

Click here to access/download

e-Component/supplementary file
Revised Supporting Information.docx

2

3 **Osmotically enhanced reverse osmosis using hollow fiber**

4 **membranes**

5

6 Xianhui Li ^{a,b,c}, Ying Mei ^{c,d}, Junwei Zhang ^c, Yang Yang ^e, Lu Elfa Peng ^c, Weihua Qing ^c, Di

7 He ^{a,b}, Anthony G. Fane ^f, Chuyang Y. Tang ^{c*}

8

9 ^a Key Laboratory for City Cluster Environmental Safety and Green Development of the

10 Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong

11 University of Technology, Guangzhou, 510006, P.R. China

12 ^b Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),

13 Guangzhou, 511458, P.R. China

14 ^c Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong

15 Kong S.A.R., P.R. China

16 ^d Research and Development Center for Watershed Environmental Eco-Engineering,

17 Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, P.R.

18 China

19 ^e Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K.

20 ^f UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering,

21 University of New South Wales, Sydney, New South Wales, 2052, Australia

22

23 *Corresponding author: tangc@hku.hk

24 **Abstract**

25 Osmotically enhanced reverse osmosis (OERO) effectively increases the water recovery in
26 desalination as it can reduce the transmembrane osmotic pressure by a sweep solution.
27 Utilizing a model based on mass-transfer principles, we report the performance of a
28 hollow-fiber RO membrane module in OERO as a function of the operating conditions, the
29 fiber geometry, and the membrane properties. The hollow fiber system allows the feed and
30 sweep solutions to flow on both sides of the membrane. To avoid energy-intensive
31 solute/water separation, fertilizer can be employed as a “green” sweep solution as it can be
32 directly used for fertigation (fertilized irrigation). Simulations indicated that the water
33 recovery is significantly enhanced by increasing the water permeance and decreasing the
34 structure parameter of the hollow fiber membranes. Further, an investigation into the role of
35 feed salinity suggests that longer fibers can provide a higher water recovery in the case of
36 low-salinity water reuse, while larger-diameter fibers achieve a more efficient seawater
37 desalination. A single-stage OERO process facilitates the enhancement of water recovery
38 from 35.5% and 14% to 36.5% and 34% in the case of low-salinity and high-salinity
39 desalinations, respectively. This study provides theoretical perspectives into the design of
40 hollow fiber modules for OERO processes.

41

42 **Keywords:** *Osmotically enhanced recovery, Mathematical model, Reverse osmosis*
43 *membrane, Hollow fiber, Fertilizer*

44

45 **1. Introduction**

46 Reverse osmosis (RO) can turn the seawater and inland brackish water into fresh water. This
47 has become the main approach to solve the global water shortage issue [1-3]. However, the
48 practical application of RO desalination is constrained by a low water recovery and a
49 relatively high energy consumption, as the process requires a considerable hydraulic pressure
50 to overcome the osmotic pressure of the saline water (e.g. ~ 26 bar for 35 g L⁻¹ seawater) for
51 driving water molecules across membranes [4-5]. To address this issue, a concept known as
52 “osmotically enhanced reverse osmosis” (OERO) has been reported, in which a solute (e.g.
53 NaCl, Na₂SO₄, etc.) is added into the permeate side and is utilized as a sweep solution to
54 counteract part of the feed osmotic pressure as depicted in **Fig. 1a** [6-8]. This system gives a
55 higher water recovery than traditional RO processes under the same hydraulic pressure, thus a
56 lower energy consumption for the RO step, which has been demonstrated in the treatment of
57 highly saline water and shale gas wastewater [9-10].

58 A significant challenge in the OERO desalination process is the need to separate water from
59 the diluted sweep solution, which consumes extra energy [11]. To avoid energy-intensive
60 regeneration of the sweep solution, a feasible way is to select certain inorganic salts (e.g.
61 KH₂PO₄, NH₄NO₃, KNO₃, etc.) as “green” solutes in the sweep solution such that the sweep
62 solution, after being diluted, can be directly employed for fertigation (fertilized irrigation)
63 [12-13]. This approach has been used previously in the context of fertilizer driven forward
64 osmosis (FO) desalination for direct fertigation [14].

65 The second challenge for OERO is that the design of the membrane and the membrane
66 modules are also of significant importance for realizing maximum performance. The spacer
67 in the RO module induces membrane deformation at high hydraulic pressures, resulting in
68 severe hydraulic pressure loss in the flow channel [15-17]. Therefore, compared with typical
69 spiral-wound RO membranes, hollow fiber RO membranes provide several competitive
70 advantages such as a lower hydraulic pressure loss, higher packing density and a larger
71 effective surface area because of their mechanically self-supporting characteristics [18-19].
72 Most importantly, hollow fiber modules allow the feed and sweep solutions to flow on both
73 sides of the membrane, which is a necessity for OERO but is currently not possible in typical

74 spiral wound modules [20-22]. Although these studies confirm the advantages of hollow fiber
75 membrane modules for achieving high-efficiency desalination of saline water, the technical
76 feasibility and economics of utilizing fertilizer as sweep solution in the OERO system are still
77 lacking. In addition, reducing the thickness of the support layer in hollow fiber membranes
78 could effectively reduce the internal concentration polarization caused by the sweep solution
79 [23]. Therefore, studying and understanding the impact of operating conditions and
80 membrane modules on the OERO technique is critical for its future practical applications.
81 In this work, we establish a mathematical model based on mass-transfer principles to
82 investigate the performance of hollow fiber membrane modules in an OERO process for
83 applications in seawater desalination and water reuse. We study the influence of operating
84 conditions (the operating pressure, the concentration, and the flow rates of the feed and sweep
85 solutions), the fiber geometry (the fiber length and the fiber diameter) and membrane
86 properties (the water permeance and the support structure) on water recovery and
87 corresponding energy consumption. Moreover, experimental studies have been performed to
88 support our simulation results. This research provides theoretical perspectives for in-depth
89 understanding of sustainable fertigation by OERO technology and its membrane module
90 design for practical applications.

91

92 **2. Model development**

93 **2.1. Simulation of permeate flux in osmotically enhanced desalination process**

94 In the OERO system, the sweep solution is in the fiber lumen and the feed solution is
95 pressurized in the shell. The sweep and feed flows are counter-current and along axial
96 directions to the fibers (**Fig. 1**). The derivation of the RO water and salt flux equations in an
97 osmotically enhanced recovery desalination process is presented in the Supporting
98 Information, **Section S1**. The derivation yields the following expressions for the water flux
99 (J_w) and the salt flux (J_s):

$$100 \quad J_w = A \left\{ \Delta P - \frac{\pi_{f,b} \exp\left(\frac{J_w}{k}\right) - \pi_{s,b} \exp\left(-\frac{S}{D} J_w\right)}{1 + \frac{B}{J_w} \left[\exp\left(\frac{J_w}{k}\right) - \exp\left(-\frac{S}{D} J_w\right) \right]} \right\} \quad (1)$$

$$101 \quad J_s = B \left\{ \frac{C_{f,b} \exp\left(\frac{J_w}{k}\right) - C_{s,b} \exp\left(-\frac{S}{D} J_w\right)}{1 + \frac{B}{J_w} \left[\exp\left(\frac{J_w}{k}\right) - \exp\left(-\frac{S}{D} J_w\right) \right]} \right\} \quad (2)$$

102 where ΔP is the applied hydraulic pressure, k is the feed salt mass transfer coefficient in the
 103 shell side, S is the structure parameter of the membrane and D is the bulk diffusion coefficient
 104 of the salt. The terms $\exp(J_w/k)$ and $\exp(J_w S/D)$ are the moduli of the external concentration
 105 polarization (ECP) and the internal concentration polarization (ICP), respectively. A and B are
 106 the permeability coefficients of water and salt, respectively. $C_{f,b}$ and $C_{s,b}$ are the respective
 107 bulk solute concentrations of the feed and sweep. $\pi_{f,b}$ and $\pi_{s,b}$ are the bulk osmotic pressures
 108 for the feed and sweep, respectively. The osmotic pressure (π) is able to be expressed by the
 109 Van't Hoff equation.

$$110 \quad \pi = \varphi i C R T \quad (3)$$

111 where i stands for the number of dissociating species, C represents the concentration of solute,
 112 T represents the temperature, R is the gas constant, and φ represents the osmotic coefficient.
 113 In the OERO system, the outside-in hollow fiber membranes with small diameter are
 114 preferred due to their high pressure tolerance and low fouling tendency [21]. The pressure
 115 drop (P_i) inside the hollow fiber membrane thus cannot be ignored and is expressed by the
 116 Hagen-Poiseuille equation,

$$117 \quad \frac{P_i}{dz} = \frac{32 \mu v_i}{d_i^2} \quad (4)$$

118 where d_i is the inner diameter of the fiber, and v_i is the flow velocity inside the pore.

119 The pressure drop in the shell can be calculated from the empirical Ergun equation [24],

$$120 \quad \frac{dP_s}{dz} = - \left\{ \frac{150(1-\varepsilon)^2 \mu v_s}{\varepsilon^3 d_p^2} + \frac{1.75(1-\varepsilon)\rho(v_s)^2}{\varepsilon^3 d_p} \right\} \quad (5)$$

121 where d_p is the characteristic diameter used in the equation and is defined as $1.5d_o$ for
 122 cylindrical fibers [25], and v_s is the velocity of flow in the shell.

123 Mass transfer coefficient k is calculated from Schmidt (S_c), Reynolds (Re) and Sherwood (S_h)
 124 numbers with the equation,

$$125 \quad k = \frac{S_h}{d_h} D \quad (6)$$

$$126 \quad Re = \frac{d_h v \rho}{\mu} \quad (7)$$

$$127 \quad S_c = \frac{\mu}{\rho D} \quad (8)$$

128 where d_h is the hydraulic diameter. Therefore, it is necessary to calculate the Sherwood
 129 number and the hydraulic diameter for the shell side.

130 For the Sherwood number, when the flow is turbulent ($2300 < Re \leq 10^6$) [26],

$$131 \quad S_h = 0.021 \left(\frac{1}{\sqrt{1-\varepsilon}} \right)^{0.45} Re^{0.8} Sc^{0.33} \quad (9)$$

132 when the flow is laminar ($Re \leq 2300$) [26],

$$133 \quad S_{h1} = 3.66 + 1.2 \left(\sqrt{1-\varepsilon} \right)^{-0.8} \quad (10)$$

$$134 \quad S_{h2} = 1.165 \left(1 + 0.14 \left(\sqrt{1-\varepsilon} \right)^{-0.5} \right) \sqrt[3]{\frac{Re \cdot Sc \cdot d_h}{l_{mem}}} \quad (11)$$

$$135 \quad S_{h3} = \left(\frac{2}{1+22Sc} \right)^{1/6} \left(\frac{Re \cdot Sc \cdot d_h}{l_{mem}} \right)^{1/2} \quad (12)$$

$$136 \quad S_h = \left(S_{h1}^3 + S_{h2}^3 + S_{h3}^3 \right)^{1/3} \quad (13)$$

137 where l_{mem} is the length of the membrane and ε is the void fraction in the shell. The void
 138 fraction largely depends on the assignment of the hollow fibers and it is assumed that each
 139 fiber is a hexagon which is comprised with two components including a fiber channel and a
 140 shell (**Fig. 1**). Hence, the void fraction is defined as

$$141 \quad \varepsilon = 1 - \frac{A_{fiber}}{A_{hexagon}} = 1 - \frac{\pi}{2\sqrt{3}} \frac{1}{\left(1 + \frac{f_d}{d_o} \right)^2} \quad (14)$$

142 where A_{fiber} is the occupied area of fiber, $A_{hexagon}$ is the catchment area of fiber, f_d is the
 143 distance between two fibers and is set constant as presented in **Table 1**, and d_o is the outer

144 diameter of the fiber.

145 For the hydraulic diameter of the shell side, it is defined as

$$146 d_h = \frac{4A_{flow}}{P_{fiber}} \quad (15)$$

147 where A_{flow} is the cross sectional flow area in the fiber lumen, and P_{fiber} is the perimeter of
148 circular cross section of the fiber.

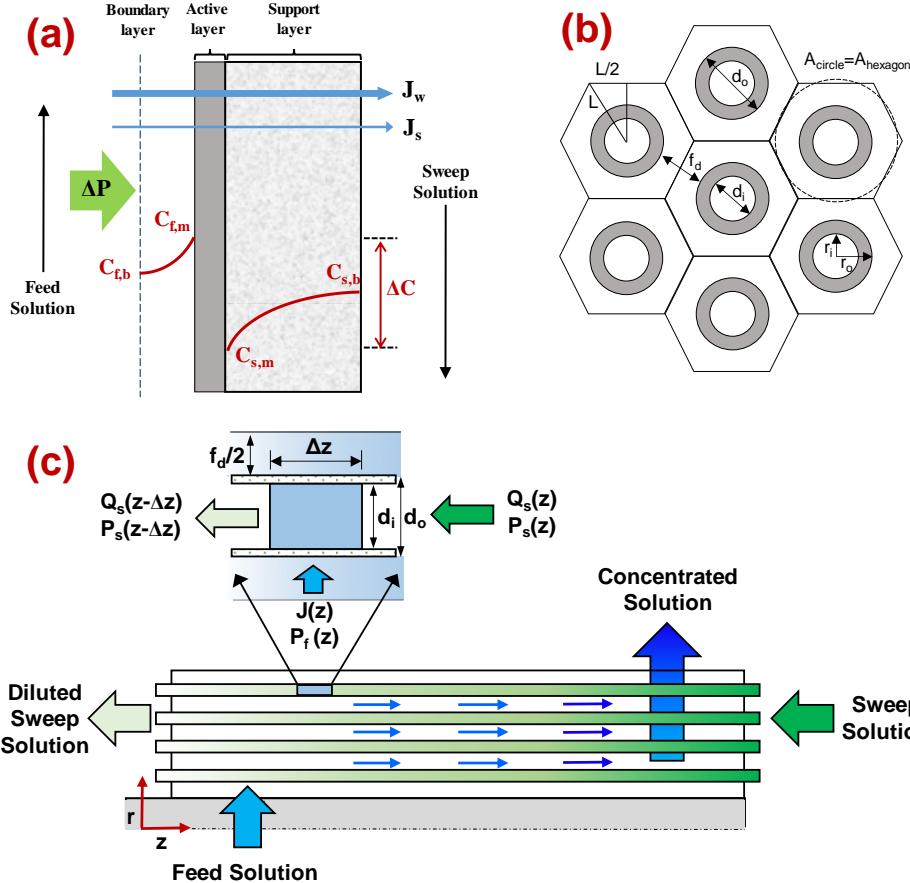
149 Therefore,

$$150 d_h = \frac{4 \left[2\sqrt{3} \left(\frac{d_o}{2} + \frac{f_o}{2} \right)^2 - \frac{\pi}{4} d_o^2 \right]}{\pi d_o} = \frac{2\sqrt{3} (d_o + f_o)^2}{\pi d_o} - d_o \quad (16)$$

151 The NaCl solution was used as feed solution. The density (ρ_{NaCl}), viscosity (μ_{NaCl}) and
152 diffusivity (D_{NaCl}) of NaCl solution are affected by solute concentration C , and they can be
153 expressed by Eq. (17)-(19), respectively [27-28]:

$$154 \rho_{NaCl} = (0.0369C_{NaCl} + 1.0006) \times 1000 \quad (17)$$

$$155 \mu_{NaCl} = (0.0133C_{NaCl}^2 + 0.0734C_{NaCl} + 1.003) / 1000 \quad (18)$$


$$156 D_{NaCl} = 0.0005C_{NaCl}^4 - 0.0088C_{NaCl}^3 + 0.0447C_{NaCl}^2 - 0.045C_{NaCl} + 1.489 \quad (19)$$

157 For simulation purpose, the fertilizer KH₂PO₄ was used as sweep solution. The density
158 ($\rho_{KH_2PO_4}$), viscosity ($\mu_{KH_2PO_4}$) and diffusivity ($D_{KH_2PO_4}$) of KH₂PO₄ solution are affected by
159 solute concentration C , and they can be expressed by Eq. (20)-(22), respectively [29-30]:

$$160 \rho_{KH_2PO_4} = 8.8479 \times C_{KH_2PO_4}^2 + 110.17 \times C_{KH_2PO_4} + 1001.4 \quad (20)$$

$$161 \mu_{KH_2PO_4} = 0.0738 \times C_{KH_2PO_4}^3 - 0.0356 \times C_{KH_2PO_4}^2 + 0.2147 \times C_{KH_2PO_4} + 1.0035 \quad (21)$$

$$162 D_{KH_2PO_4} = -8.161 \times C_{KH_2PO_4}^{0.5} + 12.761C_{KH_2PO_4} - 14.996 \times C_{KH_2PO_4}^{1.5} + 5.683 \times C_{KH_2PO_4}^2 \quad (22)$$

163

164 **Fig. 1.** Illustration of osmotically enhanced reverse osmosis (OERO) using hollow fiber
 165 membranes: (a) profile of salt concentration across the membrane during OERO desalination
 166 process; (b) cross-section view and (c) front view of a hollow fiber bundle.

167

168 2.2. Calculating specific energy consumption

169 The specific energy consumption (E) is defined as an energy consumption per unit volume of
 170 product water, and it is related with the high-pressure pump, sweep low-pressure pump, and
 171 the energy recovery devices (ERDs) as presented in Fig. S2. The energy required for a
 172 regeneration step of sweep solution is not taken into consideration, because the diluted
 173 fertilizer sweep solution can be applied directly for irrigation. The calculation of E is thus
 174 given by [31],

$$175 E = \frac{P_f Q_f (\varepsilon_{pump})^{-1} + P_{sw} Q_{sw} (\varepsilon_{pump})^{-1} - P_b Q_b \varepsilon_{ERD}}{Q_p \times 3.6 \times 10^6} \quad (23)$$

176 Q_f and Q_b are the flow rates of feed and brine, respectively, P_f is the feed pressure, P_b is the
 177 outlet pressure, Q_p is the total permeated flow rate, P_{sw} is the inlet pressure of sweep solution,

178 Q_{sw} is the sweep flow rate, ε_{pump} is the efficiency of pressure pump and is assumed to be 0.85,
179 ε_{ERD} is the efficiency of the energy recovery device and is assumed to be 0.95 [32].
180

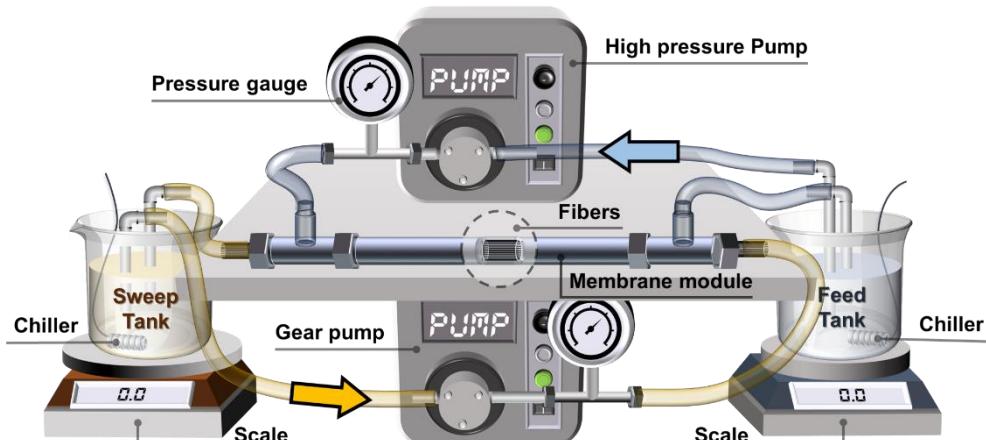
181 **2.3. Simulation algorithm**

182 The system of equations is used to set up the mathematical model to evaluate the
183 performance of the OERO process. **Fig. S1** presents the iteration algorithm for solving the
184 mathematical model using MATLAB software (Mathworks, USA). The basic simulation
185 conditions are listed in **Table 1**. Here, 0.6 M NaCl and 0.02 M NaCl were used as feed
186 solution to simulate seawater and brackish water, respectively. Since the respective osmotic
187 coefficients of KH_2PO_4 and NaCl are 0.85 and 0.93 [33-34] at 298 K, 0.6 M KH_2PO_4 and
188 0.02 M KH_2PO_4 were utilized as sweep solutions generating osmotic pressures of 25.3 bar
189 and 0.84 bar, respectively, which are lower than that of 0.6 M NaCl (27.7 bar) and 0.02 M
190 NaCl (0.92 bar) calculated by Eq. 3. The salt permeability (B) was set constant owing to the
191 high salt rejection of RO membrane (typically $> 99\%$) [35]. The fertilizer KH_2PO_4 was used
192 as sweep solution, and its concentration is less than the concentration of feed solution.
193

194 **Table 1.** Specifications of the lab-made and commercial hollow fiber RO membrane modules

Element type	Lab-made module for model verification	Commercial module for performance evaluation
Module length (m)	0.32	0.68
Inner diameter (μm)	85	85
Outer diameter (μm)	175	175
No. of fibers	120	220000
Effective membrane area (m^2)	0.02	82.2
Distance between two fibers, f_d (μm)	200	53
Cross-section of module (m^2)	3.2×10^{-5}	0.01
Void fraction in the shell (ε)	0.886	0.458
Max. operating pressure (bar)	50	50
Pure water permeability ($\text{L}/(\text{m}^2 \cdot \text{h} \cdot \text{bar})$)	0.27	0.27
Salt permeability ($\text{L}/(\text{m}^2 \cdot \text{h})$)	0.035	0.035
Structure parameter (μm)	1024	1024

195

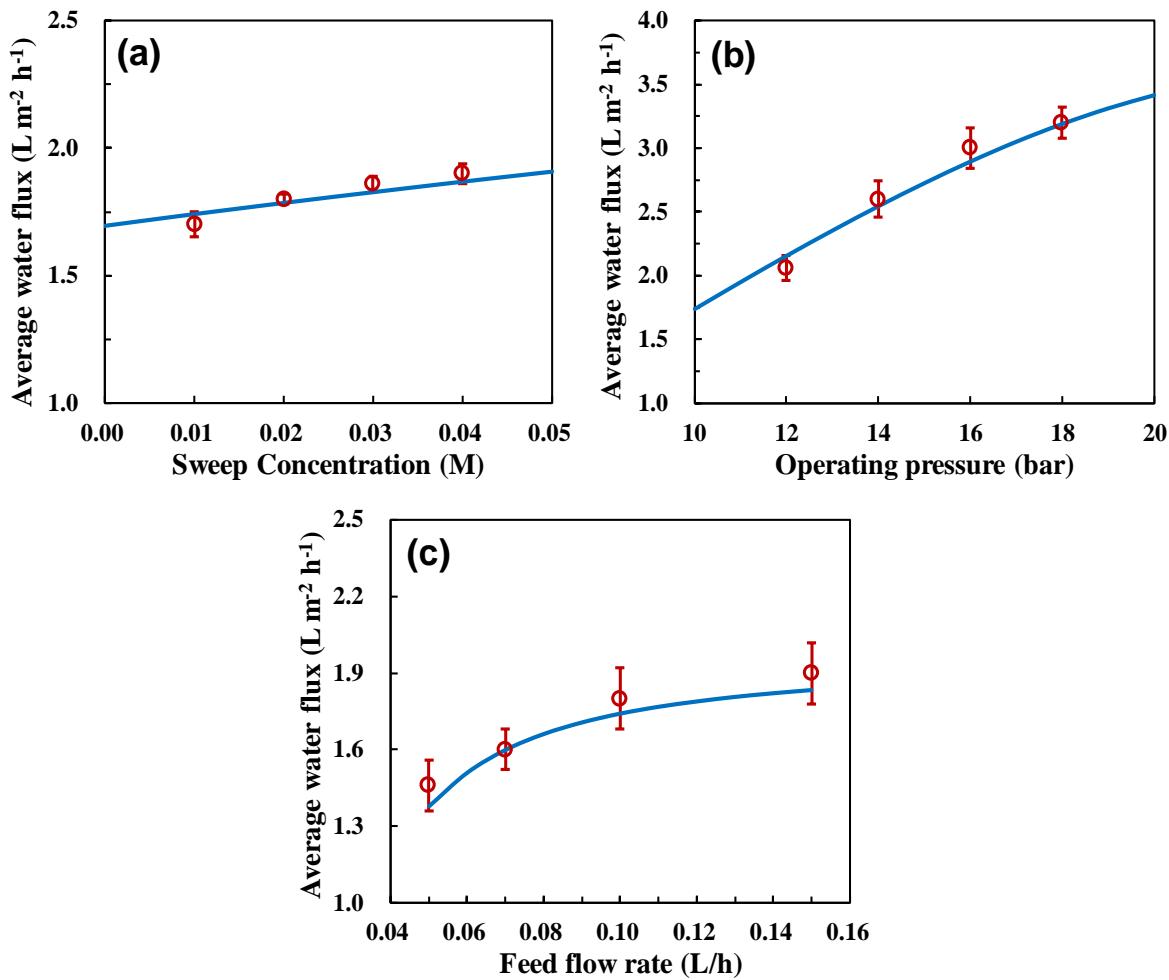

196 **3. Model verification**

197 **3.1. Materials and experimental methods**

198 The commercial hollow fiber RO membranes used in the current study were obtained from
199 TOYOBO Co. Ltd., Japan. The membranes were rinsed with deionized (DI) water and were
200 kept in DI water prior to use. The detailed characteristics of the membranes are presented in
201 **Table 1**.

202 To validate the model, the OERO performance was tested with a laboratory counter-flow HF
203 module as shown in **Fig. 2**. Energy recovery device was not installed due to the limitations of
204 the small laboratory-scale apparatus. The dimensions of the tubular channel were 320 mm
205 length, 6.4 mm inner diameter and 9.7 mm outer diameter. A high pressure pump (P300,
206 Wanner Pump Ltd.) and a variable speed gear pump (WT3000-1JA, Longer Precision Pump
207 Co., Ltd.) were applied to pressurize the feed solution and to recirculate the sweep solution,
208 respectively. The flow rate of both feed and sweep channels was kept constant at 0.1 L/h. The
209 applied feed pressure was observed by using a digital pressure meter and was regulated
210 through a backpressure valve at the outlet of the feed channel. The temperatures of both the
211 feed and sweep solution were fixed at 25 ± 1 °C.

212


213
214 **Fig. 2.** Schematic diagram of the OERO performance evaluation system for the hollow fiber
215 membranes.

216

217 **3.2. Model verification**

218 The simulated and experimental permeate fluxes as a function of the sweep concentration, the
 219 operating pressure at the module inlet, and the feed flow rate are shown in **Fig. 3**. The
 220 simulations demonstrate that the simulated water fluxes agree well with the experimental
 221 results. The average water flux increases logarithmically with the sweep concentration,
 222 indicating that the sweep solution is able to partially offset the osmotic pressure. As expected,
 223 a larger operating pressure results in a higher water flux (**Fig. 3b**) since OERO is a hydraulic
 224 pressure-driven process. Increasing feed flow rate would alleviate concentration polarization
 225 and thus enhance water flux (**Fig. 3c**). These results indicate that a better water recovery can
 226 be obtained in the presence of a high sweep solution, a suitable feed flow rate, and a
 227 comparatively large operating pressure. The model developed in this study is therefore an
 228 efficient tool to simulate filtration performance and optimize the OERO process.

229

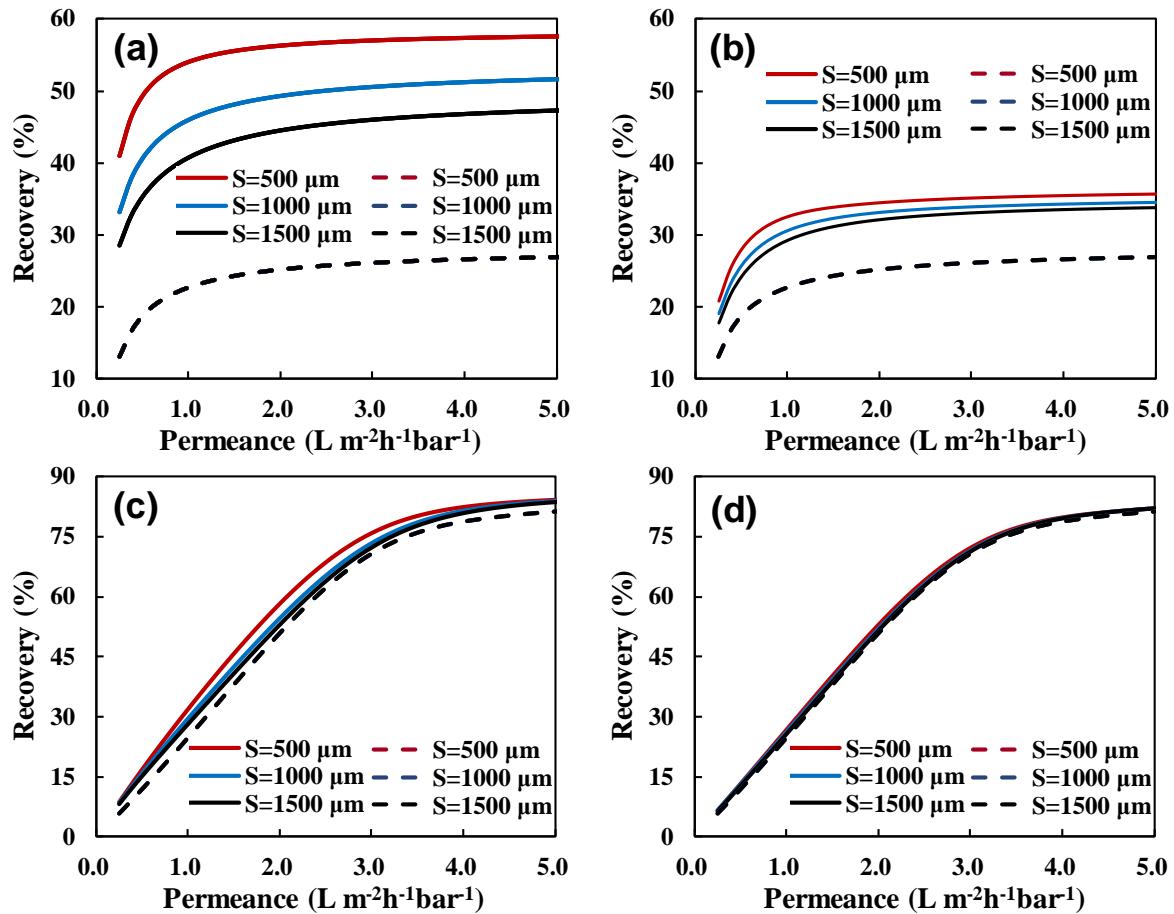
230

231

232 **Fig. 3.** Experimental (discrete symbols) and simulated (solid lines) water fluxes of lab-made
233 HF RO membrane module as a function of (a) sweep concentration (constant operating
234 pressure of 10 bar and constant feed flow rate of 0.1 L/h), (b) operating pressure (constant
235 sweep concentration of 0.01 M KH_2PO_4 and constant feed flow rate of 0.1 L/h), and (c) feed
236 flow rate (constant operating pressure of 10 bar and constant sweep concentration of 0.01 M
237 KH_2PO_4). Experimental conditions: The feed solution fixed as 0.06 M NaCl and sweep flow
238 rate fixed as 0.1 L/h.

239

240 **4. Simulation results and discussion**


241 **4.1. Assessing the desalination performance under different membrane properties and** 242 **geometry**

243 The water transportation resistance across the membrane is affected by not only the
244 membrane active layer but also the structure of the support layer due to existence of the
245 internal concentration polarization (ICP) in the OERO process. The impacts of membrane
246 properties including coefficient of water permeability (A) and parameter of support structure
247 (S) on the water recovery for OERO system and conventional RO system are illustrated in

248 **Fig. 4.** The water recovery in a conventional RO system is independent of the parameter of
249 support structure. The recovery of OERO system is higher than that of conventional RO
250 system especially in the case of seawater desalination, which is attributed to the greater
251 osmotic pressure of the sweep solution (i.e., larger $\pi_{s,b}$ in eq. (1)). As shown in **Fig. 4a**, the
252 recovery increases dramatically as the S decreases from 1500 to 500 μm when using 0.6 M
253 KH_2PO_4 as sweep solution (SS) for treating high-salinity seawater owing to the decreased
254 ICP modulus (i.e., smaller $\exp(-J_w S/D)$ in eq. (1)). Whereas only a minor enhancement is
255 noticed when using a 0.1 M KH_2PO_4 as SS (**Fig. 4b**). It is attributed to the fact that the role of
256 ICP in determining overall filtration resistance weakens with decreasing sweep concentration
257 [36]. Thus, the recovery enhancement by decreasing the structure parameter is less effective
258 under such conditions. Consistent with expectations, the influence of structure parameter on
259 water recovery is negligible for the low-salinity brackish water when using lower KH_2PO_4
260 concentrations of 0.005 M and 0.02 M as SS (**Figs. 4c and d**). It is noteworthy that for both

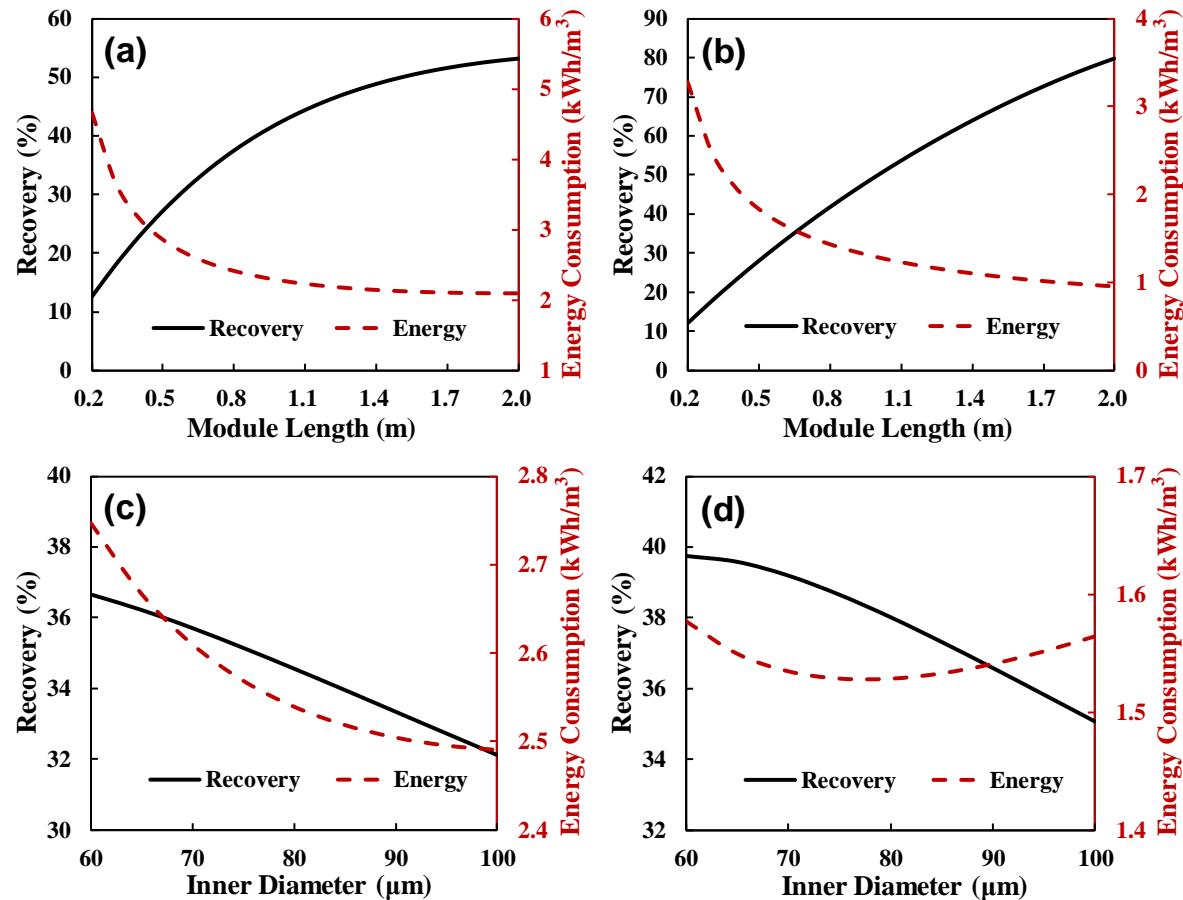
261 seawater and brackish water, the water recovery increases dramatically before eventually
 262 plateauing as the increase of water permeability coefficient. However, the influence of
 263 increasing A coefficient on the water recovery is more obvious in the case of brackish water
 264 reuse than that of seawater desalination. For instance, at S value of 1000 μm and 0.6 M
 265 KH_2PO_4 as SS (**Fig. 4a**), increasing A coefficient from 0.2 to 5.0 $\text{L m}^{-2} \text{h}^{-1} \text{bar}^{-1}$ facilitates an
 266 increase of recovery from 33% to 51% (1.5 times) in the case of seawater desalination. In
 267 contrast, the water recovery exhibits a significant increase from 8% to 84% (10.5 times) in
 268 the case of brackish water reuse at S value of 1000 μm and 0.02 M KH_2PO_4 as SS (**Fig. 4c**).
 269 As a result, application of a more permeable membrane in OERO process offers a high water
 270 recovery for brackish water reuse, but the efforts to increase water recovery for seawater
 271 desalination should focus on decreasing the structure parameter of membrane.

272

273

274 **Fig. 4.** Simulated water recovery of commercial HF RO membrane module with varied
 275 membrane water permeance and support structure parameter (S) in OERO system (solid line)
 276 and conventional RO system (dash line). Simulation conditions for OERO system: both the
 277

278 feed and sweep flow rates were fixed at 1 m³/h. (a) 0.6 M NaCl as feed solution (FS), 0.6 M
279 KH₂PO₄ as sweep solution (SS), and operating pressure of 40 bar; (b) 0.6 M NaCl as FS, 0.1
280 M KH₂PO₄ as SS, and operating pressure of 40 bar; (c) 0.02 M NaCl as FS, 0.02 M KH₂PO₄
281 as SS, and operating pressure of 7 bar; (d) 0.02 M NaCl as FS, 0.005 M KH₂PO₄ as SS, and
282 operating pressure of 7 bar. Simulation conditions for conventional RO system are the same
283 as that of the OERO system, in which the sweep solutions are not included.


284

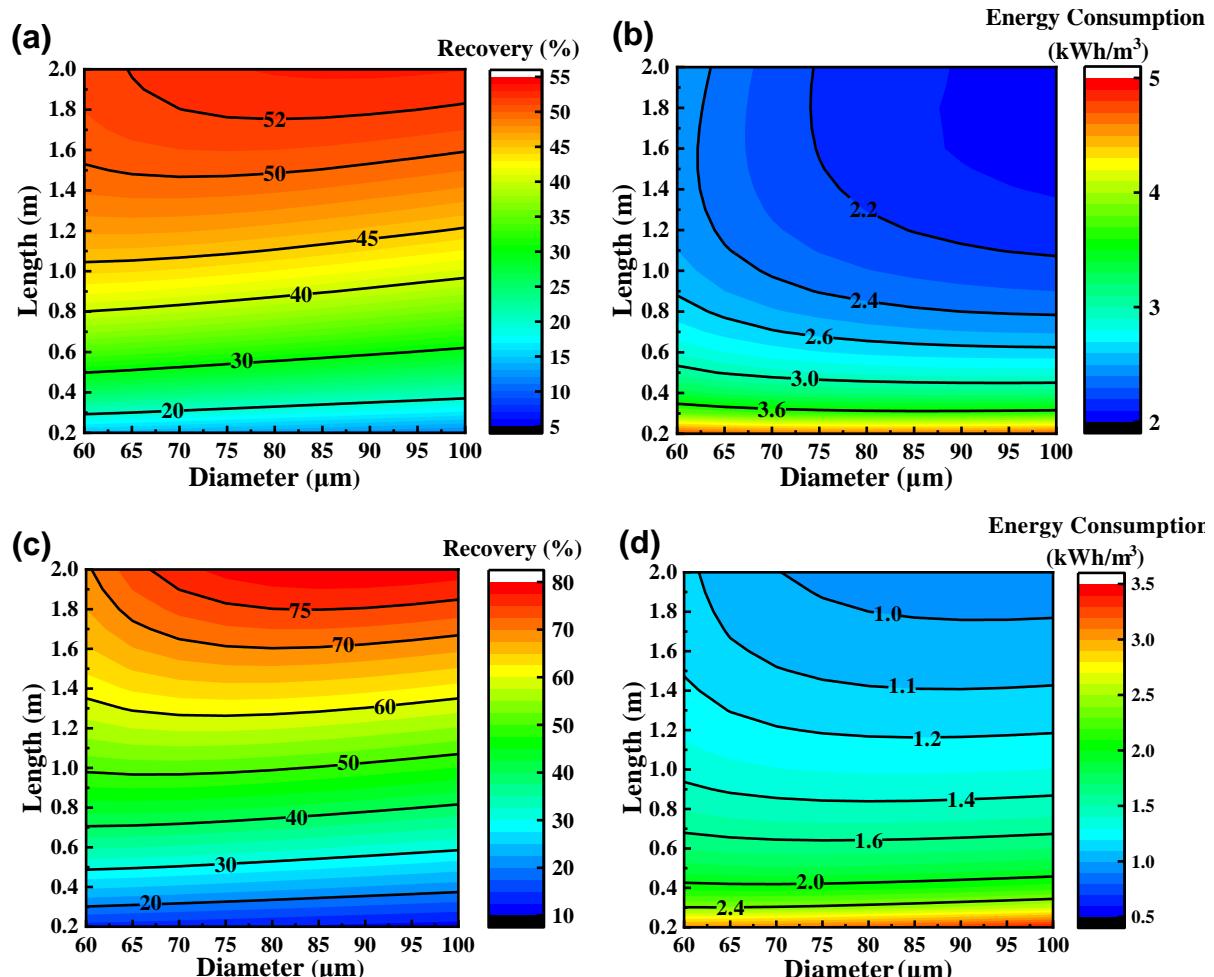
285 Fiber geometry is particularly effective for avoiding the severe concentration and dilution
286 effects through optimizing hydraulic environments in the OERO process [37]. The simulation
287 results for investigating the effects of the fiber diameter and length on water recovery and
288 energy consumption are demonstrated in **Fig. 5**. In both cases of seawater desalination and
289 brackish water reuse, the water recovery increases monotonically with increasing fiber length
290 (**Figs. 5a-b**). The increase can be attributed to the increased total membrane area resulting in
291 larger permeate volume. The energy consumption decreases first and then gradually reaches a
292 plateau with increasing fiber length in both cases (**Figs. 5a-b**). The decrease can be attributed
293 to the increased water recovery with the increase of fiber length. However, further increasing
294 fiber length results in greater pressure drops in the shell (P_S) and thus less channel pressure at
295 the outlet (P_b), which implies a decrease of energy recovery by the EDRs (i.e., smaller
296 $P_b Q_b \varepsilon_{ERD}$ in eq. (23)).

297 In contrast, a monotonic decrease in water recovery with increasing fiber diameter is
298 observed in both cases of high-salinity seawater desalination and low-salinity brackish water
299 reuse (**Figs. 5c-d**). The reason is that increasing fiber diameter reduces the packing density,
300 thereby decreasing the effective filtration area [38]. As a result, a monotonic reduction of the
301 water recovery is observed in both cases. The energy consumption decreases monotonically
302 with increasing fiber diameter in the case of seawater desalination (**Fig. 5c**). However, for the
303 brackish water reuse, the energy consumption decreases first and then increases with
304 increasing fiber diameter. This interesting phenomenon is attributed to two competing factors.
305 One is that increasing fiber diameter decreases pressure drop [39], and thus a decreased
306 energy consumption is observed in the case of brackish water reuse. The other is that the

307 enhancement of fiber diameter reduces the effective filtration area, and thus further increasing
 308 fiber diameter would decrease water production efficiency. However, for high-salinity
 309 seawater, an extremely high hydraulic pressure is used to offset the high osmotic pressure,
 310 and thereby the effect of decreased pressure drop on overall energy consumption is
 311 significant. As a result, a monotonic reduction of the energy consumption is observed in the
 312 case of seawater desalination.

313

314


315 **Fig. 5.** Simulated water recovery and specific energy consumption of commercial HF RO
 316 membrane module with varied (a-b) module length and (c-d) fiber inner diameter. Simulation
 317 conditions: number density of fibers in the cross-section of module varied with fiber diameter
 318 since distance between two fibers fixed as 53 μm ; both the feed and sweep flow rates fixed as
 319 1 m^3/h . (a, c) 0.6 M NaCl as FS, 0.6 M KH₂PO₄ as SS, and operating pressure of 40 bar; (b, d)
 320 0.02 M NaCl as FS, 0.02 M KH₂PO₄ as SS, and operating pressure of 20 bar.

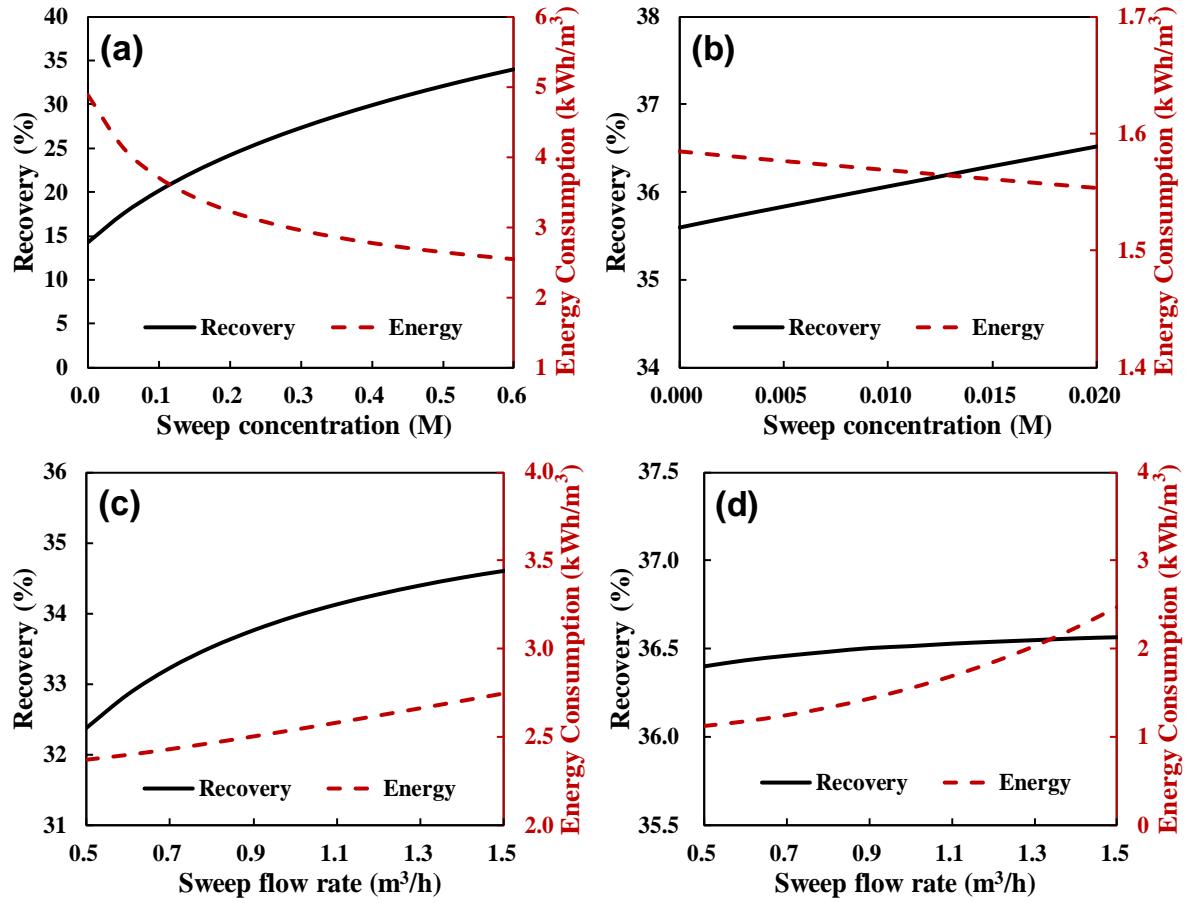
322

323 To further reveal the intrinsic relationship between the fiber geometry and water production

efficiency, the water recovery and energy consumption are plotted against both the fiber length and diameter as shown in **Fig. 6**. In both cases, when the fiber diameter is fixed the water recovery increased monotonously with enhancing fiber length (**Figs. 6a and c**). Thus, the energy consumption decreased as increasing fiber length with any fiber diameter in the case of brackish water reuse (**Fig. 6d**). However, for the case of seawater desalination, the energy consumption first decreased and then increased with enhancing fiber length especially as the fiber diameter is less than 70 μm , indicating the existence of optimum fiber length (**Fig. 6b**). Therefore, energy consumption is mainly dependent on fiber diameter and fiber length for high-salinity seawater and low-salinity brackish water, respectively (**Figs. 6b and d**). There exists a trade-off and economic optimum fiber geometry by balancing the energy and recovery. It may be necessary to choose relatively longer fibers for achieving highly efficient brackish water reuse. Whereas, in the case of seawater desalination, larger diameter fibers are preferred.

337

340 **Fig. 6.** Simulated (a, c) water recovery and (b, d) specific energy consumption of commercial
341 HF RO membrane module with varied module length and fiber inner diameter for seawater
342 and brackish water. Simulation conditions: number density of fibers in the cross-section of
343 module varied with fiber diameter since distance between two fibers fixed as 53 μm ; both the
344 feed and sweep flow rates fixed as 1 m^3/h . (a-b) 0.6 M NaCl as FS, 0.6 M KH₂PO₄ as SS, and
345 operating pressure of 40 bar; (c-d) 0.02 M NaCl as FS, 0.02 M KH₂PO₄ as SS, and operating
346 pressure of 20 bar.


347

348 **4.2. Assessing the desalination performance under different process parameters**

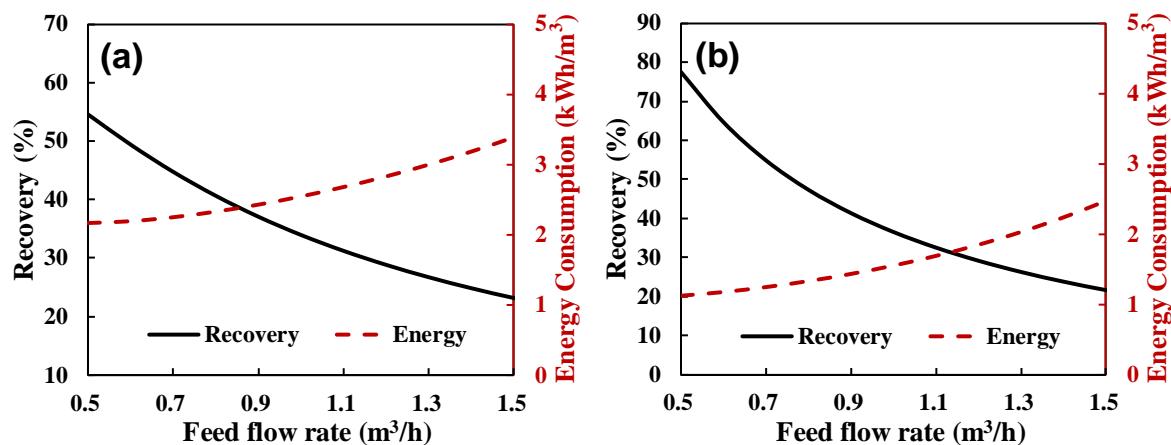
349 In this section, we systematically investigate the impacts of operating parameters including
350 sweep concentration, flow rate, and operating pressure on the filtration performance of the
351 OERO process, and elaborate their inherent relationships (**Figs. 7 and 8**).

352 In both cases, the water recovery increased monotonically with increasing sweep
353 concentration (**Figs. 7a-b**) owing to the higher driving force resulting from increasable
354 osmotic pressure of the sweep solution (i.e., larger $\pi_{s,b}$ in eq. (1)). The enhanced water
355 recovery results in the decrease of energy consumption (**Figs. 7a-b**). Increasing sweep flow
356 rate would alleviate concentration polarization, resulting in an increase of water recovery
357 (**Fig. 7c**). However, higher sweep flow rate also results in an enhancement of the pressure
358 drop in the pore side (i.e., larger P_i in eq. (4)), indicating a lower effective hydraulic pressure.
359 Meanwhile, compared to the high-salinity seawater desalination, the concentration
360 polarization degree is less in the reuse of low-salinity brackish water because of the low
361 sweep concentration. As a result, the sweep flow rate influencing on the water recovery is not
362 significant in the case of brackish water reuse (**Fig. 7d**). In addition, increasing sweep flow
363 rate leads to a dramatic increase in the energy consumption for both cases because of the
364 increased power consumption by the sweep low-pressure pump (i.e., larger $P_{sw}Q_{sw}(\varepsilon_{pump})^{-1}$
365 in eq. (23)) (**Figs. 7c-d**).

366

367

368


Fig. 7. Simulated water recovery and specific energy consumption of commercial HF RO membrane module with varied (a-b) sweep concentration and (c-d) sweep flow rate. Simulation conditions: feed flow rate fixed as 1 m³/h. Sweep flow rate fixed as (a-b) 1 m³/h; FS fixed as (a and c) 0.6 M NaCl and (b and d) 0.02 M NaCl, respectively; operating pressure fixed as (a and c) 40 bar and (b and d) 20 bar, respectively; SS fixed as (c) 0.6 M KH₂PO₄ and (d) 0.02 M KH₂PO₄, respectively.

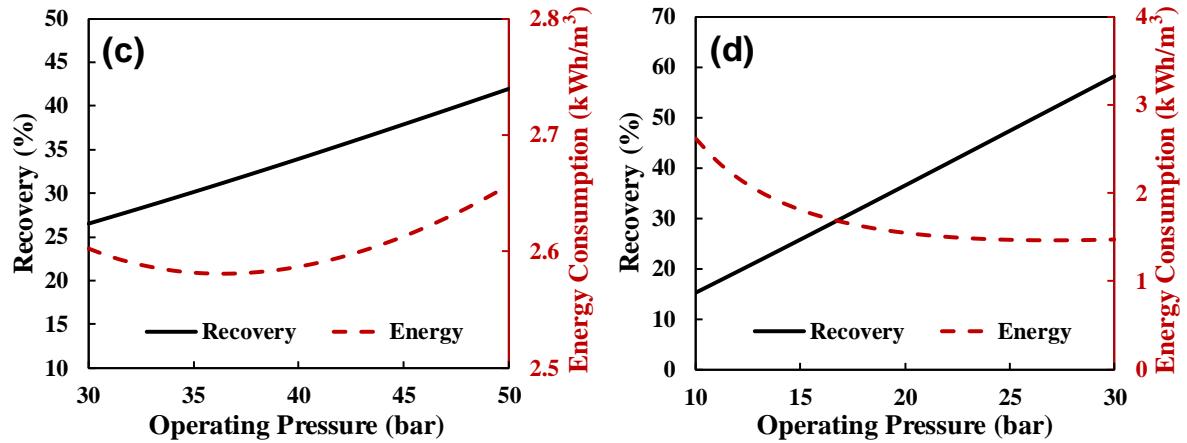
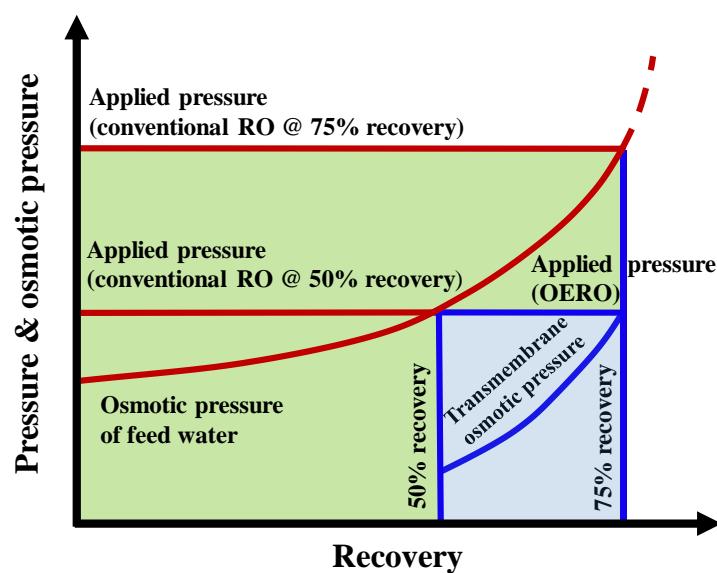

375

Fig. 8 presents the effects of feed flow rate and operating pressure on the water recovery and specific energy consumption. In both cases, decreasing feed flow rate significantly increases the water recovery and decreases the energy consumption, indicating that a suitable flow rate is of significant importance for realizing efficient desalination (**Figs. 8a-b**). The decreased energy consumption at the lower feed flow rate is attributed to the decreased power consumption by the feed high-pressure pump (i.e., smaller $P_f Q_f (\varepsilon_{\text{pump}})^{-1}$ in eq. (23)) and the lower pressure drop in the shell (i.e., smaller P_S in eq. (5)). Notably, when the feed flow

383 rate decreased to 0.5 m³/h, the energy consumption of high-salinity seawater desalination
 384 decreased to 2.2 kWh/m³, which is lower than 3 kWh/m³ (that is the current energy
 385 consumption level of the conventional seawater RO desalination [1]). It further confirms that
 386 the OERO system is more efficient than the conventional RO system. In both cases, **Figs.**
 387 **8c-d** present that increasing operating pressure enhances the water recovery linearly. This is
 388 attributed to the enhanced water flux at higher hydraulic pressure (**Figs. S3a-b**). The
 389 assessment of concentration polarization demonstrated that ICP provides the dominated
 390 resistance to mass transfer in typical OERO operation, which becomes more severe with the
 391 increase of operating pressure (**Figs. S3c-d**). Compared to the seawater desalination mode at
 392 the operating pressure of 40 bar, the water recovery of the brackish water desalination mode
 393 exhibited higher water recovery and lower energy consumption at the elevated operating
 394 pressure (>20 bar). The increased water recovery contributes to the decreased energy
 395 consumption. However, with further increase in operating pressure, the energy consumption
 396 gradually approaches a minimum value in the case of brackish water reuse (**Fig. 8d**) whereas
 397 it decreases first then increases in the case of seawater desalination (**Fig. 8c**). These results
 398 are attributed to the fact that the increased operating pressure results in a drastic enhancement
 399 in the power consumption by a high-pressure pump (i.e., larger $P_f Q_f (\varepsilon_{pump})^{-1}$ in eq. (23))
 400 especially when a high hydraulic pressure is applied as in the seawater desalination. An
 401 optimal operating pressure exists for high-salinity seawater to achieve highly efficient water
 402 production when other operating conditions are fixed.

403

405
406 **Fig. 8.** Simulated water recovery and specific energy consumption of commercial HF RO
407 membrane module with varied (a-b) feed flow rate and (c-d) operating pressure. Simulation
408 conditions: sweep flow rate fixed as 1 m³/h. Operating pressure fixed as (a) 40 bar and (b) 20
409 bar, respectively; feed flow rate fixed as (c-d) 1 m³/h; FS fixed as (a and c) 0.6 M NaCl and
410 (b and d) 0.02 M NaCl, respectively; SS fixed as (a and c) 0.6 M KH₂PO₄ and (b and d) 0.02
411 M KH₂PO₄, respectively.


412

413 **5. Implications**

414 The OERO process has been proven to be a feasible alternative for the desalination of saline
415 water with a higher water recovery at a lower operating pressure [8]. To address the
416 challenges of separation of low-concentration sweep solution from desalinated water for
417 recycle, a usable sweep solution can be used where appropriate. For example, a fertilizer
418 solution can be applied as sweep solution so that the permeate solutions can be directly used
419 for fertilized irrigation. Such an approach not only decreases the energy consumption of the
420 OERO process, but also achieves a near-zero liquid discharge especially for low-salinity feed
421 water. Although the concept of fertilizer drawn desalination has been suggested in the
422 forward osmosis process, the development is constrained by severe reverse solute flux and
423 the requirement of further dilution of the produced draw solution to meet the standard of
424 fertigation due to the limitation of osmotic equilibrium [14]. In the OERO system, the reverse
425 solute diffusion is less severe or even negligible [7]. The generated diluted fertilizer
426 permeation is potentially suitable for direct fertigation especially in the conditions of high
427 applied pressure and low concentration of sweep solution. For instance, the final diluted

428 sweep solution is 0.18 g/L KH_2PO_4 in the case of brackish water reuse ($P_f=20$ bar, $Q_f/Q_{sw}=10$,
 429 $C_{s,b}=0.005$ M), which is below the tolerable phosphate concentration of 194 mg/L for a drip
 430 irrigation system [40]. In addition, as supreme allowable hydraulic pressure of RO membrane
 431 is fixed, OERO process can be carried out within a range of water recovery where the
 432 conventional RO technology cannot tolerate (Fig. 9). Our study has also revealed that a
 433 higher water recovery (up to 90%) can be achieved by using a high permeability membrane,
 434 high sweep concentration and operating pressure in the case of brackish water reuse. Hence,
 435 OERO process shows great promise to break through the limit of conventional RO
 436 technology in desalination field.

437 Furthermore, the OERO system can alternatively be incorporated into the conventional
 438 multi-stage RO process. A previous study demonstrated that use of one or more permeable
 439 nanofiltration (NF) stages in connection to RO stages in series could increase overall water
 440 recovery and reduce energy consumption [32]. However, the combined NF-RO process is
 441 limited by the high solute permeability of the NF membrane, which would impact the quality
 442 of permeation. The OERO system may replace the NF stage to connect the RO stages for
 443 simultaneously supplying potable water and fertilized irrigation (Fig. S4). This combined
 444 OERO-RO system may be attractive in the water-scarce islands and inlands where
 445 agricultural activities are important to their economy.

446
 447 **Fig. 9.** Comparison of the pressure as a function of water recovery in the conventional RO
 448 and the OERO systems.

449

450 This study also presents us a conspicuous feasibility of hollow fiber membrane for the OERO
451 process in terms of high water recovery and low energy consumption. Nevertheless, there is
452 still much room for further improvement of the hollow fiber membrane. By increasing the
453 water permeance to $5.0 \text{ L/m}^2 \text{ h bar}$, the water productivity can achieve a 10-fold enhancement
454 for low-salinity brackish water reuse (**Fig. 4c**). Reducing the thickness of the membrane
455 support to $500 \mu\text{m}$ also leads to a 50% enhancement in the water productivity for
456 high-salinity seawater (**Fig. 4a**). However, decrease of the fiber structure parameter will lead
457 to the decrease of its mechanical strength. To address this issue, braid-reinforced hollow fiber
458 membrane could be fabricated to strengthen the membrane mechanical stability without
459 reducing the structure parameter [41]. In addition, membrane fouling is a pervasive problem
460 for all membrane processes. Especially the combined organic fouling and mineral scaling is a
461 key issue for treating high-salinity shale gas wastewaters [8]. Development of membranes
462 with antifouling properties are of special importance to achieve a more sustainable OERO
463 process in such applications. On the other hand, the tailoring of the sweep solution chemistry
464 may further allow the proper control of fouling and scaling of the RO membrane [42]. An
465 enhancement in flow rate alleviates concentration polarization, thereby mitigating fouling in
466 OERO. However, further increasing flow rate leads to a decrease in module efficiency (**Figs.**
467 **8a-b**) due to an increase in pressure drop and a reduction in water recovery [21]. This
468 indicates that an optimal flow rate is needed to realize an efficient operation. For the purpose
469 of fouling control, increasing flow rate can be potentially done intermittently to reverse some
470 of the fouling. Alternatively, operating in transient cycles/batches could be potentially
471 adopted. Nevertheless, further research is needed to verify the effectiveness of these
472 approaches for OERO. In summary, future studies should be focused on the optimization of
473 the OERO system on the basis of economic assessments, and development of
474 high-performance RO membranes (i.e., with low structure parameter, high water permeability,
475 and antifouling properties, etc.).

476

477 **6. Conclusion**

478 By establishing a mathematical model of a hollow fiber membrane module, we demonstrated
479 that the OERO unit with an appropriate sweep solution can achieve a higher water recovery
480 in treating both high-salinity seawater and low-salinity brackish water, than the conventional
481 RO process. The results indicate that the enhancement in water recovery can be achieved by
482 the decrease of the fiber structure parameter for high-salinity seawater, and by the increase of
483 the membrane permeance for low-salinity brackish water. Our examination of the fiber
484 geometry influence on water recovery revealed that longer fibers are preferable for
485 low-salinity brackish water, while fibers with larger diameters are more suitable for
486 high-salinity seawater. In addition, the water production efficiency can be enhanced by
487 increasing the sweep concentration and the operating pressure. A higher flow rate of the
488 sweep solution can effectively reduce the concentration polarization in the treatment of
489 high-salinity seawater. The simulation results are supported by experimental studies. Our
490 work provides theoretical perspectives for understanding the performance of hollow fiber
491 membrane modules in OERO plants and highlights the promise of the use of fertilizer as
492 sweep solution in the OERO process for “near zero discharge desalination”.

493

494 **Acknowledgements**

495 The study is supported by the Research Grants Council of the Hong Kong Special
496 Administration Region (C7051-17G), and is partially supported by the Program for
497 Guangdong Introducing Innovative and Entrepreneurial Teams (2019ZT08L213) and Key
498 Special Project for Introduced Talents Team of Southern Marine Science and Engineering
499 Guangdong Laboratory (Guangzhou) (GML2019ZD0403).

500

501 **List of Symbols**

502 *Latin symbols*

503 A permeability coefficient of water ($\text{m s}^{-1} \text{ bar}^{-1}$)

504 A_{fiber} occupied area of each fiber (m^2)

505 A_{flow} the cross sectional flow area in the fiber lumen (m^2)

506	$A_{hexagon}$	catchment area of each fiber (m ²)
507	B	permeability coefficient of salt (m s ⁻¹)
508	C	concentration of solute (mol L ⁻¹)
509	$C_{f,b}$	feed concentration (mol L ⁻¹)
510	$C_{s,b}$	sweep concentration (mol L ⁻¹)
511	D	diffusion coefficient of salt (m ² s ⁻¹)
512	d_h	hydraulic diameter (m)
513	d_i	inner diameter of the fiber (m)
514	d_o	outer diameter of the fiber (m)
515	d_p	characteristic diameter (m)
516	E	specific energy consumption (kWh m ⁻³)
517	f_d	distance between two fibers (m)
518	I	number of dissociating species (-)
519	J_s	salt flux (m ³ m ⁻² s ⁻¹)
520	J_w	water flux (m ³ m ⁻² s ⁻¹)
521	k	feed salt mass transfer coefficient (m s ⁻¹)
522	l_{mem}	fiber length (m)
523	P_b	channel pressure at the outlet (bar)
524	P_i	pressure drop in the pore side (bar)
525	P_f	feed pressure (bar)
526	P_{fiber}	perimeter of circular cross section of the fiber
527	P_{sw}	inlet pressure of sweep solution (bar)
528	P_S	pressure drop in the shell (bar)
529	Q_b	brine flow rate at the outlet (m ³ s ⁻¹)
530	Q_f	feed flow rate at the inlet (m ³ s ⁻¹)
531	Q_P	total permeated flow rate (m ³ s ⁻¹)
532	Q_{sw}	sweep flow rate (m ³ s ⁻¹)
533	R	gas constant (L bar mol ⁻¹ K ⁻¹)
534	R_e	Reynolds number (-)
535	S	structure parameter of the membrane (m)

536 S_c Schmidt number (-)
537 S_h Sherwood number (-)
538 S_{h1} parameter used for determining Sherwood number (-)
539 S_{h2} parameter used for determining Sherwood number (-)
540 S_{h3} parameter used for determining Sherwood number (-)
541 T temperature (K)
542

543 *Greek Letters*

544 ΔP applied hydraulic pressure (bar)
545 ε void fraction of the module (-)
546 ε_{ERD} energy recovery device efficiency (-)
547 ε_{pump} high pressure pump efficiency (-)
548 μ feed viscosity (Pa s)
549 $\pi_{f,b}$ feed osmotic pressure (bar)
550 $\pi_{s,b}$ sweep osmotic pressure (bar)
551 ρ liquid density (kg/m³)
552 v flow velocity (m s⁻¹)
553 v_i flow velocity in the pore side (m s⁻¹)
554 v_s flow velocity in the shell (m s⁻¹)
555

556 *Subscripts*

557 $NaCl$ NaCl salt solution
558 KH_2PO_4 KH₂PO₄ salt solution
559

560 **References**

561 [1] M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology,
562 and the environment, *Science* 333 (2011) 712-717.
563 [2] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis
564 desalination: Water sources, technology, and today's challenges, *Water Res.* 43 (2009)
565 2317-2348.

566 [3] C.Y. Tang, Z. Yang, H. Guo, J.J. Wen, L.D. Nghiem, E. Cornelissen, Potable Water
567 Reuse through Advanced Membrane Technology, *Environ. Sci. Technol.* 52(18) (2018)
568 10215-10223.

569 [4] X. Li, D. Hasson, R. Semiat, H. Shemer, Intermediate concentrate demineralization
570 techniques for enhanced brackish water reverse osmosis water recovery-A review,
571 *Desalination* 466 (2019) 24-35.

572 [5] J.R. Werber, A. Deshmukh, M. Elimelech, The critical need for increased selectivity, not
573 increased water permeability, for desalination membranes, *Environ. Sci. Technol. Lett.* 3
574 (2016) 112-120.

575 [6] X. Chen, N.Y. Yip, Unlocking high-salinity desalination with cascading osmotically
576 mediated reverse osmosis: energy and operating pressure analysis, *Environ. Sci. Technol.*
577 52 (2018) 2242-2250.

578 [7] J. Kim, D.I. Kim, S. Hong, Analysis of an osmotically-enhanced dewatering process for
579 the treatment of highly saline (waste) waters, *J. Membr. Sci.* 548 (2018) 685-693.

580 [8] C.D. Peters, N.P. Hankins, Osmotically assisted reverse osmosis (OARO): Five
581 approaches to dewatering saline brines using pressure-driven membrane processes,
582 *Desalination* 458 (2019) 1-13.

583 [9] J. Kim, J. Kim, J. Kim, S. Hong, Osmotically enhanced dewatering-reverse osmosis
584 (OED-RO) hybrid system: implications for shale gas produced water treatment, *J.*
585 *Membr. Sci.* 554 (2018) 282-290.

586 [10] T.V. Bartholomew, L. Mey, J.T. Arena, N.S. Siefert, M.S. Mauter, Osmotically assisted
587 reverse osmosis for high salinity brine treatment, *Desalination* 421 (2017) 3-11.

588 [11] C.D. Peters, N.P. Hankins, The synergy between osmotically assisted reverse osmosis
589 (OARO) and the use of thermo-responsive draw solutions for energy efficient,
590 zero-liquid discharge desalination, *Desalination* 493 (2020) 114630.

591 [12] L. Chekli, Y. Kim, S. Phuntsho, S. Li, N. Ghaffour, T. Leiknes, H.K. Shon, Evaluation
592 of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid
593 regions, *J. Environ. Manage.* 187 (2017) 137-145.

594 [13] M. Xie, M. Zheng, P. Cooper, W.E. Price, L.D. Nghiem, M. Elimelech, Osmotic dilution
595 for sustainable green wall irrigation by liquid fertilizer: Performance and implications, *J.*

596 Membr. Sci. 494 (2015) 32-38.

597 [14] S. Phuntsho, H.K. Shon, S. Hong, S. Lee, S. Vigneswaran, A novel low energy fertilizer
598 driven forward osmosis desalination for direct fertigation: Evaluating the performance
599 of fertilizer draw solutions, J. Membr. Sci. 375 (2011) 172-181.

600 [15] Y.C. Kim, M. Elimelech, Adverse Impact of Feed Channel Spacers on the Performance
601 of Pressure Retarded Osmosis, Environ. Sci. Technol. 46 (2012) 4673-4681.

602 [16] C. Lee, J. Jang, N.T. Tin, S. Kim, C.Y. Tang, I.S. Kim, Effect of spacer configuration on
603 the characteristics of FO membranes: Alteration of permeation characteristics by
604 membrane deformation and concentration polarization, Environ. Sci. Technol. 54(10)
605 (2020) 6385-6395.

606 [17] Q.H. She, D.X. Hou, J.X. Liu, K.H. Tan, C.Y. Tang, Effect of feed spacer induced
607 membrane deformation on the performance of pressure retarded osmosis (PRO):
608 Implications for PRO process operation, J. Membr. Sci. 445 (2013) 170-182.

609 [18] W. Gai, D.L. Zhao, T.S. Chung, Thin film nanocomposite hollow fiber membranes
610 comprising Na⁺functionalized carbon quantum dots for brackish water desalination,
611 Water Res. 154 (2019) 54-61.

612 [19] Y. Tanaka, M. Yasukawa, S. Goda, H. Sakurai, M. Shibuya, T. Takahashi, M. Kishimoto,
613 M Higa, H. Matsuyama, Experimental and simulation studies of two types of 5-inch
614 scale hollow fiber membrane modules for pressure-retarded osmosis, Desalination 447
615 (2018) 133-146.

616 [20] D. Attarde, M. Jain, P.K. Singh, S.K. Gupta, Energy-efficient seawater desalination and
617 wastewater treatment using osmotically driven membrane processes, Desalination 413
618 (2017) 86-100.

619 [21] N. Togo, K. Nakagawa, T. Shintani, T. Yoshioka, T. Takahashi, E. Kamio, H.
620 Matsuyama, Osmotically assisted reverse osmosis utilizing hollow fiber membrane
621 module for concentration process, Ind. Eng. Chem. Res. 58 (2019) 6721-6729.

622 [22] M. Askari, C.Z. Liang, L.T. Choong, T.S. Chung, Optimization of TFC-PES hollow
623 fiber membranes for reverse osmosis (RO) and osmotically assisted reverse osmosis
624 (OARO) applications, J. Membr. Sci. 625 (2021) 119156.

625 [23] W.X. Fang, R. Wang, S.R. Chou, L. Setiawan, A.G. Fane, Composite forward osmosis

626 hollow fiber membranes: Integration of RO- and NF-like selective layers to enhance
627 membrane properties of anti-scaling and anti-internal concentration polarization, *J.*
628 *Membr. Sci.* 394-395 (2012) 140-150.

629 [24] M. Sekino, Study of an analytical model for hollow fiber reverse osmosis module
630 systems, *Desalination* 100 (1995) 85-97.

631 [25] M. Shibuya, M. Yasukawa, S. Goda, H. Sakurai, T. Takahashi, M. Higa, H. Matsuyama,
632 Experimental and theoretical study of a forward osmosis hollow fiber membrane
633 module with a cross-wound configuration, *J. Membr. Sci.* 504 (2016) 10-19.

634 [26] F. Lipnizki, R.W. Field, Mass transfer performance for hollow fibre modules with
635 shell-side axial feed flow: using an engineering approach to develop a framework, *J.*
636 *Membr. Sci.* 193 (2001) 195-208.

637 [27] V. Vitagliano, P.A. Lyons, Diffusion coefficients for aqueous solutions of sodium
638 chloride and barium chloride, *J. Am. Chem. Soc.* 78 (1956) 1549-1552.

639 [28] H.L. Zhang, S.J. Han, Viscosity and density of water + sodium chloride + potassium
640 chloride solutions at 298.15 K, *J. Chem. Eng. Data* 41 (1996) 516-520.

641 [29] F. Chenlo, R. Moreira, G. Pereira, M.J. Vázquez, Viscosity of binary and ternary
642 aqueous systems of NaH₂PO₄, Na₂HPO₄, Na₃PO₄, KH₂PO₄, K₂HPO₄, and K₃PO₄, *J.*
643 *Chem. Eng. Data* 41 (1996) 906-909.

644 [30] J.D. Hatfield, O.W. Edwards, R.L. Dunn, Diffusion coefficients of aqueous solutions of
645 ammonium and potassium orthophosphates at 25°, *J. Phys. Chem.* 70 (1966)
646 2555-2561.

647 [31] D.C. Tanugi, R.K. McGovern, S.H. Dave, J.H. Lienhard, J.C. Grossman, Quantifying the
648 potential of ultra-permeable membranes for water desalination, *Energ. Environ. Sci.* 7
649 (2014) 1134-1141.

650 [32] A. Zhu, P.D. Christofides, Y. Cohen, Energy consumption optimization of reverse
651 osmosis membrane water desalination subject to feed salinity fluctuation, *Ind. Eng.*
652 *Chem. Res.* 48(21) (2009) 9581-9589.

653 [33] R.F.G.J. King, B. Jones, J.P. O'Hara, The availability of water associated with glycogen
654 during dehydration: a reservoir or raindrop? *Eur. J. Appl. Physiol.* 118 (2018) 283-290.

655 [34] J.H. Oh, A. Jang, Application of chlorine dioxide (ClO₂) to reverse osmosis (RO)

656 membrane for seawater desalination, *J. Taiwan Inst. Chem. Eng.* 68 (2016) 281-288.

657 [35] Z. Yang, H. Guo, C.Y. Tang, The upper bound of thin-film composite (TFC) polyamide
658 membranes for desalination, *J. Membr. Sci.* 590 (2019) 117297.

659 [36] C.Y. Tang, Q. She, W.C.L. Lay, R. Wang, R. Field, A.G. Fane, Modeling double-skinned
660 FO membranes, *Desalination* 283 (2011) 178-186.

661 [37] D. Xiao, W. Li, S. Chou, R. Wang, C.Y. Tang, A modeling investigation on optimizing
662 the design of forward osmosis hollow fiber modules, *J. Membr. Sci.* 392-393 (2012)
663 76-87.

664 [38] M.G. Ahunbay, S.B. Tantekin-Ersolmaz, W.B. Krantz, Energy optimization of a
665 multistage reverse osmosis process for seawater desalination, *Desalination* 429 (2018)
666 1-11.

667 [39] X. Li, J. Li, H. Wang, X. Huang, B. He, Y. Yao, J. Wang, H. Zhang, H.H. Ngo, W. S.
668 Guo, A filtration model for prediction of local flux distribution and optimization of
669 submerged hollow fiber membrane module, *AIChE J.* 61(12) (2015) 4377-4386.

670 [40] S. Phuntsho, H.K. Shon, T. Majeed, I. El Salibya, S. Vigneswarana, J. Kandasamy, S.
671 Hong, S. Lee, Blended fertilisers as draw solutions for fertilizer-drawn forward osmosis
672 desalination, *Environ. Sci. Technol.* 46 (2012) 4567-4575.

673 [41] L. Xia, J. Ren, J.R. McCutcheon, Braid-reinforced thin film composite hollow fiber
674 nanofiltration membranes, *J. Membr. Sci.* 585 (2019) 109-114.

675 [42] M. Zhang, Q. She, X. Yan, C.Y. Tang, Effect of reverse solute diffusion on scaling in
676 forward osmosis: A new control strategy by tailoring draw solution chemistry,
677 *Desalination* 401(2017) 230-237.

678