IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 4, 2021, accepted August 21, 2021, date of publication August 24, 2021, date of current version September 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3107795

EEG Activities During Program Comprehension:

An Exploration of Cognition

YU-TZU LIN 12, (Member, IEEE), YI-ZHI LIAQ'2, XIAO HU“3, AND CHENG-CHIH WU'2

! Advanced Center for the Study of Learning Sciences, National Taiwan Normal University, Taipei 106, Taiwan
2Graduate Institute of Information and Computer Education, National Taiwan Normal University, Taipei 106, Taiwan
3Human Communication, Development, and Information Sciences, Faculty of Education, The University of Hong Kong, Hong Kong

Corresponding author: Yu-Tzu Lin (linyt@ntnu.edu.tw)

This work was supported in part by the Ministry of Science and Technology of Taiwan under Grant MOST109-2511-H-003-010-MY3.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the appropriate governmental authorities and organizations under Approval No. NSC101-2511-S-003-037.

ABSTRACT This study attempts to explore cognition during program comprehension through physiological
evidence by recording and comparing electroencephalogram (EEG) activities in different frequency bands
and the eye movements of the participants with high or low programming abilities. An experiment was
conducted with thirty-three undergraduate students majoring in Computer Science. We recorded their
EEG activities when they were reading two programs with three types of program constructs. At the
same time, the participants’ eye movements were recorded by an eye tracker to further understand the
relationship between the program comprehension process and EEG activities. Experimental results show
that the high-performance participants displayed higher performance for working memory (theta power),
attention resource allocation (lower alpha power), and interaction between working memory and semantic
memory (upper alpha power) in program comprehension tasks of complex constructs, which proves related
theories proposed in the existing research on programming and cognition. The results of this study not only
offer objective evidence of the roles cognition plays in program comprehension but also provide educators
with suggestions for designing suitable pedagogical strategies.

INDEX TERMS Computer science education, programming, educational technology.

I. INTRODUCTION

Computer programming is a challenging skill involving com-
plicated tasks executed based upon programmers’ mental
models based upon cognitive structures (what programmers
possess in their memories) and cognitive processes (involved
in using or adding knowledge) [1]. Students in computer
science make their programming plans and develop specific
strategies are based upon the programmers’ mental mod-
els [2]. The mental model is used to guide information pro-
cessing between working memory and the development of
production systems in long-term memory [1], [3]. As illus-
trated in Fig 1, when a person interacts with a cognitive
task, he or she acquires knowledge by combining knowledge
structures stored in long-term memory with information in
working memory to form a mental model (or representation),
used to execute a task. With regard to the execution of com-
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puter programming tasks, various mental models influence
learners’ cognitive processes while writing or comprehending
programs which then influence their programming skills [4].
Programming experts build their mental models based upon
programming knowledge stored in long-term memory which
includes programming structures, rules of programming dis-
course, and planning knowledge [5], [6]. Experts in com-
puter programming are able to apply their knowledge more
effectively than novices [6]. Programming knowledge has
been found to mediate the effects of working memory and
experience with programming performance [3]. Few studies,
however, have examined the relationship between program-
ming skill and its possible antecedents (memory capacity,
mental models, and programming strategies) [7]. In addition,
existing research relies more on subjective evidence, such
as participants’ behaviors or results from interviews: conse-
quently, previous studies are unclear with regard to the impor-
tance of parameters like memory capacity, mental models,
and programming strategies in the overall process of learning

120407


https://orcid.org/0000-0002-2138-538X
https://orcid.org/0000-0003-3994-0385
https://orcid.org/0000-0001-7136-3480

IEEE Access

Y.-T. Lin et al.: EEG Activities During Program Comprehension

/" M@\
AT o o

p - / A + —
y . ‘Working L
foeem) o FFE
| memory —
X y

y

Knowledge
Cognitive tasks

FIGURE 1. The mental model and memory.

and applying skills in the area of computer programming.
Further research will be needed in order to clarify and explain
these relationships.

The rapid development of neuroscience research provides
more possibilities to uncover the underlying mechanisms of
information processing in the brain during computer pro-
gramming [8], [9]. Knowledge stored in long-term memory
and knowledge used in working-memory have previously
been found to be good predictors of computer programming
skill acquisition in traditional research [10]-[12], which has
been confirmed by recent research in neuroscience [13], [14].
Existing research, however, focuses more upon mapping neu-
roscientific data to the level of programming skill but often
fails to provide explanations about the cognitive meanings
or specific brain mappings. Many neuroscientific studies
have focused upon specific neurologically-active chemicals,
yet their effects upon cognitive meanings (brain maps) are
often unclear [15], [16]. Integrating the results from dif-
ferent neurologic and physiologic methods and procedures
might help provide more accurate explanations with regard
to cognition [17]. Electroencephalogram (EEG) has higher
temporal resolution for illustrating cognitive dynamics dur-
ing problem solving. Consequently, we chose to measure
brain activity using EEG which has been successfully used
in previous existing cognitive research [15]. In the field of
computer programming, a paucity of research exists studying
the relationship of EEGs with respect to the cognition of pro-
gramming dynamics [8], [9]. Although the possible relation-
ship between the memory and programming skill has been
depicted in previous research, the use of EEGs in this research
is a relatively novel way to explore programming cognition,
supplemented by eye tracking to reveal more about how
different cognitive models influence programming dynamics
and skills.

The participants’ EEG activities were recorded while stu-
dents were engaged in understanding a specific computer
program. In order to align EEG activities with the visual
program statements, an eye tracker was employed to record
eye-tracking paths during program comprehension. Triangu-
lating EEG activities and eye movements helped to elucidate
cognitive processes involved in program comprehension. Pre-
vious research has addressed the functional significance of
theta and alpha frequency bands in programming comprehen-
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sion [8], [9], cognitive activities such as problem solving [18],
working-memory operation [19], [20], and semantic under-
standing [21], which have shown to be involved in computer
programming. The present research focuses on theta and
alpha bands and their involvement with programming skills.

A list of our research questions (labeled R) and our
hypotheses (labeled H) follow:

R1: What are the differences in EEG activities during
program comprehension between high- and low-performing
participants?

i. What differences exist for different types of program
constructs?

ii. What differences exist with regard to more complex,
difficult programming functions, tasks?

Based upon the existing research on programming
comprehension, four hypotheses, designated H1.1 through
H1.4 were developed in order to address EEG results for
research question one, designated R1, which appear as
follows:

The first hypothesis is based on the previous findings argu-
ing that high-performance programmers have been shown to
display higher performance with regard to working memory
needed for mental calculations as well as better cue-based
search strategies required for programming comprehen-
sion [9], [22].

H1.1: High-performance participants are expected to have
stronger theta wave power than low-performance partici-
pants.

Because program comprehension tasks require more atten-
tion resources leading to higher comprehension and perfor-
mance, our second hypothesis is as follows:

H1.2: High-performance participants will have stronger
lower alpha power waves than low-performance participants.

Because high-performance programmers master program-
ming knowledge compilation, which requires frequent inter-
action between the working and the semantic memory, our
third hypothesis is as follows:

H1.3: High-performance participants have a stronger
upper alpha power waves than low-performance participants.

With more complex programming constructs or different
programming functions, participants would need higher cog-
nitive abilities: thus, the differences in EEG activities should
be more obvious. This lead to the formulation of our 41
hypothesis:

H1.4: The difference in EEG activities between high- and
the low-performance participants should be more obvious
when involving complex constructs or more difficult pro-
gramming functions.

The second research question addresses implications
derived based on the cognitive meanings of the EEG activ-
ities, and appears as follows:

R2: What do the EEG activities during program compre-
hension processes tell us about the cognitive factors that
might affect program comprehension?

Answers to the above research questions appear in our data
analysis and discussion sections.
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II. LITERATURE REVIEW

A. PROGRAM COMPREHENSION

Program comprehension plays an important role in computer
programming, which is the foundation of adding to or mod-
ifying the functionality of programs [23]. Therefore, some
research has tried to analyze how programmers comprehend
programs by citing theoretical frameworks and methodolo-
gies from related areas, such as text comprehension, problem
solving, and education [24], [25]. Brooks initialized the stud-
ies of theoretical models for program comprehension [10].
He argued that program comprehension is hypothesis-driven
and is a top-down process [26]. Programming problem solv-
ing is directed by a production system which is a type of inter-
nal control mechanism that consists of a set of conditions and
actions to be performed during programming [10]. Soloway
and Ehrlich believed that programs are executable and com-
municative entities [6]. Research findings in text reading
and comprehension have shown that the goal of reading a
program necessitates the formulation of specific plans. These
plans consist of program fragments representing stereotyp-
ical action sequences in programing. Using empirical evi-
dence to illustrate, experts have used a top-down approach
in order to decompose programming goals and plans into
lower-level plans and program codes. Pennington developed
a mental model for program comprehension also based on
text comprehension [5]. Pennington’s model utilized four
types of abstraction implied in program texts: (1) functional,
(2) data flow, (3) control flow, and (4) conditional actions.
In Pennington’s study, an experiment was conducted to exam-
ine experts’ program comprehension. The results show that
programming experts formed their mental representations of
programming based mostly on control flow rather than func-
tional or data flow abstraction. Wiedenbeck and Ramalingam
summarized Pennington’s study, categorizing control flow
and basic operations as the program model, and data flow
and functions as the domain model [23]. The program model
contains information about program entities and relationships
in the program text (e.g., the data structure and the code
execution sequence). The domain model, on the other hand,
is concerned with how data passes through a program, and the
transformation of data from the input state to the output state.
In order to understand the differences in program comprehen-
sion under different paradigms (object-oriented and process-
oriented), investigators conducted a similar experiment. Their
results showed that the process-oriented paradigm resulted in
a higher precision rate in the program model. The object-
oriented one, however, showed better performance in the
domain model.

In spite of the previously cited findings, other studies by
Pennington, Wiedenbeck, and others have shown that both
the program and domain mental models were of equal impor-
tance for program comprehension [23]. A study by Letovsky
used verbal protocol analysis to collect experts’ cognitive pro-
cesses [26]. Based on the collected data, the author proposed
a computational model of program comprehension in which
programmers used their programming knowledge to under-
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TABLE 1. Studies on program comprehension models.

Author§ Year  Assimilation Cognition

(# of citations)
Program comprehension is a top-down

Brooks and hypothesis—driven.re?onstruction

(835) 1983 top-down process. The hypothesis is refined and
elaborated based on information
extracted from the code.

Soloway & Progran? comprehension ifwolves

Ehrlich 1984 top-down composing the programming plans that

(965) havc‘ been modified to fit the needs of
specific problems.

Pennington Progr§m corr.lpreh.ensio.n involve§

(625) 1987  bottom-up detecting or inferring different kinds of
relations between program parts.
Programmers utilize their knowledge
base of computer programs for

Letovsky o understanding the tasks, lconstructing

@37) 1987  opportunistic ~ mental models for encoding current

understanding, and use an assimilation
process for interacting with the
stimulus materials.

stand programs, ask questions, and to predict programming
behaviors. They were then able to find and verify answers
from the programs. This model consists of a combination
of assimilation processes used to construct cognitive mod-
els, during which programmers would be ‘“‘opportunistic”
in using both the top-down and bottom-up approaches to
help construct models for understanding the target programs.
Table 1 summarizes the program comprehension models pro-
posed by various scholars.

One study examined the above models and suggested that
most of the program comprehension models use elements
such as external representation, cognitive structure and assim-
ilation process [27]. External representation is formed from
any materials and data associated with the target program
but not a part of the internal knowledge of the programmers.
Cognitive structure constitutes the internal knowledge of the
programmers, which can be divided into their knowledge base
and mental representations. The knowledge base includes the
general programming knowledge of the programmers and
knowledge associated with that area. The formation of men-
tal representations is a process during which programmers
construct internal knowledge from the target program using
the knowledge base as they acquire program comprehension.
Lastly, the assimilation process is related to specific strategies
adopted by programmers. These strategies extract informa-
tion from source codes to allow programmers to construct
a mental representation of the program code while enabling
them to comprehend the program.

Several studies attempted to investigate the formation of
mental representations during program comprehension and
attempted to examine the differences among expert and
novice learners [23], [28]-[30]. With recent advances in
cognitive neuroscience and the advancement in more skilled
equipment, some studies began to use eye trackers to study
cognitive processes during program comprehension. Studies
conducted by Crosby et al. [31] and Aschwanden and Crosby
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[32], for example, showed certain important aspects of com-
puter programming exhibit significant differences between
high- and low-performance participants as detected by the
frequency of eye fixations. Investigators have found that cer-
tain key statements in computer problems, called “beacons,”
play a key role in program comprehension. These “beacons’
may consist of indicate specific structures or statements in
computer programs vital for proper program comprehension.
At the same time, a beacon provides a connection between
programs and the process for establishing hypotheses. This
connection helps programmers verify their hypotheses about
the goals of the programs [33]. Crosby et al. [31] found that
more experienced programmers would focus more on impor-
tant program codes, meaning they knew how to use beacons.
In contrast, novice learners seldom used beacons in their pro-
cess of program comprehension. From the perspective of pro-
gram structure, studies based on eye-tracking data revealed
that cognitive behaviors differed in comprehending programs
with and without recursions [32]. Investigators have also
shown that the use of “recursions” is also an important
concept and a foundational technique for problem-solving in
computer science. Dicheva and Close [34] reported, however,
that novice learners tended to comprehend recursions using
the concept of “loop”, while experts employed the “‘stack”
concept. This demonstrated that the two groups had con-
structed different mental models during their programming
experiences.

B. PROGRAM COMPREHENSION AND NEUROSCIENCE
Most traditional research with regard to the learning of
computer programming has utilized quizzes, questionnaire
surveys [5], [23], and “thinking aloud” protocols [26],
[28], along with the use of semi-structured interviews to
learn about participants’ cognition during programming. The
aforesaid methods still, unfortunately, rely on researchers’
inferences with regard to the participants’ cognitive develop-
ment. Consequently, prior analyses might not be as objective,
precise, or comprehensive. Recent advances in equipment and
skills used to investigate cognitive processes in neuroscience
now allow researchers to explore more fully the contours of
cognition with more accurate physiological evidence. Neu-
roscience techniques such as Positron Emission Tomogra-
phy (PET), functional Magnetic Resonance Imaging (fMRI),
EEG, and so on allow for more detailed of brain activity when
subjects are engaged in cognitive activities.

Some efforts have been made to link brain activity with the
acquisition of computer programming skills. Some research
has examined brain activities during code comprehension,
code review, and prose review based on fMRIs and shown dif-
ferences between neural representations in programming lan-
guages and natural languages [14]. Programming languages
may be akin to natural languages with greater expertise. The
fMRI technique has also been employed to study activated
brain regions related to working-memory operations, atten-
tion, and language processing while comprehending the pro-
grams in a bottom-up manner [35]. Another study addressed
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the differences in activated brain regions between top-down
and bottom-up comprehension [36]. Investigators have shown
that “bug” suspicion and bug detection also involve different
brain activities [37]. Functional MRIs provides better spatial
resolution for brain activities, but lacks temporal dynamics.
For this reasons, the techniques of EEGs and functional Near-
Infrared Spectroscopy (fNIRS), have been employed in other
studies. Research has shown that one’s cognitive load during
comprehension can be predicted based upon the techniques
of EEG activity, cerebral blood flow, and even oxygenated
hemoglobin (oxy-Hb) [38], [39]. Frontal lobe activity has
been shown to be a useful method for quantifying the work-
load in short-term memory during program comprehension
tasks, as well as increased activity when performing differ-
ent tasks. Investigators have shown a significant difference
between variable manipulations, numeric calculation, and
conditional statements based on fNIRS [40]. The presence
of linguistic anti-patterns in computer programs increases
the cognitive load during program comprehension tasks, but
structural and readability characteristics do not [41]. Some
additional studies have employed EEGs to explore program
comprehension: alpha and theta waves were used to quantify
programmers’ expertise and detect the difficulty of program
comprehension tasks [8], [9]. These two bands have fre-
quently been used in the research of the following: problem
solving [18], working-memory operations [19], and seman-
tic understanding [21], which are likely involved with the
acquisition of computer programming skills. Another study
by Lee, et al. depicted the difference between experts and
novices based on beta and gamma powers and found experts
to be superior with the tasks of digit encoding, coarse cod-
ing, short-term memory, and subsequent memory effects [9].
When compared with syntax tasks, higher brain activation
was found during comprehension tasks in the theta band.
These findings imply that searching for rules for syntax tasks
is easier than that of code comprehension, which requires the
mental simulation of code execution [38]. EEG has a higher
temporal resolution and can reveal cognitive dynamics as
evidenced by varying activities of specific EEG wave bands.
The use of EEGs when investigating computer programming
dynamics, has, however, been somewhat limited and much
work is needed to elucidate the nature of brain activity as
correlated with the formation of mental models and program-
ming strategies used by programmers.

C. EEG ACTIVITIES AND COGNITION

When a specific cognitive task is being performed, activi-
ties of corresponding parts of the brain have been shown to
increase. In order to explore how brain activities are associ-
ated with cognitive activities, neuroscience techniques such
as PET and fMRI scans are employed. These techniques are
useful, but cannot describe the dynamic process of cogni-
tion [42]. In order to describe more dynamic processes, EEG
waveforms have been examined to describe the temporal vari-
ations of brain waves [43], [44]. This type of research linking
human EEG activities to cognition has been growing rapidly
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and helps to explain the role of neurophysiology in cogni-
tion [18]. The use of EEGs has been extensively utilized in the
areas of psychology and education with regard to understand-
ing various processes of student learning. Previous research
has shown the functional significance of theta and alpha
band frequencies with the execution of complex tasks—those
which involve strategy selection and execution [18], [45]. Itis
unclear from these few studies, however, as to the exact role
of sequential modulations involved in strategy selection and
execution [15].

Theta waves have been associated with many cognitive
processes related to one’s working memory [19], [46]-[48],
especially when new information is encoded into episodic
memory [21]. Klimesch et al. [48] tested this hypothesis and
found that the participants who remembered the words dis-
played a higher theta power than those who could not remem-
ber them. Similar results were obtained in the virtual maze
experiment in two studies conducted by Kahana et al. [49]
and Caplan et al. [50]. Their results showed that when explor-
ing the maze, theta waves were more prominent. The use of
longer mazes showed longer times for theta wave vibration.
Some studies have claimed that theta wave are also associated
with one’s working-memory load. Gevins et al. [19] con-
ducted the N-back experiment and discovered that increas-
ing task difficulty would also raise loads involved with
working-memory, and also showed the theta wave power to be
increased [19]. Research has also shown that problem-solving
processes definitely involve theta waves (increasing their
activity). Students who were able to find the best solutions
showed a significantly higher theta activity than other less-
skilled students [51]—-[53]. The activity of the theta band has
been shown to increase parametrically with the number of
items retained in the working memory [54] and is relatively
specific for control of the working memory. The theta wave
has also been shown to be important for executive functions
in one’s working memory [13].

It is interesting to note that alpha and theta waves have
been shown to be closely associated. Many studies have
shown that alpha and theta waves are both associated with
working memory [53], [55]. Alpha power increases mainly
during the retention of visual or verbal material in the working
memory [56]. Alpha waves, however, seem to be are more
related to memory retrieval [57], [58]. The alpha wave is also
associated with the rate of information processing and mem-
ory performance. In order to identify more specific differ-
ences in alpha wave functions, many studies [57], [59], [60]
have used narrower frequency bands such as lower alpha and
upper alpha bands instead of the entire alpha band. The lower
alpha band (8.3 £ 10.3 Hz) reflects attentional processes,
whereas the upper alpha band (10.3 £+ 12.3 Hz) reflects
stimulus-related cognitive processes [21]. An increase of the
lower alpha power reflects an attempt to increase attention,
whereas a large upper alpha power indicates good cognitive
performance. A lower alpha power is related to the allocation
of attentional resources in the human somatosensory system,
and the upper alpha is related to cognition, involving the
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interaction between the working and long-term memories.
Klimesch [58] proposed that the upper alpha wave reflects
the encoding and processing of the semantic memory [58].
A stronger upper alpha power indicates good performance
on both coordinating the cognitive process and semantic
understanding. In addition to the processing of the semantic
memory, Klimesch et al. [55] suggested the upper alpha band
plays an important role in long-term memory and is related
to the reactivation of long-term memory codes in short-term
memory. The alpha power is also related to “top-down”
processing [61]. The alpha power increases during retention
of information and top-down processing for the performance
of upcoming tasks in one’s working memory [62], [63]. Top-
down (concept-driven) processing occurs when the percep-
tual representation is influenced by cognitive intention (e.g.,
previous knowledge, expectation, active redirection of atten-
tion, and mental readiness), which can increase the speed
and efficiency of perceptual identification [63]. In addition
to the memory function, the alpha wave is associated with
mental effort and intelligence. Highly intelligent participants
display a higher alpha power [64], [60]. These results can be
explained by the fact that highly intelligent participants spent
less mental effort when solving problems than participants
with average intelligence. This low mental effort and higher
intelligence is shown by a high alpha power brain wave.
This result can be explained by the “brain efficiency” theory
proposed by Haier et al. [65]. They argued intelligence meant
how efficiently the brain operated. Efficient operation means
using the brain lobes related to specific tasks but not those
irrelevant to the tasks. Therefore, studies have concluded the
alpha wave responds to the inhibition of the cortex irrelevant
to the tasks [66], [67].

ill. METHODOLOGY

A. PARTICIPANTS

This study targeted undergraduate students with backgrounds
in computer science and consisted of students willing to
participate in the study and employed the method of ““‘conve-
nience sampling.” Requirements for participants and infor-
mation on the experiment were announced on a popular
bulletin board system for college students in order to attract
participants. In the subject recruitment notice, details of
the experimental purpose and procedure, equipment utilized,
time required, and payment were provided. Students who
were willing to participate in the study replied and selected
suitable time slots for the experiment. The volunteers for the
experiment understood the details of the experiment and had
signed the participant consent form. Data from the investiga-
tion were analyzed anonymously to protect the confidentiality
of participants. The research plan had been reviewed and
approved by the appropriate governmental authorities and
organizations. Two participants were considered to be invalid
and excluded from the data analysis because their computers
crashed during the experiment and their EEG data was incom-
plete. The number of participants, thus, was 33 and consisted
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of some 20 males and 13 females. All the participants had
received at least one year of education in C programming.
To ensure the EEG activities of the participants would not be
affected by physiological variations or mental abnormalities,
the participants were all right-handed and did not have a
history of psychological disorder or mental illness. In addi-
tion, since this study tracked eye movements, participants
with the following conditions were excluded: (1) wearing
hard contact lenses, (2) wearing cornea color film or fake
eyelashes, (3) having eye problems such as strabismus, and
(4) receiving eye therapy and medical treatment.

B. STIMULI AND APPARATUS

The stimulus material included two program problems writ-
ten in C programming language. Each problem included three
functions. The first problem involved iteration, in which the
program goal was to print out twin primes (i.e., two adjacent
prime numbers). The second problem used mainly a recursion
structure, in which the program goal was for conversion
between numerical systems. Specifically, the program was
asked to convert decimal numbers first to binary ones, then
to octal.

This study used the NeuroSky MindWave headset to record
EEG activities. This headset has been employed in many
cognitive [68] and multidisciplinary [69]-[71] studies, and
has been proven to be comparable to medical-grade EEG
equipment [72], [73]. It has also been proven to be valid
by comparing results using the aforesaid equipment with
existing cognitive tests [74]. In the present study, the accurate
recording of eye movements was aligned with EEG activi-
ties to confirm complex cognitive processes. The NeuroSky
MindWave headset is also portable and was very well suited
for our experimental setting. The headset used for the study
consisted of a customer-grade device but also included noise
filtering for EMGs (electromyography). It can, therefore,
remove possible influences caused from eye blinks.

Computer program comprehension is more complex than
many other cognitive tasks, and required a longer amount
of time to study and acquire data. In addition, to delin-
eate the detailed cognitive processes and logic involved,
the programs in the experiment were sufficiently long. Con-
sequently, the large data sets eliminated errors and possible
noise of the EEG signals. The EEG headset used in our
study had a sampling rate of 512 Hz. It measures EEG waves
by using dry electrodes located on the forehead (FP1) and
by reference electrodes placed at the earlobes. It provided
information from eight frequency bands: delta (1-3 Hz), theta
(4-7 Hz), lower alpha (8-9 Hz), upper alpha (10-12 Hz),
lower beta (13-17 Hz), upper beta (18-30 Hz), lower gamma
(31-40 Hz) and upper gamma (41-50 Hz). To explain the
research results more accurately, only theta, lower alpha, and
upper alpha waves, which are associated with the relevant
cognition during program comprehension, were discussed in
this study.

In addition to EEG data, eye tracking was also employed to
help explain cognitive processes [75], [76]. A Tobii X120 eye
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#include <stdio.h> ROI 1 : Header
#include <math.h>
int fun_1(int *,int *);

int fun_2(int ,int );
int fun_3(int );

ROI 3 : Main function
ROI 4 : Variable declaration

printf("Enter two numbers:");
scanf("%d%d", &a, &b);

ROI 6 : 1f condition
H scanf( "%d%d", &a, &b); } ROI 7 ¢ Input

fun_1(&a, &b); ROI 8 : Function call
fun_2(a,b);

RO1 9 : Main function returns value
}

ROL 11 : If condition
*a="a+*bh;

*b=*a.*b;
*az*a-*h;

ROI 2 : Prototype

} ROI 5 Input

ROI 10 : Function name

ROI 12 : Computation

}
}

01 19  Pnction nme

ROI 14 : Variable declaration
while (I(x % 2)) ROL 15 : While |

{x=x+1; } LS
ROL 16 For loop

if (fun_3(2)) ROI 17 If condition

{

if (fun_3(z+2)) | ROI 18 : If condition

[[{printf ("%d%d ", z,z+2;;} |  ROI 19 : Qutput

}
}

int fun_3(int w) ROI 20 : Function name

{
ROI 21 : Variable declaration
J = (int)sqrt(( Jw); | ROI 22 : Assi t
ROI 23 : For loop
{
ROI 24 ¢ If condition
RO 25 : Assigmment
}

for(i=3;i<=j;i+=2)

ROT 26 : If condition
ROI 27 : Return value of the function
else ROL 28 : Branch
) ROI 29 : Return valve of the function

FIGURE 2. Problem 1: program with iteration.

tracker with a sampling rate of 120 Hz was used for tracking
the process of eye movements. The distance between the eye
tracker and the screen was 15.5 cm. The size of the screen
was 52 cm x 29 cm. The eye tracker was at a 35° angle to the
screen. The height from the screen to the table was 5.5 cm.
The region of interest (ROI) used in the eye movement
analysis was defined according to the roles of the program
code (such as header file, function prototype and expression,
etc.), as shown in Figs 2 and 3. In addition to ROIs, Figs 2 and
3 show that each problem contains three functions, referred
to as functions #1, #2 and #3 in this paper.

IV. EXPERIMENTAL PROCEDURE

Before the experiment started, the participants were given
instructions about the flow of the experiment. This was
followed by calibration of the eye-tracker device. Before
starting the experiment, electrodes and skin were ensured to
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lude<stdio.h>

#include <math.h> HHplgteades
int fun_1(int) ;
int fun_2(int) ; ROI 2 : Prototype
int fun_3(int) ;

int s[10] ; ROI 3 : VYariable declaration

ROI 4 : Main function
ROI 5 : Variable declaration

printf ("Enter a number: ") ;

| ROI 6 = Input

scanf ("%d",&n) ;

a=fun_1(n);

b =fun_2(a) ; ROI 7 : Function call
c=fun_3(b);

| printf ("The answer is: %d %d", a, ¢); | ROI 8 : Output
ROT 9 : Main function returns value

ROT 10 : Function name
{
ROI 11 : Variable declaration

if (x 1= 0) { ROT 12 : If condition
I=X%2;
y=y+z*w; | ROI 13 : Computation
w=w*10;

ROI 14 : Recursive call
}
ROI 15 : Return value of the function
}

ROT 16 : Function name
{

ROI 17 : Yariable declaration
ROI 18 : [f condition
ROI 19 : Return valve of the function

ROI 20 : Branch

{
ROI 21 : Computation
ROI 22 : Assignment
[return 1+ fun_2(i/10);]

} ROI 23 : Head-block recursive call

}

int fun_3(intx) | ROl 24 : Function name

1
[ staticint v=0, w=0, y=0,z=0; | ROI 25 : Variable declaration
ROI 26 If condition

{
ROI 27 : If condition
ROI 28 : Return value of the function
ROI 29 : Branch

for (int i=1; i<=x; i++) | ROI 30 : For loop

[y=y+sl++v]* pow(2,i-1); | ROI 31 : Computation

}

ROI 32 : Gomputation

ROI 33: Return value of the fumction
}

}
ROI 34 : Branch

{
for( int i=1; i<=x/3; i++) ROI 35 : For loop
{

ROI 36 : For loop

[y=y+sl++v]*pow(2,i-1); | ROl 37 : Computation
}

01 3 Gaputaticn
’ ROI 39 : Assigmment

}

ROI 40 : Computation

ROI 41 : Recursive call
}

FIGURE 3. Problem 2: program with recursion.

be in close contact and the signal reception was tested to make
sure the equipment was working properly. The participants
were also asked to try their best in comprehending the pro-
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FIGURE 4. Experimental procedure.

grams and were told that their eyes should not wander beyond
the screen. During the experiment, both EEG activities and
eye movements were recorded. After completing each exper-
imental problem, the participants completed a questionnaire
on how they comprehended the programs (the goal, logic,
and output), and attended an interview to reflect their percep-
tions and experiences. The participants were then informed
that the questionnaire should be completed based on their
understanding of the programs during the experiment. For
each participant, the experimental duration was about one
hour, including the time for comprehending each program
(five minutes per program), filling out the comprehension
test and the questionnaire (fifteen minutes per program), and
the interview. The entire flow of the experiment is presented
in Fig 4.

V. DATA COLLECTION AND ANALYSIS

Data collected and analyzed in this study include EEG power
and eye-gaze data. The eye-gaze positions had been trans-
ferred to ROISs (such as the program header region, the func-
tion prototype region, and the variable declaration region) by
the eye tracker package (if the eye-gaze position locates in
an ROI, then this point is labelled as this ROI). In the pre-
processing stage, the EEG data (EEG powers) and eye-gaze
data (eye-gaze ROIs) were both down-sampled to 1 Hz. Then
the gaze data and the EEG data were aligned in time, which
enabled identification of the EEG data when the participants
were looking at the programs. Since EEG data gave us only
the time series of EEG power without information about
attention positions, the eye tracker was employed to locate the
attention positions by synchronizing the EEG data with the
eye-tracking data. Next, the attention position at the programs
for each EEG signal was located by the eye-tracking data.
The ROIs for EEG signals were obtained, based on which the
EEG power for each ROI could be derived by averaging
the EEG powers occurring in the ROI. The EEG powers for
each group and program structure/function were derived by
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averaging the powers of all subjects in each group for compre-
hending ROIs involved in each program structure/function.
Afterwards, the EEG power of the high- and low-performance
participants were compared using Kruskal-Wallis statistical
testing. The nonparametric test was employed because the
sample sizes in the experiment are small.

In this study, participants’ performance in program com-
prehension for the two problems was measured by using
a program comprehension test (16 points for the iteration
problem and 12 for the recursion problem). Based on the test
scores, the participants were grouped into high-performance
participants (those with scores above the average) and the
low-performance participants (those below-average). Each
question on the test was awarded 2 points for a correct
answer: “1” for a partially correct answer, and “0” for an
incorrect one. The high- (higher or equal to the average) and
low-performance participants (below-average) were distin-
guished based on their scores on the program comprehension
test.

The programming constructs involved in the test pro-
grams included condition, iteration and recursion (as shown
in Table 2 ). For the construct of recursion, Gotschi et al. [34]
divided recursive programs into three types: (1) head-block
recursion—having another coefficient before the recursive
call, e.g., n*fact(n — 1); (2) embedded recursion—having
a coefficient before and after the recursive call, e.g.,
4*prog(n/2) + 3; and (3) two recursive call—consisting of
two recursive calls, e.g., fib(n — 1) 4 fib(n — 2). Our program
involved a simple head-block recursion, e.g., 1 + fun_2 (n
/10) as well as another type of recursion without additional
terms. We refer to the latter as a general recursive call, e.g.,
fun_1(n/2), in comparison with the head-block recursion.

In order to explore why students had difficulty compre-
hending especially difficult functions, additional methods
were needed—other than just the use of interviews and
questionnaires. The technique of sequential analyses was
utilized with eye movements to compare program-tracing
sequences between the high- and low-performance partic-
ipants [77]. The probability of the occurrence of an ROI
sequence ROIi—ROY]j is significantly high if the z-score of
the sequential analysis is larger than or equal to 1.96 (95%
confidence level). The z-score of sequence ¢; — ej, was
computed by:

,— f (el’ej)ohs _f (eiej)exp , (1)

\/ Ns -p (i), - (1= P (ei6),)

where f (e;e;),,, and f (e;e)) exp AT€ the observed and expected
values of the frequency of event sequence e; — e}, respec-
tively; p(e;e;),;,, and p(eiej)exp are the observed and expected
values of the probability of event sequence e¢; — ej, respec-
tively; and Ny is the number of event sequences.

VI. RESULTS AND DISCUSSION
The experiment included thirty-three trials for the thirty-three
participants. For each trial, the participants had to compre-
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TABLE 2. Categories of program constructs involved in this study.

Construct ~ Sub construct Example
Condition If statement iﬁ ?;ujlj;()z))
. . for (i=3; i<=j; 1 +=2)
Iteration For loop, While loop while (1(x % 2))
. General recursive call, fun 1(n/2)
Recursion

Head-block recursive call 1+ fun_2 (n/10)

TABLE 3. Descriptive statistics of the comprehension test results for the
high and low-performance participants.

High-performance Low-performance All

Subyjects

Proble N Mean SD N Mean SD N Mean SD

Iteration 18 1533 140 15 4.93 2.30 33 10.61  5.50

Recursion 20 1020 2.10 13 1.77 1.310 33 6.88 4.50

TABLE 4. Number of participants who correctly answered test questions
(total number: # of high performers # of low performers) and average
response time (in brackets) related to each problem and program
function.

Fungtion #1 " #3
Proble;

Iteration 22: 16H 6L (55.63 s) 15: 1SH OL (175.06 s) 19: 18H 1L (164.27 s)

Recursion 20: 20H OL (311.97 ) 20: 19H 1L (152.06 s) 11: 11H OL (313.12's)

hend two programs with three functions containing three
types of constructs. Descriptive statistics of the test scores are
shown in Table 3. Table 4 displays the number of participants
(high- and low-performance participants were denoted by H
and L, respectively) who correctly answered questions as well
as the response time related to each problem and program
functions. In addition, a questionnaire and an interview were
conducted to understand how the students comprehended the
programs.

The following two subsections discuss the results of the
differences (examined by the Kruskal-Wallis tests) between
the high- and low-performance participants for three pro-
gram constructs and difficult program functions. The non-
parametric Leven test was also performed to guarantee the
homoscedasticity of the distributions of the groups [78].
Since we conducted many tests on the same data set, multiple
comparison corrections were conducted using the Benjamini-
Hochberg procedure in order to counteract the multiple-
comparison problem [79]. After the correction, all p values
less than the critical value 0.036 were considered significant
for the whole confidence level of 0.95.

A. DIFFERENCES BETWEEN THE HIGH- AND
LOW-PERFORMANCE PARTICIPANTS OF DIFFERENT
PROGRAM CONSTRUCTS (R1i, R2)

Table 5 shows the descriptive statistics of EEG powers for
theta, lower alpha, and upper alpha bands (x is the mean of all
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EEG powers extracted during comprehending each construct
and SD is the standard deviation) for each program construct
and the differences between the high- and low-performance
participants examined by Kruskal-Wallis tests. In terms of
conditions and complex iferations or recursions, the high-
and low-performance participants showed significant differ-
ences in the theta, lower alpha and upper alpha powers. This
finding implies that the high-performance participants pos-
sessed a better performance on working-memory operation
(theta power), interaction between the working and semantic
memories (upper alpha power), and attention ability (lower
alpha power). In summary, for the logically complex func-
tions, hypotheses H1.2, H1.1, and H1.3 (as listed in the Intro-
duction section) are supported for all program constructs,
which also supports for H1.4.

The results of the complex iterations and recursions are in
agreement with existing research: Since the iterative struc-
tures and recursive functions are larger, they require sub-
stantial memory ability and attention resources to process
loop logic, arguments passing, the recursive operations, etc.
Low-performance participants struggled more with complex
iterative or recursive computations, needed to go back to
access previous information, and required additional tools to
make more calculation—in order to compensate for the over-
load of their working memory [22]. The high-performance
participants, on the other hand, could recognize beacons, and
organize code into chunks in order to reduce their working-
memory load [31]-[33]. In addition, the high-performance
participants could grasp the gestault or whole logic by com-
piling the meaning of the code from the semantic memory
in order to construct their mental models. They could, then
build plans to conduct top-down attention and decompose the
goal of the program into code [6]. This might allow for the
more efficient use of attention resources and a better inter-
action between working and semantic memories. Previous
research about reading found that high-performance readers
used top-down processing to facilitate their on-going word
recognition, but low-performance readers failed to do so [80].
This finding was based on the assumption that comprehen-
sion of meaning precedes word identification. Skilled readers
extract various featural information and rearrange the featural
specifications for meaningful identification, which is similar
to what the skilled programmers do: recognize beacons and
use them to reorganize the structure for conducting their
comprehension plans [31]. The while-loop iterative construct
in the experiment, however, showed no difference between
the two groups of students—probably because the statement
of the while-loop in the given problem was relatively sim-
ple. This is to say that the condition for judging whether
the loop continues is (!(x%2)), and the loop was only one
line of code. Consequently, the results in memory-related or
attention aspects do not show a significant difference when
compared with the low-performance participants. The result
for head-block recursion was found to be similar. A possible
explanation for this finding is that although head-block recur-
sion frames recursive calls in a statement, the head-block
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recursive function in the given problem is actually simpler
than the general recursive function.

The results of the conditional construct also agree with
previous research. Comprehending the conditional construct
requires computations in working memory [22], while a lack
of knowledge on the control construct (programming plans
or rules of programming discourse) results in an overload
of the working memory, which, in turn affects the process
of problem solving [81]. Therefore, the high-performance
participants displayed better working-memory performance
(stronger theta power) when computing the conditional state-
ments which could compile the meaning of the code based
on the patterns in the semantic memory (stronger upper alpha
power [21]) which are involved with conditional logic.

In addition to the differences in the working memory and
the interaction between the semantic and working memories,
the high-performance participants could make efficient use
of attention resources (stronger lower alpha power [57]) in
these complex program constructs (which is the basis of
problem solving). In contrast, low-performance participants
could not make use of their attention resources efficiently to
conduct complex tasks, which influenced their cognitive per-
formance. High-performance participants were able to more
effectively develop plans for program comprehension and
displayed more top-down processing (internal processing)
when achieving their goals (stronger lower alpha power [82]).
In contrast, the low-performance participants struggled more
with the complex iterations or recursions. They tried to link
different parts of the code in order to grasp the program logic
[22]. These results are presented in the EEG results, which
show differences between the low- and high-performance
participants in theta and alpha powers.

B. DIFFERENCES BETWEEN THE HIGH- AND
LOW-PERFORMANCE PARTICIPANTS IN
COMPREHENDING DIFFICULT PROGRAMMING
FUNCTIONS (R1ii, R2)

Our findings imply a strong correlation between brain activ-
ity and computer program complexity. In order to explore
more completely this correlation, we analyzed and com-
pared learners’ EEG responses to difficult programming
functions. Here, a function is deemed difficult if more
than half of the participants could not correctly understand
its meaning (too complex to be processed in their mem-
ories), as reflected by what students told us about pro-
gram complexity in interviews. Consequently, Function #3 of
the recursive program was found to be the most difficult
(22 incorrectly answering and 20 perceiving a heavy memory
load).

Differences in EEG activities are shown in Table 6, which
indicates that working-memory ability (theta power) and
the interaction between the semantic and working memories
(upper alpha power) played key roles in program compre-
hension for these difficult functions. These results might be
explained as follows: understanding difficult functions might
also require frequent hypothesis testing which is needed to
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TABLE 5. Descriptive statistics and results of Kruskal-Wallis tests of EEG
waves for each program construct.

Iteration Recursion
Construct  Condition (N High-18 Low- 15) (N: High-20 Low- 13)
(N: High- 17 . General Head-
Frequency Low=16)  yyhile loop  for loop recursion block
High: High: High: High: High:
x=109379  %=105255 x=114189 x=118571 x=115063
SD=3312 SD= SD= SD= SD=
8 36901 39853 40915 50909
theta Low: Low: Low: Low: Low:
X= 82153 x= 82829 x=178217 X= 83788 X= 85269
SD=1870 SD= SD= SD= SD=
8 34389 24553 35020 42370
p<.036 =098 p<.036 p<.036 =077
High: High: High: High: High:
X=27772 X=27382 X=27359 X= 28427 X= 28942
lower SD=9452  SD=9577 SD= 7600 SD=9144 SD=9171
Low: Low: Low: Low: Low:
alpha %=20293  x=21154  %=19454  %=20319  %=22105
SD=4222  SD= 5694 SD=4012 SD=4891 SD= 8680
p<.036 p=.040 p<.036 p<.036 p=.047
High: High: High: High: I:[igh:
%=21713  %=20844  =22936  X=23499 ’5(1334] o8
SD=7913  SD=8628 SD= 7769 SD= 8528
upper 13444
Low: Low: Low: Low:
alpha %=16477 %=17334  x=16724 %= 16354 ESVIVGI 3
SD=2843  SD= 6640 SD= 2644 SD= 5651 )S(;): 6969
p<.036 =140 p<.036 p<.036 141

execute plans involved with program comprehension [82].
Novice learners tended to use the loop method to compre-
hend recursive functions, unlike experts, who would use
the stack method [34], making it even more challenging to
track the program logic. Based on our previous research,
the high-performance participants tended to organize the
code into chunks according to the beacons and formulate
their comprehension strategies based on prior knowledge—
coupled with their ability to identify problems [22]. For these
reasons, the high-performance participants tended to avoid
overloading their working memory. They, instead, accessed
program chunks and could retrieve prior knowledge from
their semantic memories smoothly. The interview results also
show that the high-performance participants could recognize
the algorithmic patterns (beacons) quickly to grasp the func-
tion purposes [31]. A series of functions are shown below
which are involved in this process:

A: This function is to check each triple set of numbers and
convert into an octal value.

B:y =y + s[+ + v]*pow(2, j-1) is used to convert binary
numbers to a decimal form.

Participant A could recognize the instruction chunks as
“checking the triples of numbers” and ‘“‘converting the num-
bers into octet values”. Participant B could recognize the
complex instruction y = y + s[+ + v]*pow(2, j-1) as the
conversion equation from the binary to decimal form.

Low-performance participants, however, tended to inter-
pret the superficial meanings of the functions based on the
instructions—rather than their algorithmic meanings:

C: Indicates some computations and conditional judge-
ments on x.
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TABLE 6. The results of Kruskal-Wallis tests of EEG waves for the difficult
functions (complex recursion) between the high and low-performance
participants.

High- Low-
Frequency performance performance p value
participants participants
Theta x=138180 x=93924 p<.036
lower alpha X=32912 x=22501 p<.036
upper alpha x=28184 x=18770 p<.036

D: This function allows us to return value c back to the
output.

Even though some low-performance participants attempted
to find patterns by using simulation, they still performed
poorly due to the complex logic, and, it seems, overloading
their working memory:

E: This function is used to store the values of s[], like
s[O]*1, s[1]*2, s[2]*4, Um...

In order to comprehend more difficult functions, high-
performance participants needed better performance in
the areas of working and semantic memories. The
high-performance participants were, additionally, shown to
allocate attention resources more efficiently when attempting
to understand more difficult functions (lower alpha power).
Our findings with regard to the comprehension of more
difficult program functions were similar to the results for
general functions discussed in the ‘““Differences between the
high- and low-performance participants for different pro-
gram constructs” subsection, which indicates the important
roles of working-memory ability, semantic-memory ability,
and attention in program comprehension. In short, in the case
of difficult functions, hypotheses H1.1, H1.2, and H1.3 were
supported by the data. Moreover, all p-values for the three
bands are lower than 0.01. Some of the p-values for other
functions, however, are not below 0.01, which supports the
H1.4 hypothesis.

In order to further understand how the high- and low-
performance participants comprehended difficult functions
and how EEG activities were influenced by the compre-
hension process, the ROI sequences derived by eye-tracking
were analyzed. The significant ROI sequences that occurred
only in either the groups of high-performance participants
or low-performance participants are shown and illustrate the
specific cognitive processes of high- and low-performance
participants (Fig 5).

Based on the eye-tracking result, additional sequences
show that the high-performance participants tended to jump
between the if and else blocks (Fig 5(a)). This finding implies
that the high-performance participants could recognize and
the instructions in the if-else blocks and considered the state-
ments in the if or else blocks as ‘“‘chunks.” They could
grasp the whole picture of the program (top-down atten-
tion); therefore, they might process program comprehension
more effectively without an extra working-memory load [22].
This finding agrees with the EEG results indicating that
high-performance participants had a better working-memory
ability.
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FIGURE 5. The eye-movement results of the complex recursive function
for the (a) high- and (b) low-performance participants.

High-performance participants demonstrated the ability to
understand the recursive structure better than low-performers.
They were able to track back to the definitions of the recur-
sive function more quickly than low performers. This fea-
ture allowed them to by-pass the arguments feature once
they traced back to the return statement (recursive func-
tion). High-performance participants were able to simulate
the execution process of recursion mentally. In contrast, the
low-performance participants tended to stick to the in-block
instructions; hence, there were fewer cross-block sequences
except for the jump to the end of the program. This finding
might be due to the fact that participants tended to struggle
with comprehending the program; hence, they jumped to
the end of the program frequently from different statements.
For example, the right-hand sequences shown in Fig 5(b)
were used to were participants endeavored to determine the
purpose of the program based on the output variable. This
appeared to be an “‘opportunistic”’ strategy which did not
follow the recursive logic. In addition, the low-performance
participants went back-and-forth among nested for loops
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and conditional statements fairly randomly (the left-hand
sequences in Fig 5(b)), which might indicate that they were
“stumped” by the complex logic of nested for loops and
conditional statements. This phenomenon of going back-and-
forth undoubtedly increased the complexity of tracing and
may have contributed to ‘““information overload.”

Listed below are some of the low-performance partici-
pants’ responses about the recursive functions as shown from
the interviews with participants:

F: I cannot understand how the recursive function executes.

G: I cannot understand the purpose of the statement
z = 7 + y*pow() in the nested for loop.

H: This function has too many variables for me to remem-
ber.

I: T cannot remember so much information during code
tracing without paper and pencil.

One of the low-performance participants even explained
that her comprehension as merely interpreting the program
line by line without any logic being used. Additionally, she
could not simulate the function execution feature when the
interviewer asked her to track the code using a given input.

VIl. SUMMARY OF RESEARCH FINDINGS

Our overall results with regard to comprehending basic com-
puter program functions in various types of complex program
constructs are summarized as follows. We elucidated three
major findings in the study: Firstly, the high-performance
participants could recognize beacons. They could, therefore,
organize computer code into meaningful chunks based on
the relationships among statements. This decreased their
burdens upon working-memory (memory loads). Secondly,
high-performance participants were more likely to trace the
code based on control flow and program logic. They, there-
fore, displayed high performance regarding the interaction
between mental representation in the working memory and
programming knowledge in the long-term memory [83]. Our
third major finding was as follows: high-performance par-
ticipants could grasp the global structure of the function
calls. They then processed the constructs structurally using
top-down strategies based on their plans. In this way, they
could employ attention resources more efficiently than the
low-performance participants. When utilizing more difficult
functions, the results were more obvious.

We can summarize our results as follows. High-
performance participants could process program comprehen-
sion tasks more efficiently because they could master the
logic of programs more quickly based on their knowledge.
They could, consequently, structurally separate programs into
meaningful chunks in order to conduct their plans. They also
were able to optimize limited memory resources in order to
process complex program tasks. Low-performance partici-
pants, however, were demonstrated to have limited capabil-
ities with regard to compiling programming knowledge and
executing their tracings by the production systems [10], [80].
These findings are in agreement with research by Soloway
and Ehrlich who indicated that programming experts can
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apply two types of knowledge effectively: (1) programming
plans and (2) the rules of programming discourse [6]. Pro-
gram plans involve using program fragments effectively to
represent action sequences in programming. The rules of
programming discourse are used to capture the conventions
and govern the composition of the plans [6]. Our findings help
to clarify and reinforce the important role of programming
knowledge in developing comprehension plans, and also
for using the working memory more efficiently. The use of
programming plans is vital to develop hypotheses and drive
the comprehension process. High- and low-performance par-
ticipants used the methods of both top-down and bottom-up
strategies during comprehension. High-performance partici-
pants, however, were shown to use more top-down strategies
when tracing computer code which was based on the pro-
gram logic and their development of detailed plans (stronger
lower-alpha wave, also supported by the results of eye
tracking and interviews). This is in agreement with claims
made by Brooks [10], and Soloway and Ehrlich [6]. The
low-performance participants, however, lacked programming
knowledge and had a lower working-memory capacity. They
were not able to form their plans successfully or simulate their
execution mentally. As a result, low-performance participants
tended to stick to a line-by-line sequence or local instructions,
which utilize bottom-up approaches.

VIil. THREATS TO VALIDITY

The EEG headset included EEG noise filtering and is compa-
rable to medical-grade systems [72], [73]. The headset, how-
ever, in spite of the inclusion of noise filtering, is still prone
to producing artifacts with regard to eye blinks and muscle
movements [73], which might decrease somewhat the validity
of the current research. Additionally, the EEG signals in this
study were collected from only one channel at the forehead
which records only one aspect brain activity. We hope that
the use of a more basic, feasible, and transportable device
allows for more ready investigation of learners’ cognitive
processes in real-world classroom situations. However, this
might be another treat to validity. Although previous research
has argued that the estimation accuracy using the EEG fea-
tures obtained from the forehead channel was comparable to
that using the EEG features of the whole-head recordings in
some applications [84], a follow up investigation using more
elaborate medical grade might allow investigators to clarify
in a more detailed way the plans, thoughts, and executions
of students when engaged in computer programming activi-
ties. The recruitment of additional participants from multiple
populations of college students might also improve aspects
of internal validity. The participants in the current study
consisted of a single population of college students studying
computer science in East Asia. The sample size was only
33, which might cause a selection bias and affect the results.
Participants’ years of education in C programming could have
affected students’ programming comprehension as well. The
design of experimental materials and settings was another
threat: this study included only two, albeit typical, programs,
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covering three types of procedural program constructs, and
only one programming language (C language). The physical
constraints of the distance between the eye tracker and the
subject, the position of the eye tracker, might also influence
validity. In addition, we prohibited the use of paper and pencil
use to force participants to utilize completely their cognitive
abilities and focus on the screen, which could possibly have
affected their code tracing ability.

When addressing the external validity of the study, we took
into account several factors. Since each program had several
functions, comprehension might be influenced by the inter-
actions among them. EEG results, however, were derived and
based mainly upon individual functions. Future studies could
be designed to explore more fully the interactions among
functions by linking eye-tracking data more tightly to EEG
data. A perceived criticism of the current study might be that
mapping between the EEG waves and cognitive processes
might not be totally unique [15]—especially with regard to
working memory. In addition to working-memory capacity,
the theta wave has been associated with other cognitive
functions like general problem solving abilities and math
comprehension [18], [85]. Most of the functions mentioned in
the literature, however, are related to one’s working memory.
Alpha waves, in particular, have been primarily associated
with memory functions. Other cognitive brain activities, how-
ever, have been associated with various brain waves and
includes processes such as mental effort, intelligence, and
brain efficiency [60], [64], [65]. In this study, we focused
upon programming-related functions described in previous
scientific research that involved programming comprehen-
sion (e.g., problem solving, working-memory operation, and
semantic understanding). More accurate interpretations may,
perhaps, be obtained by integrating external evidence such
as measurement of working-memory capacity or interviews
dedicated to understanding of subjects’ intention and com-
prehension dynamics.

This study was not intended to reveal the causality among
working-memory capacity, programming knowledge, pro-
gramming strategies, and programming performance but to
explore their possible relationships. Based on the integrated
results from existing and present research, working-memory
capacity programming strategies, and programming knowl-
edge have all been shown to affect performance [3], [6], [86].
Our research, additionally, was able to reveal more details
about programming cognition by studying the relationships
between working-memory capacity, programming strategies,
and performance based on the integrated results from EEGs,
eye tracking, and the comprehension test. In order to more
effectively determine causality, additional studies and mea-
surements (e.g., working-memory capacity or programming
knowledge) may be needed.

IX. CONCLUSION AND SUGGESTIONS

Computer programming is a complicated process requiring
knowledge, planning, and the ability to adapt to novel sit-
uations. The exploration about why the low-performance
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learners faced cognitive challenges and difficulties when exe-
cuting various computer programming tasks is essential for
improving programing instruction. This study analyzed EEG
activities and eye movements of learners during program
comprehension with the aim to further delineate the associa-
tion between EEG activities and cognition processes used in
program comprehension. The inclusions of eye movements
along with EEG data was important supporting evidence that
helped to validate our results. By comparing the differences in
EEG activities between the high- and low-performance par-
ticipants, we were able to discern possible difficulties learners
encountered during the process of program comprehension.
The following conclusions can be drawn from the result-
ing data. High-performance participants demonstrated a high
intensity of theta, lower alpha, and upper alpha brain waves.
This is consistent with their higher performance of their
working memory, greater attention allocation, and higher
interactions between working and semantic memories. This
finding implies that the understanding of computer programs
involves a high working-memory load and especially with
solving complex, difficult programs. Mental computation
tasks have shown to be constrained by working-memory
capacity [22]. Low-performance participants were shown to
have insufficient working memory capacity to solve complex
computer programming problems which was supported by
the fact that they tended to interpret the superficial meanings
of the functions based on the instructions rather than the
algorithmic meanings. High-performance participants could,
on the other hand, recognize beacons and group program
statements into meaningful chunks based algorithmic pat-
terns in their prior-knowledge base. This allowed them to
optimize working-memory resources. In order to comprehend
the computer program, subjects needed adequate attention
resources in order to trace the code. Low-performance partic-
ipants were shown to have limited attention resources needed
to process the tracing tasks. In contrast, the high-performance
participants could trace the code globally and structurally
to grasp the code logic more effectively—utilizing a limited
working memory and attention resources. For understanding
and executing the complex program logic, the subjects also
needed to transfer the required knowledge from semantic to
the working memory. This allowed them to compile their
knowledge and map the known patterns to the current code.
Based on these findings, the following pedagogical strate-
gies might be implemented by teachers. Firstly, to enhance
students’ knowledge with regard to planning, teachers should
emphasize the importance of understanding the structure and
logic of the program. This should be done prior to learning
the syntax or details of codes. Novices can be assisted if they
are told that program comprehension is a nonlinear and a
dynamic process. Teachers should attempt to help students
with understanding program logic first rather the proceeding
in a linear fashion with learning syntax. A second pedagogical
approach might be to select materials and activities designed
to help students in recognizing key beacons within a computer
program. Providing supplementary explanations and hints
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with regard to program logic could be utilized. This could also
be couple with visualizations of program chunks. These tech-
niques can assist learners with building and executing their
programming plans. This will help students to make more
efficient use of working memory and attention resources. The
dynamic display of program logic might also help learners
simulate the execution process mentally and reduce their
cognitive loads. Exercises can, additionally, be designed to
help learners practice program segmentation, explanation,
and planning.

Our research findings can also be applied to cognitive
research in the fields of engineering education, human-
computer interaction, artificial intelligence, and neuro-
science. The depiction of learners’ cognitive processes helps
researchers understand more about how humans think and
interact with tasks or machines. The data obtained in this
study can also be used to help validate and improve the neu-
roscience instrumentation which may also help to improve
instruments and techniques used in biomedical engineering.
The use of additional subjects from different demographic
groups should be included in future studies in order to
obtain a more representative cross-sectional sample. This
will improve the nature of data acquired and allow for more
broad-reaching, to generalized results. Different program
paradigms (e.g., object-oriented programming and visual pro-
gramming) can also be introduced for exploring additional
aspects of programming cognition. Various neuroscience
techniques can also be applied in order to analyze students’
cognition during learning. This can be done by utilizing
different types of instructional media such as web-based
learning platforms and video tutorials. Signal processing
techniques (e.g., the Wavelet and Fourier Transform) can also
be applied in order to transform time-domain EEG powers
to time-frequency or frequency-domain signals which will
allow investigators to obtain more condensed and efficient
features. Clustering and classification algorithms may also be
employed to group the participants based on their EEG fea-
tures to obtain more insights about programming cognition.
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