Oz and Cz are shown in red and blue, 
respectively. The topographical patterns are 
spatial distribution of cross-correlation coef- 
ficients from all electrodes at the peaks or 
troughs closest to the zero lags. The upper and 
lower limits of the cross-correlation calculated 
from the surrogate EEG data were marked by 
the light green shadow behind the curves (For 
interpretation of the references to color in this 
figure legend, the reader is referred to the web 
version of this article.). 
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 clear neural activation associated with elementary handwriting pro-
esses. The activation was shown to be associated with major cognitive
actors of language and hand. In addition, we found a rhythmicity syn-
hronisation between EEG and handwriting activity predominantly at
 Hz. Statistically, this synchronisation effect mainly accounts for the
ifference in the writing ERPs generated by the four different tasks ma-
ipulated in language and hand, which implied an important role of the
hythmicity features of both brain and handwriting activity that may
e linked to complex visual-motor functions and skills. Finally, a cross-
orrelation analysis demonstrated a close association between neural
ctivity and handwriting kinematics, which further supported the value
f this new paradigm in cognitive research studying visual-motor pro-
esses. 

.1. Basic motor action unit during handwriting and its associated neural 
ctivation 

Our exploration of handwriting-associated neural activation was
riven by the assumption that the handwriting process is composed of
lementary, dissociable action events. The stroke has been proposed as
he basic action unit during handwriting ( Plamondon, 1995a , 1995b ,
998 ) based on behavioural modelling. However, a stroke is not always
asy to define, especially in cursive handwriting ( Kandel et al., 2006 ;
aarse and Thomassen, 1983 ; Teulings et al., 1983 ; Wing, 1978 ). A

eneralised and well-accepted definition of a stroke is ‘the trajectory be-
ween successive minima of the absolute velocity’ ( Brooks et al., 1973 ;
eulings, 1996 , p. 578). This kinematics-based definition allows the cap-
ure of similar neural processes across a variety of individualised hand-
riting styles or skills. In this study, we incorporated convenient tablet

echnology and defined a stroke as the trajectory between a pair of adja-
ent pen-down and pen-up events as recorded by the tablet ( Xiaolin and
it-Yan, 1997 ), namely, a planned and produced unbroken movement.
lthough this working definition does not strictly correspond to the
inematic definition of a stroke, it guarantees that the initial point (pen-
own) is the start of a kinematic stroke and captures the relevant neu-
al activation of planning and execution, despite that additional strokes
ight occur at a later stage. 

As our results showed, using the initial point of a stroke to derive the
eural activation associated with the basic action unit in handwriting led
o our discovery of the reliable writing ERPs. This well-structured ERP
ay serve as the foundation for future research on handwriting-related
eural dynamics. Although the writing ERP is clearly structured, its am-
litude is much smaller than a typical visual or auditory ERP in which
he peak amplitude can reach 10 𝜇V ( Calcus et al., 2019 ; Cohen et al.,
020 ). The reason for this may be that handwriting is a natural task
9 
aradigm in which the discrete cognitive events are too densely dis-
ributed and overlapping with each other which may cause inter-event
nterfering and suppression, unlike traditional task paradigms with well-
eparated serial stimulus presentation. Our current paradigm provides a
ovel and reliable solution for identifying meaningful events by generat-
ng a large number of trials from natural behaviour, thus compensating
or the low signal-to-noise ratio and providing reliable neural signals for
he study of subtle neural processes such as fine motor control. 

.2. Modulation of writing ERPs by cognitive factors 

If writing ERPs represent the neural processes of fine motor control
ctivity during handwriting, it should be modulated by cognitive factors
hat directly affect the relevant neural processes. We identified three
ain factors that are highly likely to have a modulation role: language,
and and the cognitive stages of handwriting. 

Chinese and English, representing logographic and alphabetic lan-
uage systems, respectively, were used as two forms of written lan-
uage to examine the language effect. Chinese is a meaning-based writ-
ng system constructed from complex morphemes that lack phoneme
apping, whereas English is a sound-based writing system built

n graphemes with systematic grapheme–phoneme mapping rules
 Cook, 2004 ; DeFrancis, 1989 ; Mattingly, 1992 ; Wang et al., 2005 ). This
ay affect the memory retrieval stage that interferes with the motor pro-

ess. In addition, Chinese and English scripts have very different mor-
hologies ( Fig. 2 ). Chinese scripts comprise complex character blocks,
ach composed of interlaced and mostly straight strokes, whereas En-
lish scripts have lower spatial complexity and mostly cursive strokes
 Kao et al., 2002 ). Culturally, the writing of Chinese characters requires
ach character block to be well-shaped and harmonious, which may im-
ose an extra coordination process. These differences in script charac-
eristics may lead to substantially different interference with the action
nit of stroke production. In addition to the difference between writing
ystems, another possible factor that may contribute to the language ef-
ect in this study is the difference in cognitive demand of handwriting
etween using primary and secondary language as all participants in-
luded in this study were native Chinese who learned English as their
econd language. 

The hand effect is more straightforward because it is directly associ-
ted with dexterity ( Bernard et al., 2011 ; Hammond, 2002 ). Ample evi-
ence has shown that manual dexterity depends on hand ( Mathew et al.,
019 ). At neural levels, handwriting with non-dominant hand has been
hown to trigger a larger and more bilateral neural recruitment than
andwriting with dominant hand ( Potgieser et al., 2015 ). Interestingly,
andedness has also been reported to influence the language ability
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onstruct, possibly due to brain lateralisation of language processing
 Gao et al., 2015 ; McManus, 1999 ). Therefore, we think that the dex-
erity factor should be the major cause of the hand effect we found on
he writing ERP, given that the participants barely had handwriting ex-
erience with their non-dominant hands. The substantial difference in
exterity was also clearly reflected in the handwriting outcome (see ex-
mples in Figs. 2 , 5 ). 

Finally, the cognitive stage of writing a complex character is also
xpected to modulate the writing ERP because more strokes have to
e held in the motor buffer before writing initial strokes as compared
o non-initial ones ( van Galen, 1991 ), which has been proposed as
 mechanism of parallel processing of serial movements in the brain
 Averbeck et al., 2002 ). Based on this view, we would expect signifi-
ant difference in writing ERPs between initial and non-initial strokes
n a Chinese character as it usually comprises many strokes. In addition,
nitial and non-initial strokes have different baseline activities: one is
receded by inter-character activity and the other by inter-stroke activ-
ty. This difference in baseline neural states may also contribute to the
RP differences. 

We tested the language and hand effects using a LMM that also in-
luded the low-level confounding factor of stroke length. The original
MM revealed significant effects of these two cognitive factors in the
mplitude of writing ERP in the post-event time window (200–300 ms).
n the time window near the pen-down event (0–50 ms), hand dis-
layed a main effect over the centro-frontal region, suggesting a link
o the motor control processes. As compared to the main effects, the
nteraction effects between language and hand appeared to be more
idespread across space and time. However, it has to be noted that the

ross-validation analysis (especially the one based on splitting partici-
ants) did not yield full consistency with the significance results gener-
ted by the original LMM analysis applied on the full dataset ( Table 2 ).
his implies a high level of cross-individual variability which rendered
 low fit of the models trained from a subset of the data in explaining
he held-out data. It is also a limitation of the present study that only
nvolved ten participants. However, the interaction effect (between lan-
uage and hand) robustly existed across all analyses in the post-stimulus
ime window (200–300 ms) in centro-frontal area. Assuming that the
and factor mainly captures dexterity in handwriting, one possible in-
erpretation of the interaction effects is that the spatial complexity of
anguage scripts has differential effects on neural cognitive process of
andwriting between the two hands. The spatial complexity here refers
o the organisation styles of Chinese and English scripts, which we as-
umed that the former is much complex, and such complexity may be
he major factor accounting for language effect. However, there are cer-
ainly many other cognitive processes related to the two languages that
ay also contribute to the language effect, which requires more specific

xperimental design to investigate in the future. 
In terms of cognitive stages, we examined Chinese characters be-

ause in Chinese handwriting, the stroke and character represent distinct
ierarchical levels, given that a character comprises many strokes. As
uch, the neurocognitive processes associated with the initial and non-
nitial strokes of a character should be quite different because the initial
trokes are accompanied by memory retrieval and motor planning for
he entire character, whereas the non-initial strokes may be more asso-
iated with executive activities. In line with this assumption, the results
howed that the initial strokes generated stronger and better-shaped ERP
ctivation, whereas non-initial strokes generated weaker and more oscil-
atory activity ( Fig. 4 ). The effect of cognitive stages on ERP was robust
s revealed by the cross-validation analysis and by individual-based t
ests. 

.3. Theta entrainment as a neural indicator of dexterity in fine motor 
ontrol during handwriting? 

Fine motor skills are highly complex human abilities requiring ex-
remely precise control of effectors in coordination with sensory feed-
10 
ack. Many such skills require years of training to achieve dexterity
 Gardner and Broman, 1979 ; Mathiowetz et al., 1986 ; Poole et al., 2005 ;
aldron and Anton, 1995 ). Handwriting, especially in Chinese, takes

ecades to develop from basic legibility to decent dexterity and finally
alligraphy. The difference in dexterity between the two hands is an
mbodiment of this decades-long training ( Andersen and Siebner, 2018 ;
alker and Henneberg, 2007 ). Undoubtedly, complex neural architec-

ure, including neuroanatomical circuits and pathways, must be formed
hrough prolonged training to support dexterous handwriting. Skilled
ehaviour usually leads to a reduced amplitude in neural activity. How-
ver, this does not appear to be true for writing ERPs, as those gener-
ted by dominant hands were greater in amplitude. This result appears
o contradict the low-cost theory but echoes with an earlier work that
lso revealed enhanced theta power in brain activity after training in
hinese brush writing ( Kao et al., 2002 ). This seemingly contradictory
esult may be explained by the theta entrainment phenomenon as we
laborate below. 

Theoretically, event-locked average ERPs can be generated by
wo mechanisms: being evoked or being induced by the event
 Woodman, 2010 ). In the former case, the ERP is an additional acti-
ation elicited by an event. In the latter case, the ERP is formed by the
e-organisation of ongoing activity (e.g., phase resetting). The latter case
ppears to be a more cost-efficient mechanism because it utilises exist-
ng resources and activities. Neural entrainment is a form of reorganising
ngoing neural activity by coupling it with external behaviour or stimuli
 Obleser and Kayser, 2019 ; Will and Berg, 2007 ). Many neural entrain-
ent phenomena are associated with selective attention ( Clayton et al.,
015 ; Obleser and Kayser, 2019 ). Neural entrainment entails an oscil-
atory activity with a distinctive frequency ( Obleser and Kayser, 2019 ).

e propose that neural entrainment may occur during dexterous hand-
riting, based on the following rationales: (1) When high handwriting
exterity has been achieved, the handwriting process appears rhyth-
ic, peaking at 5 Hz, with individual differences ( Palmis et al., 2017 ;
eulings and Maarse, 1984 ). This type of rhythmicity may partly explain
he pleasant feeling of flow during many types of fine motor control ac-
ivities (e.g., typing, video game playing, music instrument playing).
2) Dexterity should lead to a more cost-efficient neural process, and
he utilisation of ongoing activity is a form of cost efficiency. 

From the time-frequency representation of the writing ERP ( Fig. 2 E–
), we did observe strongly enhanced oscillation power in the theta
and in the dominant hand conditions, compared with the non-
ominant hand conditions. Our statistical analysis results showed that
he increased theta power in the dominant hand was mainly accounted
or by phase synchronisation, which is in line with the hypothesis that
heta entrainment indexes dexterity. Moreover, the phase distribution in
he dominant-hand Chinese writing was significantly more biased than
n the dominant-hand English writing, which is also compatible with
he hypothesis, as all participants were native Chinese speakers whose
andwriting experiences were intensively dominated by Chinese hand-
riting. 

The motor association of theta in the present work coincides with
ne of the functional roles of hippocampal theta that has been associ-
ted with voluntary motor behaviour in animal models ( Bland, 1986 )
nd in humans ( Tomassini et al., 2017 ). The coordination function can
e seen as active top-down control. A large body of research has shown
hat the theta wave, measured by scalp EEG displaying a central fre-
uency of 4 to 8 Hz with a mid-frontal scalp map, plays a crucial role
n top-down cognitive control and sustaining attention and memory
 Cavanagh and Frank, 2014 ; Clayton et al., 2015 ; Fiebelkorn et al.,
018 ; Kami ń ski et al., 2020 ; Knudsen and Wallis, 2020 ; Ullsperger et al.,
014 ). Similar to the entrainment to handwriting rhythmicity, the theta
ave has been extensively shown to be entrained to human speech

hythmicity, a process that modulates attention to and increases the in-
elligibility of speech ( Ding and Simon, 2014 ; Ghitza, 2012 ; Kerlin et al.,
010 ; Riecke et al., 2018 ; Zion Golumbic et al., 2013 ; Zoefel and Van-
ullen, 2015 ). Interestingly, the writing rhythmicity in our data dis-
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lays a characteristic frequency of 4 to 5 Hz, matching the typical fre-
uency of speech across different languages ( Chandrasekaran et al.,
009 ; Ding et al., 2017 ; Tilsen and Johnson, 2008 ). Such writing rhyth-
icity occurs only in highly skilled handwriting with dominant hands.

imilarly, speech is undoubtedly a highly skilled motor ability that is
implicitly) subject to lifelong training and involves a complex set of
rticulators and laryngeal structures. Indeed, the entrainment between
rain and speech is not only confined to speech perception, but also to
peech production ( Ruspantini et al., 2012 ). Ruspantini et al. showed a
lear oscillatory coupling between the sensorimotor cortex and mouth
uscle activity. Along the same line, many studies have reported os-

illatory coherence between brain activity and continuously recorded
ody movements, including self-paced finger movements, handwriting,
and movements and keyboard typing at various frequencies, mostly
elow 10 Hz ( Butz et al., 2006 ; Duprez et al., 2021 ; Gross et al., 2002 ;
erbi et al., 2007 ; Saarinen et al., 2020 ). Strikingly, a study showed
hat the intermittent correction-related sub-movements during free mo-
or control in monkeys was driven by intrinsic brain rhythms ( Hall et al.,
014 ). These pieces of evidence collectively support a framework of
rain and body interplay with a rhythmic core, which may be governed
y the universal dynamics theory ( Klimesch, 2018 ). 

Integrating all the findings listed above, we propose a theory that
hythmicity is a manifestation of high skilfulness in fine motor control.
his skilfulness exploits the intrinsic brain oscillation such that skilful
ehavioural rhythmicity is eventually coupled with intrinsic brain os-
illatory activity. In this vein, the degree of dexterity in handwriting
or any other fine motor skill) can be indexed by the degree of phase
ntrainment. Our statistical results are largely in favour of this theory.
he theta phase was more synchronised to stroke onset in dominant-
and writing – more so in Chinese than in English. The sustained theta
ould be a result of synchronised theta playing a top-down coordina-
ion and monitoring role. That said, the writing ERP is a combination of
oth evoked and induced (phase-reset) neural activity. This finding pro-
ides a finer-grained explanation of a previously observed theta wave
nhancement during handwriting ( Ose Askvik et al., 2020 ) and decrease
f low frequency band power due to increase of motor task demand
 Van Galen et al., 1990 ). However, finer-grained experimentation that
argets at more specific processes and variables would need to be de-
igned to firmly support the role of entrainment in motor dexterity,
hich we will discuss in the limitation section below. 

Our finding that the entrained theta covered the centro-frontal re-
ion and was localised in the SMA and pre-SMA areas is in contrast to
he abovementioned brain-body coherence studies, which observed the
ffects mostly in the primary motor areas. However, it coincides with the
act that the SMA and pre-SMA are constantly activated during speech
roduction ( Alario et al., 2006 ; Lima et al., 2016 ). Furthermore, based
n the functional roles of the SMA and pre-SMA in the control of volun-
ary and complex movements ( Nachev et al., 2008 , 2007 ), we propose
hat theta entrainment may also be a manifestation of active motor con-
rol under its general role of top-down control, which needs to be tested
n the future. 

.4. Direct association between neural signal streams and writing kinematic
ignals 

The cross-correlation analysis is complementary to the event-based
pproach because certain neural activities may not be associated with
iscrete events but rather with an ongoing dynamic state that co-varies
ith external continuous variables – in the present case, the kine-
atic variables of handwriting. The neural association and encoding

f basic kinematic features in visual information and motor processes
as already been confirmed, both macroscopically and microscopically
 Jerbi et al., 2007 ; Lauren et al., 2005 ). We have confirmed the moment-
o-moment association between neural activity and writing kinematics
ith a novel finding that the association appears to occur in centro-

rontal region ( Fig. 6 ). Further investigation is needed to determine
11 
hether this association stems from active control or simply from the
eural coding of movement kinematics. This association may shed light
n the development of brain–computer interfaces that aim to decode
otor-related information from non-invasive measurements of brain

ignals. 

.5. Artefact issue 

Artefact issue remains for data interpretation. As the handwrit-
ng paradigm contains a major motor component, it may be specu-
ated that the neural activity is a manifestation of muscle artifacts
 Muthukumaraswamy, 2013 ) generated by hand and finger movements.
owever, the following evidence contradicts this assumption: (1) The
riting ERPs exhibited a structured pattern located in centro-frontal re-
ion, suggesting their neural origin. An artefact due to external phys-
cal sources (e.g., speech, muscle vibrations) is unlikely to exhibit a
tructured scalp map localised in a specific functional area. (2) Cogni-
ive factors (e.g., language, hand, cognitive stages) significantly affected
he writing ERPs even after the low-level effect (stroke length) was re-
ressed out. If the neural activity was an artefact, we would expect only
ow-level features (not cognitive factors) to affect the activation pat-
ern. (3) We conducted a specific experiment to test the pattern of the
andwriting-generated artefact. In this experiment, we asked a partici-
ant to either write a sentence or remain still during 30 time slots. We
hen analysed the difference in the scalp maps of spectral activity be-
ween these two conditions. The results showed that the handwriting
ession clearly generated an artefact pattern across different frequency
ands (Fig. S1, SI). This scalp pattern resembled a typical artefact fea-
ure radiating from one side of the scalp to the other, potentially due to
he stretching of the cap by the muscle vibration. Most importantly, this
rtefact showed no resemblance to the pattern of the writing ERPs. 

.6. Limitations 

The present study was mainly dedicated to presenting the
emporally-resolved neural dynamics underlying the handwriting pro-
esses and its cognitive associations. Aside from this main goal, there
re several issues and limitations remained to be separately addressed
n future work, which we summarised here. First, the factors of language
nd hand are very coarse factors. Although they served to demonstrate
he cognitive association of the writing ERPs, this design is not able to
robe the functional signature of the handwriting-related neural activa-
ion at a finer-grained level of cognitive processes such as visual, motor,
entral cognition, memory, and so on. Studying of them requires more
pecific designs with clearly targeted and isolated cognitive factors, and
ith stricter control of low-level variables. 

The sample size of this study is another issue that constrains the in-
erpretability of subtle effects, one example being the amplitude differ-
nce in single-trial theta between conditions. A larger scale study would
e needed to more strongly support the claim of pure phase synchro-
isation. Related to the small sample size issue, we conducted several
dditional analyses to assess the robustness of the results related to the
ognitive factors (language and hand) and cognitive stage (initial versus
on-initial strokes) effect. The cross-validation results confirmed a con-
istent interaction effect between language and hand in post-stimulus
ime window in centro-frontal region and a consistent effect of cogni-
ive stage. The main effects of language and hand were significant in the
riginal LMM analysis but were not robustly shown in cross-validation
nalysis. Study with larger sample size will be needed in this regard.
evertheless, the association of handwriting ERPs with cognitive fac-

ors were confirmed, which serves as a validation of them for studying
isual-motor processes and neural mechanisms therein. In addition to
he cross-validation analysis, we also separately reported the results of
ain figures and table in this paper derived from odd and even trials of

he original data in SI. 
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Another issue worth to note is the eye movements activities during
he naturalistic handwriting process. Their engendered artifacts seemed
o have been cleaned in our data as no ocular pattern can be seen from
he scalp maps of writing ERPs. However, the eye movements associated
ith strokes will inevitably generate visual processes associated with the
otor processes for writing each single stroke, which complicates the

nterpretation of the writing ERPs. High spatial resolution technologies
uch as fMRI may be resorted to for tackling this limitation. 

.7. Implications for future research 

The development of a new paradigm, discovery of elementary neural
ctivation and elaboration of the neural dynamics underlying handwrit-
ng in this work may provide a new venue for the study of fine motor
ontrol processes in the brain. We have demonstrated that through a
eliberate design, subtle yet reliable neural activation can be tracked,
nd its functional signature can be analysed to study complex be-
aviours in naturalistic settings. The ability to reliably characterise the
eural characteristics underlying visual-motor abilities may also bene-
t intervention research. Lastly, the close association between a non-

nvasively recorded neural stream and a handwriting movement stream
uggests the potential to retrieve the handwriting content by decod-
ng the neural signals using advanced machine learning approaches,
imilar to the decoding of human speech directly from neural activity
 Anumanchipalli et al., 2019 ). 
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