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A B S T R A C T

Background: Arachidonic acid (AA), a major long-chain n-6 polyunsaturated fatty acid in animal foods, has
been linked to inflammation, coagulation, and testosterone, which might relate to atherosclerotic cardiovas-
cular diseases (ASCVD). We assessed the associations of genetically predicted plasma phospholipid AA with
ASCVD and other CVD overall and by sex using Mendelian randomization (MR).
Methods:We conducted two-sample MR, applying eight genetic variants, independent of a highly pleiotropic
variant (rs174547), strongly (p < 5 £ 10�8) predicting AA, primarily to summary statistics of genetic associa-
tions with ASCVD, including ischaemic heart disease (IHD), ischaemic stroke, and peripheral artery disease
(PAD) from CARDIoGRAMplusC4D 1000 Genomes (60,801 IHD cases, 123,504 controls), MEGASTROKE
(34,217 ischaemic stroke cases, 406,111 controls), and Pan-UK Biobank (n=~420,531), and secondarily to
genetic associations with other CVD from Pan-UK Biobank, Atrial Fibrillation Consortium, HERMES consor-
tium, and FinnGen. We also assessed sex differences.
Findings: Genetically predicted AA was associated with ASCVD (odds ratio (OR) per % of total fatty acids
increase 1.03, 95% confidence interval (CI) 1.01 to 1.05) and its subtypes IHD (OR 1.03, 95% CI 1.004 to 1.05),
ischaemic stroke (OR 1.03, 95% CI 1.004 to 1.06) and possibly PAD (OR 1.08, 95% CI 1.00 to 1.17), possibly
more strongly in men than women. AA was also associated with venous thromboembolism (OR 1.12, 95% CI
1.05 to 1.19). A similar pattern was observed when using rs174547 to genetically predict AA.
Interpretation: Our study suggests positive associations of AA with ASCVD and venous thromboembolism,
with possibly stronger associations in men than women.
Funding: No funding.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

The role of diet in cardiovascular diseases (CVD) has been studied
since the 1950s. Despite concerns about sugar [1] and meat con-
sumption [2], the main focus has been on the role of dietary fats [3].
Different types of fats have different effects, with saturated fats
mainly raising cholesterol [4]. Dietary guidelines since 1977 have
recommended lowering intake of saturated fatty acids and replacing
them with polyunsaturated fatty acids (PUFA) to prevent CVD [5], [6].
However, controversies remain about the effects of specific PUFAs,
with recent meta-analyses of randomized controlled trials (RCTs)
suggesting that replacing saturated fatty acids with n-6 PUFA linoleic
acid (LA) has no benefit [7] or possible harm for CVD [8], possibly
because different PUFAs potentially have distinct effects on CVD.
More recently, icosapent ethyl, a purified n-3 eicosapentaenoic acid
(EPA) has shown cardiovascular benefit [9], although benefits of com-
bined EPA and docosahexaenoic acid (DHA), the marine long-chain n-
3 PUFAs recommended for the prevention of CVD [6], are less clear
[10]. In contrast, the effect of arachidonic acid (AA), one of the major
dietary long-chain n-6 PUFA, derived from intake of animal foods
(e.g., meat, eggs, and fish, ~200mg/100g) [11] has been less studied,
although AA competes with EPA for cyclooxygenase [12] and its
metabolites are involved in inflammation and coagulation [13],
which are related to atherosclerosis [14] and atherosclerotic CVD
(ASCVD).
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Research in Context

Evidence before this study

Arachidonic acid (AA), derived from intake of animal foods (e.g.,
meat, egg, and fish), is one of the major dietary long-chain n-6
PUFA. It is well-established that AA competes with eicosapen-
taenoic acid (EPA) for cyclooxygenase and lipoxygenase in vivo
and its metabolites are involved in inflammation and coagula-
tion, which are particularly related to atherosclerosis and
atherosclerotic cardiovascular diseases (ASCVD). AA and its
metabolites also affect the synthesis and secretion of testoster-
one in animal studies, which is related to myocardial infarction,
stroke, thromboembolism and heart failure in men. Evidence
on the effect of AA on ASCVD is limited. Observational studies
are open to confounding, while Mendelian randomization (MR)
studies suggested some associations largely driven by a highly
pleiotropic genetic variant (rs174547) but did not consider sex-
specific effects.

Added value of this study

In the present MR study, using genetic variants, independent of
the highly pleiotropic variant (rs174547), strongly (p < 5 £
10�8) predicting AA, we provided unconfounded evidence of
positive associations of genetically predicted plasma phospho-
lipid AA with ASCVD and venous thromboembolism, indepen-
dent of the pleiotropic haplotype, with potentially stronger
associations in men than women.

Implications of all the available evidence

Our study clarified the role of AA in particularly ASCVD and
venous thromboembolism, which may provide insight into the
underlying mechanisms and corresponding interventions, as
well as potentially elucidating actionable reasons for men being
more vulnerable to CVD than women.

2 T. Zhang et al. / EBioMedicine 63 (2021) 103189
Observational findings concerning circulating or tissue levels of
AA are mixed, with some studies suggesting no association with CVD
[15�17], one showing a positive association with myocardial infarc-
tion [18], and another suggesting an inverse association with coro-
nary events [19]. No obvious difference by sex has been observed
[15], [18]. Observational studies may be biased by confounding,
because factor such as socio-economic position may determine both
diet and CVD risk, and can be open to selective reporting [19]. No
RCTs to date have examined the effect of AA on CVD [20], with a lim-
ited number of short-term trials suggesting no effect of AA supple-
mentation on blood lipids, coagulation or platelet aggregation [21] or
a beneficial effect of supplementation of AA plus DHA on coronary
circulation [22] which cannot distinguish between their effects.

A small genetic study found that variants from ALOX5, likely func-
tionally related to the conversion of AA to proinflammatory leuko-
trienes, were associated with higher intima-media thickness [23].
More recently, Mendelian randomization (MR), i.e., instrumental var-
iable analysis using genetic variants, has been used to obtain uncon-
founded effects of some fatty acids, including EPA and DHA, on
ischaemic heart disease (IHD) ([24], [25]) and ischaemic stroke [26].
However, many of the findings are driven by a genetic variant (tagged
by rs174547 in the FADS1 gene) [25] homozygous in the people of
Flores Island 60 to 100 thousand years ago [27] which encodes a key
desaturase in PUFA synthesis and has multiple pleiotropic traits (via
fatty acids and other mechanisms) [25], making it difficult to identify
specific effects of AA. In addition, previous studies have not consid-
ered differences by sex. Using genetic instruments, distinct from the
Flores haplotype, predicting plasma phospholipid AA [28] applied
primarily to genome-wide association studies (GWAS) [29-31] of
ASCVD (i.e., IHD, ischaemic stroke, and peripheral artery disease
(PAD)), and secondarily to associations with other CVD (i.e., rheu-
matic valve disease, nonrheumatic valve disorder, atrial fibrillation,
heart failure, intracranial haemorrhage, aortic aneurysm, and venous
thromboembolism (VTE)) ([30], [32], [33]), we used MR to assess the
associations of genetically predicted plasma phospholipid AA with
ASCVD, other CVD, and their major subtypes. We also assessed
whether the associations varied by sex, because AA and its metabo-
lites affect testosterone synthesis and secretion ([34], [35]), which is
related to IHD, myocardial infarction, stroke, thromboembolism and
heart failure in men [36], [37].

2. Methods

2.1. Genetic instruments for AA

Genetic variants, i.e., single-nucleotide polymorphisms (SNP),
strongly (p < 5 £ 10�8) associated with plasma phospholipid AA
were identified from a GWAS of the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) Consortium in 8,631
individuals of European ancestry adjusted for age, sex, site and 2~10
principal components [28]. We only included SNPs available for all
cohorts with a minor allele frequency>=0.01. To ensure genetic
instruments specific to AA independent of the Flores haplotype,
which affects the fatty acid AA [38] but has many other effects
beyond the fatty acid [25], we constructed two sets of instruments
for AA, one affecting AA independent of the Flores haplotype (tagged
by rs174547) and the other affecting AA only through the Flores
haplotype, i.e., rs174547. We assessed instrument strength from the
F-statistics calculated using an approximation [39]. An F-statistic of
<10 indicates possible weak instruments. We calculated the propor-
tion of AA variance explained by each SNP using an established
approximation [40] where variance was obtained from the largest
cohort in the GWAS.

For the AA instruments independent of the Flores haplotype, we
obtained independent SNPs using MR-Base ld_clump with r2 < 0.01
and distance >10,000 kb. We checked whether the SNPs were associ-
ated with other PUFAs from existing GWAS [28], [41]. We checked
for known pleiotropic effects using two comprehensive curated
genotype to phenotype cross-references, i.e., PhenoScanner and
Ensembl 100 (accessed 2 July 2020). We also checked whether the
SNPs were confounded with CVD by assessing their associations with
key confounders (i.e., Townsend index, education, alcohol drinking,
smoking, and physical activity) in the UK Biobank. We excluded SNPs
with known pleiotropic effects or associated with key confounders at
p < 5 £ 10�8.

2.2. Genetic associations with ASCVD and other CVD and their major
subtypes

Genetic associations with ASCVD (i.e., IHD, ischaemic stroke, and
PAD) and some other CVD (rheumatic valve disease, nonrheumatic
valve disorder, intracranial haemorrhage, and aortic aneurysm),
ascertained through linkage to hospital episodes and mortality data,
with cases diagnosed according to the International Classification of
Diseases (ICD)-9 and/or 10 codes (details in Supplementary Table 1),
were taken from the UK Biobank [30] Pan-ancestry summary statis-
tics (Pan-UK Biobank, https://pan.ukbb.broadinstitute.org/, released
16 June 2020, assessed 15 August 2020) adjusted for age, sex, age*-
sex, age2, age2*sex, and 10 principal components. We used summary
statistics based on 420,531 individuals of European ancestry only
(54% women, age between 40�69 years). IHD cases included myocar-
dial infarction, unstable angina, angina pectoris, coronary atheroscle-
rosis, and other chronic, subacute, and acute IHD. Genetic
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associations with IHD (ncase = 60,801, ncontrol = 123,504) in individuals
of mainly European ancestry (77%) and ischaemic stroke
(ncase = 34,217, ncontrol = 406,111) in individuals of European ancestry
only were also obtained from the CARDIoGRAMplusC4D 1000
Genomes [29] and the MEGASTROKE consortium [31], respectively,
adjusted for study specific covariates and genomic control. In CARDI-
oGRAMplusC4D 1000 Genomes IHD cases included myocardial
infarction, acute coronary syndrome, chronic stable angina, and coro-
nary stenosis >50%. The participants in CARDIoGRAMplusC4D 1000
Genomes and MEGASTROKE do not overlap with the UK Biobank.
Genetic associations with atrial fibrillation (ncase = 65,446, ncon-
trol = 522,744) in individuals of mainly European ancestry (91%), heart
failure (ncase = 47,309, ncontrol = 930,014) in individuals of European
ancestry only, and VTE (ncase = 5,403, ncontrol = 130,235) in individuals
of Finnish ancestry only were taken from the Atrial Fibrillation Con-
sortium [33], the Heart Failure Molecular Epidemiology for Therapeu-
tic Targets (HERMES) consortium [32], and FinnGen (https://finngen.
gitbook.io/documentation/, released 5 June 2020, assessed 25 August
2020), respectively, adjusted for study specific covariates and geno-
mic control. Sex-specific genetic associations with CVD subtypes in
white British were taken from the UK Biobank [30] (http://www.nea
lelab.is/uk-biobank/, released 31 July 2018, assessed 10 August 2020)
in 167,020 men and 194,174 women aged between 40�69 years. The
estimates derived from linear regressions adjusted for age, age2, and
20 principal components for all CVDs were transformed to log odds
ratios using an established approximation [42].

2.3. Statistical analysis

We aligned effect allele for exposure and outcomes and further
aligned on effect allele frequency for palindromic SNPs. For SNPs not
available for an outcome, we sought a highly correlated proxy
(r2 � 0.8) in LDlink (Accessed 25 August 2020). We used MR inverse
variance weighting (IVW) estimates with multiplicative random-
effects [43] to assess the overall and sex-specific associations of
genetically predicted AA with each CVD. We obtained an overall esti-
mate for IHD by meta-analyzing estimates from the UK Biobank and
CARDIoGRAMplusC4D 1000 Genomes and for ischaemic stroke by
meta-analyzing estimates from the UK Biobank and MEGASTROKE
with random effects. We obtained sex-specific estimates for ASCVD
by meta-analyzing the sex-specific estimates for IHD, ischaemic
stroke, and PAD. We assessed sex differences for ASCVD and each
CVD subtype using a two-sided z-test [44]. In sensitivity analysis, we
used the weighted median which is valid even when up to 50% of the
information is from invalid SNPs [45]. We also used MR Egger which
is robust to genetic pleiotropy but assumes pleiotropic effects inde-
pendent of the genetic associations with the exposure [39]. A non-
zero intercept indicates directional pleiotropy (some genetic variants
act not through AA).

A two-sided p-value of < 0.05 was considered as significant for
sex differences. All the analyses were conducted using R version 3.6.3
(The R Foundation for Statistical Computing, Vienna, Austria) and the
“MendelianRandomization” and “metafor” R packages. No ethical
approval was required because we used only publicly available sum-
mary data.

2.3.1. Role of the funding source
No funding.

3. Results

We identified eight uncorrelated SNPs, independent of rs174547
(r2 < 0.05 in LDlink) (Supplementary Table 2), strongly (p < 5 £ 10�8)
predicting plasma phospholipid AA (Supplementary Table 3). Of the
eight SNPs, rs2903922, rs760306 and rs472031 were associated with
other n-6 PUFAs (p < 5 £ 10�8), including LA and dihomo-gamma
linoleic acid (DGLA), but these associations were weaker than the
associations with AA. Rs1741 was more significantly associated with
DGLA and LA (Supplementary Table 4). None of the eight SNPs was
associated with any n-3 PUFA at genome-wide significance
(p < 5 £ 10�8) but six of them were associated with EPA at nominal
significance (p < 0.05) (Supplementary Table 4). None of the eight
SNPs was associated with any known pleiotropic traits or key con-
founders in the UK Biobank (p < 5 £ 10�8) (Supplementary Table 5),
all had F-statistics>10, and together accounted for a total of 5.3% var-
iance in AA. Rs174547 explained more than 30% of variance in AA. All
of the SNPs were available for each outcome (Supplementary Figure
1).

Based on eight SNPs independent of rs174547, overall genetically
predicted AA was positively associated with ASCVD, and with IHD in
the UK Biobank and CARDIoGRAMplusC4D 1000 Genomes combined
and ischaemic stroke in the UK Biobank and MEGASTROKE combined
but not with PAD (Fig. 1). Based on the eight SNPs, genetically pre-
dicted AA was positively associated with VTE but not with other
CVDs (Fig. 2). Based on rs174547, overall genetically predicted AA
was positively associated with ischaemic stroke and PAD, sugges-
tively associated with ASCVD, but not with IHD. It was also associated
with aortic aneurysm, heart failure and VTE, and overall other CVD
(Fig. 2). In the UK Biobank, based on eight SNPs independent of
rs174547, genetically predicted AA was associated with ASCVD in
men but not women but the sex difference was not significant
(p = 0.25 (z-test)). Based on rs174547, associations were directionally
similar for ASCVD (Supplementary Figure 2).

The weighted median and MR Egger gave directionally similar
estimates. The intercept of MR Egger generally indicated no pleiot-
ropy, except for IHD in CARDIoGRAMplusC4D 1000 Genomes (p for
intercept = 0.043) (Supplementary Table 6). The analyses after
excluding rs1741 showed similar results for the associations of AA
with CVD in both sexes (Supplementary Figure 3).

4. Discussion

Our MR study suggests genetically predicted plasma phospholipid
AA is associated with ASCVD (IHD, stroke and possibly PAD) and VTE,
but not with other CVDs, independent of the Flores haplotype
rs174547, with possibly a stronger association for ASCVD in men
than women. These findings are consistent with some [18], [46] but
not all [15�17], [19] observational studies of the association of circu-
lating or tissue AA with ASCVD or its subtypes but add by providing
an estimate less open to residual and unmeasured confounding. Our
findings add to previous MR studies by using larger GWASs, assessing
the associations with a wider range of CVDs, and distinguishing
effects of AA from effects of the highly pleiotropic Flores haplotype
[25], [26].

Several biological mechanisms might explain the adverse effect of
AA on ASCVD and VTE. First, AA-derived eicosanoids by cyclooxygen-
ase, including thromboxane A2 (TXA2), prostaglandins (PGE2, PGF2a,
PGD2) and prostacyclin (PGI2), are involved in vessel tone regulation,
platelet aggregation and coagulation, and inflammation, which may
play roles in atherosclerosis and ASCVD [14]. AA-derived leukotrienes
by lipoxygenase could affect the progression of hyperlipidaemia-
dependent vascular disease and are related to atherogenesis, IHD,
and stroke [13]. 20-hydroxyeicosatetraenoic acid via cytochrome
P450 can lead to hypertension and vascular endothelium damage
[47]. Furthermore, AA itself can be metabolized to isoprostanes,
which are linked to platelet aggregation, smooth muscle cell prolifer-
ation, and cardiomyocyte hypertrophy [13]. Moreover, free AA could
induce oxidative stress by altering nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase mediated production of reactive oxygen
species, which may induce insulin resistance and lead to ASCVD [13].
Alternatively, AA competes with EPA for cyclooxygenase and lipoxy-
genase, which may hinder the production of EPA-derived anti-
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Fig. 1. Associations of genetically predicted plasma phospholipid arachidonic acid with ischaemic heart disease (Pan-UK Biobank: ncase = 37,672, ncontrol = 382,052; CARDIoGRAM-
plusC4D 1000 Genomes: ncase = 60,801, ncontrol = 123,504), ischaemic stroke (Pan-UK Biobank: ncase = 4,275, ncontrol = 416,256; MEGASTROKE: ncase = 34,217, ncontrol = 406,111),
peripheral artery disease (Pan-UK Biobank: ncase = 3,325, ncontrol = 408,565), and overall atherosclerotic cardiovascular diseases in both sexes.

The error bar indicated the lower and upper limits of 95% confidence interval of the estimate (odds ratio). The scale bar indicated the odds ratio in CVD risk per % of total fatty
acids increase in AA.

* For each CVD, the estimates based on eight SNPs independent of rs174547 were obtained from random-effect inverse variance weighting, while the estimates based on
rs174547 were obtained fromWald-type estimator. The estimates for overall IHD, overall ischaemic stroke, and overall ASCVD were derived from random-effect meta-analysis.

ASCVD, atherosclerotic cardiovascular disease; CI, confidence interval; IHD, ischaemic heart disease; OR, odds ratio; PAD, peripheral artery disease.
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inflammatory eicosanoids [48] thus indirectly leading to ASCVD. AA
composition in blood cells might be at the expense of EPA, which
may influence blood viscosity and flexibility thus likely increasing
thrombosis formation [12]. Nevertheless, available evidence from
RCTs on these potential pathways is limited [21].

To our knowledge, this is the first MR study examining the sex-
specific effects of a fatty acid on CVD. Our findings suggest a possibly
stronger association of genetically instrumented AA with ASCVD in
men than women. Although the AA cascade has been linked to
inflammation and coagulation [13], and may play a role in testoster-
one synthesis and release [34], [35], limited evidence of sex-specific
associations of AA with ASCVD exists, with observational studies sug-
gesting no obvious sex difference [15], [18]. AA and its metabolite
TXA2 and prostaglandins may stimulate the formation and secretion
of testosterone [34], [35] and affect its action [49], which is increas-
ingly recognized as related to thromboembolism, myocardial infarc-
tion, and heart failure in men [36]. Evidence from RCTs shows a more
pronounced effect of aspirin, a cyclooxygenase inhibitor and throm-
boxane A2 blocker, on major CVD events in men than women [50]. In
addition, AA-derived 20-hydroxyeicosatetraenoic acid via cyto-
chrome P450 might have a role in testosterone-induced endothelial
dysfunction and hypertension, as shown in animal studies [47].
This study has some limitations. First, MR has stringent assump-
tions of relevance, independence and exclusion restriction. We
selected genetic instruments associated with AA at genome-wide sig-
nificance (p < 5 £ 10�8), which had F-statistics>10. Any slight over-
lap of the sample for AA with outcome GWAS, including
CARDIoGRAMplusC4D 1000 Genomes, MEGASTROKE consortium,
HERMES consortium, and Atrial Fibrillation Consortium (~2%), is
unlikely to create a bias. We checked that the genetic instruments for
AA were independent of key potential confounders (i.e., Townsend
index, education, alcohol drinking, smoking, and physical activity) in
the UK Biobank. Almost all of the GWAS we used were in people of
European descent only, except for CARDIoGRAMplusC4D 1000
Genomes (23% of non-European ancestry) and Atrial Fibrillation Con-
sortium (9% of non-European ancestry) which could be open to bias
from population stratification. However, the two GWAS were cor-
rected for genomic control [29], [33], and results for IHD were consis-
tent using Pan-UK Biobank and CARDIoGRAMplusC4D1000
Genomes. We specifically selected genetic instruments independent
of the highly pleiotropic Flores haplotype rs174547 [25], [27]. The
genetic instruments for AA were not associated with known pleiotro-
pic traits or any n-3 PUFA at genome wide significance. One SNP
(rs1741) was more significantly associated with other n-6 PUFAs, but



Figure 2. Associations of genetically predicted plasma phospholipid arachidonic acid with rheumatic valve disease (Pan-UK Biobank: ncase = 4,525, ncontrol = 400,902), nonrheumatic
valve disorder (Pan-UK Biobank: ncase = 7,051, ncontrol = 400,902), atrial fibrillation (Atrial Fibrillation Consortium: ncase = 65,446, ncontrol = 522,744), heart failure (HERMES:
ncase = 47,309, ncontrol = 930,014), intracranial haemorrhage (Pan-UK Biobank: ncase = 2,437, ncontrol = 407,633), aortic aneurysm (Pan-UK Biobank: ncase = 2,034, ncontrol = 408,565),
venous thromboembolism (FinnGen: ncase = 5,403, ncontrol = 130,235), and overall other cardiovascular diseases in both sexes.

The error bar indicated the lower and upper limits of 95% confidence interval of the estimate (odds ratio). The scale bar indicated the odds ratio in CVD risk per % of total fatty
acids increase in AA.

* For each CVD, the estimates based on eight SNPs independent of rs174547 were obtained from random-effect inverse variance weighting, while the estimates based on
rs174547 were obtained fromWald-type estimator. The estimates for overall other CVD were derived from random-effect meta-analysis.

CI, confidence interval; CVD, cardiovascular disease; OR, odds ratio; VTE, venous thromboembolism.
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sensitivity analyses excluding rs1741 showed similar results. We also
used sensitivity analyses to assess the possibility of violation of the
exclusion-restriction assumption by genetic pleiotropy. However, six
of the eight SNPs were associated with EPA at nominal significance
(P<0.05), thus it cannot be ruled out that the association of AA with
ASCVD may be partly driven by EPA. Second, the role of endogenous
AA might not correspond to that of exogenous AA intake. However,
plasma AA composition relates to dietary or supplemental AA intake
dose-dependently over a wide range of AA intake (82�3600 mg/day)
[11]. Third, the findings might not apply beyond Europeans or to pop-
ulations that do not consume animal foods, although causes usually
act consistently but are not always relevant [51]. Fourth, the genetic
variants predicting AA in the sex-specific analysis were from both
sexes. Accordingly, the sex-specific estimates might be conservative
but the directions should be unchanged. Fifth, influential genetic var-
iants might be attenuated by compensatory or feedback mechanisms,
likely biasing estimates toward the null [52]. Sixth, selection bias is
possible for stroke and other CVD typically occurring later than IHD,
which may bias the associations towards the null. Seventh, the CVD
cases in the overall and sex-specific samples of the UK Biobank were
ascertained at different timepoints (two years later for the overall
sample) and based on slightly different ICD codes, which may lead to
some discrepancies in the estimates, particularly for PAD. Finally,
some participants may have multiple correlated CVDs, so meta-anal-
yses of the sex-specific estimates for overall ASCVD or other CVD
could overestimate the precision of the estimates. However, co-exist-
ing CVD could also be consequences of AA.
5. Conclusions

Our study suggests positive associations of genetically predicted
plasma phospholipid AA with ASCVD and VTE, independent of the
Flores haplotype rs174547, with potentially stronger associations in
men than women. Clarifying the roles of AA in different types of CVD
may provide insight into the underlying mechanisms and corre-
sponding interventions, as well as potentially elucidating actionable
reasons for men being more vulnerable to CVD than women.
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