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Abstract 

Objective: Brain-computer interfaces (BCI) aim to build an efficient communication with the 

world using neural signals, which may bring great benefits to human society, especially to 

people with physical impairments. To date, the ability to translate brain signals to effective 

communication outcome remains low. This work explores whether the handwriting process 

could serve as a potential interface with high performance. To this end, we first examined how 

much the scalp-recorded brain signals encode information related to handwriting and whether 

it is feasible to precisely retrieve the handwritten content solely from the scalp-recorded 

electrical data. Approach: Five participants were instructed to write the sentence “HELLO, 

WORLD!” repeatedly on a tablet while their brain signals were simultaneously recorded by 

electroencephalography (EEG). The EEG signals were first decomposed by independent 

component analysis for extracting features to be used to train a convolutional neural network 

(CNN) to recognize the written symbols. Main results: The accuracy of the CNN-based 

classifier trained and applied on the same participant (training and test data separated) ranged 

from 76.8 % to 97.0 %. The accuracy of cross-participant application was more diverse, 

ranging from 14.7 % to 58.7 %. These results showed the possibility of recognizing the 

handwritten content directly from the scalp level brain signal. A demonstration of the 

recognition system in an online mode was presented. The major factor that grounded the 

recognition was the close association between the rich dynamics of electroencephalogram 

source activities and the kinematic information during the handwriting movements. 

Significance: This work revealed an explicit and precise mapping between scalp-level 

electrophysiological signals and linguistic information conveyed by handwriting, which 

provided a novel approach to developing brain computer interfaces that focus on semantic 

communication. 

1. Introduction 

Brain-computer interfaces (BCI) have been undergoing rapid development in recent years with 

the leverage of advancing algorithms (Lotte et al., 2018). One of the major reasons driving this 
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field is that the development of BCI bears great significance in enhancing human’s life by 

pushing the limits of communication and controlling efficiency between human and the world, 

and by enabling people with certain disabilities to regain some lost communication functions. 

Since language is the most important form of communication, many BCI systems have focused 

on building language production system based on brain signals. BCI speller is one example of 

this kind. In many previous applications, the signals to be translated to language outputs (e.g., 

a symbol) were usually perception-related neural signals. For example, the participants may be 

required to watch flicking letters that generate P300 or steady state visual evoked potentials 

(SSVEP) bound to the letters (Chen et al., 2015; Fazel-Rezai et al., 2012; Medina-Juliá, 

Fernández-Rodríguez, Velasco-Álvarez, & Ron-Angevin, 2020). These perception-based 

paradigms have demonstrated the possibilities but have not yet shown major breakthroughs in 

terms of practicality due to various reasons (e.g, perceptual fatigue, etc) (Zhang, Tan, Sun, Wu, 

& Zhang, 2018). 

Another type of paradigm in the BCI field is imagery-based paradigm that uses internally 

generated neural information for controlling purposes. The majority of imagery-based 

paradigms is based on motor imaginary (MI), which has been less focused on language 

production but more on producing specific motor actions such as hand moving, reaching, and 

grasping (Aflalo et al., 2015; Alimardani, 2018; Padfield, Zabalza, Zhao, Masero, & Ren, 2019). 

Using motor imagery-based paradigm for language production has been rare in the applications 

that were based on scalp-level EEG. The low signal-to-noise ratio of scalp EEG may be the 

key reason because it imposes a great challenge in reading and transforming EEG data into 

efficient controlling signals with a practical utility (Abiri, Borhani, Sellers, Jiang, & Zhao, 2019; 

Rashid et al., 2020), despite the widely found associations between EEG and cognitive 

processes in the literature.  

The scenario is remarkably different in signals directly recorded from the cortex by 

electrocorticography (ECoG). ECoG has the advantage of being less prone to artifacts and 

irreversible spatial mixing of different source activities (Buzsáki, Anastassiou, & Koch, 2012), 

it thus better retains the original forms of neural activities. Some remarkable recent advances 

have shown that ECoG signals recorded during speech production or perception can be used to 

synthesize the original speech, or be directly translated into text with an impressive accuracy 

(Angrick et al., 2019; Anumanchipalli, Chartier, & Chang, 2019; Makin, Moses, & Chang, 

2020; Moses, Leonard, & Chang, 2018; Sun, Anumanchipalli, & Chang, 2020; Wilson et al., 

2020). In addition, it has also been demonstrated that the ECoG signals during handwriting 

imagery can be decoded and used for typing purpose with a high performance (Willett, 
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Avansino, Hochberg, Henderson, & Shenoy, 2020). These works demonstrated a very clear 

mapping between the neural dynamics and the patterns of fine motor control activity. The 

mapping is most likely through the neural coding of detailed kinematic information of the 

actual or imagined motor activities (Anumanchipalli et al., 2019; Willett et al., 2020). Such a 

clear mapping is the foundation for BCI applications in the language domain.  

However, although the above-mentioned breakthroughs in translating the brain signals to 

information in language forms are fascinating and important, the fact that they are based on 

cortex-level signals still places a major hurdle in the feasibility of their application in normal 

scenes. Therefore, it is important to explore the technological limits at the scalp (non-invasive) 

level for the purpose of achieving wide applications of language production BCI. To this end, 

the current work was dedicated to investigating the association between the scalp EEG and 

handwriting processes to lay a foundation for further development of scalp EEG-based BCI 

using the modality of handwriting. The major obstacle in this line lies in the low signal-to-

noise ratio of the scalp level EEG—after its first discovery 100 years ago, there has not been 

groundbreaking advances in the accuracy of decoding mental activities based on scalp EEG, 

despite its extensively found association with various cognitive processes. Attempts to read the 

scalp EEG data and translate them into efficient controlling signals have generally remained 

lack of practicality due to the low signal-to-noise ratio of scalp EEG (Abiri et al., 2019; Rashid 

et al., 2020). The vast majority of EEG-based neurocognitive researches have to rely on the 

approach of administering a large number of subjects and experimental trials to reveal often 

subtle neural effects (Boudewyn, Luck, Farrens, & Kappenman, 2018). 

In light of the association between cortical activities in actual or imagined movements as shown 

in the above-mentioned ECoG-based applications, it is reasonable to assume the existence of 

the association between scalp EEG signals and movements of the effector muscles that control 

handwriting, albeit with a lower degree. This is the basic assumption underlying our current 

exploration of decoding handwritten content from scalp level neural signals. Because the scalp 

EEG is a highly coarse-grained and information-sacrificing filtering of the underlying neural 

activity on the cortex level (Buzsáki et al., 2012), and is highly susceptible to non-neural 

artifacts (Pion-Tonachini, Kreutz-Delgado, & Makeig, 2019), the ability to accurately decode 

handwriting from such noisy data would bear strong merit and significance in the field. The 

present work was then dedicated to tackling this challenge and pushing the limit in the mapping 

between scalp EEG and handwritten language production. 

The present exploration is grounded on the following two rationales. First, the scalp EEG can 

be decomposed by advanced blind source separation techniques that restore the temporal 
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dynamics of independent source generators from the mixed signals (Makeig, Bell, Jung, & 

Sejnowski, 1996). If different independent sources capture different aspects of handwriting 

dynamical features, the integration of them would boost the amount of information for 

classification. Second, the continuous handwriting process is usually constituted by 

consecutive sub-processes of drawing separate strokes that can be well defined by kinematic 

features. A single character could be composed of multiple strokes in which each one possesses 

distinct kinematic features, similar to the sound of a word consisting of multiple syllables. If 

neural signals are associated with handwriting kinematics, even if weakly, the combinatorial 

feature of multiple stokes would presumably be able to compensate the low signal-to-noise 

ratio of EEG and further boost the recognizability of the EEG data in terms of its association 

with a character or a word. Integrating these features would probably enable the recognition of 

handwritten characters from scalp EEG with a high accuracy and in an online manner.  

2. Methods 

2.1 Participant 

Five healthy right-handed participants (denoted as P1 – P5) who were native Chinese speakers 

from mainland China and fluent in English were recruited (3 males, Mage = 30.8 (±1.8)). All 

participants had normal or corrected-to-normal vision and declared no history of mental 

diseases. The project was approved by the Human Research Ethics Committee (HREC) in the 

University of Hong Kong. The participants gave their written informed consent before the 

experiment. 

2.2 Instrumentation 

The handwriting movements and EEG signals were simultaneously collected at a sampling rate 

of 60Hz and 1000Hz, respectively. Handwriting trajectories were recorded by a self-developed 

Android app installed in a tablet (HUAWEI MatePad Pro) equipped with an active stylus with 

4096 levels of pressure sensitivity. The app was developed to capture several important events 

and information during handwriting, including x, y coordinates, timestamp, force, state codes 

of pen-down (touching the screen), pen-move, and pen-up (leaving the screen) of each single 

digitalized point of handwritten trajectory. EEG signals were collected with a 32-channel 

amplifier (BrainAmp, Brain Products GmbH, Germany) referenced to the ground electrode. 

EEG electrodes were placed on the cap according to the 10-20 international system (Jasper, 

1958). 
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The handwriting trajectories and EEG signals were synchronized by sending time markers of 

key events in the handwriting stream to the EEG stream. The key events were the first pen-

down events of each symbol written in each writing block on the tablet (Figure 1).  

2.3 Experiment design 

The experiments were conducted in a sound-attenuated room. Participants were required to sit 

in front of a desk and face squarely to a tablet with a sight distance of approximately 35cm. 

The tablet was placed in a landscape orientation on an angle-adjustable tablet stand holder with 

the angle set to 40 degrees above the horizontal plane. The task was to write down each symbol 

in the sentence “HELLO, WORLD!” (10 block letters and 2 punctuation marks) sequentially 

on 12 identical blocks on the tablet screen (Figure 1). The participants were required to write 

the sentence repetitively for 300 times. The app sends a time marker to the EEG stream every 

time when a writing block detects the first pen-down event. It thus sends 12 markers to the 

EEG stream during one round of sentence writing after which the written content in the blocks 

will be erased and the writing and marker-sending processes start over. Participant were 

instructed to write each symbol in the corresponding block stroke-by-stroke and avoid scribble 

writing. They can take a break at any time during the task. All participants completed an entire 

session of this task, i.e., writing the sentences for 300 times. P1 completed an extra session 

three weeks ago for testing the cross-session accuracy within the same participant. An 

illustration of a round of writing the sentence was shown in Figure 1 (left). 

 

Figure 1. Illustration of the system for learning EEG-handwriting associations and decoding 

EEG signals. 
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2.4 Data analysis 

The EEG data were preprocessed using MATLAB (version 2020a, The MathWorks) and 

EEGLAB plugin (Delorme & Makeig, 2004). The data analysis pipeline for machine learning 

was established as shown in Figure 1 (right). It included: 1) decomposition of raw EEG signals 

into independent source components; 2) extraction of source signals encompassing the time 

course of writing each symbol based on markers; 3) partitioning of the data into training and 

test sets for training and testing the classifier, respectively. 

In addition, further analyses were conducted to investigate the neural substrates underpinning 

the recognition of symbol writing, which included: 1) generating event-related potential (ERP) 

associated with writing of different symbols; and 2) calculating the cross-correlation between 

source activities and ongoing handwriting kinematics. The technical details are described 

below. 

 

2.4.1 Preprocessing and signal decomposition 

The entire session of raw EEG data from each participant was first down-sampled to 250Hz 

and bandpass-filtered at 1-45Hz using a bandpass FIR filter. Next, the EEG segments 

containing long silence (i.e. no handwriting events recorded for longer than 2 seconds) were 

truncated. Lastly, independent component analysis (ICA) was applied to decompose the EEG 

data into independent source activities. 

The method ICA is a specific algorithm for implementing blind source separation (BSS). It 

was selected here because it had demonstrated its success and suitability in decomposing EEG 

data by its wide applications (Jung et al., 2000). ICA assumes that the EEG signals recorded 

from the electrodes are linear mixtures of the underlying source activities: x(t) = Au(t), where 

x denotes the 2-d matrix of EEG signals, A denotes the mixing operation and u denotes the 

source activities. The sources can be neural or non-neural (e.g. artifacts). The algorithm of ICA 

is to find an un-mixing matrix W such that the unmixed signal u(t) = Wx(t) are statistically 

independent. The statistical independence was defined by mutual information. Here, the 

extended algorithm of ICA was used (Lee, Girolami, & Sejnowski, 1999). The ICA algorithm 

implemented here orders the resultant ICs according to the variance they project to the sensor 

space (in descending order). The ICs that capture clearly defined sources (e.g., ocular 

movements, neural processes) are usually ranked in lower orders. ICs ranked in higher orders 

tend to be noise in nature (Delorme & Makeig, 2004).  
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2.4.2 Feature extraction 

The decomposed source signals encompassing the segments of writing each symbol were used 

as data features to train the classifier. The raw EEG data from each participant, per session 

were further processed by the following procedure to extract the relevant features. Firstly, the 

EEG signals were low-pass filtered at 8Hz, as it was found in the current data that the low 

frequency bands were more exclusively associated with the movement dynamics, which is also 

in line with previous finding (Kobler, Sburlea, & Müller-Putz, 2018). Then, the EEG signals 

were transformed from sensor space to source space using the un-mixing matrix obtained by 

ICA (see above). Only a subset of the early-ranked ICs (P1-P4: first 8 ICs; P5: first 7 and 10th 

ICs) were selected to reconstruct the source signals. Next, segments of the reconstructed source 

signals were taken from the time windows [m1, m2] that encompass the first pen-down event 

(tj) of writing each symbol, i.e., from m1 seconds before tj and m2 seconds after tj. Due to 

individual differences in the handwriting styles, the [m1, m2] parameters that led to the best 

classifier performance for each participant were individual specific (P1: [-1,2]; P2: [-.5,2]; P3: 

[-1,1.5]; P4: [-1,1.5]; P5: [-.8,2]). It is also worth noting that although optimal performance 

results were achieved under individually specific time windows, the performance did not show 

a high degree of sensitivity to the time window parameters (see “Parameter sensitivity below”). 

Lastly, these data segments and their associated symbols (labels) were then mapped for training 

and testing the classifier according to the details described in the next section. The data 

segments were 2-d matrices (resembling a gray-scaled image) with a size of n×m where n is 

the number of IC selected, and m is determined by the time window parameters m1 and m2. The 

labels were the nine different symbols. 

2.4.3 Building of the classifier 

The building and training of the CNN network were implemented using the Deep Learning 

package in MATLAB. The CNN takes a 2-d matrix as input and a 9-unit vector as output. 

Specifically, the first layer is the input layer; the second layer is a 2-d convolution layer with 

filter size of 3×3 (padding was added in a way that the output size is equal to the unit size); a 

batch normalization layer; a rectified linear unit (ReLU) layer; a max pooling layer with a pool 

size and stride size both equal to 1; a dropout layer with a probability of 0.5; a fully connected 

layer that transforms the output to the number of labels; a softmax layer and a classification 

layer that generates the classification output.  
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Following the general procedure of machine learning, in our application we adopted a simple 

way that partitioned the dataset into training set and test set. Only the training set was used in 

the training process and only the test set was used for the accuracy testing, i.e., the test set was 

not exposed to the classifier during the training process. The training and testing were 

conducted in three different scenarios as described below, all of which followed the principle 

that the test set was not exposed to the training process. 

1) Within-participant. The purpose of within-participant application was to examine the 

performance of the classifier trained on an individual in predicting the written symbol 

from new EEG data immediately generated from the same individual. The classifier 

was trained on a data segment and tested on another. To more systematically examine 

how long of handwriting activity would suffice to train a high-accuracy classifier, a 

stepwise testing of the training outcomes (i.e., accuracy) was performed: in each step, 

a fix length of initial data segment was used as the training set, and the 500 trials 

immediately after the training segment was used as the test set. The length of the 

training set was systematically varied using values of 25, 75, 150, 500, 1000, 1500, 

2000, 2500, 3000 trials for each step. The lengths of training set were converted to 

actual time spent in handwriting for easier understanding. The training and testing were 

repeated 100 times for each within-participant classifier and the mean and standard 

deviations of the accuracy results were reported in Figure 3 after removing the outliers 

out of two folds of inter-quantile range from the 1/4 and 3/4 quantiles.  

2) Cross-participant. The purpose of cross-participant application was to examine the 

performance of the classifier trained on an individual in predicting the written symbol 

from new EEG data from a different individual. In this scenario, the training and test 

sets were from the entire session of writing the 300 sentences (but from different 

individuals). The un-mixing matrix was derived from the training set and applied in the 

test set to obtain the source activity. Due to the uncertainty of IC polarities, two versions 

of un-mixing matrice (original and polarity reversed) were applied and the higher 

accuracy results were obtained. The parameters of m1, m2, and selected ICs were 

consistent between training and test sets. The training and testing were also repeated 

100 times and the means and standard deviations were reported in Figure 4 after 

removing the outliers out of two folds of inter-quantile range from the 1/4 and 3/4 

quantiles. 

3) Cross-session. The purpose of cross-session application was to examine the 

performance of the classifier trained on an individual in predicting the written symbol 
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from new EEG data from the same individual collected after a long period of time. The 

participant P1 went through two sessions of data collection separated by three weeks. 

The cross-session classifier was trained and tested respectively on data segments from 

P1’s two sessions in an implementation way that was the same with the cross-

participant scenario. 

2.4.4 EEG-based online recognition of handwritten symbols 

To test and demonstrate the feasibility of applying the EEG decoder to recognize the 

handwritten content in an online mode, we built the following pipeline. First, a CNN-based 

decoder was well trained from participant P1 using sufficient data following the procedure as 

described above. The ICA decomposition matrix was obtained as well from this training 

session. Secondly, the raw EEG data were collected online during the handwriting process. The 

online EEG data was automatically segmented by the event marker generated by the first pen-

down event of writing each symbol. The relevant features of this online-collected EEG segment 

were extracted by ICA decomposition and all the processing as described above. The processed 

data were then fed to the trained classifier to instantaneously classify and report the result, i.e., 

instantaneously recognizing what the participant wrote. A video demonstration of the online 

recognition can be found from supplementary Video 1.  

2.4.5 Patterns of neural response associated with symbol writing 

Although the machine learning used all contributing source activities (including neural and 

non-neural ones), it is still worthwhile to examine the neural response patterns associated with 

the writing of each symbol and how the pattern differs across symbols. To this end, the event-

related potentials (ERPs) were calculated after removing the non-neural artifacts. The artifact 

detection was conducted automatically using MARA algorithm (Winkler, Haufe, & 

Tangermann, 2011).  After detecting and removing the artifacts by ICA and MARA, ERPs 

were generated associated with each of the nine symbols by averaging the EEG epoch across 

all trials. The baseline was set to be from 500 ms to 200 ms before the first pen-down event of 

writing each symbol. The patterns of neural response associated with nine different symbols 

were shown in Figure 2. 

2.4.6 Cross-correlations between EEG and handwriting kinematics signals 

To further investigate the major substrates contributing to the EEG-based handwriting 

recognition, the cross-correlations between two time series—the handwriting kinematics and 

the ongoing EEG signals—were calculated. For the handwriting kinematics, the velocity at 
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every time point of handwriting trajectory was calculated based on the formula of dividing the 

Euclidean distance between two adjacent points by the time interval between them. For EEG 

signals, the source activities obtained by ICA were used. The reason for using source activities 

rather than sensor data was that the sources may provide more information regarding which 

sources activities encode more handwriting kinematics information. 

To demonstrate the statistical significance of the cross-correlation, the cross-correlation based 

on the surrogate EEG data was also calculated. The surrogate EEG data were simply generated 

by temporally flipping the whole segment of original EEG data. If the cross-correlation from 

the original data does not stand out from the surrogate data, it would mean that there is not 

significant association between the handwriting kinematics and EEG signals. The cross-

correlations were first calculated separately in each sentence (“HELLO, WORLD!”) and the 

results were averaged across the 300 sentences. 

2.4.7 Parameter sensitivity 

To examine the parameter sensitivity of the classifier, additional analyses were conducted with 

respect to three key parameters and settings: time window of the EEG segment encompassing 

a symbol, number of involved ICs, and type of BSS method used (ICA or principal component 

analysis (PCA)). For time window, a variety of m1 and m2 parameters were used to cover a 

large range of time window. Specifically, m1 varied from -1 to -.5 and m2 varied from .5 to 2 

with a step of .1. For number of involved ICs, it was systematically varied from 1 to 32 with a 

step of 1. Note that this operation was based on the order of ICs that was sorted by the variance 

they contributed to the sensor data. For type of BSS method used, PCA was used as an 

alternative to the ICA procedure and the performance of both methods were compared at three 

different situations of component involvement: namely the first 8, 16 and 32 components. 

Except for the systematically changed parameters as described above, all other parameters and 

the procedures for building and testing the classifiers remained the same. In the procedure of 

examining the parameter sensitivity, the first 4/5 portion of the data were used as training set 

and the last 1/5 portion of data were used as test set. The training and testing were repeated for 

5 times and the best performance was recorded. 

3. Results 

3.1 Variability of EEG pattern across symbols 

The ERP patterns corresponding to different symbols were shown in Figure 2. The differences 

amongst them serve as the foundation for building subsequent machine learning applications. 
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As shown in Figure 2, the differences in ERP patterns across symbols are visually discernable 

even after removal of major non-neural artifacts. The patterns of the activation waveforms 

appear to be somewhat associated with the stroke complexity of the symbols, which supports 

our assumption that the combinatorial stroke sequences may contribute to the degree of 

specificity of EEG segments for different symbols. However, the results in Figure 2 were 

obtained by averaging many trials. Although the foundation was provided, it is not entirely 

informative regarding whether the differences are largely retained in the noisy single trials or 

not, which is the key factor affecting the performance of a classifier. 

 

Figure 2. Grand-averaged ERP patterns corresponding to different handwritten symbols. Top: 

ERP waveforms for all electrodes with Oz and Cz electrodes highlighted in red and blue, 

respectively. Bottom: The 2-d representations of grand-averaged ERP patterns. They were 

generated by stacking ERPs from each electrode and using color to represent the amplitude 

values at each time point. 

3.2 Performance of the CNN-based classifier 

A CNN-based network was built to classify the two-dimensional EEG patterns as CNN is 

known to be powerful in capturing key image features in a way that is immune to translational 

or rotational transformations. This feature is particularly useful in the present case as there 

exists substantial variabilities in the kinematic features of symbol writing from instance to 

instance. Because ERP patterns are extremely sensitive to timing, it was expected that great 

latency variability (translational transformation) existed in the present ERPs from trial to trial, 

which justified the application of CNN that treats the two-dimensional ERP segments as images. 

It was further assumed that the signals from the source level possess more discernible 

information than the sensor level. Due to the difference in the activation strength of different 

sources, many independent sources could be under-represented at the sensor level, i.e., 

overwhelmingly covered by strong activation sources. Therefore, directly feeding the 

activation pattern of independent sources to the training network may lead to more efficient 

training. 
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Within-participant: As shown in Figure 3, the classifier reached its full potential after being 

trained on around 7 minutes of continuous handwriting activity for all participants. It has to be 

noted here that the accuracy refers to the application on test set (see Method). The full potential 

for the five participants ranged from 76.8 % (P5) to 97.0 % (P1).  

  

 
Figure 3. Accuracy of within-participant classifier (applied on test data) as a function of the 

length of training data. The classifier approached upper limits of accuracy after being trained 

on around 7 minutes of continuous handwriting. The accuracy at each time point was averaged 

from 100 realizations. The curves and shadows represent the means and standard deviations. 

Cross-participant: The purpose of examining cross-participant classifier was to investigate 

the commonality and specificity in the EEG-handwriting associations amongst the population. 

A total of 20 cross-participant applications were conducted. As shown in Figure 4, most of the 

accuracies were above the chance level (11.1 %). Noticeably, the accuracy between P1 and P3 

reached the highest value (around 60 %). The results suggested a high level of both 

commonalities and specificities in the EEG-handwriting mapping across individuals. 
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Figure 4. Performance of the classifier in cross-participant application. The results were from 

100 realizations. P1-P5 refer to the five participants; ‘std’ denotes standard deviation. 

Cross-session: The cross-session application is the same as the within-participant application 

except that the training and test sets were separated by three weeks. The participant P1 that 

showed the highest within-participant accuracy took part in two sessions with three weeks apart. 

Following the principle that the test set was not exposed to the training session (see Method), 

the accuracy of this cross-session application is of 87.0%±0.8% (from 100 realizations). This 

high accuracy indicated the reliability of EEG and handwriting features within a single 

individual across time. 

Demonstration of the online recognition system: The participant P1 took part in another 

session for demonstrating the classifier’s performance in recognizing handwritten content 

based on EEG data collected online. In this setting, the recognized symbol was directly shown 

on a computer screen to show the performance of the classifier in real time. A video clip 

recording the scene of handwriting and online recognition was taped (see Supplementary Video 

1). 

3.3 Neural substrate underlying the decoding 

How did the EEG signals encode the handwriting pattern? One of the potential mechanisms 

may lie in the neural coding of kinematics and proprioception of the hand movements during 

handwriting. The profiles of velocity versus time for each symbol possess a high degree of 

symbol-dependent specificity. To demonstrate that the neural activities measured by scalp EEG 

are coupled with such kinematic information, the cross-correlation was calculated between the 

ongoing EEG source activities and the time series of velocities of handwriting. The cross-

correlograms (Figure 5) showed strong coupling between the EEG source activities and 

kinematics streams during handwriting, as seen from source activities that were activated in 

various areas. The correlations were highly significant and robust across participants. 
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Figure 5. Cross-correlations between EEG source signals and time series of velocity of 

handwriting movement. Four sources were selected for presenting the association. They are 1) 

ocular activities, 2) activities in occipital areas, 3) activities in parietal areas, 4) activities in 

frontal areas of the brain. The upper and lower limits of the cross-correlation calculated from 

surrogate EEG data were marked in green shadow. The black vertical dashed line denotes zero 

lag point. 

3.4 Parameter sensitivity 

As shown in Figure 6, the performance of the classifier was quite robust across a large range 

of [m1, m2] in all participants. The performance tended to decline when the time window 

become too narrow, which was expected as less information was fed to the training process. In 

general, the performance reached asymptote when the time window is wider than [-1s,1s]. 
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Figure 6. Accuracy of the classifier as a function of time window selected (Chance level: 

11.1%). 

Figure 7 shows the result of the classifier accuracy as a function of number of ICs involved. 

The order of the ICs was sorted by the variance they contributed to the sensor data. The result 

revealed an optimal range of number of ICs involved, roughly from 3 to 15 with an optimum 

being reached at around 8 ICs. The optimal result was not sensitive to number of ICs involved 

as demonstrated by the wide flat curve in the middle. However, both involving too few (not 

enough information provided) or too many (too much noise) components lower the 

performance.  

 

Figure 7. Performance of the classifier as a function of number of ICs (sorted by variance 

contributed) involved. 

In comparison to ICA, PCA performed slightly worse in the present application in the 

parameter regime in which both methods reached optimal performance (here, using first 8 

components). Even though PCA performed better than ICA when all components were 

involved, the performance in this setting was not good for both methods (see Table 1). 
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Table 1. The comparison of classifier performance between ICA and PCA. 
Num of 
Comps  

P1 P2 P3 P4 P5 

ICA PCA ICA PCA ICA PCA ICA PCA ICA PCA 

8 96.66 96.66 94.31 91.40 95.56 93.20 88.49 84.60 74.58 70.39 

16 95.55 59.25 81.69 78.78 90.29 88.21 74.20 63.94 53.77 47.49 

32 25.03 40.75 67.68 54.51 45.91 72.40 48.96 61.44 25.00 25.00 
Note: ‘Num of Comps’ refers to the number of ICs/PCs used for classifier training. ‘PX’ denotes the Participant X. The order of separated 

components was determined by their variance contributed to sensor data. 

4. Discussion 

This work presents a CNN-based system demonstrating that handwritten content can be 

recognized purely from scalp EEG data at a high accuracy. This scalp EEG-based recognition 

system revealed a very precise mapping between scalp EEG pattern and handwritten content 

at the semantic level. Although the noisiness of the scalp EEG data does not allow restoration 

of exact hand movements, it allows restoration of information at higher levels—in the present 

case, linguistic symbols—that are essential to human’s communications.  

The key elements that led to the achievement of the system are two-fold: 1) the improvement 

of feature extraction of scalp EEG by integrating the pattern of independent sources, and 2) the 

identification of the level of information to be decoded, i.e., focusing on the capsule of 

kinematic patterns in writing each symbol constituting multiple strokes. The combinatorial 

features of both elements (independent neural sources, and consecutive strokes) significantly 

boost the specificity in the mapping between EEG pattern and written information. Accordingly, 

we expect that script languages with more combinatorial features (e.g., Chinese) would 

generate a higher performance in the classification. 

Our results showed that the cross-individual application did not generate a high accuracy 

performance. The individual differences in neural and behavioral features still place a challenge 

in developing a universal classifier to be applied across individuals with a high accuracy. The 

neural variability can be rooted in various anatomical (e.g., specific organization of sulci and 

gyri) and physiological (e.g., conductivity of scalp) factors. The behavioral variability can be 

in handwriting styles (e.g., order of strokes in a symbol). Various factors of inter-individual 

variability led to the relatively low accuracy in the cross-participant applications in the present 

work. Future work for improvement in this aspect may resort to collection of larger sample size 

for training in order to cope with the issue of cross-individual variability in both neural and 

behavioral features. 

Regarding parameter sensitivity, the current classifier system was not sensitive to the key 

parameters used. In this application, we presented the core results that were based on suitable 

parameters at which the full potential of the classifier system was reached. The key parameters 
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and procedures are 1) the time windows surrounding each symbol, 2) selection of independent 

components (ICs) to be involved and 3) BSS algorithm used. The accuracy results stayed stable 

across a wide range of time window used both before and after the pen-down. Regarding the 

involvement of ICs, the performance saturated when around half of the ICs were involved, and 

became worse when those high-ranked ICs were involved. The current ICA algorithm sorted 

the ICs according to the variances they contributed to the sensor data. Those high-ranked ICs 

contributed little variance to the data and tended to be noise-like component, which is why the 

involvement of them jeopardized the performance. We also compared the performance of using 

principal component analysis (PCA) as an alternative algorithm of blind source separation. The 

results showed that it did not outperform the ICA-based classifier. 

Although we provided an accurate mapping between scalp EEG patterns and handwritten 

symbols, it is obvious that this accurate mapping was derived from the process of actual 

handwriting production, not from imagery of handwriting. One of the major limitations of the 

current system is that it relies on actual implementation of the action. This imposes a major 

limitation in the applicability of the current system in BCI applications. Based on foundation 

of the brain-behavior mapping as shown in the current study, further development that extends 

to imagery-based paradigm should be done to address the applicability issue. Although 

imagery-based handwriting recognition system based on cortical activity has shown an 

excellent performance (Willett et al., 2020), the application on scalp-level signals has not yet 

been demonstrated. We believe that, by further harnessing the combinatorial features, 

recognition of mental imagery of handwriting from scalp EEG would be possible, for instance, 

imagery of the consecutive strokes of Chinese characters—a project that is worth to further 

explore. The realization of such a system would allow for further development of a mental 

typing system.  

5. Conclusion 

Our investigation showed that the mapping between EEG and handwriting dynamics reached 

a level at which the written symbols can be reliably restored from the EEG data. This result 

was mainly achieved by exploiting the EEG information at source level and leveraging the 

combinatorial feature of stroke dynamics during handwriting. Although the current application 

was still based on actual handwriting, it suggested a novel venue for developing more efficient 

brain signals-based communications. The era for convenient acquisition of neural signals non-

invasively is approaching (Dehais et al., 2019; Kappel, Rank, Toft, Andersen, & Kidmose, 
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2019). The advancement in the algorithms of feature extraction and machine learning would 

eventually lead to substantial life enhancement based on instantaneous obtained neural signals. 
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