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a b s t r a c t 

Processing speed is an important construct in understanding cognition. This study was aimed to control task 
specificity for understanding the neural mechanisms underlying cognitive processing speed. Forty young adult 
subjects performed attention tasks of two modalities (auditory and visual) and two levels of task rules (compatible 
and incompatible). Block-design fMRI captured BOLD signals during the tasks. Thirteen regions of interest were 
defined with reference to publicly available activation maps for processing speed tasks. Cognitive speed was 
derived from task reaction times, which yielded six sets of connectivity measures. Mixed-effect LASSO regression 
revealed six significant paths suggestive of a cerebello-frontal network predicting the cognitive speed. Among 
them, three are long range (two fronto-cerebellar, one cerebello-frontal), and three are short range (fronto-frontal, 
cerebello-cerebellar, and cerebello-thalamic). The long-range connections are likely to relate to cognitive control, 
and the short-range connections relate to rule-based stimulus-response processes. The revealed neural network 
suggests that automaticity, acting on the task rules and interplaying with effortful top–down attentional control, 
accounts for cognitive speed. 
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. Introduction 

Processing speed is a measure of cognitive ability and an index
eflecting the severity of various neurological pathologies. Psychome-
ric studies have revealed that common latent factors exist among
ll common speed measures ( Roberts and Stankov, 1999 ), and pro-
essing speed (PS) mediates working memory and executive func-
ions ( Verhaeghen, 2011 ). Functional MRI studies ( Forn et al., 2009 ;
abeck et al., 2016 ) have shown that processing speed tasks with dif-

erent task demands activate frontal, parietal, and occipital cortices and
he cerebellum, which is known as a task-positive network ( Fox et al.,
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eliance of executive function and efficient visuospatial processes. Find-
ngs of other studies using reaction time (RT) tasks, however, revealed
egative speed-activation correlates were only found in the medial and
orsal frontal cortices ( Hahn et al., 2007 ; Hu et al., 2014 ; Naito et al.,
000 ), which raises the question of the factors behind the inconsis-
ent findings on the neural substrates that showed increases in acti-
ations, such as those in the occipital region. Paradigm- and stimulus-
pecific speed-RT correlates were previously reported, such as the lin-
ual gyrus in a phonological go/no-go paradigm ( Zhang et al., 2018 ) and
he fusiform area in a visual letter search task ( Madden et al., 2007 )
nd the ventral lateral PFC in an audial choice RT task with syllables
 Binder et al., 2004 ). Therefore, we conjecture that task-specific con-
ent, such as visual modality, and processing, such as search and com-
arison, are likely to contribute to the existing inconsistent findings of
rocessing speed. 

Functional connectivity (FC) is commonly used to identify interre-
ional interactions, which are nondirectional and have zero-lag cor-
elation. Independent component analysis on FC revealed that faster
rocessing speed showed decreased coactivation of the frontoparietal
omponent ( Forn et al., 2013 ) and increased coactivation of the vi-
ual and cerebellar components ( Silva et al., 2019 ). Two other com-
on FC methods are Pearson’s correlation (e.g. Gao et al., 2020 ) and
sychophysiological interaction (e.g. Takeuchi and Kawashima, 2012 ).
ne prominent drawback of these methods, which are based on bivari-
te connectivity, is the possible over-representation of the interregional
elationships ( Sanchez-Romero and Cole, 2020 ) and intertwined activa-
ions among the identified neural substrates ( Reid et al., 2019 ). Methods
or tackling the issues mentioned can be applying effective connectiv-
ty (EC) and/or multivariate methods to the analyses, which are able
o delineate concurrent and complex activations in multiple neural sub-
trates, such as partial correlation ( Smith et al., 2011 ) and vector au-
oregression ( Deshpande et al., 2010 ). No study on processing speed has
een found using a multivariate method. When compared with FC, EC
s directional and has non-zero lag correlation, which can further char-
cterize the task-related interregional coupling. Granger causality on
C showed higher processing efficiency was associated with decreased
nfluences from dorsal PFC to posterior regions ( Biswal et al., 2010 ;
ypma et al., 2006 ). Analyzing RT-correlates with FC revealed shorter
Ts positively correlated with connectivity among the nodes of the dor-
al attention networks (DAN, bilateral frontal eye-field and intrapari-
tal sulcus, Corbetta and Shulman, 2002 ) and the ventral attention net-
ork (VAN, right anterior and posterior middle frontal gyrus, and right

emporoparietal junction, Corbetta and Shulman, 2002 ). In the same
tudy, the results of the EC revealed stronger DAN →VAN and weaker
AN →DAN influences that positively correlated with shorter RTs. Addi-

ional results brought by effective connectivity largely enrich the speci-
city and robustness of neural activities underlying processing speed. 

The present study aimed to address the possible task-related biases
y employing a series of simple stimulus–response (S–R) mapping tasks
f visual and audial modalities. The purpose of this multitask design
as to address the modality- and function-specific biases mentioned
bove. The arrow task ( Lee et al., 2006 ; 2005 ), originally a visual S–
 compatibility task, was adapted into visual and audial forms ( Fig. 1 ).
esponses involved simple reactions with respect to what was viewed
r heard for better control of the required sensorimotor processing time
 Jensen, 2006 ). A block, rather than event-related design, was employed
o minimize the task-switching effect ( Barber and Carter, 2004 ; Liu et al.,
015 ) and across-trial uncertainty ( Bates and Stough, 1998 ; Fan, 2014 ).
urthermore, we aimed to address the methodological shortfalls in pre-
ious studies that utilized Pearson’s correlation and psychophysiolog-
cal interaction (PPI) for building connectivity-based models to pre-
ict processing speed. In this study, we established six connectivity
easures, including four multivariate-based indices, for conducting the
odel comparisons. A cognitive speed variable was constructed by re-

ressing out the RT of the control tasks from that of the experimental
asks for controlling the sensorimotor components. The functional con-
ectivity model building was based on mixed-effect LASSO regression.
o our knowledge, this paper is the first in the field to employ the cross-
odality multitask design and to compare results yielded from six meth-

ds for modeling the interregional interactions’ subserving processing
peed. 

. Method 

.1. Participants 

Forty healthy young adults aged 18–28 were recruited from local
ommunities to participate in the study. They all had a high school edu-
ation or higher. The final sample included 35 participants (21.5 ± 2.1
ears, 14 females), with five participants excluded from the analysis.
he reasons for the exclusion included missing or premature responses
 < 100 ms) and error trials exceeding 30% of the trials in any one of
he task conditions. All of the participants had normal or corrected-to-
ormal visual acuity based on the E Standard Logarithm Eyesight Ta-
le, as well as normal auditory ability determined by passing a pure-
one detection test at 300–1000 Hz octave frequencies. All participants
ere right-handed, based on the Edinburgh Handedness Questionnaire
 Oldfield, 1971 ). They also passed screening tests for cognitive impair-
ent (Montreal Cognitive Assessment, Beijing Version ( Yu et al., 2012 ),
oCA < 26) and depressive mood (Hamilton Rating Scale for Depression

 Frank et al., 1991 ), HAMD ≥ 7) and had no known history of neuro-
ogical diseases, substance abuse, or smoking. No MRI scan contraindi-
ations were identified. Each participant was informed of the purposes
f the study, and informed consent was obtained prior to the training
nd experimental procedures. Ethical approval was obtained from the
thics Committee of Fujian University of Traditional Chinese Medicine.

.2. Processing speed task 

The Arrow Task ( Lee et al., 2005 ; 2006 ) was used to measure the pro-
essing speed. It involved a two-choice S–R mapping task with compati-
le (COM), incompatible (INC), and simple RT control conditions (NEU)
 Fig. 1 ). In the COM, the participant pressed the “UP ” button when an
pward arrow appeared and the “DOWN ” button when a downward ar-
ow appeared ( Fig. 1 ). In the INC, the participant pressed the “UP ” but-
on for a downward arrow and the “DOWN ” button for an upward arrow.
he NEU involved the participant pressing any button upon viewing a
ertical line without an arrowhead. As the stimuli that appeared in these
onditions were visual images, they were called COM-VIS, INC-VIS, and
EU-VIS. The audial version of the same conditions were COM-AUD,

NC-AUD, and NEU-AUD, with upward arrows, downward arrows, and
ertical lines replaced with high-pitch, low-pitch, and mid-pitch tones,
espectively. The task trials were organized using a block design, with
ve blocks in each of the three visual and audial conditions. The vi-
ual run had 15 visual blocks, and the audial run had 15 audial blocks.
he three task blocks were arranged in an A-B-C-A-B-C sequence, and
he task conditions were counterbalanced across the participants. Each
lock included 10 trials, with an equal number of trials for the COM
nd INC mapping rules, presented in randomized order. There were 50
rials in each of the 3 × 2 task conditions. Instructions for the conditions
ere presented to each participant for 4 s preceding each block. For

ach trial, the stimulus was presented for 800 ms, followed by a fixa-
ion of 1000 ms, during which time the response was made. Each block
as completed in 18 s. The total duration for completing one run was
50 s. The resting period between each run was 10 s. 

.3. Analysis of behavioral data 

Trials with RTs shorter than 100 ms were excluded from the anal-
ses. Mean RTs were calculated by fitting the RTs of the correct trials.
ccuracy rate (ACC) was defined as the number of accurate trials di-
ided by the number of accepted trials. The RT and ACC data were fit-
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Fig. 1. Schematic diagram describing the adapted Arrow Task in three conditions (compatible, incompatible, and control) crossed with two modalities (visual and 
audial). 
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ed to a linear mixed model, where subjects were modelled as a random
ffect. The model was fitted with the “lme4 ” R package. Post hoc pair-
ise comparisons were conducted on all significant effects and corrected
ith Tukey’s test implemented in the “emmeans ” R package. 

.4. Definition of processing speed and cognitive speed 

Conventionally, PS is measured as the duration between the onset
ime of the stimulus and the behavioral response. However, sensory
nd motor time should be accounted to tap into higher cognitive de-
and ( Jensen, 2006 ). Cognitive speed (CS) is defined by regressing out

he simple RT of the corresponding perceptual modality from the RT
easured by the Arrow Task ( Jensen and Reed, 1990 ). The RTs for

ach of the four experimental conditions (compatible/incompatible × vi-
ual/audial) and the RTs for each of the control conditions (vi-
ual/audial) were fitted into the linear mixed model: 

 = 𝑿 𝜷 + 𝒁 𝒃 + 𝜀 

here y is a vector of the task RT, X is a matrix of the RTs of the two
ontrol conditions, Z is a matrix of the RTs of the four experimental
onditions, and the 𝜀 is extracted from the model as the corrected RTs
i.e., CSs). Previous studies employed a similar procedure for extracting
S from paper-and-pen tests ( Kansal et al., 2017 ) and computerized tasks
 Roth et al., 2015 ). The formula above yielded two speed indices, in
hich higher values reflected faster speeds. The ex-Gaussian model was
tted with the “retime ” R package, and the model was fitted with the
lme4 ” R package. 

.5. MRI scanning parameters and data preprocessing 

MRI images were acquired from a GE Signa HDxt 3T scanner (Gen-
ral Electric, Milwaukee, WI, USA) with an eight-channel phased-array
ead coil. A high-resolution anatomical image (MP-RAGE, field of
iew = 240 × 240 mm, slice thickness = 1 mm, gap = 0 mm, slices = 160
xial slices, acquisition matrix = 256 × 256, TR/TE = 5556/1764 ms, in-
ersion time = 450 ms, and flip angle = 15°) and two functional EPI runs
axial acquisition, field of view = 240 × 240 mm, slice thickness = 4 mm,
ap = 0 mm, slices = 40 axial slices, acquisition matrix = 64 × 64, TR/TE
000/30 ms, number of volumes = 175, and flip angle = 90°) were ac-
uired for each subject. 

The session-level analysis was completed with FSL/FEAT (version
.0.9) ( Jenkinson et al., 2012 ). Scanner instability and drifting were re-
uced by removing the beginning five volumes and applying a high-pass
lter of 1/90 Hz for each run. Head movement artifacts were reduced
y aligning each volume to the middle volume. Spatial noises were re-
uced by applying a 5-mm FWHM Gaussian. Artifactual components
ere removed through visual inspection ( Kelly et al., 2010 ) of the inde-
endent components obtained with MELODIC. BOLD signals were fitted
ith gamma-convoluted task models and nuisance regressors, including
ead motion and temporal derivatives. Two task-to-baseline contrasts
ere obtained. The ICA-cleaned functional imaging data is available at
ttps://github.com/clivehywong/2021CPS . 

Spatial normalizations were performed using Advanced Normal-
zation Tools version 2.2.0 ( Avants et al., 2014 ) with the MNI tem-
late. Field inhomogeneity in the mean functional and structural
mages of each subject were corrected with N4BiasFieldCorrection.
he functional-to-structural rigid transformation matrix and structural-
o-template high-dimensional diffeomorphic deformation were calcu-
ated with antsIntermodalityIntrasubject.sh and antsRegistrationSyN.sh
transformation matrix and deformation field are available at https://
ithub.com/clivehywong/2021CPS ). The latter implemented the sym-
etric normalization method ( Avants et al., 2008 ), which is regarded

s having the best performance among similar tools ( Klein et al., 2009 ).
ll contrasts of parameter estimates (COPEs) predicted from FEAT were
ormalized to the MNI template, combining rigid and diffeomorphic
ransformations by antsApplyTransforms for the extraction of activa-
ions of the regions of interest (ROIs). 

.6. Defining regions of interest 

The ROIs submitted for analyses in this study were
ased on the activation maps generated from three PS tasks
 Razlighi et al., 2017 ) and were retrieved from NeuroVault
 https://identifiers.org/neurovault.collection:857 ). These PS tasks

https://github.com/clivehywong/2021CPS
https://github.com/clivehywong/2021CPS
https://identifiers.org/neurovault.collection:857
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A)

B) C)

Fig. 2. Schematic diagram for regions of interest and time-series data extraction. (A) The workflow for extracting the ROIs. (B) Selected ROI masks based on the 
activation maps of digit–symbol, letter comparison, and pattern comparison tasks reported by Razlighi et al. (2017) ; the green–yellow gradient represents minimum 

Z values; the red cluster represents ROI masks. (C) Extraction of task-specific time-series data. LMFC: left medial frontal cortex. RMFC: right medial frontal cortex. 
LFEF: left frontal eye field. RFEF: right frontal eye field. LIFJ: left inferior frontal junction. RIFJ: right inferior frontal junction. LIPS: left intraparietal sulcus. RIPS: 
right intraparietal sulcus. LTHAL: left thalamus. RTHAL: right thalamus. LCH6: left cerebellar hemisphere lobule VI. RCH6: right cerebellar hemisphere lobule VI. 
MCV6: medial cerebellar vermis VI. 
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ere digit–symbol, letter comparison, and pattern comparison. The
etailed task-taking processes of each task can be found in the work of
azlighi et al. (2017) . In brief, the digit–symbol task involved pairing
igits to symbols, and the letter and pattern comparison tasks involved
atching two strings or figures, respectively. Participants responded

y pressing designated buttons on a response pad. 
The activation maps were resampled to 2 mm isotropic voxels, and

he voxel-wise minimum Z was calculated. Each map was split into
eft/right hemispheres and cerebellum to ensure anatomical homogene-
ty of the ROI masks. The maps were then parsed into smaller regions
sing the watershed method ( Satterthwaite et al., 2013 ). The initial Z
hreshold and the merging threshold were set to 10 and 13, respectively,
nd the dropping and merging thresholds were set to 100. This enabled
lusters with smaller than 100 voxels to be merged with the neighboring
lusters or removed. To mitigate the inhomogeneity introduced by the
nconsistent and extended sizes of the ROIs, the clusters were shrunk
o approximately 150 voxels by increasing the Z threshold from 11 to
8 with a step of 0.05 by using an in-house script ( Arslan et al., 2018 ).
he cluster forming procedure is illustrated in Fig. 2 A, and the extracted
OIs are shown in Fig. 2 B. 

.7. Activation and connectivity predictors 

Six sets of interregional connectivity measures and the regional ac-
ivation were estimated. Activation predictors were extracted from the
arameter estimates of the first-level contrasts. Generalized psychophys-
ological interaction (gPPI) was estimated with the original time series,
nd the rest of the measures were calculated with windowed time se-
ies. Pearson’s correlations were estimated with the “base ” R package;
artial and semi-partial correlations were estimated with the “ppcor ” R
ackage. For directed path predictors, including gPPI, semi-partial cor-
elations, and first- and second-order multivariate vector autoregression
VAR(1) and VAR(2)), after solving the equations for the 𝑛 ROIs, a 𝑛 × 𝑛

atrix with dimension 𝑛 2 was obtained. The coefficients representing
elf-loops were excluded from the analysis, leaving 𝑛 2 − 𝑛 path coeffi-
ients. For undirected path predictors, the lower triangle was a mirror
f the upper triangle of the 𝑛 × 𝑛 matrix, and only the upper triangle was
etained, leaving 𝑛 × ( 𝑛 − 1 )∕2 path coefficients. The code for the con-
ectivity estimation is available at https://github.com/clivehywong/
021CPS . 

.8. Extraction of task-specific windowed time series 

Task-specific windowed time series were required for the
orrelation-based and vector autoregression-based connectivity es-
imations. BOLD signals within each ROI mask were extracted by
veraging the signal for all voxels inside the mask ( Fig. 2 B). The
nitial boxcar function of the task blocks was convoluted with the
emodynamic response function, and the convoluted series were then
onverted into square waves with a boxcar function. The time series
ere multiplied to the square waves of each individual task to obtain

https://github.com/clivehywong/2021CPS


C.H.Y. Wong, J. Liu, T.M.C. Lee et al. NeuroImage 226 (2021) 117556 

a  

fi

2  

 

n

𝑥

w  

p  

k  

r  

a  

e  

w

2

 

V

𝑥

w  

t  

𝑘  

fi

𝑥

𝑥

 

c  

w  

a  

p  

w  

w  

t  

b  

l  

r

2

 

f  

s  

t  

t  

p  

1  

t  

s  

t  

f  

s  

a  

(  

w  

T  

Table 1 

Mean reaction times and accuracy rates for the Arrow Tasks. 

Auditory Visual 

Task Mean SD Mean SD 

NEU 240 83 245 45 

Reaction Times (ms) COM 366 84 380 46 

INC 403 97 443 61 

NEU 100 0 100 0 

Accuracy Rates (%) COM 96.0 6.4 96.9 4.6 

INC 96.2 3.7 96.8 2.8 

NEU: control condition. COM: compatible condition. INC: in- 
compatible condition. 
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 windowed time series. The windows were concatenated to form the
nal task-specific time series ( Fig. 2 C). 

.9. Connectivity modelled with generalized psychophysiological interaction

The gPPI analysis was adapted to estimate contextual functional con-
ectivity using a linear model: 

 𝑗 ( 𝑡 ) = 𝑎 𝑖𝑗 + 𝑏 𝑖𝑗 𝑦 𝑘 ( 𝑡 ) + 𝑐 𝑖 𝑥 𝑖 ( 𝑡 ) + 𝑑 𝑖 𝑦 𝑘 ( 𝑡 ) 𝑥 𝑖 ( 𝑡 ) + 𝜀 𝑖 ( 𝑡 ) 

here 𝑥 𝑖 ( 𝑡 ) and 𝑥 𝑗 ( 𝑡 ) are the mean-centered time series of 𝑅𝑂 𝐼 𝑖 (the
hysiological term) and 𝑅𝑂 𝐼 𝑗 ; 𝑦 𝑘 ( 𝑡 ) is the HRF task regressor for task
 (the psychological term); 𝑎 𝑖 is the intercept; 𝑏 𝑖 , 𝑐 𝑖 , and 𝑑 𝑖 are the pa-
ameter estimates for the psychological, physiological terms, and inter-
ction term; and 𝜀 𝑖 ( 𝑡 ) is the error term. The parameter estimate 𝑑 𝑖 was
xtracted as the connectivity measure from 𝑅𝑂 𝐼 𝑖 to 𝑅𝑂 𝐼 𝑗 . Parameters
ere estimated with lm in the “stat ” R package. 

.10. Connectivity modelling with vector autoregression 

For a network of 𝑛 ROIs, the 𝑝 -th order vector autoregressive model
AR ( 𝑝 ) is modelled: 

 𝑖 ( 𝑡 ) = 𝑐 𝑖 + 

𝑛 ∑

𝑗=1 

𝑝 ∑

𝑘 =1 
𝛼𝑖𝑗𝑘 𝑥 𝑖 ( 𝑡 − 𝑘 ) + 𝜀 𝑖 ( 𝑡 ) 

here the endogenous variable 𝑥 𝑖 ( 𝑡 ) is the time series of region 𝑖 ; 𝑐 𝑖 is
he intercept of 𝑥 𝑖 ( 𝑡 ) ; 𝛼𝑖𝑗𝑘 is the effect of region 𝑗 on region 𝑖 with a lag of
 time points; and 𝜀 𝑖 ( 𝑡 ) is the residual time series at region 𝑖 . Hence, the
rst-order vector autoregressive model VAR(1) is modelled as follows: 

 𝑖 ( 𝑡 ) = 𝑐 𝑖 + 

𝑛 ∑

𝑗=1 
𝛼𝑖𝑗1 𝑥 𝑖 ( 𝑡 − 1 ) + 𝜀 𝑖 ( 𝑡 ) 

The second-order model VAR(2) is modelled as follows: 

 𝑖 ( 𝑡 ) = 𝑐 𝑖 + 

𝑛 ∑

𝑗=1 
𝛼𝑖𝑗1 𝑥 𝑖 ( 𝑡 − 1 ) + 

𝑛 ∑

𝑗=1 
𝛼𝑖𝑗2 𝑥 𝑖 ( 𝑡 − 2 ) + 𝜀 𝑖 ( 𝑡 ) 

The solution involved one 𝑛 × 𝑛 matrix for each lag. Only the matrix
ontaining 𝛼𝑖𝑗2 was retained for the VAR(2). The VAR path coefficients
ere estimated with the “vars ” R package, and the implementation was
dapted from “1dGC ” of the AFNI package. The stationarities of 70 (35
articipants x 2 sessions) time series were confirmed with KPSS and ADF
ith the “tseries ” R package, and the degree of lagging was estimated
ith Akaike criteria (AIC; ( Pfaff, 2008 ), with maximum lagging of 5 for

he 140 models. The results suggested that VAR(1) and VAR(2) were
oth plausible orders for vector autoregression (Table S1). The order of
agging corresponded to the TR of the fMRI acquisition. Hence, VAR(1)
epresented a lag of 2 s, and VAR(2) represented a lag of 4 s. 

.11. Linear mixed-model lasso for variable selection 

We established 12 models by predicting the speed indices PS and CS
rom each of the six sets of connectivity measures: Pearson’s, partial,
emi-partial correlations, PPI, VAR(1), and VAR(2). Firstly, for each of
he connectivity matrices, connectivity paths that survived one-sample
 -test with p ≤ 0.05 were included in the model testing. The number of
redictors for the model, denoted as p, was less than or equal to 78 and
56 for the non-directed and directed connectivity measures, respec-
ively (pairwise combinations of 13 ROIs depending on the statistical
ignificance of paths ≤ 0.050). A significant speed-connectivity correla-
ion was defined as all subjects showing consistent positive connectivity
or the same path ( Fig. 3 C). Secondly, linear mixed-model LASSO regres-
ion was applied for variable selection using the “glmmLasso ” R pack-
ge. In each model, the dependent variables were the 140 speed indices
35 subject x 4 conditions), and the fixed-effect independent variables
ere the estimated connectivity indices of each path for each condition.
hese formed a matrix with [p x 140] dimensions. The task conditions
ere modelled as random intercepts. Before the model selection pro-
edure, all variables were first converted to standard score. The tuning
arameter 𝜆 was iterated from 100 to 1 with a step of − 1 ( Groll and
utz, 2014 ). The initial 𝜆 of each model was ascertained to suppress the
oefficients to zero. In each iteration, the delta and q parameters from
he previous iteration were used to initialize the LASSO fitting. The pa-
ameter 𝜆 of the final solution was chosen according to AIC criteria to
stimate the Fisher scoring. Variables with non-zero coefficients were
hen fitted to a linear mixed-effects model using the “lme4 ” R package.
onfidence intervals were estimated with 5000 bootstraps, and the ef-

ect sizes were calculated using Cohen’s 𝑓 2 ( Selya et al., 2012 ). 

.12. Predictive models and model comparison 

In the current study, the six sets of activation and connectivity pre-
ictors were used to predict each of the two speed indices. Twelve mod-
ls were estimated, and the performance of the models were compared
sing the AIC obtained from an ANOVA test against the corresponding
ull model. Goodness of fits of the mixed-effects models were estimated
ith the marginal R-square value from the “MuMIn ” R package. The
arginal R-square represents only the variance explained by fixed fac-

ors ( Nakagawa and Schielzeth, 2012 ). The code for the data analysis is
vailable at https://github.com/clivehywong/2021CPS . 

. Results 

.1. Reaction times and accuracies 

The Condition effect on the mean RTs was significant, F(2,
70) = 353, p < 0.001, while the Modality effect, F(1, 170) = 2.4,
 = 0.117, and their interactions, F(2, 170) = 1.4, p = 0.241, were not
ignificant ( Table 1 ). Post-hoc analysis on Condition showed that the RT
or NEU was significantly shorter than those of COM, t(170) = 6.5, p <
.001, and INC, t(170) = 19.0, p < 0.001, and the RT of COM was signif-
cantly shorter than that of INC, t(170) = 25.6, p < 0.001. For accuracy
ate, the Condition effect, F(2, 170) = 24.7, p > 0.001, was significant,
ut the Modality effect, F(1, 170) = 1.1, p = 2.8, and their interactions,
(2, 170) = 0.3, p = 0.730, were not significant. Post hoc analyses on
ondition showed that the accuracy for NEU was significantly higher
han those of COM, t(170) = 6.1, p < 0.001, and INC, t(170) = 6.0, p <
.001, and the difference between the accuracies of COM and INC was
ot significant, t(170) = 0.055, p = 0.998. 

.2. Regions of interest 

Thirteen ROIs were selected ( Fig. 2 B, Table 2 , available at https://
ithub.com/clivehywong/2021CPS ), including frontal (bilateral medial
rontal cortex, bilateral frontal eye field, and bilateral inferior frontal
unction), parietal (bilateral intraparietal sulcus), subcortical (bilateral
halamus), and cerebellum (bilateral lobule 6 and vermis 6). The number
f voxels ranged from 148 to 155. 

https://github.com/clivehywong/2021CPS
https://github.com/clivehywong/2021CPS
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Fig. 3. Model estimation procedure. A) Estimated connectivity matrices for each condition for each subject. Each element in the matrices is subjected to a one-sample 
t -test, and statistically significant paths are selected ( p < 0.05). LASSO regressions are conducted for feature selection, and selected paths are then fitted to a linear 
mixed model. Direction of connectivity and slope of speed-connectivity regression are combined. B) Illustration of negative and positive connectivity. C) Illustration 
of regression lines that combine direction of connectivity with slope of speed-connectivity correlates. Light and dark gray lines represent connectivities that have 
inconsistent positive or negative connectivity and are therefore excluded from the significant model. 

Table 2 

Details of the region of interests. 

Label Substrate vox Vol MNI coordinate (X, Y, Z) 

LMFC Left Medial Frontal Cortex 155 1240 − 5.8 8.3 51.1 

LFEF Left Frontal Eye-Field 150 1200 − 28.8 − 4.4 51.2 

LIFJ Left Inferior Frontal Junction 153 1224 − 44.8 2.7 34.2 

LIPS Left Intraparietal Sulcus 155 1240 − 30.8 − 50.5 45.0 

LTHAL Left Thalamus 153 1224 − 11.6 − 19.6 9.2 

LCH6 Left Cerebellum Lobule 6 154 1232 − 30.5 − 59.7 − 25.5 

MCV6 Cerebellum Vermis 6 153 1224 2.0 − 68.6 − 20.1 

RCH6 Right Cerebellum Lobule 6 150 1200 24.5 − 53.0 − 22.1 

RTHAL Right Thalamus 153 1224 11.9 − 17.1 10.5 

RIPS Right Intraparietal Sulcus 154 1232 31.5 − 49.5 45.0 

RIFJ Right Inferior Frontal Junction 150 1200 45.0 6.7 32.7 

RFEF Right Frontal Eye-Field 148 1184 35.4 − 2.5 50.3 

RMFC Right Medial Frontal Cortex 155 1240 5.2 13.1 49.4 

Note: vox: number of voxel in the cluster. Vol: volume of the cluster, in mm 
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.3. Model comparison 

The accuracy metrics of the best models selected by LASSO for
ach set of connectivity predictors are listed in Table 3 . All models
re significantly better than the corresponding null models, as indi-
ated by the AIC of the ANOVA tests. The model built with VAR(1)
ttained the lowest AIC for PS (AIC = 368.0, 𝑅 

2 = 0.212) and CS
AIC = 365.1, 𝑅 

2 = 0.374). Because the AIC for different dependent vari-
bles are not directly comparable, we cannot compare the best models
f PS and CS with it. The marginal 𝑅 

2 values indicated that the CS ~
AR(1) model attained the highest explained variance among all the
odels. 

.4. Selected model: predicting cognitive speed with first-order vector 

utoregression 

The selected model predicted CS from interregional interaction mod-
lled with first-order vector autoregression: 𝜒2 (21) = 73.2, p < 0.001,
nd 𝑅 

2 = 0.374. The final model involved 21 predictors, six of which
ere significant ( Table 4 and Fig. 3 ). The paths that predicted faster
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Table 3 

Comparison of accuracy metrics of LASSO-selected models built with different fMRI-derived activa- 
tion/connectivity variables. 

Chi-Square Test 

Connectivity measure Abbv Df AIC R 2 𝜒2 Df p -log(p) 

Processing Speed 

Null Model 3 392.6 

BOLD PS~BOLD 7 377.9 0.137 22.6 4 0.00015 3.83 ∗ ∗ ∗ 

gPPI PS~gPPI 8 373.7 0.160 28.8 5 2.51E-05 4.6 ∗ ∗ ∗ 

Pearson Correlation PS~Pearson 18 376.1 0.225 46.5 15 4.46E-05 4.35 ∗ ∗ ∗ 

Partial Correlation PS~Partial 11 375.4 0.183 33.1 8 5.80E-05 4.24 ∗ ∗ ∗ 

Semi-partial Correlation PS~Semi-Partial 10 374.4 0.176 32.1 7 3.86E-05 4.41 ∗ ∗ ∗ 

VAR(1) PS~VAR(1) 11 368.0 0.212 40.5 8 2.54E-06 5.60 ∗ ∗ ∗ 

VAR(2) PS~VAR(2) 9 384.3 0.114 20.3 6 0.00245 2.61 ∗ ∗ 

Cognitive Speed 

Null Model 3 402.3 

BOLD CS~BOLD 7 397.0 0.088 13.3 4 0.00977 2.01 ∗ ∗ 

gPPI CS~gPPI 12 386.3 0.205 34.0 9 8.89E-05 4.05 ∗ ∗ ∗ 

Pearson Correlation CS~Pearson 12 394.8 0.157 25.5 9 0.00248 2.61 ∗ ∗ 

Partial Correlation CS~Partial 8 386.3 0.165 26.0 5 8.88E-05 4.05 ∗ ∗ ∗ 

Semi-partial Correlation CS~Semi-Partial 8 383.8 0.179 28.5 5 2.91E-05 4.54 ∗ ∗ ∗ 

VAR(1) CS~VAR(1) 21 365.1 0.374 73.2 18 1.31E-08 7.88 ∗ ∗ ∗ 

VAR(2) CS~VAR(2) 4 395.9 0.058 8.4 1 0.00369 2.43 ∗ ∗ 

Note: The models were abbreviated with the notation dependent variable ~ independent variable set . PS: Pro- 
cessing speed index. CS: Cognitive speed index. BOLD: brain activations. gPPI: generalized psychophysio- 
logical interaction network estimates. Pearson: Pearson correlation network estimates. 

Table 4 

LASSO-selected variables of the model predicting speed with effective connectivities esti- 
mated with first-order vector autoregressions. 

Predictors Cohen’s ƒ2 Conn 𝛽 SE 95% CI p 

RMFC →LIPS 0.232 − 0.049 0.301 0.110 [0.086, 0.517] 0.007 ∗ ∗ 

RMFC →MCV6 0.222 − 0.047 − 0.330 0.125 [ − 0.585, − 0.080] 0.010 ∗ ∗ 

LIFJ →RCH6 0.202 0.051 0.218 0.091 [0.043, 0.395] 0.017 ∗ 

MCV6 →RCH6 0.196 0.169 − 0.193 0.082 [ − 0.362, − 0.030] 0.021 ∗ 

LCH6 →LTHAL 0.182 − 0.094 0.226 0.104 [0.019, 0.432] 0.031 ∗ 

LCH6 →LFEF 0.176 − 0.148 0.241 0.114 [0.016, 0.461] 0.036 ∗ 

Note: Only significant paths are shown in the table. Conn: the mean of the connectivity 
estimates, positive value represents positive interregional interaction and vice versa; 𝜷: the 
parameter estimates of the regression model; se: standard error; 95%CI: 95% confidence 
interval. Also see Fig. 4 . 

Higher positive connectivity
Higher negative connectivity
Lower positive connectivity
Lower negative connectivity

Predictors for faster CS

Fig. 4. The connectivity predictors of the best models for CS using VAR(1) pre- 
dictors. Only significant connections are plotted on the figure. 
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S were higher negative RMFC →LIPS (Cohen’s ƒ2 = 0.232, Mean Con-
ectivity = − 0.049, 𝛽 = 0.301, 95% CI: [0.086, 0.517], and p = 0.07),
ower negative RMFC →MCV6 (Cohen’s ƒ2 = 0.222, Mean Connectiv-
ty = − 0.047, 𝛽 = − 0.33, and p = 0.01), higher positive LIFJ →RCH6
Cohen’s ƒ2 = 0.202, Mean Connectivity = 0.051, 𝛽 = 0.218, 95%
I: [0.043, 0.395], and p = 0.017), lower positive MCV6 →RCH6 (Co-
en’s ƒ2 = 0.196, Mean Connectivity = 0.169, 𝛽 = − 0.193, 95% CI:
 − 0.362, − 0.03], and p = 0.021), higher negative LCH6 →LTHAL (Co-
en’s ƒ2 = 0.182, Mean Connectivity = − 0.094, 𝛽 = 0.226, 95% CI:
0.019, 0.432], and p = 0.031), and higher negative LCH6 →LFEF (Co-
en’s ƒ2 = 0.176, Mean Connectivity = − 0.148, 𝛽 = 0.241, 95% CI:
0.016, 0.461], and p = 0.036). Among the six interregional connec-
ivity paths, three originated from the frontal region and three from the
erebellum. 

. Discussion 

In this study, interregional interactions associated with PS were eval-
ated by predicting cognitive processing speed with two sets of speed
ndices and six sets of connectivity indices. The results indicated that the
rst-order vector autoregression model VAR(1) was a better model than
he Pearson’s, partial semi-partial correlations, psychophysiological in-
eraction, or second-order VAR models. The most significant finding
as, among the predefined task-positive network involving frontal, pari-
tal and subcortical regions, a predominant cerebello-frontal network
ound to be associated with cognitive processing speed. The neural net-
ork was composed of six speed-related effective paths. Among them,

hree long-range functional connectivities between the frontal cortex
nd cerebellum were LIFJ →RCH6, RMFC →MCV6, and LCH6 →LFEF.
here were also three short-range connectivities, with two involving
he cerebellum (i.e., MCV6 →RCH6 and LCH6 →LTHAL) and one involv-
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c  
ng the cortex (i.e., RMFC →LIPS). It is noteworthy that stronger pre-
ictions of the speed come from the frontal- rather than the cerebellar-
riginated connectivities. Higher positive connectivity of the LIFJ with
he RCH6, lower negative connectivity of the RMFC with the MCV6,
nd higher negative connectivity of the RMFC with the LIPS resulted in
aster speeds. These were compared with higher negative connectivity
f the LCH6 with the LTHAL and LFEF and with lower positive connec-
ivity of the MCV6 with the RCH6, which resulted in faster speed. The
esults suggest CS may involve interactions between effortful and auto-
atic information processing subserved by the RMFC and LFEF (frontal
rivers) and the LCH6 and RCH6 (cerebellar drivers), respectively. 

.1. Cognitive speed definition 

This study was targeted at reducing the influence due to task speci-
city and isolating the portion of the time accounting for the speed of
he cognitive processes. The “two-modality by three-task rule ” would
ave reduced the task specificity; and the cognitive speed index derived
ould have partialled out the RTs of the control conditions from those
f the experimental conditions ( Kansal et al., 2017 ). The results demon-
trate that the VAR(1) model was more useful for predicting the CS than
or predicting the PS (see Table 3 ). 

.2. Connectivity networks 

The yielded significant ROIs were found to overlap with the neu-
al substrates commonly associated with the DAN ( Corbetta and Shul-
an, 2002 ; i.e., RFEF, LFEF, LIFJ, RIFJ, LIPS, RIPS, LTHAL, and RTHAL)

nd CON (Cinguloopercular Network, Dosenbach et al., 2006 ; i.e.,
MFC, LMFC, RCH6, MCV6, and LCH6). The connectivities revealed
mong the predefined task-positive ROIs suggest a plausible cerebello-
rontal network within a predefined set of regions association with the
S. Interpretations of the effective connectivities revealed in this paper
re based on two dimensions —uni- versus bidirectional —and the rela-
ionships of functional and anatomical connections reported in previous
tudies. For directions of causative connectivity, due to the complexity
nvolved in reciprocal causation, this study only included task-positive
odes. This eliminated connectivity pairs that might have manifested
s reciprocal causation in nature, keeping those that would have been
nidirectional in nature. The lack of possible reciprocal or circular con-
ectivities is a limitation of this study. The plausible neural processes
nderlying the identified effective connectivities is elaborated below. 

The strongest effective connectivity predictors were the
MFC →LIPS, RMFC →MCV6, and LIFJ →RCH6. The latter two functional
airs were long-range, from frontal cortex to cerebellum. The other
wo functional pairs were short-range, which cluster in the cerebellum
i.e., MCV6 →RCH6 and LCH6 →LTHAL). The functional association
f the cerebello-frontal network with CS is a new finding. Previous
tudies reported that effective connectivities of the cerebello-frontal
etwork were related to a wide range of cognitive processing, such
s visual ( Kellermann et al., 2012 ) and auditory ( Salmi et al., 2009 )
ttention, perceptual timing prediction ( O’Reilly, Mesulam, and Nobre,
008 ), working memory ( Luis et al., 2015 ), and executive function
 Reineberg and Banich, 2016 ). Specific to PS, Eckert et al. (2010) re-
orted structural speed–brain correlates in the cerebellar and frontal
egions. Using source-based morphology on structural imaging data,
even structural components in the cerebellum and the frontal cortex as-
ociated with age-related changes in PS were identified. The findings of
his study are consistent with those revealed by Eckert et al. (2010) and
ffer further evidence suggesting plausible cerebellar-frontal functional
nteractions for mediating PS. 

The results suggest that the RMFC plays a significant role in facili-
ating CS, as it was part of two connectivity pairs: RMFC →MCV6 and
MFC →LIPS. In the RMFC →MCV6, lower negative connectivity of the
MFC with the MCV6 (or cerebellum vermis VI) predicted faster CS.
his finding is somewhat consistent with previous studies, in which PS
as associated separately with activations in the MFC ( Forn et al., 2013 )
nd vermis ( Ruet et al., 2014 ; Silva et al., 2019 ) and with the cerebellar
nd frontal regions ( Eckert, 2011 ; Paul et al., 2009 ). Nevertheless, the
oncurrent involvements of MFC and various cerebellar regions have
lso been reported in other intrinsic connectivity ( Buckner et al., 2011 ;
abas et al., 2009 ), task connectivity ( Forn et al., 2013 ), and meta-
nalytic ( Bernard and Seidler, 2013 ) studies. Functionally, the RMFC
as associated with proactive control ( Clark et al., 2020 ; Hu et al.,
016 ) and inhibited competing task sets ( Mayr et al., 2006 ), whereas
he MCV6 was associated with vigilance attention ( Langner and Eick-
off, 2013 ) and working memory speed (H. Ding et al., 2012 ). Exci-
atory stimulation of the medial cerebellum was found to increase at-
ention performance ( Esterman et al., 2017 ), and inhibitory stimulation
ampered the automaticity of cognitive processes ( Argyropoulos et al.,
011 ). The MFC ( Korb et al., 2017 ; la Vega, Chang, Banich, Wager,
nd Yarkoni, 2016 ) and the posterior cerebellum ( D’Mello et al., 2020 )
ere found to associate with action- and motor-oriented cognitive con-

rol ( Langner and Eickhoff, 2013 ). Taken together, the lower negative
nfluence from the RMFC to the MCV6 (i.e. RMFC →MCV6) for faster
S may be due to the lowering of regulation from the frontal region,
hich could have facilitated the automaticity attention processes sub-

erved by the cerebellum ( Ramnani, 2014 ; Shine and Shine, 2014 ). In
his study, higher negative influence from the RMFC to the LIPS (i.e.
MFC →LIPS) also predicted faster CS. This result is contrary to that of
nother study that reported faster PS associated with higher coactiva-
ion between the two regions ( Forn et al., 2013 ). Effective MFC to LIPS
onnectivity was found to modulate cognitive control ( Harding et al.,
015 ), while LIPS alone was involved in higher order goal-related action
ontrol ( Tunik et al., 2007 ). The higher negative connectivity of RMFC
ith LIPS suggests that a faster CS would have involved increased sup-
ression of irrelevant action-rule representations, such as the compatible
ules ( “UP ” button when an upward arrow appeared) when performing
he incompatible conditions in this study. 

The involvement of the LCH6 and RCH6 in CS is an interesting and
mportant finding. The LCH6 was found to form higher negative connec-
ivities with the LFEF and LTHAL, which contributed to faster CS. The
esults are consistent with those reported in one study that activations
f the LCH6 and LTHAL were associated with PS ( Genova et al., 2009 ).
erebellar-thalamic connectivity was associated with visuomotor con-
rol ( Lin et al., 2009 ) and formation of motor memory ( Mawase et al.,
017 ). The LCH6 was frequently associated with spatial processing,
orking memory, and low cognitive demand tasks with overt move-
ents ( Stoodley et al., 2012 ). A recent review on the functions of

halamus suggest its role is beyond the relay of cortico-cortical infor-
ation ( Guillery and Sherman, 2002 ) but participates in sensorimo-

or integration ( Murray et al., 2012 ). Previous studies on PS also re-
orted thalamus involvement among older adults ( Waiter et al., 2008 )
nd patients with multiple sclerosis ( Bisecco et al., 2017 ). The associ-
tion between the higher negative connectivity of the LCH6 with the
THAL (i.e. LCH6 →LTHAL) suggests that a faster speed might have re-
uired inhibition of the thalamus for participating in the task-taking
rocesses ( Prevosto and Sommer, 2013 ). This proposition is inconsis-
ent with the task employed in this study, requiring a low level of at-
ention and simple task sets for producing overt motor responses. The
EF has been functionally associated with top–down reorientation of
ttention ( Shulman et al., 2009 ) and encoding of multimodal stimuli
 Spagna et al., 2015 ; Tamber-Rosenau et al., 2013 ), such as visual and
uditory stimuli ( Tark and Curtis, 2009 ). The higher negative connec-
ivity findings of the LCH6 with LTHAL and LFEF suggest that faster CS
ight have involved inhibition of the frontal cortical activities for keep-

ng pace with the cognitive demands, as required by the multimodal
ttentional task of this study. Our findings contextualize the possible
nhibitory role played by the cerebellum on the frontal and subcortical
eural substrates for fostering faster CS. 

Different from the LCH6, the RCH6 was the recipient of positive
onnectivity from the LIFJ and MCV6. It suggests that involvements
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f RCH6 may be facilitated, rather than inhibited, by the activations
f the frontal cortex and cerebellum. A recent meta-analytic study re-
orted that the LIFJ was associated with reactive control ( Clark et al.,
020 ), while the RCH6 was associated with working memory speed
 Salmi et al., 2010 ). The IFJ and RCH6 were related to maintaining
 Woolgar et al., 2011 ) and implementing ( Balsters and Ramnani, 2011 )
timulus–response task rules. The higher positive connectivity of the
IFJ with the RCH6 (i.e. LIFJ →RCH6) suggests that frontal activations
ould have facilitated faster task-rule responses subserved by the RCH6.
he results of the present study do not support three proposed cerebellar
onnectivities: LIFJ →RCH6, RCH6 →LFEF, and LCH6 →LTHAL. Plausible
eciprocal cortico-cerebello-cortical connectivity of the LIFJ →RCH6 and
CH6 →LFEF influencing CS warrants future investigation. The signifi-
ant finding of the short-range MCV6 →RCH6 connectivity is less clear.
he lower positive connectivity of the MCV6, which plays a major role in
he automaticity process, with the RCH6 suggests that both of the cere-
ellar structures might complement one another in facilitating faster CS.

.3. Negative causal influence in task-positive network 

The few negative connectivities revealed in the interregional pairs
f neural substrates, such as RMFC →LIPS and RMFC →RCV6, are some-
hat counterintuitive under the context of a task-positive network. The
ain concern would be that temporal correlations of the neural sub-

trates within a task-positive network should consistently be in positive
alues ( Fox et al., 2005 ). Negative causal connectivity refers to a former
eural substrate exerting negative influence on a latter neural substrate
 Chen et al., 2011 ). When engaging in a task, better performance, such
s shorter RTs, can be due to increases in effort or improvements in effi-
iency on task ( Lin et al., 2011 ). It is noteworthy that increase in effort
an be a consequence of stronger facilitative or inhibitory effects to be
xerted from a former neural substrate functionally connecting to a lat-
er neural substrate. For instance, our results showed higher negative
onnectivity of RMFC →LIPS predicted faster performance. Increases in
OLD signals of RMFC would have intensified the inhibitory effect on
IPS for producing shorter RTs. It is plausible that negative connectivi-
ies in a task-positive network should not be understood as suppression
f task-relevant processes subserved by the network. It could be that
he inhibitory effects of RMFC existed in the connective pairs, whereby
laying a supervisory role accounted for the negative connectivity val-
es. On the other hand, it could have been the increase in BOLD signals
n the LIPS in response to the inhibition accounted for the positive values
n the task-positive network. The explanations offered on the negative
onnectivities found in a task-positive network in this section need to
e further verified in future study. 

.4. Limitations 

This study has several limitations. First, there are ongoing debates
n the application of Granger causality on fMRI (e.g., Barnett et al.,
018 ). One issue is the discrepancies in temporal resolutions of fMRI
i.e., 2 s) and those of neuronal activities (in sub-milliseconds). The
hapes of hemodynamic responses also vary across different brain re-
ions. Nevertheless, a previous study concluded that Granger causality
nalysis was found to adequately detect the causal influence ( Seth et al.,
013 ), as the BOLD responses would have functioned as a low-pass filter,
itigating the low sampling frequency issue ( Wen et al., 2013 ). When

pplied to effective connectivity analysis, other issues, such as vascu-
ar anatomy ( Webb et al., 2013 ) and an over-parameterized model and
nterpretation of a signed path ( Zhang et al., 2016 ), could have con-
ounded the results. In particular, Webb et al. (2013) suggested that
he blood flow in major cerebral arteries could introduce systematic
OLD signal latency across brain regions, leading to spurious “Granger-
ource ” and “Granger-sink ” brain regions. However, because the VAR
odel constructed in this study incorporated multiple ROIs, which also

arried the vascular signals, the effect could have been mitigated, as the
ystematic BOLD latency could have been regressed out. Future stud-
es should be conducted to justify our speculation. The current study
evealed that the data-driven multivariate lagged model was superior
o zero-lag correlation-based connectivity estimators in predicting PSs.
uture studies should be conducted to test the replicability of the re-
ults and the application of the Granger-like path estimator to other con-
tructs. Second, the task-negative network was not included in the cur-
ent study because of the limited number of ROIs entered into the model
o avoid overfitting of the multivariate connectivity estimation models.
revious studies demonstrated that the default-mode network was as-
ociated with slowed attentional RT ( Weissman et al., 2006 ). Further
tudy would extend the coverage of additional functional networks for
uilding the PS model. Third, the two-modality and three-task rule de-
ign somewhat limited the option of establishing external validity of the
esults with those derived from public datasets. Future studies should
mploy different tasks but a similar design to test the reproducibility
f the results. Fourth, the sample size was rather small, which could
ave weakened the power of the analyses. Readers should be cautious
hen interpreting the results. Finally, the CS was derived by regressing
ut the RTs of control conditions from those of experimental conditions.
he former could have included the sensorimotor and decision-making
omponents ( Ratcliff and Van Dongen, 2011 ). Although the decisions
ade in the control conditions were relatively simple, it is not known
ow much the time involved would have impacted the CS. Future re-
earch could validate the merit of the partial method. 

. Conclusion 

The findings of this study indicate that facilitative and inhibitory
rocesses, which were shown to be subserved by a cerebello-frontal net-
ork, within a predefined set of regions, influenced cognitive processing

peed. The effective connectivity analysis suggested that the RMFC and
CH6 were the core substrates that regulated the information process
hrough task-set maintenance, and the LIFJ, LIPS and RCH6 were in-
olved in the stream of stimulus-response information processing. The
ew findings on the antagonistic and agonistic roles among the cerebel-
ar regions in cognitive processing speed require further investigation. 
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