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ABSTRACT Nowadays, there are various optimization problems that exact mathematical methods are not
applicable.Metaheuristics are considered as efficient approaches for finding the solutions. Yet there aremany
real-world problems that consist of different properties. For instance, financial portfolio optimization may
contain many dimensions for different sets of assets, which suggests the need of a more adaptive metaheuris-
tic method for tackling such problems. However, few existing metaheuristics can achieve robust performance
across these variable problems even though they may obtain impressive results in specific benchmark
problems. In this paper, a metaheuristic named the Adaptive Multi-Population Optimization (AMPO) is
proposed for continuous optimization. The algorithm hybridizes yet modifies several useful operations like
mutation and memory retention from evolutionary algorithms and swarm intelligence (SI) techniques in a
multi-population manner. Furthermore, the diverse control on multiple populations, solution cloning and
reset operation are designed. Compared with other metaheuristics, the AMPO can attain an adaptive balance
between the capabilities of exploration and exploitation for various optimization problems. To demonstrate
its effectiveness, the AMPO is evaluated on 28 well-known benchmark functions. Also, the parameter
sensitivity analysis and search behavior study are conducted. Finally, the AMPO is validated on its
applicability through a portfolio optimization problem as a challenging example of real-world applications.
The benchmark results show that the AMPO achieves a better performance than those of nine state-of-
the-art metaheuristics including the IEEE CEC winning algorithms, recent SI and multi-population/hybrid
metaheuristics. Besides, the AMPO can consistently produce a good performance in portfolio optimization.

INDEX TERMS Continuous optimization, evolutionary algorithm, metaheuristic, multi-population, portfo-
lio optimization, swarm intelligence.

I. INTRODUCTION
Optimization problems are prevalent in various scientific
and engineering domains. For instance, in the field of arti-
ficial intelligence, researchers often seek to optimize various
machine learning models, such as the hyper-parameter opti-
mization of Support Vector Machines [1], [2] and network
architecture search of Neural Networks [3]–[5], to obtain
a better performance. In finance, investors usually pursue
an optimal portfolio aiming to maximize the return while
minimizing the risk [6], [7]. In industrial design and man-
ufacturing, engineers always encounter numerous optimiza-
tion problems for various products and scenarios, such as
optimizing aerodynamic shapes for aircraft, cars, bridges [8],
and optimizing supply chain management [9]. Also, there are
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many optimization problems in our daily lives, like finding
the shortest vehicle route to a destination [10] and resource
allocation to satisfy performance goals [11].

Since many optimization problems are too complex to be
solved with a satisfactory solution by exact mathematical
approaches in a reasonable time, metaheuristic optimiza-
tion algorithms have recently captured extensive attention
and achieved some success in solving such problems [12].
In the past decades, a number of metaheuristic optimization
algorithms were proposed, among which most are inspired
by some natural phenomena and developed based on all
kinds of metaphors. Such algorithms can be roughly catego-
rized into evolutionary algorithms (EAs) [13]–[15], swarm
intelligence (SI) [16]–[18] approaches, physics/chemistry-
based metaheuristics [19]–[22] and others [23]–[25]. EAs
are inspired by biological evolutionary processes. Genetic
Algorithm (GA) [26], Differential Evolution (DE) [27]
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and Evolution Strategies [28] can be regarded as the
well-known algorithms. SI algorithms imitate intelligent
behaviors of creatures in nature. Among them, Particle
Swarm Optimization (PSO) [29] derived from the swarm
behavior of birds and fishes is an early work. Until now,
the research of SI algorithms has been very active such
that new algorithms using various metaphors were pro-
posed from time to time. Some representative examples
include the Ant Colony Optimization (ACO) [30], Artifi-
cial Bee Colony (ABC) algorithm [31], Grey Wolf Opti-
mizer (GWO) [32], Social Spider Algorithm (SSA) [33],
Whale Optimization Algorithm (WOA) [34], Grasshop-
per Optimization Algorithm (GOA) [35], Earthworm Opti-
mization Algorithm (EOA) [36], Moth Search (MS) [37],
Naked Mole-Rat Algorithm (NMA) [38], Monarch Butter-
fly Optimization (MBO) [39], Harris Hawks Optimization
(HHO) [40], Sailfish Optimizer (SFO) [41] and Slime Mould
Algorithm (SMA) [42].

Although some metaheuristics exist, the number of
effective algorithms is still small relative to the board spec-
trum of optimization problems. Undoubtedly, this moti-
vates researchers to continuously develop new algorithms
to fill the gap. On the other hand, some recently proposed
metaphor-based algorithms are criticized due to the abuse of
metaphor [43], and to some extent their ultimate performance
particularly in solving real-world problems is questionable.
One of the main obstacles is that many practical problems
have different characteristics. For instance, financial portfolio
optimization can be with different dimensions given by dif-
ferent sets of assets, which implies an optimization algorithm
with a high adaptivity is required for resolving such problems.
In spite of some studies [44]–[47] applied some metaheuris-
tics to portfolio optimization, the scalability and adaptivity
of such approaches are not examined carefully yet. Also,
the scale of the datasets the OR-Library [48] frequently used
by many researchers is relatively small, i.e. up to 225 assets
only. Accordingly, many existing metaheuristics that obtain
impressive results in some benchmark problems usually fail
to solve such challenging practical problems.

In fact, the capabilities of exploration and exploitation
should be carefully considered when designing an optimiza-
tion algorithm [49]. Both can be balanced through a diver-
sity control on the population [50]. Clearly, most of the
aforementioned metaheuristics are single-population-based
algorithms. While in recent years, devising an optimization
algorithm in a multi-population framework is an emerging
research direction for developing a more effective meta-
heuristic because the population diversity can be better main-
tained, and also different areas can be searched simultane-
ously [51]. Some recently proposed multi-population-based
metaheuristics include the Multi-Swarm Particle Swarm
Optimization [52], Multi-Population Ensemble Differen-
tial Evolution (MPEDE) [53], and Multi-Population Fruit
Fly Outpost Optimization Algorithm (MPFOA) [54]. How-
ever, most of the existing studies construct sub-populations
only relying on the same search strategy of the original

algorithm with minor change(s), thus limiting their adaptiv-
ity and effectiveness. Besides, the communication strategy
between sub-populations should be explored to prevent from
any premature convergence [51].

The above issues motivate us to propose the presented
metaheuristic called the Adaptive Multi-Population Opti-
mization Algorithm (AMPO). The AMPO algorithm is a
metaheuristic for continuous optimization problems. The
algorithm combines some useful operations from EAs and
SI approaches. More importantly, the AMPO can achieve
an adaptive balance between exploitation and exploration
through the unique design of the diversification of the search
strategies in a multi-population manner. The solution cloning
and reset operations serve as a more efficient communi-
cation mechanism between the sub-populations. Therefore,
the algorithm can be applied to solve various optimization
problems more effectively and efficiently.

To demonstrate its effectiveness and efficiency, the AMPO
is evaluated on 28 well-known benchmark functions in terms
of solution quality measure, convergence rate, scalability,
stability and computational cost. Furthermore, the parameter
sensitivity analysis and search behavior study are conducted
to investigate the factors that contribute to the success of
the algorithm, which can provide useful guidelines for future
research and applications. Lastly, the AMPO is applied to a
significant computational finance application, i.e. portfolio
optimization. In the benchmark function tests, the optimiza-
tion results of the AMPO are compared with nine state-of-
the-art metaheuristics, namely three recent SI approaches,
three IEEE CEC winning algorithms and three advanced
multi-population and hybrid metaheuristics. In the portfolio
optimization problem, the AMPO algorithm competes with
three other algorithms that achieved outstanding performance
in this problem reported in the literature.

The rest of this paper is organized as follows. In Section II,
the AMPO is described in detail, including its definitions,
operations and implementations. The design ideas of the
AMPO and its differences from other metaheuristics are
discussed there as well. Section III covers the experimental
results and the related discussion on the benchmark function
tests. The parameter sensitivity analysis and search behavior
study of the AMPO are analyzed and discussed in Section IV
and Section V respectively. The AMPO is applied to solve the
financial portfolio optimization in Section VI. We conclude
this work and shed light on various potential future directions
in Section VII.

II. THE PROPOSED ALGORITHM
A. DEFINITIONS
The AMPO, originally from our preliminary study [55],
is formally proposed here for solving unconstrained, static
and single-objective continuous optimization problems.
Unlike most of the population-based metaheuristic algo-
rithms, the AMPO is essentially a multi-population-based
metaheuristic that diversifies the search strategies to enhance
the optimization capability and adaptivity. Such so-called
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adaptivity is that the algorithm is able to dynamically change
its search behavior at the time it is run based on information
available so as to adapt to different problems.

The AMPO algorithm comprises individuals, which are
further classified into five sub-populations (also called
groups) including the random search group, global search
group, local search group, leader group andmigrating group.
Except for the leader group and migrating group, the sizes of
these sub-populations are dynamic during the search. Also,
different search strategies are assigned to the individual(s)
in each sub-population. For convenience, the global search
group, local search group and leader group are uniformly
called the source group.
• Definition 1: An Individual
In the AMPO, the population size is denoted by Npop.
Each individual has a feasible solution as shown below.

X t
i = [x ti,1, x

t
i,2, . . . , x

t
i,n]

T (1)

where i ∈ {1, 2, . . . ,Npop} represents the index of an
individual, X t

i denotes the feasible solution of the ith

individual at the t th iteration, and n is the dimensionality
of the problem, i.e. the total number of the decision
variables.

• Definition 2: The Random Search Group
The individuals of the random search group basically
carry out random search in the entire search space, i.e.

X t
i = U (LB,UB) (2)

where LB = [lb1, lb2, . . . , lbn]T and UB =

[ub1, ub2, . . . , ubn]T each denote the lower bounds and
upper bounds of the corresponding domain of the vari-
ables being considered, and U (·) is a random number
generator function based on the uniform distribution.
An individual of the random search group can possibly
be transformed into the global search group or the local
search group by the transformation operation that will
be introduced in Section II-B4.

• Definition 3: The Global Search Group
The individuals of the global search group with rela-
tively larger search step sizes perform global search. The
solution of a global search group individual at the t th

iteration is updated by the following equations.

GSt+1i = w× GSti + r × (gbest t − X t
i ) (3)

X t+1
i = X t

i + GSt+1i (4)

where GSti = [gsti,1, gs
t
i,2, . . . , gs

t
i,n]

T is called the
search step size of the global search group individual
i at the t th iteration, w ∈ (0, 1) is the weighting factor,
gbest t is the best solution obtained by the population up
to the t th iteration, and r is a random number produced
by the standard uniform distribution of U (0, 1)

• Definition 4: The Local Search Group
The solution of a local search group individual is
updated by

σ t+1i = γ × σ ti (5)

LSt+1i = Gaussian(0, σ t+1i )× X t
i (6)

X i+1 = X i + LSt+1i (7)

where LSti is the search step size of the local search
group individual i at the t th iteration, γ ∈ (0, 1) is the
constant decay rate, and Gaussian(0, σ t+1i ) is a random
number generator based on a Gaussian distribution with
a mean of zero and a standard deviation of σ t+1i .
As the value of γ is smaller than 0, the updated standard
deviation σ t+1i input to the Gaussian random number
generator will decrease with the number of iterations
going up. Then the updated search step size will be more
likely smaller (in absolute value). Thus, a local search
group individual will tend to search for a better solution
around its previous one.
Also, the local search group is designed with the trans-
formation probabilities donated by

PLSLS ∈ (0, 1)

PLSGS ∈ (0, 1)

s.t. PLSLS + P
LS
GS = 1 (8)

where PLSLS and PLSGS represent the transformation prob-
abilities of an individual of the random search group
paired up with a local search group individual trans-
forming to an individual of the local search group (LS)
or the global search group (GS) in the transformation
operation.

• Definition 5: The Leader Group
In the AMPO, there is always only one individual in the
leader group. Such individual represents the best solu-
tion obtained by the population so far, possibly except
for the migrating group. As shown in (9), the update of
its solution is paused.

X t+1
i = X t

i (9)

Similarly, the leader group is also associated with the
transformation probabilities PLDLS and PLDGS representing
the transformation probabilities of a random search
group individual after being paired up with the individ-
ual of the leader group.

PLDLS ∈ (0, 1)

PLDGS ∈ (0, 1)

s.t. PLDLS + P
LD
GS = 1 (10)

• Definition 6: The Migrating Group
The migrating group conducts the search independently
and possibly contributes some potentially better solu-
tions to the leader group by the migration operation that
will be described in Section II-B5.
The sub-population size of the migrating group is deter-
mined by the partition rate PR. Specifically, its size is
Npop × (1 − PR). In this thesis, the migrating group is
powered by a classical Differential Evolution (DE) algo-
rithm called DE/rand/1/bin [27], [56]. Its user-controlled
parameters follow the suggested values in [57].
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B. OPERATIONS
In the AMPO algorithm, the initialization, selection, update,
transformation, migration and reset are six essential opera-
tions.

1) INITIALIZATION
At the starting point of the algorithm, the iteration number t
is initialized to 0. The solution of each individual is randomly
generated in the search space as shown below.

X t=0
i = LB+ r × (UB− LB) (11)

where r ∼ U (0, 1) is a randomly generated number.
Then the values of SG and δ in the update functions of the

global search group and local search group are initialized
by (12) and (13) respectively.

GSt=0i =
U (LB,UB)

10
(12)

δt=0i = U (0.1, 1) (13)

Lastly, apart from the migrating group individuals, all the
other individuals are initialized as the random search group.

Algorithm 1 AMPO Initialization Operation

Input: User-controlled parameters: Npop, PLDLS , P
LS
LS , PR,

γ and ω Optimization problem information
Output: Newly created individuals: individuals

1 individuals← ∅;
2 i← 1;
3 while (i ≤ Npop) do
4 Initialize a new individual ind with a solution to

(11);
5 if (i < int(Npop ∗ PR)) then
6 Initialize the control factors in the update

functions according to (12) & (13);
7 ind .type← ’random search’;
8 else
9 ind .type← ’migrating’;
10 end
11 Insert ind into individuals;
12 i← i+ 1;
13 end
14 return individuals;

Algorithm 1 shows the detailed implementation of such
initialization process. The inputs include the aforementioned
user-controlled parameters as well as information of the prob-
lem to be optimized, i.e. the population size (Npop), partition
rate for the migrating group (PR), transformation probabili-
ties (PLDLS and PLSLS ), control factors used in the search func-
tions (γ and w), dimensionality of the optimization problem
(D), and lower and upper bounds (boundi and boundu). The
outputs are the initialized individuals.

2) SELECTION
In the emphselection operation, the individual with the best
solution obtained so far among the random search group,
global search group and local search group is selected as
the leader group individual after fitness evaluations for all

individuals at each iteration. Meanwhile, the previous indi-
vidual in the leader group is downgraded to the local search
group individual. Finally, the stored variable gbest t used by
the global search group individuals in (3) is updated as well.

3) UPDATE
Algorithm 2 clearly manifests the pseudo-code of the update
operation. The update operation is carried out at each itera-
tion to make individuals search solutions. Depending on the
sub-population type of individuals, different search strategies
are performed according to (2)—(9).

During the update operation, the boundary constraints are
handled as shown in (14).

x̂ ti,j =


x ti,j, lbj ≤ x ti,j ≤ ubj
lbj, x ti,j < lbj
ubj, x ti,j > ubj

(14)

where x̂ ti,j is the constrained value of the jth variable of the
solution of the individual i at the t th iteration.

Algorithm 2 AMPO Update Operation
Input: All individuals: individuals
Output: All individuals with updated solutions:

individuals
1 for each ind in individuals do
2 switch ind.type do
3 case random search
4 Update the individual’s solution according

to (2);
5 end
6 case global search
7 Update the control facotrs of the individual

according to (3);
8 Update the individual’s solution according

to (4);
9 end
10 case local search
11 Update the control facotrs of the individual

according to (5) & (6);
12 Update individual’s solution according to

(7);
13 end
14 case leader
15 Update the individual’s solution according

to (9);
16 end
17 case migrating
18 Update the individual’s solution according to

the DE/rand/1/bin algorithm;
19 end
20 endsw
21 Handle the bound constraints according to (14);
22 end
23 return individuals;

4) TRANSFORMATION
The transformation operation, as the communication strategy
between the sub-populations, is a critical factor for the suc-
cess of the AMPO. Essentially, the goal of the transformation
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FIGURE 1. AMPO Solution Cloning Mechanism.

operation is to spread the solution information among all the
individuals so as to empower the search effectiveness.

The detailed implementation of the transformation oper-
ation is demonstrated in Algorithm 3, where a three-step
mechanism is performed:

First of all, the individuals belonging to the leader group,
global search group and local search group assemble the
source groupwith all the solution qualities sorted in descend-
ing order while the individuals of the random search group
form the target group with all the solution qualities sorted in
ascending order.

Secondly, each sorted individual of the source group is
paired up with the corresponding individual in the target
group. Then, each individual of the target groupwill be trans-
formed in the local search group or the global search group
depending on the transformation probabilities (as defined in
Section II-A) of that paired individual in the source group.
Lastly, a solution cloning mechanism is executed on each

transformed individual as provided below.
• Transform to a global search group individual
When a random search group individual is transformed
to a global search group individual by a source group
individual, a single-side crossover is adopted. As illus-
trated in Fig. 1a, each variable of the n-dimensional
solution of the random search group individual is ran-
domly replaced by that of the source one with a fixed
probability of 0.5.

• Transform to a local search group individual
When a random search group individual transformed
by a source group individual becomes a local search
group individual, the whole solution of the source group
individual is duplicated to the random search group one
as shown in Fig. 1b.

Such process is conducted at each iteration until all the
individuals of the random search group are transformed, or all
the individuals in the source group have been paired up with
the individuals of the random search group.

5) MIGRATION
The migration operation is introduced as an additional oper-
ation of the AMPO framework to further diversify the popu-

Algorithm 3 AMPO Transformation Operation
Input: The source individuals: sourceInds

⊆ {local search, global search, leader} The
target individuals: targetInds ⊆ {random search}
The problem dimensionality: n

Output: The individuals with updated solutions
1 // A solution with a smaller fitness

value means a higher quality
solution.

2 Sort sourceInds by the ascending order of the fitness
values;

3 Sort targetInds by the descending order of the fitness
values;

4 for each sourceInd ∈ sourceInds do
5 if (|targetInds| > 0) then
6 Select the first targetInd from the targetInds;
7 Get the transformation probabilities of the

sourceInd ;
8 switch sourceInd .type do
9 case leader
10 if (rand(0, 1) ≤ PLDLS ) then
11 transformingTtype← ’local search’;
12 else
13 transformingType← ’global

search’;
14 end
15 end
16 case local search
17 if (rand(0, 1) ≤ PLSLS ) then
18 transformingType← ’local search’;
19 else
20 transformingType← ’global

search’;
21 end
22 end
23 case global search
24 transformingType← ’global search’;
25 end
26 endsw
27 targetInd .type← transformingType;
28 switch transformingType do
29 case global search
30 for idx = 0 to n− 1 do
31 if rand(0, 1) ≤ 0.5 then
32 targetInd .solution[idx]←

sourceInd .solution[idx];
33 end
34 end
35 end
36 case local search
37 targetInd .solution←

sourceInd .solution;
38 end
39 endsw
40 Remove targetInd from targetInds;
41 end
42 end

lation so that its search capability of solving more complex
optimization problems can be enhanced.

Since the migrating group works independently, it may
discover better solutions compared with all the other sub-
populations. One simple migration strategy is that once a
better solution is found, the solution will be migrated to the
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whole population directly. Yet this heuristic operation may
break search trajectories of the concerned AMPO algorithm
by itself, thus possibly leading to an unsatisfactory and unsta-
ble performance. Therefore, whenever the migrating group
finds a better solution, an adaptive probability is predefined
to migrate such solution to replace the current best solution
maintained by the leader group individual. Such solution
migrating is under the present condition as illustrated in
Algorithm 4.

Algorithm 4 AMPO Migration Operation
Input: The leader group individual: leaderInd The

migrating group individuals: migratingInds The
current iteration no: t The total number of
iterations: T

Output: The updated leader group individual: leaderInd
The updated stored best solution: gbest t

1 〈bestSolution, bestFitness〉 ← migratingInds ;
2 if (rand(0, 1) ≤ (0.5 ∗ t/T )) then
3 if (bestFitness < leaderInd .fitness) then
4 leaderInd .solution← bestSolution;
5 leaderInd .fitness← bestFitness;
6 gbest t ← bestSolution
7 end
8 end
9 return leaderInd , gbest t ;

6) RESET
Due to the powerful transformation operation, all the indi-
viduals of the random search group may be transformed
into other groups very soon, thus possibly resulting in a low
exploration capability. Accordingly, once no random search
group individuals are available, the reset operation as a restart
mechanism will be performed to carefully reset a specified
percentage of the individuals from the global search group
and local search group to continue with the exploration pro-
cess. This control parameter is denoted by resetPercent as
a randomly generated number between 0.1 and 0.9 at each
iteration. This design can help avoid losing all the search
information accumulated so far during the search process.
In other words, the leader group that stores the best-so-far
solution is never reset.

Furthermore, a downgrading mechanism is implemented
in the reset operation: an individual picked up from the
local search group moves into the global search group while
another selected individual of the global search group is
shifted into the random search group during the reset process.
With the relaxation of the search restrictions through resetting
individuals, the search capability of the algorithm can be
improved gradually to explore the other parts of the search
space.

The detailed implementation of this operation is given in
Algorithm 5. The individuals of the global search group
and local search group are the input. They may be selected
to be reset. In the operation, their solutions as well as the

parameters used in the update operation are re-initialized.
Then a downgraded sub-population type is assigned. The
output is the reset individuals.

Algorithm 5 AMPO Reset Operation
Input: Individuals: resetIndividuals

⊆ {local search, global search} Random search
individuals: randomIndividuals
⊆ {random search}

Output: Updated reset individuals: resetIndividuals
1 if (|randomIndividuals| = 0) then
2 resetPercent ← rand(0.1, 0.9);
3 resetNum← |resetIndividuals| ∗ resetPercent ;
4 rIns← {the first resetNum individuals} ⊆

resetIndividuals;
5 for each ind ∈ rIns do
6 Re-initialize the solution of the ind referring to

(11) ;
7 Re-initialize the control factors of the ind

according to (12) & (13);
8 switch ind.type do
9 case local search
10 ind .type← ’global search’ ;
11 end
12 case global search
13 ind .type← ’random search’ ;
14 end
15 endsw
16 end
17 end
18 return resetIndividuals;

C. THE ALGORITHMIC FLOW OF THE AMPO
Fig. 2 manifests the algorithmic flow of the AMPO. At first,
the user-controlled parameters of the algorithm and the objec-
tive function of the optimization problem are given as the
input to run the AMPO.

First, the initialization operation presented in Algorithm 1
is performed.

Then, during the optimization process, the operations are
executed successively: i) the function evaluation is to cal-
culate the results of the objective function for all individu-
als. Such results are also called fitness values; ii) the selec-
tion operation is conducted; iii) the transformation operation
described in Algorithm 3 is executed to spread the solution
information among the population; iv) the migration is to
possibly migrate a better solution from the migrating group
to the leader group (see Algorithm 4); v) the update operation
(see Algorithm 2) is to search solutions using different search
strategies; vi) the reset operation (see Algorithm 5) is trig-
gered once no random search group individuals are available.

Such process is executed iteratively until the predefined
termination criteria is satisfied, e.g. the maximum number of
iterations is reached. Finally, the best solution obtained by the
algorithm is provided as the output.

The source code of the AMPO can be found at
https://github.com/rayzxli/AMPO.
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FIGURE 2. The Algorithmic Flow of the AMPO.

D. THE DESIGN IDEAS AND DIFFERENCES FROM
EXISTING METAHEURISTICS
Exploration and exploitation are two important factors in
designing an optimization algorithm [49], [50]. Exploration
related to global search is the process of searching for new
solutions in the search space. Exploitation related to local
search is the process of refining good solutions that have been
discovered. In order to dynamically balance both capabilities
for tackling different optimization problems, the design of the
AMPO algorithm has absorbed the strengths of EAs and SI
approaches. Several advantageous operations are hybridized
and modified in the AMPO, thereby constructing different
search strategies in a multi-population manner.

Most of the existing metaheuristics are SI algorithms.
A common feature of such algorithms is that they have
memory retention that can store the (sub-)optimal solutions
obtained by individuals in the population. The search can then
be partly guided by the memory. For example, in the PSO,
the position of each particle represents a feasible solution,
which is updated by the best previous position of the particle
(local memory) and the position attained by the best particle
in the swarm (global memory). The PSO has a high global
search capability and fast computing speed [58]. Also, it is
known to solve large-scale nonlinear optimization problems

effectively [59]. Nevertheless, it also has several shortcom-
ings. For instance, it will converge prematurely and have
low exploitation capability in the later search stage where
the particles are close to each other or global optimum [60].
Thus, keeping the advantages of the PSO, we first design a
memory retention mechanism that the leader group acts as;
second, the search guided by the global memory in the PSO is
equipped with the search strategy of the global search group
to perform global search.

For some newly proposed SI algorithms, such as the
WOA [34] and SSA [33], both simulate the foraging behav-
iors of animals. Basically, the inventors also followed the
basic idea of the PSO but partially modified the search strate-
gies to enhance the optimization ability. Taking the WOA as
an example, the WOA mathematically models the search for
prey and bubble-net attacking behavior of humpback whales
as the exploration and exploitation processes, respectively.
To a certain extent, this design readily improves the opti-
mization capability, but it still suffers premature convergence,
resulting in trapping in local optima easily [61].

Besides, the design of the AMPO is also motivated by the
GA, which is a typical EA algorithm. Since the GA has no
memory retention, and its crossover and mutation operators
are performed randomly, an individual’s good solution may
be lost if that individual is not selected, thus causing a lack
of fast convergence towards the optimal solution [62]. The
operations of the AMPO refer to the selection, mutation and
crossover operations in the GA. However, the AMPO has
many differences from theGA. First, in theGA, the individual
with a higher quality solution may be selected with a higher
probability to participate in the crossover and mutation while
only the individual with the best-so-far solution is selected
and stored in the memory in the AMPO, which overcomes the
aforementioned drawback of the GA. Second, the Gaussian
mutation with a declining standard deviation is adopted for
the local search group in the update operation in the AMPO
so that the exploitation ability can be adjusted dynamically.
Third, the crossover operator is modified to the single-side
crossover in the transformation operation.
Since the exploration and exploitation balance can be

achieved through diversity maintenance of the popula-
tion [50], we build the algorithm based on a multi-population
framework. Compared with other multi-population meta-
heuristics, the AMPO contains an effective communication
strategy between the sub-populations, in which the diversity
of the population can be dynamically maintained by the
selection, transformation, migration and reset operations for
resolving different problems adaptively. By contrast, many
existing studies adopted simple multi-population designs
such as the latest developed MOFOA [54]. The MOFOA
has no communication strategy between sub-populations,
and it only outputs the best solution selected from all
sub-populations at the end of iterations. Besides, the sizes of
such sub-populations are fixed all the time.

Moreover, the design of the migration in the AMPO
also provides a useful interface for researchers and users to
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TABLE 1. Benchmark Functions.

integrate their own algorithms to the algorithmic framework
conveniently in tackling specific problems, which greatly
increases the flexibility of the AMPO algorithm. In other
words, another metaheuristic can directly serve as the search
algorithm to empower the migrating group without any mod-
ifications. As the migration is a one-way operation, i.e. pass-
ing the solution from themigrating group to the leader group,
this means the solution obtained by the AMPO framework is
not be worse than that generated by the integrated algorithm
itself.

III. THE BENCHMARK FUNCTION TESTS
A. THE BENCHMARK FUNCTIONS
In this work, a suite of 28 well-known functions are selected
from [63], [64]. These benchmark functions have beenwidely
used in many previous studies to evaluate all kinds of meta-
heuristic algorithms. Table 1 lists the information about these
functions that can be divided into the following groups.

• Group I: F01—F05 are two-dimensional multi-modal
functions;

• Group II: F06—F10 are scalable uni-modal functions;

• Group III: F11—F17 are scalable multi-modal
functions;

• Group IV: F18—F20 are shifted and/or rotated
functions;

• Group V: F21—F28 are hybrid and composition
functions.

Such benchmark functions cover the most possible character-
istics (uni/multi-modal, convex/non-convex, differentiable/
non-differentiable and separable/non-separable) of real-world
optimization problems. Generally, in F01—F05, each func-
tion has a fixed dimension with a lot of local optima. F06—
F17 are scalable so that the optimizing quality and scal-
ability of the algorithm can be measured. F18—F20 are
some complicated functions in which the shift and rotation
transformations are assigned. F21—F28 are employed to
evaluate the algorithm in handling the problems consisting
of different sub-components with different features.

B. THE EVALUATION METHOD
In this part of the experiment, each benchmark function is
tested for 31 runs for each algorithm. In each run, a max-
imum number of function evaluations (MaxFEs) that is set
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TABLE 2. The Comparative Results of the AMPO and Recent Swarm Intelligence Algorithms on the Benchmark Test.

to 104 × n (n is the dimension of the problem) serves as the
stopping criteria [63]. Except for the functions in Group I, n is
set to 30.

The experimental results are examined via the means and
standard deviations of the optimal fitness values attained by
each algorithm in all the runs. For convenience, the results
are converted to f (X)− f (X∗) where f (X∗) is the real global
optimum of the function as listed in Table 1. Thus, the global
optima for all the functions should be 0. Besides, a series
of Wilcoxon rank-sum tests [65] with a significance level
0.05 are performed so as to validate whether such results are
statistically significant or not. The null hypothesis is that the
AMPO performs similarly with the competitor when solving
each benchmark function.

In all the following experiments, the user-controlled
parameters of each competing algorithm refer to its tuned
or suggested values reported in its corresponding litera-
ture unless otherwise specified. Concerning the AMPO,
the parameter combination (Npop =50, PLDLS =0.8, P

LS
LS =0.8,

PR =0.6, γ =0.9 and w =0.1) is utilized in all the remaining
experiments of this paper. It is noted that this parameter
set may not be the best one for solving all optimization
problems. Therefore, the parameter tuning is still recom-
mended for dealing with any problem to achieve a better
performance.

All algorithms are implemented in Python 3.6.9 and
executed on a desktop computer installed with the
Intel R©i9-7900X processor running at 3.3 GHz and 64 GB
of RAM.

C. THE COMPARISONS WITH THE STATE-OF-THE-ART
ALGORITHMS
1) A COMPARISON WITH RECENT SWARM INTELLIGENCE
ALGORITHMS
Three successful SI algorithms proposed recently, including
the aforementioned SSA and WOA and SFO [41], are com-
pared with the AMPO.
Table 2 presents the comparative results of the AMPO and

the three competing algorithms. The statistical result of the
Wilcoxon rank-sum test is presented next to the mean value
for each algorithm: the ‘ +©’ represents that the performance
of the competing algorithm is better than that of the proposed
AMPO algorithm with statistical significance; the ‘ -©’ indi-
cates that the competing algorithm is significantly inferior to
the proposed algorithm; the ‘ =©’ means that the performance
of the two algorithms is consistent. It can be observed from
the table:
• The AMPO overall outperforms the compared algo-
rithms in terms of the statistical test results. In particular,
it discovers the exact best solutions in 12 cases, i.e. F01,
F06—F10, F12—F14 and F16—F18. This reveals
that the AMPO is able to completely solve all uni-modal
and a few multi-modal problems in this test;

• Among all the benchmark functions, the AMPO pro-
duces significantly better results when compared with
the SFO;

• The optimization results of AMPO is better than those
of the SSA in 23 functions. For Group I functions, the
statistical tests show that the AMPO outperforms the
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TABLE 3. The Comparative Results of the AMPO and CEC Winning Algorithms on the Benchmark Test.

SSA in F4 and F5 while it is inferior to the SSA
in F2 and F3. It is noted that the AMPO attains the
mean fitness (i.e. 4.3142E-13) that is much better than
the value (i.e. 6.4292E-02) generated by the SSA in
F03; however, the inferential statistics gives an opposite
result. When investigating it further, we find that the
SSA gets the exact global optima in 29 runs but falls
into local optima that is far from the global optimum
in 2 runs. By contrast, the AMPO achieves the global
optimum in 12 runs, and it is close to the global optimum
in the other runs. Except for F02, F03, F20 and F22, all
the results generated by the AMPO are better than those
of the SSA with a statistical significance. On the other
hand, the optimization capability of the SSA seems to
be out of work in tackling F10 where it produces a large
fitness value. On the contrary, the AMPO gets the global
optimal solution exactly;

• No functions in which theWOA outperforms the AMPO
are found. The performances of the two algorithms are
consistent in 9 functions;

• In addition to the statistical test, the average rank is
calculated for each algorithm on all functions. The aver-
age ranks are 1.11, 2.57, 2.86 and 3.21 for the AMPO,
WOA, SSA and SFO, respectively. Given such results,
the WOA is ranked second, next only to the AMPO in
this test.

2) A COMPARISON WITH THE CEC WINNING ALGORITHMS
According to [66], the variants of the Successful-History
based Adaptive Differential Evolution (SHADE) [67]

algorithm have achieved remarkable success in the IEEE
CEC competitions. In this part of the experiment, the AMPO
is compared with some winning algorithms: LSHADE [68],
LSHADE-cnEpSin (denoted by LS-cnEPsin later) [69] and
SHADE-ILS [70].

Table 3 indicates such results in which the results of
the AMPO are put together to make the comparison more
straightforward and convenient. From the table, we have the
following observations:
• According to the statistical results, the performance of
the AMPO algorithm is as a whole better than those of
all the three CEC winning algorithms;

• Each competing algorithm itself outperforms the AMPO
in 5 functions. Most of the better results generated by
the LSHADE, LS-cnEpSin and SHADE-ILS algorithms
are located in Group I. By contrast, the performance
of the AMPO is fairly good in coping with those 30-
Dimensional functions. This suggests that the AMPO
enjoys few advantages to dealing with such low dimen-
sional problems;

• In terms of the descriptive statistics, the aver-
age rankings of the AMPO, LS-cnEpSin, LSHADE
and SHADE-ILS are respectively 1.43, 2.86, 2.87
and 2.89.

3) A COMPARISON WITH THE ADVANCED HYBRID AND
MULTI-POPULATION ALGORITHMS
The AMPO algorithm is also compared with three
advanced hybrid and multi-population algorithms, i.e.
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TABLE 4. The Comparative Results of the AMPO and Hybrid and Multi-population Algorithms on the Benchmark Test.

the Multi-population Ensemble Differential Evolution
(MPEDE) [53], Hybrid Firefly and Particle Swarm Opti-
mization (HFPSO) [71], and MOFOA that is discussed in
Section II-D.

The detailed results are presented in Table 4, in which we
can see that:

• The performance of AMPO still exceeds all the three
algorithms here;

• The competing algorithms are also designed in hybrid
and multi-population manners. Nevertheless, only the
MPEDE algorithm achieves better results than our pro-
posed algorithm in 2 out of all 28 functions. On the other
hand, its results are worse than the AMPO in other 24
functions;

• For the functions in Group II & Group III, the per-
formance between the MOFOA and AMPO algorithms
is almost consistent except for F07. Yet the MOFOA
fails to deliver satisfactory results for the function in the
Group I &Group IV compared to the AMPO. According
to [54], the MOFOA also adopts the Gaussian mutation
(called outpost mechanism) that is similar to our design
but with a difference that the variance is fixed as 1
in the MOFOA. Such results imply that the MOFOA
has excellent convergence speed; however, a lack of
sufficient adaptivity of working on a wider range of
problems. Generally speaking, the MOFOA is the sec-
ond best in this comparison in light of the statistical
result.

• Regarding the descriptive statistics, the average rank-
ings of the AMPO, MOFOA, MPEDE and HFPSO are
respectively 1.07, 1.96, 2.73, and 3.68.

D. THE CONVERGENCE TEST
In addition to the solution quality, we are also interested in
the rate of convergence. Therefore, the convergence tests on
all the compared algorithms are carried out.

Since each function is tested for 31 runs for each algorithm,
the run with the median fitness result is selected to plot the
convergence curve. Fig. 3—Fig. 7 display the convergence
results, in which the x-axis is the fitness function evalua-
tions (FE) consumed and the y-axis is the best fitness value
obtained so far. Also, as some algorithms may produce large
fitness values at the beginning of running, themaximumvalue
of y-axis is limited to the median value of such finesses to
make the observation clearer. The findings are summarized
in the following points:
• The AMPO generally converges faster than other algo-
rithms and hence possesses a better convergence capa-
bility for the tested optimization problems;

• For Group I functions, the convergence speed of the
AMPO is a bit slower than a few compared algorithms.
Also, the optimization capability of the AMPO on
these functions is weaker than those of the competitors,
as stated in Section III-C. This finding suggests that the
AMPO algorithm may have relatively few advantages in
solving these low-dimensional problems;
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FIGURE 3. The Results of Convergence Test (F01-F06).

• For F19 and F20, the convergence rates of the AMPO
are only next to those of the SHADE-ILS algorithm.

• In the remaining functions, the AMPO achieves the best
performance over all the competitors in terms of the
convergence rate.

E. THE STABILITY ANALYSIS
Despite the standard deviations shown in Section III-C,
the box plots of fitness variation are illustrated
in Fig. 8—Fig. 12, in which we may observe the distribution
of the results generated by each algorithm, especially outliers
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FIGURE 4. The Results of Convergence Test (F07-F12).

in all the runs on the function. We have a few observations
that:
• The body of the box of the AMPO is the shortest one
among all algorithms in F1—F18 and F23—F28. The
AMPO even has no outlier points in these cases. This
demonstrates that the performance of AMPO is very
stable;

• Only the AMPO algorithm gets zero values of the stan-
dard deviation in F27 and F28;

• In F19, the AMPO optimizer produces several outliers.
On the other hand, except for the SHADEILS, all the
other algorithms are unstable in optimizing this problem
as well.

Due to the effective multi-population design in which the
computational resources can be dynamically allocated to dif-
ferent sup-population supported by different search strate-
gies (such search behavior is further revealed in Section V).
In each run, the AMPO algorithm is able to adapt to the
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FIGURE 5. The Results of Convergence Test (F13-F18).

problem based on the obtained information. Thus, although
the search trajectories of all the runs are different from each
other, the AMPO still has a quite stable performance.

F. A COMPARISON OF THE COMPUTATIONAL COSTS
During running the tests presented in Section III-C, we also
record the time performance to compare the computational

costs between all optimizers. Table 5 lists the average execu-
tion time of all the runs in terms of CPU seconds. It can be
seen that:
• The AMPO runs the fastest in three cases, i.e. F7, F14
and F17;

• Two other metrics are calculated to evaluate the overall
time performance of each algorithm. The average time
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FIGURE 6. The Results of Convergence Test (F19-F24).

is the mean value of all times, and the average rank is
the mean ranking of all times. In terms of the average
rank, the AMPO is the second fastest algorithm, only
following the SSA, while it ranks first on the basis of
the average time;

• Given the overall ranking, the slowest algorithm
is the LS-cnEpSin algorithm, which involves the

time-consuming calculation of the Euclidean distance
and the covariance matrix.

G. THE SCALABILITY TEST
Many practical optimization problems in computational
finance as well as other areas have various dimensions.
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FIGURE 7. The Results of Convergence Test (F25-F28).

The good scalability is very significant for a metaheuristic
algorithm to solve such problems.

Therefore, in addition to the 30-dimension benchmark
function tests, the simulations on 50-D, 100-D and 200-D
benchmark problems in Group II & III are performed to
evaluate the scalability of the AMPO. In order to make a
thorough comparison, three compared algorithms that attain
good results in the above test, i.e. the WOA, LS-cnEpSin and
MOFOA, are involved in the test. The results are presented
in Table 6—Table 8, where the measurement is the mean
fitness of all the 31 runs.

From the tables, we can see that the AMPO algorithm still
achieves the best performance in all the problems no matter
with 50, 100 and 200 dimensions. Except for F11 and F15,
the AMPO has exactly found the global optimal solutions.
In fact, the exploitation of an optimizer may dramatically
affect the ultimate fitness of the searched solution particularly
in solving some high-dimensional problems like F07 and
F16. That is, due to a large-scale set of the decision variables,
the fitness value of the optimization problem may become
very large as long as some variables of a solution are not
accurate enough. This means that the algorithm should be

able to find more precise solutions around the best one at
hand. As the AMPO is empowered by the adaptive search
framework, the algorithm can allocate more resources to the
local search group, which helps the algorithm search formore
precise solutions. Such behavior is observed in Section V.

IV. THE PARAMETER SENSITIVITY ANALYSIS
Apart from the max number of iterations (or MaxFEs), there
are six user-controlled parameters in the AMPO: Npop, w, γ ,
PR,PLDLS andPLSLS that are defined in Section II-A. As the selec-
tion of user-controlled parametersmay dramatically affect the
performance of one metaheuristic algorithm, we systemati-
cally investigate the possible impacts of different parameter
settings on the performance of the AMPO according to the
practice in our previous work [72].

The parameter set used in the above experiment (see
Section III-B) is considered as the standardized parameter
set for the subsequent discussion. Since it is very com-
putationally expensive to explore all combinations of such
control parameters, the parameter sensitivity analysis test
focuses on a specific parameter while fixing all other param-
eters. For example, the population size in the standardized
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FIGURE 8. The Box Plot of Fitness Variation (F01-F06).

set is 50, whereas it is set to 10, 30, 100, or 200 for the
subsequent sensitivity analysis with all other parameters
remained unchanged. The test is conducted on a total of
15 representative functions, i.e. F02, F03 and F04, F06,
F08 and F10, F12, F15 and F17, F19 and F20 and
F23, F25, F26 and F26 selected from Groups I, II, III,

IV and V respectively. The AMPO with the standardized
parameter set acts as the baseline algorithm whose results
are presented in Section III-C. Also, a series of statistical
tests similar to those practices in Section III-B are per-
formed to compare the tested algorithms with the baseline
algorithm.
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FIGURE 9. The Box Plot of Fitness Variation (F07-F12).

The results are presented in Table 9—Table 14, where we
can see that:
• Under the same MaxFEs, the algorithm with the pop-
ulation size of 30 overall achieves a better perfor-
mance than that of the baseline algorithm in terms of
the statistical results. It appears that the AMPO with

a population size that is much smaller or larger than
the problem dimensionality tends to produce worse
results for these problems. For example, in the cases
of Npop = 10 and Npop = 200, the algorithm
is inferior to the baseline in five and six functions
respectively;
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FIGURE 10. The Box Plot of Fitness Variation (F13-F18).

• At least in these functions, the performance of the
AMPO is not very sensitive to the weighting factor w
that is used in the search step size update function of the
global search group;

• The selection of the constant decay rate γ has a sig-
nificant impact on the performance when it is set
to a small value, e.g. 0.1, 0.3 or 0.5 in this test.

This parameter is used to decrease the standard deviation
of the Gaussian function of the local search group. If the
value is too small, the search step size of the local search
groupwill decrease quickly, thus easily leading to a slow
convergence to the global optima;

• In the case of PLDLS = 0.6 or PLSLS = 0.6, no difference in
the performance is found between the tested algorithm

19978 VOLUME 9, 2021



Z. Li et al.: Adaptive Multi-Population Optimization Algorithm for Global Continuous Optimization

FIGURE 11. The Box Plot of Fitness Variation (F19-F24).

and baseline algorithm. However, setting the parameter
of PLDLS or PLSLS to small values has a slight negative
effect on the performance of the algorithm observed in
this experiment. Thus, setting these parameters to small
values is not advisable;

• A small or large value of PR may produce worse results
in this test.

The above observations indicate that selecting medium
values of Npop (e.g. 30 & 50), large values of γ (e.g. 0.9),
and medium to large values of PLDLS (e.g. 0.6 & 0.8 ) and
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FIGURE 12. The Box Plot of Fitness Variation (F25-F28).

PLSLS (e.g. 0.6 & 0.8) are suggested to improve the adaptivity
and effectiveness of the algorithm for optimizing various
problems. To determine the value of PR, the trial-and-error
method is advised when solving different problems.

V. THE SEARCH BEHAVIOR STUDY
In this section, we further investigate the search behavior
of the AMPO, including the dynamics of the search step
size and sub-population size. Ten representative benchmark
functions are involved in the study. We re-run the AMPO on
these functions with the same Experimental Setup as stated
in Section III-B except for the stopping criteria. In this study,
the search will be terminated once the MaxFEs or global
optimal solution is reached so that the observation can be
conducted more clearly.

Firstly, for each function, the search step sizes of the
local search group and global search group individuals are
recorded on each iteration in each run. These metrics are then
averaged on all the runs as illustrated in (15)—(18). Such
averaging mechanism is also applied to the following metrics
observed. In other words, the sub-population sizes of the local

search group, global search group and random search group
are recorded in this way.

Srij =

∑D
d=1

∣∣Srijd∣∣
D

(15)

Sri =

∑n
j=1|Srij|

n
(16)

Sr =

∑I
i=1 Sri
I

(17)

S =

∑R
r=1 Sr
R

(18)

where r , i, j and d represent the run no, iteration no, indi-
vidual no and problem dimension, respectively; n is the
sub-population size, D means the total dimension of the
problem, I is the total number of iterations, R is the number
of runs, and Srijd is a real value of the search step size for one
dimension.

Secondly, the contribution rate is constructed to investigate
which sub-population contributes better solutions to the algo-
rithm during the search. In each run, all iterations in which
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TABLE 5. The Comparison of the Average Execution Time (in CPU Seconds).

TABLE 6. The Results of the Scalability Test for 50-D Benchmark
Functions.

TABLE 7. The Results of the Scalability Test for 100-D Benchmark
Functions.

the algorithm achieves a better solution than the last itera-
tion are counted, which is called the effective iteration, and
then the sub-population type of the individual who generates

TABLE 8. The Results of the Scalability Test for 200-D Benchmark
Functions.

such a solution is recorded as one contribution for this sub-
population. At the end of the run, the contribution rate of each
sub-population is calculated based on its percentage of total
contributions in all effective iterations.

Lastly, the reset rate is also recorded. Such rate is defined
as the percentage of the iterations where the reset operation
is performed in all iterations.

Table 15 shows the statistical results of the metrics above.
From the table, we may observe that:

• The search step sizes of the local search group are much
smaller than those of the global search group. For exam-
ple, they are 0.0056 versus 0.6335 in F04. However,
the search step size of the local search group is even a bit
larger than that of the global search group in some cases,
namely F02, F19 and F12. This is because the so-called
local search group individuals enlarge their search step
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TABLE 9. The parameter sensitivity analysis of the results on Npop.

TABLE 10. The parameter sensitivity analysis of the results on w .

TABLE 11. The parameter sensitivity analysis of the results on γ .

sizes via the reset operation when the algorithm falls into
local optima in these cases;

• The sub-population sizes of the local search group,
global search group and random search group are

dynamic. Once the algorithm gets close to the global
optimal, the local search group will expand for a bet-
ter exploitation ability via the transformation and reset
operations. The examples include F04, F06 and F08.
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TABLE 12. The parameter sensitivity analysis of the results on PR.

TABLE 13. The parameter sensitivity analysis of the results on PLD
LS .

TABLE 14. The parameter sensitivity analysis of the results on PLS
LS .

By contrast, the algorithm enlarges the size of the global
search group and random search group to improve the
exploration, as seen in F15, F19 and F20;

• Different groups contribute better solutions to the
search in optimizing different problems. For exam-
ple, the biggest contributor in F06 or F12 (uni-modal

functions) is the local search group. The opposite phe-
nomenon can be seen inF02 andF19. InF15, the contri-
bution rates of the global search group and local search
group are closing to each other, and also the random
search group contributes 9.73% of better solutions dur-
ing the search. Themigrating group is able to contribute
good solution(s) to the search as well, such as in F02;

• During the search, the reset operation is performed in
40%+ of the iterations. As described in Section II-B6,
this operation is vital to the success of the AMPO.

Similar to the convergence test, the run with the median
fitness is selected to plot Fig. 13, where four functions
are illustrated. Generally, the search step size of the local
search group declines quickly with finding better solutions
(see Fig. 13a & Fig. 13b). On the other hand, as stated
above, the local search group individuals themselves may
also increase their search step sizes once no better solutions
are found (see 13d). Specifically, there is no search step
size of the local search group recorded in some periods
shown in Fig. 13c. This is because no local search group
individuals are available during that period. In fact, F15
involves a random noise, which produces different fitness
values in each evaluation, even with the same solution input.
It is difficult for the AMPO to converge into the optimal
solution, thereby downsizing the local search group while
upsizing the global search group. The contribution rates of
the local search group and the global search group are around
40% and 50%. Owing to this orchestration, the AMPO beats
all the other competitors in this problem, as presented in
Section III-C.
By the study, the AMPO has demonstrated its powerful

adaptivity in tackling various problems.

VI. REAL-WORLD APPLICATION: PORTFOLIO
OPTIMIZATION
A. THE PROBLEM FORMULATION
Portfolio optimization is a significant problem in computa-
tional finance. Investors usually want tomaximize returns and
minimize risks through portfolio diversification, i.e. allocat-
ing a fixed amount of capital into a collection of assets.

According to the mean-variance model formulated by [73],
the variance is regarded as a measure of risks that investors
expose to. The optimization problem is presented in (19) as
below.

max E(R(X)) =
n∑
i=1

xiri

min V (R(X)) =
n∑
i=1

n∑
j=1

xixjσij

s.t. xi ∈ X = {xi ∈ R |
n∑
i=1

xi = 1, 0 ≤ xi ≤ 1} (19)

where X is the proportion weight vector, E(R(X)) and
V (R(X)) are the expected return and variance of the whole
portfolio respectively, xi is the weight of the initial capital
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FIGURE 13. The Analysis of Search Step Sizes of Global and Local Search Groups.

TABLE 15. The Statistics of the Search Behavior of the AMPO on the Representative Functions.

that will be allocated in the ith asset, ri is the return of the ith

asset, n is the total number of assets, and σij stands for the
covariance of the returns of the ith and jth assets.
The portfolio based on the above model is restricted. When

the constrained condition 0 ≤ xi ≤ 1 is removed, it means
that the weights can be negative. Such a portfolio becomes
unrestricted, and both longing and shorting on stocks are

included. As a matter of fact, short selling is allowed in
real-world markets, where investors can sell stocks that they
do not hold and must repurchase them later.

Portfolio optimization is fundamentally a multi-objective
optimization problem. One feasible approach is to transfer the
problem into a single-objective optimization problem. There
are two transfer methods: the first one is to select the return
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or risk as the objective function to be optimized while the
rest are defined as constraints; an alternative method is to
establish only one objective function by assigning weights
to multiple objectives. In the first conventional approach,
the mean-variance efficient frontier of the portfolio can be
constructed for decision-making. This thesis seeks to opti-
mize the Sharpe Ratio (SR) of the portfolio [74], which
belongs to the above second transfer approach. The SR com-
bines the information from the mean and variance of an asset.
It is a risk-adjusted measure of the investment return. Until
now, the SR has become a critical tool in the modern financial
industry to evaluate the performance of various investment
portfolios.

The definition of the SR is shown in (20).

SR =
E(R(X))− Rf
V (R(X))

=

∑n
i=1 xiri − Rf∑n

i=1
∑n

j=1 xixjσij
(20)

where SR is the SR of the portfolio, Rf is a risk-free rate,
the representations of X , xi, σij and ri are same with those
in (19).

Since the AMPO and other comparative algorithms are
designated for handling minimization problems, the problem
should be changed to the minimization problem as given
in (21).

min fitness =
1
SR

(21)

s.t. SR = 10−10 if SR ≤ 0

As investment returns probably are zero or even negative
in the financial market, a tiny number 10−10 is assigned to the
SR for dealing with this case.
To avoid handling the equality constraint, the problem is

converted to the unconstrained form as shown below.

x ′i =
xi∑n
i=1 |xi|

(22)

In order to perform more accurate and realistic simulations
on the real-world markets, both restricted and unrestricted
scenarios of the portfolio are studied in this work.

B. THE EXPERIMENTAL SETUP
In this part of the experiment, the real-world datasets recently
released by [75] for portfolio optimization are used as our
experimental targets. The datasets consist of six major stock
indexes: Dow Jones Industrial Average (DowJones), Nasdaq
100 (NASDAQ100), Financial Times Stock Exchange 100
(FTSE100), S&P 500(SP500), Fama and French 49 Indus-
try (FF49Industries) and NASDAQ Composite (NAS-
DAQComp). The datasets contain cleaned weekly return
values that have been adjusted for dividends and stock splits.
Table 16 shows the details of such datasets, where the max-
imum number of stocks is from 28 up to 1, 203 so that the
scalability of the metaheuristic can be well tested in solving
this real-world problem as well.

Following the previous practice, the information of mean
and covariance is acquired from such weekly historical data.

TABLE 16. A Concise Description of the Portfolio Datasets.

In the experiment, such values are calculated through all
recorded prices for each dataset. More specifically, for each
stock, the average of the weekly returns is computed as
the expected return of the stock. The daily values of the
yields of the U.S. and the U.K. 5-year treasuries during
the time interval that the dataset involved are averaged
to act as the risk-free rates for the U.S. and U.K. mar-
kets, respectively. These risk-free rates (yearly) are 4.20%,
5.68%, 2.42%, 2.94%, 2.40% and 2.43% for DowJones,
FF49Industries, NASDAQ100, FTSE100, SP500 and NAS-
DAQComp, respectively. By convention, the SR is converted
into the annualized SR for better understanding and compar-
ison, as shown in (23).

Annualized SR =
E(R(X))− Rf /52

V (R(X))
×
√
52 (23)

where 52 stands for the number of weeks in a year.
Apart from longing on stocks (restricted portfolio),

we study a real-world scenario in which short-selling is
allowed (unrestricted portfolio), i.e. xi can be negative, which
enlarges the searching space of the problem.

In this part, the experiment involves three representative
algorithms that performwell in the benchmark function test to
verify their effectiveness in tackling these practical problems.
They are the WOA, LS-cnEPSin and MOFOA. Among them,
the excellent performance of WOA in portfolio optimization
is also reported by [47]. In addition, referring to [76], [77],
we select three other competitive algorithms that demon-
strate their excellent performance in optimizing the same
problem in the literature, namely, Adaptive Particle Swarm
Optimization (APSO) [44], Fireworks Algorithm (FA) [45]
and Harmony Search Algorithm (HSA) [46]. Due to a large
dimension of some datasets, the MaxFEs is set to 5× 105 for
each algorithm to achieve a trade-off between computational
cost and performance. Other user-controlled parameters of
all algorithms are the same as those used in the benchmark
function test.

C. SIMULATION RESULTS AND DISCUSSION
The simulation results of the portfolio optimization are shown
in Table 17 and Table 18, where the mean values and standard
deviations of the optimized annualized SR in 30 runs are pre-
sented. Also, the comparison of computational cost measured
in CPU seconds is provided there.

From the tables, we can observe that the AMPO gener-
ates the best SR over all the competing algorithms in 11
out of 12 portfolios. Notably, the AMPO algorithm delivers
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TABLE 17. The Comparative Results of the Portfolio Optimization between AMPO and Selected Algorithms (Restricted).

TABLE 18. The Comparative Results of the Portfolio Optimization between AMPO and Selected Algorithms (Unrestricted).

TABLE 19. The Statistical Test Results of the Portfolio Optimization in p-value.

much better values than the second-best values in optimiz-
ing large-scale unrestricted portfolios on the SP500 (3.0476
versus 2.8831) and NASDAQComp (4.7972 versus 3.4231).

The average ranks are respectively 1.08, 2.17, 3.50,
3.67, 5.00, 5.75 and 6.83 for the AMPO, LS-cnEpSin,
HSA, MOFOA, FA, WOA and APSO algorithms. For
the second-best optimizer, namely LS-cnEpSin algorithm,

its performance on the small-scale restricted portfolios,
i.e. DowJones, FF49Industries, NASDAQ100 and FTSE10,
is only next to the AMPO, but it gets much worse
results in constructing restricted portfolios for the large-scale
SP500 and NASDAQComp datasets. On the other hand,
the LS-cnEpSin algorithm produces the contrary phe-
nomenon for unrestricted portfolios. These findings suggest
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that the adaptivity of LS-cnEpSin is in question. Also,
the LS-cnEpSin becomes much computationally expensive
when processing large-scale problems. This is associated
with the time-consuming calculation that is discussed in
Section III-F. Here the AMPO is 3, even 10 times faster than
the LS-cnEpSin.

Concerning theMOFOAoptimizer, it produces low-quality
solutions for such small-scale problems but much better
results for the restricted NASDAQComp portfolio, in which
it gets the best value 1.3195 among all algorithms.

In regard to the WOA algorithm that achieves a satisfac-
tory performance in the benchmark function test, it fails to
produce good results here, which implies it contains limited
adaptivity and effectiveness of dealing with these practical
problems.

Another inferential statistics test based on the Wilcoxon
signed-rank test is performed in addition to the descriptive
statistics. The alternative hypothesis is that AMPO outper-
forms the competing algorithm in terms of solution qual-
ity when resolving these tasks. When the p-value is less
than 0.05, the alternative hypothesis is accepted. As shown
in Table 19, almost all the p values are much smaller than
0.05, even most are rounded to 0. Regarding the only two
exceptions, a few extra tests still cannot distinguish the per-
formance between the AMPO and the compared ones. Such
outputs have demonstrated that the AMPO is on the whole
good at tackling these portfolio problems compared to all
the compared algorithms. Also, the excellent scalability of
the AMPO has been verified in coping with these practical
problems.

VII. CONCLUSION
This paper proposes a competitive metaheuristic optimiza-
tion algorithm, namely the AMPO, for tackling challenging
continuous optimization problems. The algorithm is carefully
designed with different operations to diversify the search
strategies so as to improve its optimization capability. The
AMPO powered by the multi-population design has an excel-
lent adaptivity when compared with the existing metaheuris-
tics. The algorithm can dynamically allocate its search power
to different sub-populations that conduct local search or
global search during the optimization process for different
problems.

In this work, the AMPO is critically evaluated on a total of
28 well-known benchmark functions covering a broad range
of characteristics of optimization problems. All the obtained
results are carefully compared and analyzed with those of
nine state-of-the-art optimization algorithms, including the
recent SI approaches, the IEEE CEC winning algorithms
and the latest developed multi-population and hybrid opti-
mization algorithms. The results demonstrate the outstanding
performance of our proposed algorithm in terms of solution
fitness, convergence rate, scalability, stability and computa-
tional cost. In particular, the AMPO shows a unique poten-
tial for high-dimensional continuous optimization problems.
Additionally, the parameter sensitivity analysis and search

behavior of the AMPO are investigated. Lastly, the AMPO
is applied to solve the challenging portfolio optimization
problem with different numbers of assets from ranging 28
up to 1, 203. The result shows that the AMPO can achieve
robust performance in constructing these portfolios over other
algorithms.

The drawbacks of the AMPO are summarized as follows.
First, the number of user-controlled parameters is larger than
those of the existing optimization approaches like the GA
and PSO. In addition, the algorithm can only handle uncon-
strained optimization problems at the moment.

Concerning some future work, making the parameters
of the AMPO as self-adaptive is worth exploring. Besides,
a more thorough investigation should be conducted on apply-
ing the AMPO to solve constrained optimization problems.
Furthermore, it is interesting to apply the AMPO to different
real-world applications for comparison with more recently
proposed metaheuristics like the HHO and SMA. Last but not
least, the AMPO has a great potential to be extended to tackle
multi-objective optimization problems.

The source code of the AMPO is released at https://
github.com/rayzxli/AMPO.
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