

1 **Multilayer assembly of thin-film nanocomposite membranes with**
2 **enhanced NaCl and antibiotic rejection**

3 Pengcheng Su,^{a#} Miaomiao Jia,^{a#} Junping Huang,^a Wanbin Li,^{a,b,*} and Chuyang Y. Tang^{b,*}

4 ^a Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment,
5 Jinan University, Guangzhou 511443, P.R. China.

6 ^b Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077,
7 P. R. China.

8 *Corresponding authors: E-mail: gandeylin@126.com (W. Li), tangc@hku.hk (C. Tang)

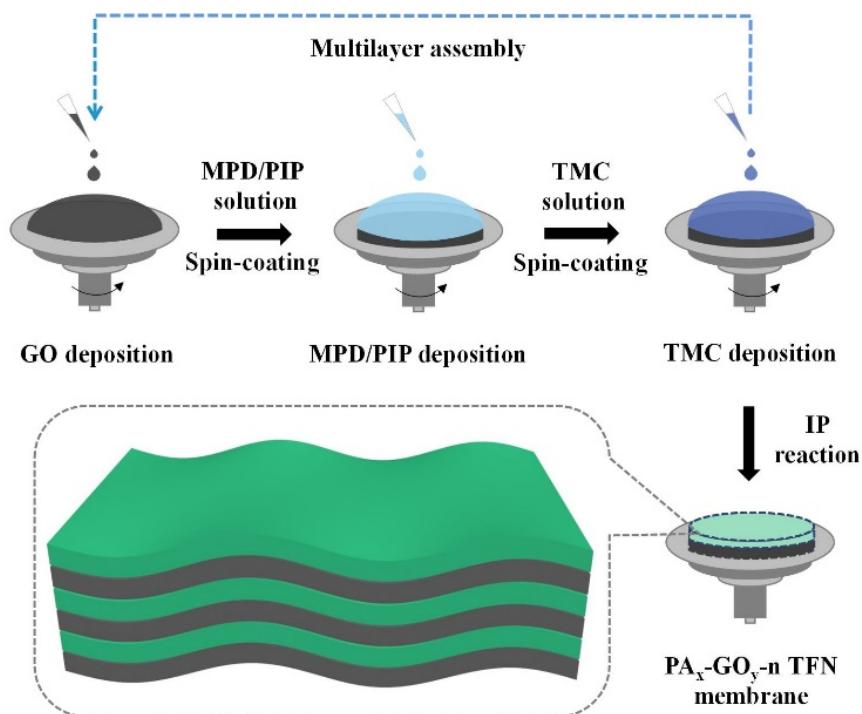
9 [#]These authors contributed equally to this work.

10 ABSTRACT. Reverse osmosis and nanofiltration by thin-film nanocomposite (TFN) membranes
11 are energy-efficient processes for water purification. However, it is difficult to fabricate high-
12 performance TFN membranes in controllable manner. In this work, the uniform and multilayered
13 polyamide (PA)-graphene oxide (GO) TFN membranes were assembled by a simple and
14 controllable strategy, named as multilayer deposition, which was performed by consecutively spin-
15 coating GO, meta-phenylene diamine (MPD)/piperazine (PIP), and trimesoyl chloride (TMC)
16 solutions on the substrates. The introduction of GO could reduce defects, resulting in formation of
17 smooth and defect-free reverse osmosis/nanofiltration membranes with significantly increased
18 NaCl and antibiotic rejection. For example, the TFN reverse osmosis membrane showed NaCl
19 rejection of 99.1% and water permeance of $1.83 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$, accompanied by substantially
20 enhanced antifouling property.

21 **Keywords:** Thin-film nanocomposite, Polyamide, Graphene oxide, Multilayer assembly, Water
22 purification

23 **1. Introduction**

24 Reverse osmosis (RO) and nanofiltration (NF) membranes, featuring high energy efficiency
25 and environmental friendliness compared to other competing separation technologies, have been
26 widely employed to obtain fresh water through seawater desalination and wastewater reclamation
27 [1-3]. The most common type of RO/NF membranes are polyamide (PA) thin-film composite
28 (TFC) membranes that exhibit reasonable separation properties and stability. In the past decades,
29 researchers have been attempting to overcome the permeability-selectivity upper bound by
30 developing RO/NF membranes with higher permeance and higher rejection simultaneously [4,5].
31 One effective strategy is the inclusion of nanomaterials in PA to form thin-film nanocomposite
32 (TFN) membranes. TFN membranes are fabricated by loading nanomaterials into amine and/or
33 acyl chloride monomer solutions used for the interfacial polymerization (IP), which imparts
34 enhanced separation performances and additional special functions (e.g., antifouling properties)
35 [6-8].


36 Many kinds of nanomaterials with different dimensions including nanoparticles (e.g., silica
37 [9,10] and metal-organic framework (MOF) nanoparticles [11-13]), nanowires/tubes (e.g., carbon
38 nanotubes [14-16]), and nanosheets (e.g., carbon nitride [17] and covalent organic framework
39 nanosheets [18]) have been used as nanofillers in TFN membranes to tailor transport channels for
40 enhancing water permeation and obtaining high selectivity. For example, various ZnO
41 nanostructures such as nanoflowers, nanorods, and spherical nanoparticles were embedded into
42 PA layers for improving the desalination performance and antibacterial activity of TFN membrane.
43 The spherical ZnO nanoparticles embedded TFN membrane displayed 19.0% and 28.4% higher
44 water permeance than the membranes embedded with ZnO nanorods and nanoflowers,
45 respectively, owing to higher surface area and smaller size of spherical nanoparticles [19]. To

46 provide more transport pathways for water molecules, defective ZIF-8 nanoparticles with
47 additional inner porosity were used as nanofillers in TFN membranes, which endowed the
48 membranes with a 52.0% increase in water permeance than the pristine TFC membrane while
49 maintaining the NaCl rejection of 98.6% [20]. As one of the important derivatives of graphene,
50 graphene oxide (GO) nanosheets possess many advantages including ultrathin thickness, excellent
51 mechanical strength, low production cost, abundant functionality, and tunable physicochemical
52 property [21-27]. The hydrophilic oxygen-containing functional groups and non-oxidized regions
53 of GO can also accelerate the water transport through GO-based membranes. Due to these merits,
54 GO nanosheets have been considered as promising alternative nanofillers to prepare high-
55 performance TFN membranes [28-32].

56 Existing preparation approaches for PA-GO TFN membranes generally involve mixing GO
57 nanosheets in aqueous/organic monomer solutions or depositing them on substrates [33-35].
58 Although the doping of nanomaterials in PA layers contributes to the improvement of water
59 permeance, the easy aggregation of nanomaterials in polymeric matrixes poses a great challenge
60 of potentially impaired rejection. Furthermore, the traditional IP reaction can be completed within
61 ten seconds, thus making it difficult to control [36,37]. Multilayer assembly by step-by-step
62 deposition is a controllable, versatile, and useful approach to precisely prepare uniform thin films
63 on various substrates [38-42]. During multilayer assembly, each precursor solution is successively
64 and repetitively coated on substrates to grow thin films of controllable thickness (e.g., by the
65 number of coating cycles) [43,44]. Recently, the application of multilayer assembly strategy in
66 TFN membrane usually focused on the post modification of PA layers through surface layer-by-
67 layer coating, which could enhance the surface hydrophilicity and antifouling properties [3,39].
68 However, the compact surface coating layers may increase the diffusion resistance of water

69 molecules through TFN membranes. Considering the unique properties of GO, we envisage that
70 whether GO can be embedded into PA layers during multilayer assembly of TFC membranes for
71 preparing high-performance PA-GO TFN membranes in a more controllable and efficient manner.

72 In this work, we report a spin-coating multilayer assembly strategy for the preparation of PA-
73 GO TFN membranes (Fig. 1). This strategy possesses advantages of easy operability, good
74 controllability, and low solvent consumption. The deposited GO nanosheets provide stable and
75 confined interface for PA polymerization, resulting in PA-GO TFN membranes with uniform,
76 smooth, and defect-free rejection layers. These TFN membranes exhibit competitive desalination
77 and antibiotic separation performance with substantially improved antifouling ability, paving a
78 new direction for high performance TFN membranes.

79
80 **Fig. 1.** Illustration of fabrication and structure of PA-GO TFN membranes by spin-coating
81 multilayer assembly.

82 **2. Experimental**

83 **2.1. Materials**

84 Natural graphite flakes were purchased from XFnano Chemical Co., Ltd, China. Potassium
85 permanganate (KMnO₄), sodium nitrate (NaNO₃), sulfuric acid (H₂SO₄, 98 wt%), hydrogen
86 peroxide aqueous solution (H₂O₂, 30%), meta-phenylene diamine (MPD), piperazine (PIP), and
87 trimesoyl chloride (TMC) were purchased from Kutai Chemical Reagent Co., China. The solvent
88 of n-hexane was used without further purification. The polysulfone (PSF) ultrafiltration membrane
89 with a molecular weight cutoff of 100 kDa was used as substrate.

90 **2.2. Preparation of graphite oxide**

91 The graphite oxide was prepared by a modified Hummers method [45]. Natural graphite
92 flakes (2.0 g) and NaNO₃ (1.0 g) were gradually added into concentrated H₂SO₄ (46 mL) while in
93 ice water bath. And then KMnO₄ (6.0 g) was slowly added into the above mixture under constant
94 stirring and the mixture temperature was controlled below 20 °C. After reaction, the above
95 suspension was further stirred at 35 °C for about 1 hour and pure deionized water of 96 mL was
96 slowly added. The suspension temperature was heated to 98 °C for 40 min. Finally, the above
97 suspension was treated by 30% H₂O₂ solution and washed by 5% HCl solution and deionized water.
98 The obtained product was dried at 60 °C under vacuum for overnight to produce bulk graphite
99 oxide.

100 **2.3. Preparation of PA-GO RO membranes**

101 A GO suspension was obtained by ultrasonic exfoliation of graphite oxide powder in water
102 and then diluted to 0.1 mg/mL. PA-GO RO membranes were fabricated by the spin-coating
103 multilayer assembly (Fig. 1). A 200 μL of the GO suspension was firstly dropped onto a
104 polysulfone ultrafiltration membrane (PSF, molecular weight cutoff = 100 kDa) that was subjected

105 to rotation speed of 5000 rpm. For preparation of PA-GO RO membranes, a meta-phenylene
106 diamine (MPD) aqueous solution (0.1 or 1.0 mg/mL) was spin-coated on the substrate by the same
107 operation and then followed by a trimesoyl chloride (TMC) n-hexane solution (with a MPD/TMC
108 concentration ratio of 10) to complete one deposition cycle. PA-GO RO membranes with different
109 deposition cycles of 1, 3, 5, and 7 were prepared in the current study. Finally, the PA-GO RO
110 membranes were dried at 60 °C for 5 minutes for better polymerization. The obtained PA-GO RO
111 membranes are denoted as PA_x-GO_y-n membranes, where x, y, and n represent the MPD
112 concentration, GO concentration, and deposition cycles, respectively. For comparison purpose, PA
113 RO membranes were also prepared by same condition without GO suspension, and the
114 corresponding membranes are denoted as PA_x-n.

115 **2.4. Preparation of PA-GO NF membranes**

116 PA-GO NF membranes were fabricated by the same spin-coating multilayer assembly as the
117 PA-GO RO membranes. The GO suspension (0.1 mg/mL), piperazine (PIP) aqueous solution (0.1
118 mg/mL), and TMC n-hexane solution (0.1 mg/mL) were continuously spin-coated on the
119 polysulfone substrate to complete one deposition cycle. PA-GO NF membranes with different
120 deposition cycles of 1, 3, 5, and 7 were prepared in the current study. Finally, the PA-GO NF
121 membranes were dried at 60 °C for 5 minutes for better polymerization. The obtained PA-GO NF
122 membranes are denoted as PA_x-GO_y-n NF membranes, where x, y, and n represent the PIP
123 concentration, GO concentration, and deposition cycles, respectively. For comparison purpose, PA
124 NF membranes without GO were also prepared by same condition.

125 **2.5. Characterizations**

126 The morphologies of the prepared PA-GO TFN membranes were observed by a field-
127 emission scanning electron microscope (SEM, Ultra-55, Zeiss Co.) at an accelerating voltage of 5

128 kV. The samples were coated with thin gold layers to reduce the charging effect. The surface
129 structures of the PA-GO membranes were characterized by employing an atomic force microscope
130 (AFM, Bioscope Catalyst Nanoscope-V, Bruker, USA). The values of root mean square roughness
131 (Rq) and arithmetic average roughness (Ra) were calculated by NanoScope Analysis software. The
132 chemical structures of the samples were studied by using Fourier transform infrared spectrometer
133 (FTIR, ITRacer-100, Shimadzu CO.). X-ray photoelectron spectroscopy (XPS) experiments were
134 conducted by using an RBD upgraded PHI-5000C ESCA system (PerkinElmer). The hydrophilic
135 properties were investigated by using a contact angle meter (OCA20/data-physics, Germany). The
136 water contact angle was measured for at least three samples to obtain the average value. Surface
137 zeta potentials of membranes were evaluated using streaming potential analyzer (SurPASS, Anton
138 Paar, Austria) with 1mmol/L KCl aqueous solution as the background electrolyte. The solution pH
139 was controlled by using HCl and NaOH solutions to measure the zeta potential values at pH of 4–
140 10.

141 **2.6. Desalination performance test**

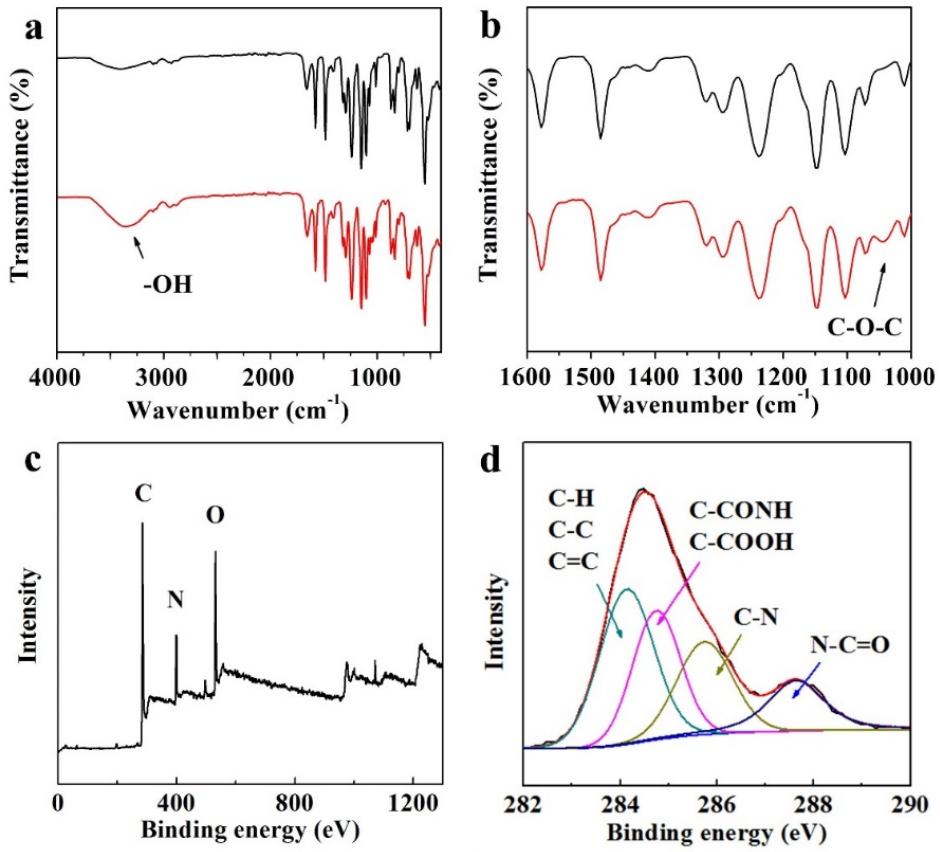
142 The desalination performance of the prepared PA-GO RO membranes was investigated by a
143 cross-flow filtration cell with an effective permeation area of 7.0 cm². The desalination experiment
144 was conducted using a 2000 mg/L NaCl solution as the feed with an applied pressure of 10 bar at
145 room temperature. The concentration of NaCl solution was measured by a conductivity meter. The
146 water permeance (P , L m⁻² h⁻¹ bar⁻¹) and NaCl rejection (R) of the membranes were calculated
147 according to the following equations (1) and (2), respectively:

$$P = \frac{V}{A \times t \times \Delta p} \quad (1)$$

$$R = \left(1 - \frac{C_p}{C_f} \right) \times 100\% \quad (2)$$

148 Where V (L) is the permeated water volume, A (m^2) is the effective membrane area, t (h) is
149 the permeated time, and Δp is the transmembrane pressure. The parameters C_f and C_p are the salt
150 concentrations in the feed and permeate solutions, respectively. The reported permeance and
151 rejection results for each membrane were the average of at least three membrane samples.

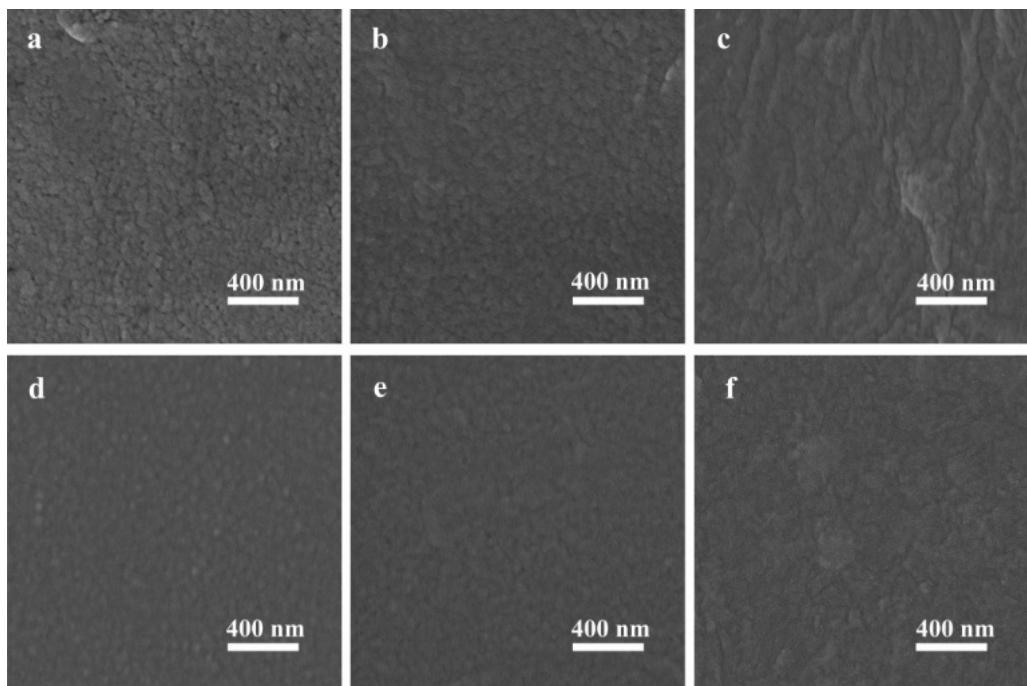
152 **2.7. Nanofiltration performance test**


153 The nanofiltration performance of the prepared PA-GO NF membranes was investigated by
154 a cross-flow filtration cell with an effective membrane area of 7.0 cm^2 . The nanofiltration test was
155 conducted employing chlortetracycline aqueous solution (100 mg/L) as the feed with an applied
156 pressure of 4 bar at room temperature. The concentration of chlortetracycline solution was
157 measured by UV characterization.

158 **2.8. Membrane fouling test**

159 Membrane fouling and cleaning properties were investigated by using sodium alginate (SA)
160 as model organic foulants. The prepared PA-GO RO membranes were first equilibrated with the
161 foulant-free background electrolyte solution ($1 \text{ mM CaCl}_2 + 47 \text{ mM NaCl}$) under pressure at room
162 temperature until water permeance became stable. For conducting membrane fouling test, a SA
163 stock solution was then added into the feed tank to obtain a final feed foulant concentration of 200
164 mg/L. After running for 360 min, the feed solution was replaced with DI water to flush the
165 membranes for removing the foulant. The pure water permeances of the membranes were then
166 measured to evaluate the fouling reversibility of membranes.

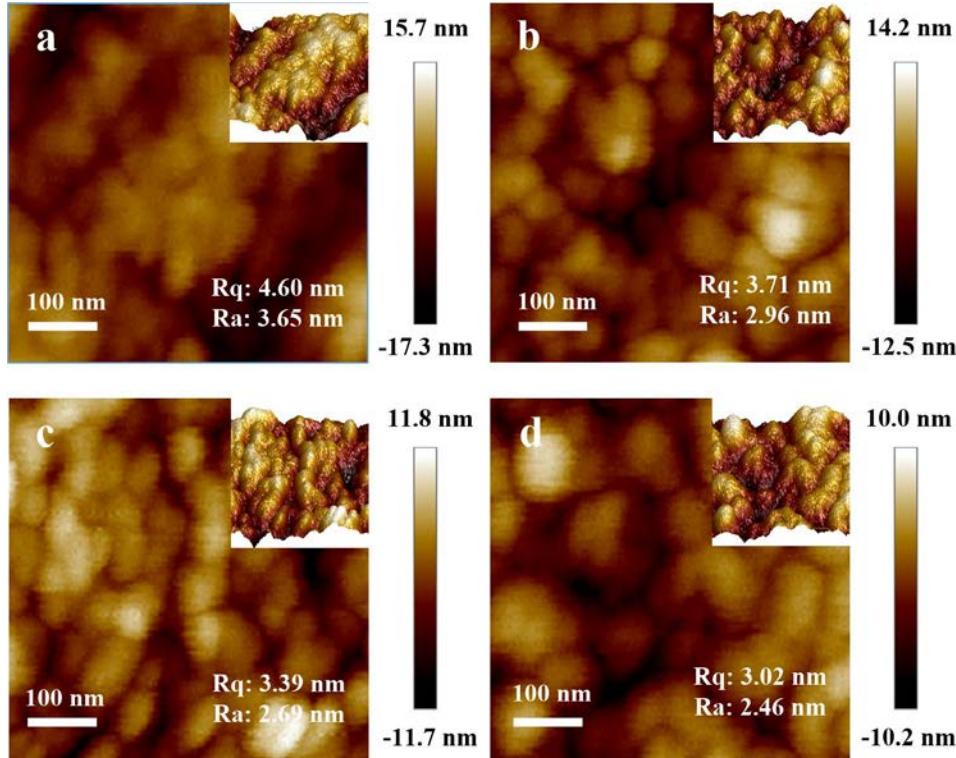
167 **3. Results and Discussion**


168 **3.1. Characterizations of PA-GO TFN membranes**

169
170 **Fig. 2.** (a and b) FTIR spectra of the PA₁-5 (black) and PA₁-GO_{0.1}-5 (red) RO membranes. (c) XPS
171 spectrum and (d) high-resolution C 1s XPS spectra of the PA₁-GO_{0.1}-5 RO membrane.

172 For fabrication of the PA-GO RO membranes, the GO suspension (0, 0.1, or 1.0 mg/mL),
173 MPD aqueous solution (0.1 or 1.0 mg/mL), and TMC n-hexane solution (with MPD/TMC ratio of
174 10) were consecutively spin-coated on the PSF substrates (Fig. 1). In the current study, the solvent
175 consumption was as low as 200 μ L for each coating cycle, which was much lower relative to the
176 conventional IP process [29,46]. Fig. 2a,b presents the FTIR spectra of the PA₁-5 and PA₁-GO_{0.1}-
177 5 RO membranes. Both membranes showed characteristic peaks at 1659, 1578, and 1485 cm^{-1} ,
178 which can be assigned to the stretching vibration of C=O, N-H, and C-N, respectively, proving the
179 successful preparation of polyamide selective layer. PA₁-GO_{0.1}-5 had a much more intense peak
180 at 3364 cm^{-1} compared to PA₁-5, resulting from the embedding of GO nanosheets with abundant

181 –OH groups. Concomitantly, a new characteristic peak at 1045 cm^{-1} emerged in the spectrum of
182 PA₁-GO_{0.1}-5, which is assigned to the epoxy groups of GO. These results verified the successful
183 incorporation of GO nanosheets into the TFN membranes. The XPS spectra were employed to
184 identify the PA polymerization. Compared with the PSF substrate (Fig. S1), a new peak of N 1s
185 appeared at binding energy of 399.6 eV in the spectrum of the PA₁-GO_{0.1}-5 membrane (Fig. 2c),
186 ascribing to the formation of PA layer. Since the membrane surface was completely covered by
187 the PA-GO layer, the S 2p peak of the PSF substrate almost disappeared after multilayer assembly.
188 The high-resolution C 1s spectra with four fitting peaks at 284.2 eV (C-H, C-C, and C=C), 284.8
189 eV (C-CONH and C-COOH), 285.8 eV (C-N), and 287.7 eV (N-C=O) confirmed the successful
190 PA polymerization based on Schotten-Baumann reaction between acyl chloride and amino (Fig.
191 2d).

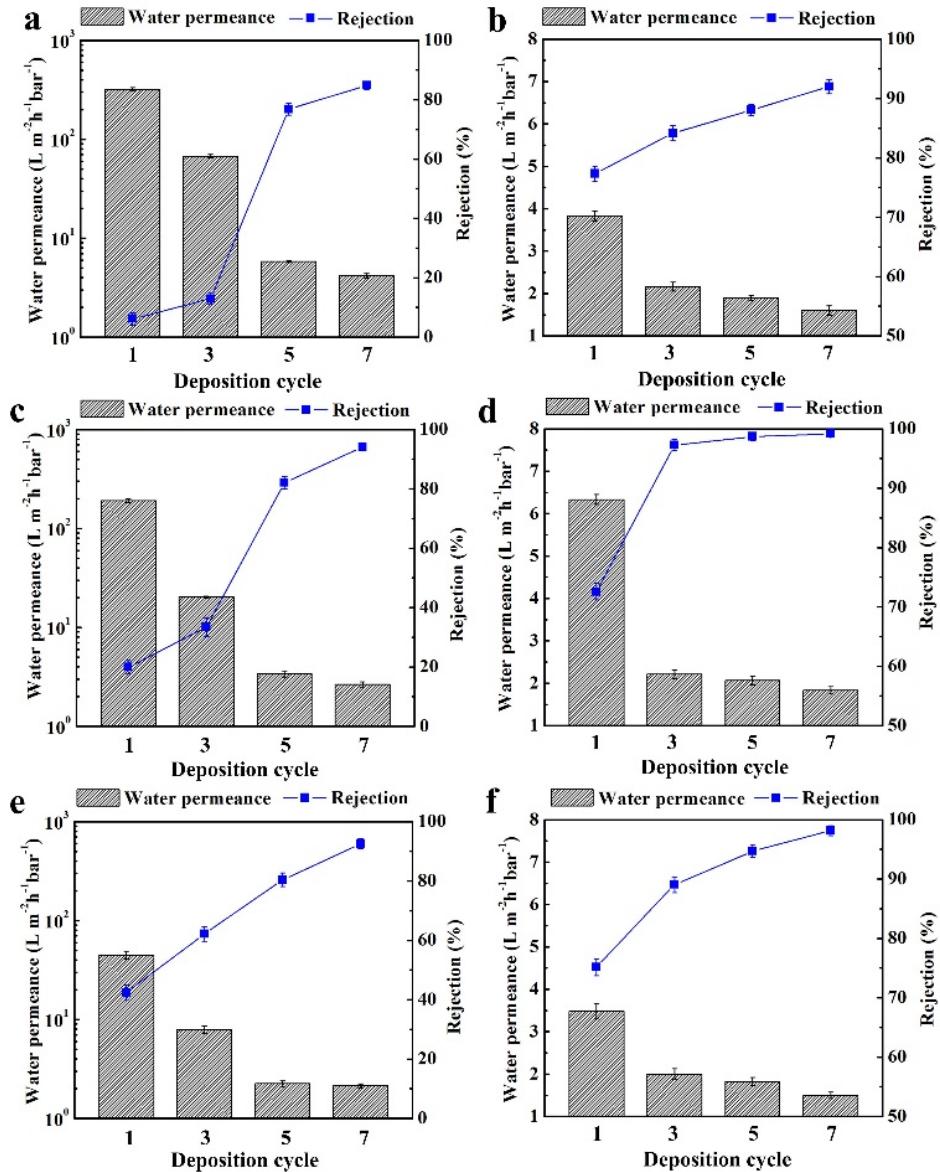


192
193 **Fig. 3.** SEM images of (a) PA_{0.1}-5, (b) PA_{0.1}-GO_{0.1}-5, (c) PA_{0.1}-GO₁-5, (d) PA₁-5, (e) PA₁-GO_{0.1}-
194 5 and (f) PA₁-GO₁-5 RO membranes.

195 Fig. 3 shows the SEM images of the PA and PA-GO RO membranes with same spin-coating
196 deposition cycles of 5 but different MPD and GO concentrations. The PA membrane with low
197 MPD concentration (PA_{0.1}-5) appeared discontinuous and defective (Fig. 3a), possibly due to the
198 penetration of the MPD aqueous solution into porous PSF substrate [43,47]. In contrast, the GO
199 containing RO membrane PA_{0.1}-GO_{0.1}-5 showed a defect-free and granular structure (Fig. 3b),
200 revealing the critical role of GO deposition in the formation of a continuous PA layer. GO
201 nanosheets provide stable reaction interface, prevent monomer solution penetration into substrate,
202 and improve MPD storage for better interfacial polymerization. The resulted granular structure
203 may be originated from the higher affinity of MPD molecules to the oxygen-containing groups on
204 GO nanosheets, thereby leading to the preferential polymerization of PA on these regions. With
205 the increase of GO concentration to 1.0 mg/mL, the PA_{0.1}-GO₁-5 membrane displayed some
206 wrinkles (Fig. 3c), which are often observed in pure GO membranes [48,49]. As expected, the
207 increase of MPD concentration could also promote the formation of continuous PA membranes
208 (see PA₁-5 in Fig. 3d). As GO concentration increased to 1.0 mg/mL, wrinkles also appeared for
209 the membrane PA₁-GO₁-5 (Fig. 3f), though they were less obvious compared with PA_{0.1}-GO₁-5.
210 Additional PA-GO membranes PA₁-GO_{0.1}-n (with MPD concentration fixed at 1.0 mg/mL, GO
211 concentration fixed at 0.1 mg/mL, and over different deposition cycles) are presented in Fig. S2 in
212 the supporting information. Clearly, as the number of deposition cycle increased, the prepared PA-
213 GO RO membranes became more continuous with a denser surface. We also conducted the cross-
214 sectional SEM characterization of the PA₁-GO_{0.1} RO membranes. As shown in Fig. S3, when
215 depositing 3 cycles, the PA₁-GO_{0.1}-3 RO membrane showed an ultrathin thickness at about 80 nm.
216 By increasing deposition cycles, the thickness of PA₁-GO_{0.1}-7 membrane increased to 160 nm.

217 Although greater thickness usually resulted in better continuity, smaller thickness brought higher
218 water permeance.

219 Unlike PA membranes prepared by conventional IP that possess rough surface with leaf-like
220 features, the multilayer-deposited PA membrane was much smoother due to the multistep micro-
221 polymerization from the step-by-step coating (Fig. 3 and 4). AFM characterization of the PA₁-5
222 membrane and PA₁-GO_{0.1}-1, PA₁-GO_{0.1}-5 and PA₁-GO_{0.1}-7 membranes shows that these
223 membranes had R_q < 5.0 nm and R_a < 4.0 nm, which are much lower than those of PA membranes
224 prepared by conventional IP [50-52]. Compared to the PA₁-5 membrane (R_q = 4.60 nm and R_a =
225 3.65 nm), the PA₁-GO_{0.1}-5 membrane with identical number of deposition cycle had slightly
226 reduced surface roughness (R_q = 3.39 nm and R_a = 2.69 nm). This may be interpreted by that the
227 GO nanosheets offer more stable and confined interface for polymerization. In addition, as the
228 deposition cycle increased from 1 to 7, the PA-GO membranes also became smoother, with R_q
229 decreased from 3.71 nm to 3.02 nm and R_a decreased from 2.96 nm to 2.46 nm. The inclusion of
230 GO nanosheets (Fig. S4) or increasing the deposition cycle (Fig. S5) were also effective in
231 reducing the water contact angle due to the oxygen-containing groups of GO nanosheets, which is
232 beneficial for enhanced separation performance [53]. The surface charges of the PA and PA-GO
233 membranes were measured by the zeta potential analysis. As shown in Fig. S6, both PA and PA-
234 GO membrane surfaces possessed negative charges in the pH range of 4–10, due to existence of
235 the carboxyl groups arising from the hydrolysis of residual acyl chloride groups. In contrast with
236 PA membrane, the PA-GO membrane had more negative charges, which should result from the
237 introduction of GO containing numerous negatively charged functional groups [33].

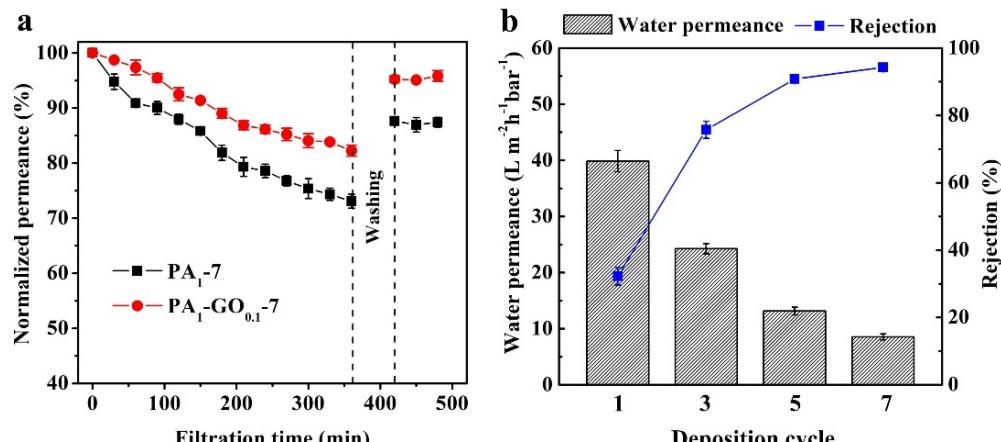

238

239 **Fig. 4.** AFM images of the PA ((a) PA₁₋₅) and PA-GO RO membranes ((b) PA₁-GO_{0.1-1}, (c) PA₁₋
240 GO_{0.1-5}, and (d) PA₁-GO_{0.1-7}). The insets were corresponding 3D AFM images of membranes.

241 **3.2. Desalination performance**

242 Membrane separation performance was evaluated by cross-flow filtration using a 2000 mg/L
243 NaCl solution (Fig. 5). For membranes prepared at any given MPD and GO concentrations,
244 increasing deposition cycles sharply decreased the water permeance and increased the NaCl
245 rejection, which can be attributed to the more continuous and thicker selective layers [43]. For the
246 PA_{0.1-n} series, the rejection remained relatively low (84.8%) even after deposition for 7 cycles.
247 The addition of GO nanosheets was able to substantially improve the membrane rejection, with
248 PA_{0.1}-GO_{0.1-7} and PA_{0.1}-GO₁₋₇ showing NaCl rejections of 94.1% and 92.6%, respectively. The
249 crumpled GO nanosheets of the PA-GO RO membranes with high GO loading may result in

250 unselective pathways for ion transports, which explains the slightly lower rejection of PA_{0.1}-GO₁-
251 7 compared to PA_{0.1}-GO_{0.1}-7.


252
253 **Fig. 5.** Desalination performances of (a) PA_{0.1}-n, (b) PA₁-n, (c) PA_{0.1}-GO_{0.1}-n, (d) PA₁-GO_{0.1}-n,
254 (e) PA_{0.1}-GO₁-n, and (f) PA₁-GO₁-n RO membranes with various deposition cycles of n. The error
255 bar was standard deviation calculated from three membrane samples at least.

256 All membranes formed with 1.0 mg/mL MPD, including PA₁-n (Fig. 5b), PA₁-GO_{0.1}-n (Fig.
257 5d), and PA₁-GO₁-n (Fig. 5f), exhibited higher rejection and lower permeance compared to their
258 respective counterparts formed with 0.1 mg/mL MPD. In particular, the PA₁-GO_{0.1}-n series
259 appeared most promising in terms of rejection performance. Even deposition for only 3 cycles, the
260 PA₁-GO_{0.1}-3 RO membrane showed a high rejection of 97.3% and permeance of 2.21 L m⁻² h⁻¹ bar⁻¹.
261 By increasing deposition cycles, the PA₁-GO_{0.1}-7 membrane showed an impressive rejection of
262 99.1% together with a permeance of 1.83 L m⁻² h⁻¹ bar⁻¹. These separation properties are highly
263 competitive against existing commercial RO membranes (Fig. S7) and other TFN membranes in
264 the reported literatures (Table S1) by exceeding the permeability-selectivity trade-off [54]. The
265 effect of feed concentration on desalination performance of the PA-GO membranes was also
266 assessed. Although the higher osmotic pressure and more serious concentration polarization at
267 high feed concentration caused a reduction of permeance, the PA-GO membranes exhibited stable
268 and even larger rejection (Fig. S8). We conducted the desalination test of PA₁-GO_{0.1}-7 RO
269 membrane at various pH values of 4, 7, and 10. The results showed that the water permeance of
270 membrane was independent of feed pH while rejection rate increased from 98.4 to 99.3% with
271 increasing feed pH from 4 to 10. This may be attributed to the stronger electrostatic repulsion
272 interactions at higher pH, as arising from increasingly negative charges on the membrane surfaces
273 [55].

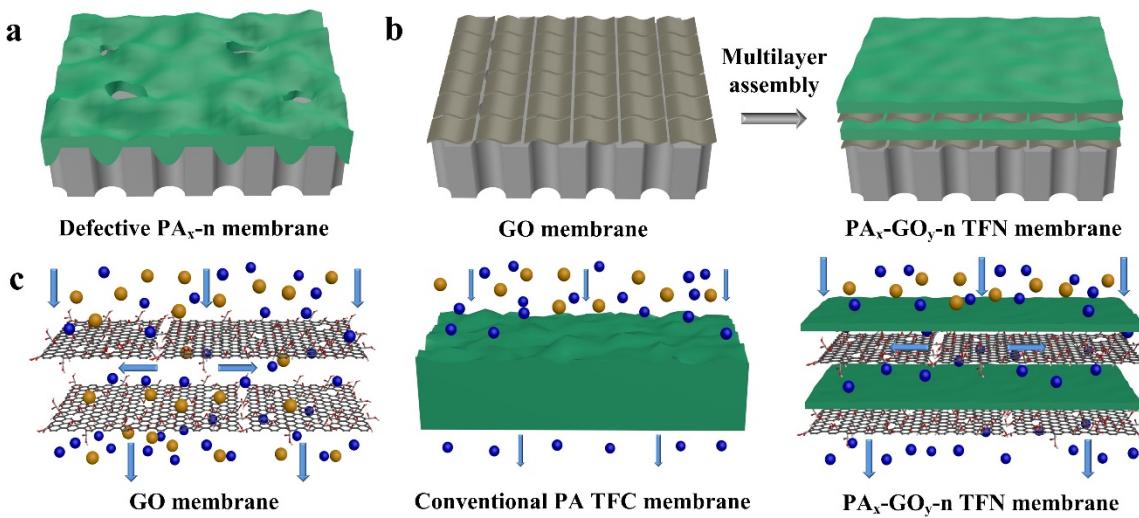
274 **3.3. Antifouling property**

275 The fouling behavior of the PA₁-7 and PA₁-GO_{0.1}-7 RO membranes were evaluated using SA
276 as model foulant. As shown in Fig. 6a, the PA₁-GO_{0.1}-7 membrane presented lower water
277 permeance reduction ratio (17.8%) in contrast with that (26.9%) of the PA₁-7 membrane, despite
278 that PA₁-GO_{0.1}-7 had a higher initial water permeance (1.65 L m⁻² h⁻¹ bar⁻¹ for PA₁-GO_{0.1}-7 vs. 1.43
279 L m⁻² h⁻¹ bar⁻¹ for PA₁-7). Fouling reversibility property was also investigated by flushing the

280 fouled membranes with DI water for 60 min. The PA-GO membrane displayed higher water
 281 permeance recovery ratio than that of the PA membrane. These results strongly suggest that PA-
 282 GO membranes possessed better antifouling performance, which can be attributed to more
 283 hydrophilic and smoother membrane surfaces due to introduction of GO [34]. Membrane long-
 284 term stability is one of the critical concerns when developing PA membrane for practical
 285 application. We investigated the stability of the PA-GO RO membrane by running for 48 hours.
 286 The membrane showed stable water permeance and salt rejection during the entire filtration time
 287 (Fig. S9), proving the excellent stability of the prepared PA-GO membrane.

288
 289 **Fig. 6.** (a) The fouling and fouling reversibility for the PA₁-7 and PA₁-GO_{0.1}-7 RO membranes
 290 using sodium alginate (SA, 200 mg/L) as model foulant. The initial water permeances of PA₁-7
 291 and PA₁-GO_{0.1}-7 membranes were 1.43 and 1.65 L m⁻² h⁻¹ bar⁻¹, respectively. (b) Water permeance
 292 and chlortetracycline rejection of PA_{0.1}-GO_{0.1}-n NF membranes with various deposition cycles of
 293 n.

294 3.4. Applicability of multilayer assembly


295 In order to demonstrate the general applicability of spin-coating multilayer assembly strategy
 296 and show the nanofiltration application of the prepared membranes, the multilayered PA-GO NF
 297 membranes with various deposition cycles were prepared by consecutively spin-coating GO, PIP,

298 and TMC solutions on the polysulfone substrates. As shown in Fig. S10, the PA_{0.1}-GO_{0.1}-7 NF
299 membrane showed smooth surfaces along with some wrinkles from GO nanosheets, which were
300 not appeared in PA_{0.1}-7 membrane. We also evaluated the antibiotic separation performances of
301 PA-GO NF membranes employing chlortetracycline aqueous solution at 4 bar. For PA-GO NF
302 membranes, increasing deposition cycles would decrease the water permeance and significantly
303 increase the chlortetracycline rejection (Fig. 6b). After coating for 5 cycles, the PA_{0.1}-GO_{0.1}-5 NF
304 membrane showed large water permeance of $13.1 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$ and chlortetracycline rejection of
305 90.8%. As coating cycle increased to 7, the PA_{0.1}-GO_{0.1}-7 NF membrane displayed a higher
306 rejection of 94.3% along with a permeance of $8.54 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$. For the pure PA_{0.1}-7 NF
307 membrane without GO, water permeance reduced to $7.49 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$ with a relatively low
308 rejection of 90.2%. These results demonstrate that the multilayer assembly strategy is available for
309 obtaining nanofiltration membranes with good antibiotic separation performance.

310 The multilayer assembly also shows good potential in many other aspects. For example, this
311 approach could be potentially extended to other TFN membrane chemistries, such as interfacial
312 polymerization by other amines and TMC [14,53], to target a wider range of contaminants and
313 separation processes. Future studies may also explore additional applications beyond simple
314 desalination and antibiotic separation, such as the removal of toxic organic micropollutants for
315 water reuse. In addition, membrane performance may be further improved by tailoring the
316 physicochemical properties of substrates, adjusting synthesis parameters, and replacing GO
317 nanosheets with porous nanomaterials [56,57]. In general, the multilayer assembly reported here
318 can be an excellent candidate to prepare high-performance TFN membrane for water treatment.

319 **3.5. Mechanism analysis**

320 In comparison with the PA TFC membranes, the PA-GO TFN membranes exhibited greater
 321 rejection, higher permeance, and enhanced antifouling performance. The greater rejection may be
 322 attributed to the formation of denser and more uniform selective layers. During the preparation of
 323 the PA TFC membranes, the small amount of the loaded MPD/PIP and TMC molecules and the
 324 infiltration of these monomer solutions into the porous substrates make it difficult to form
 325 continuous and uniform PA layers (Fig. 7a). For the PA-GO TFN membranes, the incorporated
 326 GO nanosheets may serve three functions to promote the formation of defect-free membranes (Fig.
 327 7b): (1) the GO nanosheets can increase the storage of MPD/PIP molecules due to their large
 328 number of oxygen-containing groups, thereby promoting the PA polymerization; (2) the deposited
 329 GO layers can provide stable interfaces and then facilitate the formation of more uniform PA-GO
 330 layers; and (3) the small pore size of the GO layers slow the diffusion of MPD/PIP molecules and
 331 reduce the intensity of Schotten-Baumann reaction for better polymerization [58,59].

332 **Fig. 7.** Schematics of multilayer assembly of (a) defective PA_x-n and (b) defect-free PA_x-GO_y-n
 333 TFN membranes, and (c) molecular transport through GO, conventional PA TFC, and PA_x-GO_y-
 334 n TFN membranes.

336 GO nanosheets also play an important role in the permeance of the PA-GO TFN membranes
337 (Fig. 7c). For pure GO membranes, all interlayer channels, inner pores, and inter-edge spaces can
338 be served as pathways for molecular transports [27,60]. Typically, GO possesses highly oxidized
339 and non-oxidized regions in molecular skeletons. The oxygen-containing groups can help adjacent
340 GO nanosheets to form interlayer transport channels and promote water molecules to quickly pass
341 through GO membranes in hydrated state. Moreover, the existence of non-oxidized regions in GO
342 can construct rapid capillary networks, which facilitate correlated water transport through the
343 membranes as nearly frictionless flow. All these facts result in the ultrahigh water permeance of
344 GO membranes. For the conventional PA TFC membranes, the trimesoyl chloride and amine
345 interfacial reaction produces highly crosslinked and dense polyamide network, rejecting the
346 passage of salt ions or antibiotics while showing relatively low water permeation. Compared with
347 the conventional PA TFC membranes governed by solution-diffusion mechanism, the insertion of
348 GO nanosheets endows the PA-GO TFN membranes with interlayer channels and capillary
349 networks for rapid water transport [28,29]. The multilayered structure of PA-GO TFN membranes
350 may also be beneficial to the enhancement in water permeance. Moreover, because of the more
351 hydrophilic and smoother surfaces from the introduction of GO in PA layers, the antifouling
352 property of PA-GO TFN membranes is enhanced.

353 **4. Conclusion**

354 In this study, we report the simple multilayer assembly strategy for preparation of PA-GO
355 reverse osmosis/nanofiltration membranes. Benefiting from the stepwise polymerization and
356 nanomaterial incorporation, the formation processes and membrane structures can be controlled
357 more effectively. The insertion of GO nanosheets by multilayer assembly improves the monomer
358 adsorption and offers stable interface, promoting the formation of uniform and defect-free TFN

359 membranes with increased NaCl and antibiotic rejection. The prepared PA-GO RO membrane
360 displayed the impressive NaCl rejection of 99.1% and water permeance of $1.83 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$,
361 accoupled with enhanced antifouling property. Overall, the multilayer assembly reported here
362 provides a promising alternative route to fabricate high-performance TFN membrane for water
363 purification.

364 **Supporting information.**

365 Characterizations (SEM, XPS, and water contact angles) and desalination performance of PA
366 TFC and PA-GO TFN membranes.

367 **Acknowledgements**

368 This work was financially supported by the Guangdong Basic and Applied Basic Research
369 Foundation (Grant No. 2020B1515120036) and the Hong Kong Scholars Program (Grant No.
370 XJ2019046). The work is also partially supported by a grant from the Research Grants Council of
371 the Hong Kong Special Administrative Region, China (GRF HKU 17204220).

372 **References**

373 [1] Z. Tan, S. Chen, X. Peng, L. Zhang, C. Gao, Polyamide membranes with nanoscale turing
374 structures for water purification, *Science* 360 (2018) 518-521.

375 [2] Z. Yang, P. Sun, X. Li, B. Gan, L. Wang, X. Song, H. Park, C. Tang, A critical review on
376 thin-film nanocomposite membranes with interlayered structure: mechanisms, recent
377 developments, and environmental applications, *Environ. Sci. Technol.* 54 (2020) 15563-15583.

378 [3] N.A. Ahmad, P.S. Goh, K.C. Wong, A.K. Zulhairun, A.F. Ismail, Enhancing desalination
379 performance of thin film composite membrane through layer by layer assembly of oppositely
380 charged titania nanosheet, *Desalination* 476 (2020) 114167.

381 [4] R. Zhang, J. Tian, S. Gao, B. Van der Bruggen, How to coordinate the trade-off between
382 water permeability and salt rejection in nanofiltration, *J. Mater. Chem. A* 8 (2020) 8831-8847.

383 [5] H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right
384 stuff: The trade-off between membrane permeability and selectivity, *Science* 356 (2017) eaab0530.

385 [6] H. Saleem, S.J. Zaidi, Nanoparticles in reverse osmosis membranes for desalination: A
386 state of the art review, *Desalination* 475 (2020) 114171.

387 [7] M. Ma, C. Zhang, C. Zhu, S. Huang, J. Yang, Z. Xu, Nanocomposite membranes embedded
388 with functionalized MoS₂ nanosheets for enhanced interfacial compatibility and nanofiltration
389 performance, *J. Membr. Sci.* 591 (2019) 117316.

390 [8] D.L. Zhao, S. Japip, Y. Zhang, M. Weber, C. Maletzko, T.S. Chung, Emerging thin-film
391 nanocomposite (TFN) membranes for reverse osmosis: A review, *Water Res.* 173 (2020) 115557.

392 [9] M. Bao, G. Zhu, L. Wang, M. Wang, C. Gao, Preparation of monodispersed spherical
393 mesoporous nanosilica-polyamide thin film composite reverse osmosis membranes via interfacial
394 polymerization, *Desalination* 309 (2013) 261-266.

395 [10] H. Shen, S. Wang, H. Xu, Y. Zhou, C. Gao, Preparation of polyamide thin film
396 nanocomposite membranes containing silica nanoparticles via an in-situ polymerization of SiCl₄
397 in organic solution, *J. Membr. Sci.* 565 (2018) 145-156.

398 [11] J. Zhu, L. Qin, A. Uliana, J. Hou, J. Wang, Y. Zhang, X. Li, S. Yuan, J. Li, M. Tian, J. Lin,
399 B. Van der Bruggen, Elevated performance of thin film nanocomposite membranes enabled by
400 modified hydrophilic MOFs for nanofiltration, *ACS Appl. Mater. Interfaces* 9 (2017) 1975-1986.

401 [12] Z. Wang, Z. Wang, S. Lin, H. Jin, S. Gao, Y. Zhu, J. Jin, Nanoparticle-templated
402 nanofiltration membranes for ultrahigh performance desalination, *Nat. Commun.* 9 (2018) 2004.

403 [13] Y. Zhao, Y. Liu, X. Wang, X. Huang, Y.F. Xie, Impacts of metal-organic frameworks on
404 structure and performance of polyamide thin-film nanocomposite membranes, *ACS Appl. Mater.*
405 *Interfaces* 11 (2019) 13724-13734.

406 [14] F.Y. Zhao, Y.L. Ji, X.D. Weng, Y.F. Mi, C.C. Ye, Q.F. An, C.J. Gao, High-flux positively
407 charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall
408 carbon nanotubes, *ACS Appl. Mater. Interfaces* 8 (2016) 6693-6700.

409 [15] H. Wu, H. Sun, W. Hong, L. Mao, Y. Liu, Improvement of polyamide thin film
410 nanocomposite membrane assisted by tannic acid-FeIII functionalized multiwall carbon nanotubes,
411 *ACS Appl. Mater. Interfaces* 9 (2017) 32255-32263.

412 [16] R. Cruz-Silva, Y. Takizawa, A. Nakaruk, M. Katouda, A. Yamanaka, J. Ortiz-Medina, A.
413 Morelos-Gomez, S. Tejima, M. Obata, K. Takeuchi, T. Noguchi, T. Hayashi, M. Terrones, M. Endo,
414 New insights in the natural organic matter fouling mechanism of polyamide and nanocomposite
415 multiwalled carbon nanotubes-polyamide membranes, *Environ. Sci. Technol.* 53 (2019) 6255-
416 6263.

417 [17] X. Gao, Y. Li, X. Yang, Y. Shang, Y. Wang, B. Gao, Z. Wang, Highly permeable and
418 antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as
419 nanofillers, *J. Mater. Chem. A* 5 (2017) 19875-19883.

420 [18] L. Xu, B. Shan, C. Gao, J. Xu, Multifunctional thin-film nanocomposite membranes
421 comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis
422 desalination, *J. Membr. Sci.* 593 (2020) 117398.

423 [19] R. Rajakumaran, M. Kumar, R. Chetty, Morphological effect of ZnO nanostructures on
424 desalination performance and antibacterial activity of thin-film nanocomposite (TFN) membrane,
425 *Desalination* 495 (2020) 114673.

426 [20] Q. Zhao, D.L. Zhao, T.S. Chung, Thin-film nanocomposite membranes incorporated with
427 defective ZIF-8 nanoparticles for brackish water and seawater desalination, *J. Membr. Sci.* 625
428 (2021) 119158.

429 [21] V. Vatanpour, A. Sanadgol, Surface modification of reverse osmosis membranes by grafting
430 of polyamidoamine dendrimer containing graphene oxide nanosheets for desalination
431 improvement, *Desalination* 491 (2020) 114442.

432 [22] L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G.
433 Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Ion sieving in
434 graphene oxide membranes via cationic control of interlayer spacing, *Nature* 550 (2017) 380-383.

435 [23] W. Li, W. Wu, Z. Li, Controlling interlayer spacing of graphene oxide membranes by
436 external pressure regulation, *ACS Nano* 12 (2018) 9309-9317.

437 [24] W. Wu, J. Su, M. Jia, W. Zhong, Z. Li, W. Li, Ultrastable sandwich graphene oxide hollow
438 fiber membranes with confined interlayer spacing, *J. Mater. Chem. A* 7 (2019) 13007-13011.

439 [25] L. Wang, N. Wang, J. Li, J. Li, W. Bian, S. Ji, Layer-by-layer self-assembly of
440 polycation/GO nanofiltration membrane with enhanced stability and fouling resistance, *Sep. Purif.
441 Technol.* 160 (2016) 123-131.

442 [26] J. Su, M. Jia, W. Wu, Z. Li, W. Li, Chemical vapor crosslinking of graphene oxide
443 membranes for controlling nanochannels, *Environ. Sci.: Nano* 7 (2020) 2924-2929.

444 [27] P. Su, F. Wang, Z. Li, C.Y. Tang, W. Li, Graphene oxide membranes: Controlling their
445 transport pathways, *J. Mater. Chem. A* 8 (2020) 15319-15340.

446 [28] S. Bano, A. Mahmood, S. Kim, K. Lee, Graphene oxide modified polyamide nanofiltration
447 membrane with improved flux and antifouling properties, *J. Mater. Chem. A* 3 (2015) 2065-2071.

448 [29] J. Yin, G. Zhu, B. Deng, Graphene oxide (GO) enhanced polyamide (PA) thin-film
449 nanocomposite (TFN) membrane for water purification, *Desalination* 379 (2016) 93-101.

450 [30] P. Wen, Y. Chen, X. Hu, B. Cheng, D. Liu, Y. Zhang, S. Nair, Polyamide thin film composite
451 nanofiltration membrane modified with acyl chlorided graphene oxide, *J. Membr. Sci.* 535 (2017)

452 208-220.

453 [31] C. Cheng, P. Li, K. Shen, T. Zhang, X. Cao, B. Wang, X. Wang, B.S. Hsiao, Integrated
454 polyamide thin-film nanofibrous composite membrane regulated by functionalized interlayer for
455 efficient water/isopropanol separation, *J. Membr. Sci.* 553 (2018) 70-81.

456 [32] F. Yu, H. Shi, J. Shi, K. Teng, Z. Xu, X. Qian, High-performance forward osmosis
457 membrane with ultra-fast water transport channel and ultra-thin polyamide layer, *J. Membr. Sci.*
458 616 (2020) 118611.

459 [33] H. Chae, J. Lee, C. Lee, I. Kim, P. Park, Graphene oxide-embedded thin-film composite
460 reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance, *J. Membr. Sci.*
461 483 (2015) 128-135.

462 [34] J. Shi, W. Wu, Y. Xia, Z. Li, W. Li, Confined interfacial polymerization of polyamide-
463 graphene oxide composite membranes for water desalination, *Desalination* 441 (2018) 77-86.

464 [35] N. Song, Y. Sun, X. Xie, D. Wang, F. Shao, L. Yu, L. Dong, Doping MIL-101(Cr)@GO in
465 polyamide nanocomposite membranes with improved water flux, *Desalination* 492 (2020) 114601.

466 [36] V. Freger, Nanoscale heterogeneity of polyamide membranes formed by interfacial
467 polymerization, *Langmuir* 19 (2003) 4791-4797.

468 [37] P.M. Johnson, J. Yoon, J.Y. Kelly, J.A. Howarter, C.M. Stafford, Molecular layer-by-layer
469 deposition of highly crosslinked polyamide films, *J. Polym. Sci., Part B: Polym. Phys.* 50 (2012)
470 168-173.

471 [38] W. Ma, A. Soroush, T. Van Anh Luong, G. Brennan, M.S. Rahaman, B. Asadishad, N.
472 Tufenkji, Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film
473 composite reverse osmosis membrane for biofouling mitigation, *Water Res.* 99 (2016) 188-199.

474 [39] F. Shao, C. Xu, W. Ji, H. Dong, Q. Sun, L. Yu, L. Dong, Layer-by-layer self-assembly TiO_2

475 and graphene oxide on polyamide reverse osmosis membranes with improved membrane durability,
476 Desalination 423 (2017) 21-29.

477 [40] Q. Li, G. Q. Chen, L. Liu, S. E. Kentish, Spray assisted layer-by-layer assembled one-
478 bilayer polyelectrolyte reverse osmosis membranes, *J. Membr. Sci.* 564 (2018) 501-507.

479 [41] M. Abbaszadeh, D. Krizak, S. Kundu, Layer-by-layer assembly of graphene oxide
480 nanoplatelets embedded desalination membranes with improved chlorine resistance, *Desalination*
481 470 (2019) 114116.

482 [42] W. D. Mulhearn, V. P. Oleshko, C. M. Stafford, Thickness-dependent permeance of
483 molecular layer-by-layer polyamide membranes, *J. Membr. Sci.* 618 (2021) 118637.

484 [43] J.E. Gu, S. Lee, C.M. Stafford, J.S. Lee, W. Choi, B.Y. Kim, K.Y. Baek, E.P. Chan, J.Y.
485 Chung, J. Bang, J.H. Lee, Molecular layer-by-layer assembled thin-film composite membranes for
486 water desalination, *Adv. Mater.* 25 (2013) 4778-4782.

487 [44] F. Fadhillah, S.M.J. Zaidi, Z. Khan, M.M. Khaled, F. Rahman, P.T. Hammond, Development
488 of polyelectrolyte multilayer thin film composite membrane for water desalination application,
489 Desalination 318 (2013) 19-24.

490 [45] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany,
491 W. Lu, J.M. Tour, Improved synthesis of graphene oxide, *ACS Nano* 4 (2010) 4806-4814.

492 [46] J.R. Ray, S. Tadepalli, S.Z. Nergiz, K.K. Liu, L. You, Y. Tang, S. Singamaneni, Y.S. Jun,
493 Hydrophilic, Bactericidal nanoheater-enabled reverse osmosis membranes to improve fouling
494 resistance, *ACS Appl. Mater. Interfaces* 7 (2015) 11117-11126.

495 [47] F. Foglia, S. Karan, M. Nania, Z. Jiang, A.E. Porter, R. Barker, A.G. Livingston, J.T. Cabral,
496 Neutron reflectivity and performance of polyamide nanofilms for water desalination, *Adv. Funct.*
497 *Mater.* 27 (2017) 1701738.

498 [48] G. Liu, W. Jin, N. Xu, Graphene-based membranes, *Chem. Soc. Rev.* 44 (2015) 5016-5030.

499 [49] Z. Chen, J. Wang, X. Duan, Y. Chu, X. Tan, S. Liu, S. Wang, Facile fabrication of 3D
500 ferrous ion crosslinked graphene oxide hydrogel membranes for excellent water purification,
501 *Environ. Sci.: Nano* 6 (2019) 3060-3071.

502 [50] M.R. Chowdhury, J. Steffes, B.D. Huey, J.R. McCutcheon, 3D printed polyamide
503 membranes for desalination, *Science* 361 (2018) 682-686.

504 [51] Z. Jiang, S. Karan, A.G. Livingston, Water transport through ultrathin polyamide nanofilms
505 used for reverse osmosis, *Adv. Mater.* 30 (2018) 1705973.

506 [52] N. Lan, K. Y. Wang, M. Weber, C. Maletzko, T. Chung, Investigation of novel molecularly
507 tunable thin-film nanocomposite nanofiltration hollow fiber membranes for boron removal, *J.*
508 *Membr. Sci.* 620 (2021) 118887.

509 [53] L. Bai, Y. Liu, N. Bossa, A. Ding, N. Ren, G. Li, H. Liang, M.R. Wiesner, Incorporation of
510 cellulose nanocrystals (CNCs) into the polyamide layer of thin-film composite (TFC)
511 nanofiltration membranes for enhanced separation performance and antifouling properties,
512 *Environ. Sci. Technol.* 52 (2018) 11178-11187.

513 [54] Z. Yang, H. Guo, Z. Yao, Y. Mei, C. Tang, Hydrophilic silver nanoparticles induce selective
514 nanochannels in thin film nanocomposite polyamide membranes, *Environ. Sci. Technol.* 53 (2019)
515 5301-5308.

516 [55] E.M. Van Wagner, A.C. Sagle, M.M. Sharma, B.D. Freeman, Effect of crossflow testing
517 conditions, including feed pH and continuous feed filtration, on commercial reverse osmosis
518 membrane performance, *J. Membr. Sci.* 345 (2009) 97-109.

519 [56] F. Xiao, X. Hu, Y. Chen, Y. Zhang, Porous Zr-based metal-organic frameworks (Zr-MOFs)-
520 incorporated thin-film nanocomposite membrane toward enhanced desalination performance, *ACS*

521 Appl. Mater. Interfaces 11 (2019) 47390-47403.

522 [57] L.E. Peng, Z. Yao, Z. Yang, Guo, H.C.Y. Tang, Dissecting the role of substrate on the
523 morphology and separation properties of thin film composite polyamide membranes: Seeing is
524 believing, Environ. Sci. Technol. 54 (2020) 6978-6986.

525 [58] X. Kang, X. Liu, J. Liu, Y. Wen, J. Qi, X. Li, Spin-assisted interfacial polymerization
526 strategy for graphene oxide-polyamide composite nanofiltration membrane with high performance,
527 Appl. Surf. Sci. 508 (2020) 145198.

528 [59] R. Dai, J. Li, Z. Wang, Constructing interlayer to tailor structure and performance of thin-
529 film composite polyamide membranes: A review, Adv. Colloid Interface Sci. 282 (2020) 102204.

530 [60] S. Zheng, Q. Tu, J.J. Urban, S. Li, B. Mi, Swelling of graphene oxide membranes in
531 aqueous solution: Characterization of interlayer spacing and insight into water transport
532 mechanisms, ACS Nano 11 (2017) 6440-6450.